Abstract

The high-power all-fiber superfluorescent source operating near 980 nm is studied experimentally and numerically. In experiment, an all-fiber superfluorescent source operating near 980 nm is fabricated with the distributed side-coupled cladding-pumping (DSCCP) Yb-doped fiber (YDF). By optimizing the active fiber and angle-cleaving of the output port, a recorded 17.1-W output power and 14.6% slope efficiency of 980-nm ASE are obtained. No parasitic laser oscillation is observed at the maximum output power. The power scalability of the source is also numerically investigated. A simple but effective method is present to numerically determine the threshold of parasitic laser oscillation. It is found that the output power can be scaled up to 50 W and 100 W with the optical feedback of each output port suppressed to 1.2 × 10−6 and 7 × 10−7, respectively. It is also revealed that coupling coefficient should be larger than 6 to realize more than 50% slope efficiency. These results provide significant guidance for understanding and designing the high-power superfluorescent Yb-doped source (SYFS) operating near 980 nm and other sorts of three-level fiber sources.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High-power all-fiberized superfluorescent source with distributed side-coupled cladding-pumped fiber

Yingye An, Jianqiu Cao, Zhihe Huang, Shaofeng Guo, Xiaojun Xu, and Jinbao Chen
Appl. Opt. 53(36) 8564-8570 (2014)

Experimental study on the all-fiberized continuous-wave ytterbium-doped laser operating near 980 nm

Ruixing Wang, Ying Liu, Jianqiu Cao, Shaofeng Guo, Lei Si, and Jinbao Chen
Appl. Opt. 52(24) 5920-5924 (2013)

High-power, low-noise, Yb-doped, cladding-pumped, three-level fiber sources at 980nm

R. Selvas, J. K. Sahu, L. B. Fu, J. N. Jang, J. Nilsson, A. B. Grudinin, K. H. Ylä-Jarkko, S. A. Alam, P. W. Turner, and J. Moore
Opt. Lett. 28(13) 1093-1095 (2003)

References

  • View by:
  • |
  • |
  • |

  1. D. C. Hanna, I. R. Perry, R. G. Smart, P. J. Suni, J. E. Townsend, and A. C. Tropper, “Efficient superfluorescent emission at 974 nm and 1040 nm from an Yb-doped fiber,” Opt. Commun. 72(3), 230–234 (1989).
    [Crossref]
  2. J. R. Armitage, R. Wyatt, B. J. Ainslie, and S. P. Craig-Ryan, “Highly efficient 980 nm operation of a Yb/sup 3+/−doped silica fibre laser,” Electron. Lett. 25(5), 298–299 (1989).
    [Crossref]
  3. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives,” J. Opt. Soc. Am. B 27(11), 63–92 (2010).
    [Crossref]
  4. A. S. Kurkov, “Oscillation spectral range of Yb-doped fiber lasers,” Laser Phys. Lett. 4(2), 93–102 (2007).
    [Crossref]
  5. J. Cao, S. Guo, X. Xu, J. Chen, and Q. Lu, “Investigation on power scalability of diffraction-limited Yb-doped fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 373–383 (2014).
    [Crossref]
  6. D. B. S. Soh, C. Codemard, and S. Wang, “A 980-nm Yb-doped Fiber MOPA Source and Its Frequency Doubling,” IEEE Photonics Technol. Lett. 16(4), 1032–1034 (2004).
    [Crossref]
  7. G. Machinet, J. Lhermite, and E. Cormier, “40 W picosecond fiber laser at 976 nm,” inCLEO:2011- Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CMS2.
  8. M. Laroche, C. Bartolacci, B. Cadier, H. Gilles, S. Girard, L. Lablonde, and T. Robin, “Generation of 520 mW pulsed blue light by frequency doubling of an all-fiberized 978 nm Yb-doped fiber laser source,” Opt. Lett. 36(19), 3909–3911 (2011).
    [Crossref] [PubMed]
  9. P. Li, G. Zhong, Z. Liu, J. Chi, X. Zhang, C. Yang, Z. Zhao, Y. Li, X. Wang, H. Zhao, and D. Jiang, “980nm Yb-doped double-clad photonic crystal fiber amplifier and its frequency doubling,” Opt. Laser Technol. 44(7), 2202–2205 (2012).
    [Crossref]
  10. J. He, S. Du, Z. Wang, Z. Wang, J. Zhou, and Q. Lou, “Linearly-polarized short-pulse AOM Q-switched 978 nm photonic crystal fiber laser,” Opt. Express 21(24), 29249–29254 (2013).
    [Crossref] [PubMed]
  11. J. Nilsson, J. D. Minelly, R. Paschotta, A. C. Tropper, and D. C. Hanna, “Ring-doped cladding-pumped single-mode three-level fiber laser,” Opt. Lett. 23(5), 355–357 (1998).
    [Crossref] [PubMed]
  12. Y. Liu, J. Cao, H. Xiao, S. Guo, L. Si, and L. Huang, “Study on the output properties of fiber lasers operating near 980 nm,” J. Opt. Soc. Am. B 30(2), 266–274 (2013).
    [Crossref]
  13. K. H. Ylä-Jarkko, R. Selvas, D. B. S. Son, J. K. Sahu, C. A. Codemard, J. Nilsson, S. A. Alam, and A. B. Grudinin, “A 3.5 W 977 nm Cladding-pumped Jacketed Air-Clad Ytterbium-Doped Fiber Laser,” in Advanced Solid-State Photonics, J. Zayhowski, ed., Vol. 83 of OSA Trends in Optics and Photonics (Optical Society of America, 2003), paper 103.
  14. D. B. S. Soh, C. Codemard, J. K. Sahu, J. Nilsson, V. Philippov, C. Alegria, and Y. Jeong, “A 4.3 W 977 nm ytterbium-doped jacketed-air-clad fiber amplifier,” in Advanced Solid-State Photonics, OSA Technical Digest (Optical Society of America, 2004), paper MA3.
  15. F. Röser, C. Jauregui, J. Limpert, and A. Tünnermann, “94 W 980 nm high brightness Yb-doped fiber laser,” Opt. Express 16(22), 17310–17318 (2008).
    [Crossref] [PubMed]
  16. J. Boullet, Y. Zaouter, R. Desmarchelier, M. Cazaux, F. Salin, J. Saby, R. Bello-Doua, and E. Cormier, “High power ytterbium-doped rod-type three-level photonic crystal fiber laser,” Opt. Express 16(22), 17891–17902 (2008).
    [Crossref] [PubMed]
  17. M. Laroche, C. Bartolacci, G. Hervé, G. Sylvain, T. Robin, and B. Cadier, “All-fiber Yb-doped CW and pulsed laser sources operating near 980nm,” in Advances in Optical Materials, OSA Technical Digest (CD) (Optical Society of America, 2011), paper ATuB9.
  18. R. Wang, Y. Liu, J. Cao, S. Guo, L. Si, and J. Chen, “Experimental study on the all-fiberized continuous-wave ytterbium-doped laser operating near 980 nm,” Appl. Opt. 52(24), 5920–5924 (2013).
    [Crossref] [PubMed]
  19. Y. Yu, Y. An, J. Cao, S. Guo, and X. Xu, “Experimental Study on All-Fiberized Continuous-Wave Yb-Doped Fiber Amplifier Operating Near 980 nm,” IEEE Photonics Technol. Lett. 28(4), 398–401 (2016).
    [Crossref]
  20. M. Leich, M. Jäger, S. Grimm, D. Hoh, S. Jetschke, M. Becker, A. Hartung, and H. Bartelt, “Tapered large-core 976 nm Yb-doped fiber laser with 10 W output power,” Laser Phys. Lett. 11(4), 045102 (2014).
    [Crossref]
  21. Y. Ren, J. Cao, H. Ying, H. Chen, Z. Pan, S. Du, J. Chen, and C. Zhang, “8-W all-fiber superfluorescent source operating near 980 nm,” in Laser Congress 2017 (ASSL, LAC), OSA Technical Digest (online) (Optical Society of America, 2017), paper JTh2A.22.
    [Crossref]
  22. Y. An, Y. Yu, J. Cao, and J. Chen, “Power scalability of a single-stage Yb-doped superfluorescent fiber source,” Laser Phys. Lett. 13(2), 1612–2011 (2016).
    [Crossref]
  23. Y. An, J. Cao, Z. Huang, S. Guo, X. Xu, and J. Chen, “High-power all-fiberized superfluorescent source with distributed side-coupled cladding-pumped fiber,” Appl. Opt. 53(36), 8564–8570 (2014).
    [Crossref] [PubMed]
  24. P. Jelger, M. Engholm, L. Norin, and F. Laurell, “Degradation-resistant lasing at 980 nm in a Yb/Ce/Al-doped silica fiber,” J. Opt. Soc. Am. B 27(2), 338–342 (2010).
    [Crossref]
  25. Z. Huang, J. Cao, S. Guo, J. Chen, and X. Xu, “Comparison of fiber lasers based on distributed side-coupled cladding-pumped fibers and double-cladding fibers,” Appl. Opt. 53(10), 2187–2195 (2014).
    [Crossref] [PubMed]
  26. C. Henry, “Theory of spontaneous emission noise in open resonators and its application to lasers and optical amplifiers,” J. Lightwave Technol. 4(3), 288–297 (1986).
    [Crossref]
  27. H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fibre lasers: versatile sources for the 1-1.2µm region,” IEEE J. Sel. Top. Quantum Electron. 1(1), 2–13 (1995).
    [Crossref]
  28. Z. Jiang and J. R. Marciante, “Impact of transverse spatial-hole burning on beam quality in large-mode-area Yb-doped fibers,” J. Opt. Soc. Am. B 25(2), 247–254 (2008).
    [Crossref]

2016 (2)

Y. Yu, Y. An, J. Cao, S. Guo, and X. Xu, “Experimental Study on All-Fiberized Continuous-Wave Yb-Doped Fiber Amplifier Operating Near 980 nm,” IEEE Photonics Technol. Lett. 28(4), 398–401 (2016).
[Crossref]

Y. An, Y. Yu, J. Cao, and J. Chen, “Power scalability of a single-stage Yb-doped superfluorescent fiber source,” Laser Phys. Lett. 13(2), 1612–2011 (2016).
[Crossref]

2014 (4)

Y. An, J. Cao, Z. Huang, S. Guo, X. Xu, and J. Chen, “High-power all-fiberized superfluorescent source with distributed side-coupled cladding-pumped fiber,” Appl. Opt. 53(36), 8564–8570 (2014).
[Crossref] [PubMed]

M. Leich, M. Jäger, S. Grimm, D. Hoh, S. Jetschke, M. Becker, A. Hartung, and H. Bartelt, “Tapered large-core 976 nm Yb-doped fiber laser with 10 W output power,” Laser Phys. Lett. 11(4), 045102 (2014).
[Crossref]

J. Cao, S. Guo, X. Xu, J. Chen, and Q. Lu, “Investigation on power scalability of diffraction-limited Yb-doped fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 373–383 (2014).
[Crossref]

Z. Huang, J. Cao, S. Guo, J. Chen, and X. Xu, “Comparison of fiber lasers based on distributed side-coupled cladding-pumped fibers and double-cladding fibers,” Appl. Opt. 53(10), 2187–2195 (2014).
[Crossref] [PubMed]

2013 (3)

2012 (1)

P. Li, G. Zhong, Z. Liu, J. Chi, X. Zhang, C. Yang, Z. Zhao, Y. Li, X. Wang, H. Zhao, and D. Jiang, “980nm Yb-doped double-clad photonic crystal fiber amplifier and its frequency doubling,” Opt. Laser Technol. 44(7), 2202–2205 (2012).
[Crossref]

2011 (1)

2010 (2)

D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives,” J. Opt. Soc. Am. B 27(11), 63–92 (2010).
[Crossref]

P. Jelger, M. Engholm, L. Norin, and F. Laurell, “Degradation-resistant lasing at 980 nm in a Yb/Ce/Al-doped silica fiber,” J. Opt. Soc. Am. B 27(2), 338–342 (2010).
[Crossref]

2008 (3)

2007 (1)

A. S. Kurkov, “Oscillation spectral range of Yb-doped fiber lasers,” Laser Phys. Lett. 4(2), 93–102 (2007).
[Crossref]

2004 (1)

D. B. S. Soh, C. Codemard, and S. Wang, “A 980-nm Yb-doped Fiber MOPA Source and Its Frequency Doubling,” IEEE Photonics Technol. Lett. 16(4), 1032–1034 (2004).
[Crossref]

1998 (1)

1995 (1)

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fibre lasers: versatile sources for the 1-1.2µm region,” IEEE J. Sel. Top. Quantum Electron. 1(1), 2–13 (1995).
[Crossref]

1989 (2)

D. C. Hanna, I. R. Perry, R. G. Smart, P. J. Suni, J. E. Townsend, and A. C. Tropper, “Efficient superfluorescent emission at 974 nm and 1040 nm from an Yb-doped fiber,” Opt. Commun. 72(3), 230–234 (1989).
[Crossref]

J. R. Armitage, R. Wyatt, B. J. Ainslie, and S. P. Craig-Ryan, “Highly efficient 980 nm operation of a Yb/sup 3+/−doped silica fibre laser,” Electron. Lett. 25(5), 298–299 (1989).
[Crossref]

1986 (1)

C. Henry, “Theory of spontaneous emission noise in open resonators and its application to lasers and optical amplifiers,” J. Lightwave Technol. 4(3), 288–297 (1986).
[Crossref]

Ainslie, B. J.

J. R. Armitage, R. Wyatt, B. J. Ainslie, and S. P. Craig-Ryan, “Highly efficient 980 nm operation of a Yb/sup 3+/−doped silica fibre laser,” Electron. Lett. 25(5), 298–299 (1989).
[Crossref]

An, Y.

Y. Yu, Y. An, J. Cao, S. Guo, and X. Xu, “Experimental Study on All-Fiberized Continuous-Wave Yb-Doped Fiber Amplifier Operating Near 980 nm,” IEEE Photonics Technol. Lett. 28(4), 398–401 (2016).
[Crossref]

Y. An, Y. Yu, J. Cao, and J. Chen, “Power scalability of a single-stage Yb-doped superfluorescent fiber source,” Laser Phys. Lett. 13(2), 1612–2011 (2016).
[Crossref]

Y. An, J. Cao, Z. Huang, S. Guo, X. Xu, and J. Chen, “High-power all-fiberized superfluorescent source with distributed side-coupled cladding-pumped fiber,” Appl. Opt. 53(36), 8564–8570 (2014).
[Crossref] [PubMed]

Armitage, J. R.

J. R. Armitage, R. Wyatt, B. J. Ainslie, and S. P. Craig-Ryan, “Highly efficient 980 nm operation of a Yb/sup 3+/−doped silica fibre laser,” Electron. Lett. 25(5), 298–299 (1989).
[Crossref]

Barber, P. R.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fibre lasers: versatile sources for the 1-1.2µm region,” IEEE J. Sel. Top. Quantum Electron. 1(1), 2–13 (1995).
[Crossref]

Bartelt, H.

M. Leich, M. Jäger, S. Grimm, D. Hoh, S. Jetschke, M. Becker, A. Hartung, and H. Bartelt, “Tapered large-core 976 nm Yb-doped fiber laser with 10 W output power,” Laser Phys. Lett. 11(4), 045102 (2014).
[Crossref]

Bartolacci, C.

Becker, M.

M. Leich, M. Jäger, S. Grimm, D. Hoh, S. Jetschke, M. Becker, A. Hartung, and H. Bartelt, “Tapered large-core 976 nm Yb-doped fiber laser with 10 W output power,” Laser Phys. Lett. 11(4), 045102 (2014).
[Crossref]

Bello-Doua, R.

Boullet, J.

Cadier, B.

Cao, J.

Carman, R. J.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fibre lasers: versatile sources for the 1-1.2µm region,” IEEE J. Sel. Top. Quantum Electron. 1(1), 2–13 (1995).
[Crossref]

Cazaux, M.

Chen, J.

Chi, J.

P. Li, G. Zhong, Z. Liu, J. Chi, X. Zhang, C. Yang, Z. Zhao, Y. Li, X. Wang, H. Zhao, and D. Jiang, “980nm Yb-doped double-clad photonic crystal fiber amplifier and its frequency doubling,” Opt. Laser Technol. 44(7), 2202–2205 (2012).
[Crossref]

Clarkson, W. A.

D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives,” J. Opt. Soc. Am. B 27(11), 63–92 (2010).
[Crossref]

Codemard, C.

D. B. S. Soh, C. Codemard, and S. Wang, “A 980-nm Yb-doped Fiber MOPA Source and Its Frequency Doubling,” IEEE Photonics Technol. Lett. 16(4), 1032–1034 (2004).
[Crossref]

Cormier, E.

Craig-Ryan, S. P.

J. R. Armitage, R. Wyatt, B. J. Ainslie, and S. P. Craig-Ryan, “Highly efficient 980 nm operation of a Yb/sup 3+/−doped silica fibre laser,” Electron. Lett. 25(5), 298–299 (1989).
[Crossref]

Dawes, J. M.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fibre lasers: versatile sources for the 1-1.2µm region,” IEEE J. Sel. Top. Quantum Electron. 1(1), 2–13 (1995).
[Crossref]

Desmarchelier, R.

Du, S.

Engholm, M.

Gilles, H.

Girard, S.

Grimm, S.

M. Leich, M. Jäger, S. Grimm, D. Hoh, S. Jetschke, M. Becker, A. Hartung, and H. Bartelt, “Tapered large-core 976 nm Yb-doped fiber laser with 10 W output power,” Laser Phys. Lett. 11(4), 045102 (2014).
[Crossref]

Guo, S.

Hanna, D. C.

J. Nilsson, J. D. Minelly, R. Paschotta, A. C. Tropper, and D. C. Hanna, “Ring-doped cladding-pumped single-mode three-level fiber laser,” Opt. Lett. 23(5), 355–357 (1998).
[Crossref] [PubMed]

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fibre lasers: versatile sources for the 1-1.2µm region,” IEEE J. Sel. Top. Quantum Electron. 1(1), 2–13 (1995).
[Crossref]

D. C. Hanna, I. R. Perry, R. G. Smart, P. J. Suni, J. E. Townsend, and A. C. Tropper, “Efficient superfluorescent emission at 974 nm and 1040 nm from an Yb-doped fiber,” Opt. Commun. 72(3), 230–234 (1989).
[Crossref]

Hartung, A.

M. Leich, M. Jäger, S. Grimm, D. Hoh, S. Jetschke, M. Becker, A. Hartung, and H. Bartelt, “Tapered large-core 976 nm Yb-doped fiber laser with 10 W output power,” Laser Phys. Lett. 11(4), 045102 (2014).
[Crossref]

He, J.

Henry, C.

C. Henry, “Theory of spontaneous emission noise in open resonators and its application to lasers and optical amplifiers,” J. Lightwave Technol. 4(3), 288–297 (1986).
[Crossref]

Hoh, D.

M. Leich, M. Jäger, S. Grimm, D. Hoh, S. Jetschke, M. Becker, A. Hartung, and H. Bartelt, “Tapered large-core 976 nm Yb-doped fiber laser with 10 W output power,” Laser Phys. Lett. 11(4), 045102 (2014).
[Crossref]

Huang, L.

Huang, Z.

Jäger, M.

M. Leich, M. Jäger, S. Grimm, D. Hoh, S. Jetschke, M. Becker, A. Hartung, and H. Bartelt, “Tapered large-core 976 nm Yb-doped fiber laser with 10 W output power,” Laser Phys. Lett. 11(4), 045102 (2014).
[Crossref]

Jauregui, C.

Jelger, P.

Jetschke, S.

M. Leich, M. Jäger, S. Grimm, D. Hoh, S. Jetschke, M. Becker, A. Hartung, and H. Bartelt, “Tapered large-core 976 nm Yb-doped fiber laser with 10 W output power,” Laser Phys. Lett. 11(4), 045102 (2014).
[Crossref]

Jiang, D.

P. Li, G. Zhong, Z. Liu, J. Chi, X. Zhang, C. Yang, Z. Zhao, Y. Li, X. Wang, H. Zhao, and D. Jiang, “980nm Yb-doped double-clad photonic crystal fiber amplifier and its frequency doubling,” Opt. Laser Technol. 44(7), 2202–2205 (2012).
[Crossref]

Jiang, Z.

Kurkov, A. S.

A. S. Kurkov, “Oscillation spectral range of Yb-doped fiber lasers,” Laser Phys. Lett. 4(2), 93–102 (2007).
[Crossref]

Lablonde, L.

Laroche, M.

Laurell, F.

Leich, M.

M. Leich, M. Jäger, S. Grimm, D. Hoh, S. Jetschke, M. Becker, A. Hartung, and H. Bartelt, “Tapered large-core 976 nm Yb-doped fiber laser with 10 W output power,” Laser Phys. Lett. 11(4), 045102 (2014).
[Crossref]

Li, P.

P. Li, G. Zhong, Z. Liu, J. Chi, X. Zhang, C. Yang, Z. Zhao, Y. Li, X. Wang, H. Zhao, and D. Jiang, “980nm Yb-doped double-clad photonic crystal fiber amplifier and its frequency doubling,” Opt. Laser Technol. 44(7), 2202–2205 (2012).
[Crossref]

Li, Y.

P. Li, G. Zhong, Z. Liu, J. Chi, X. Zhang, C. Yang, Z. Zhao, Y. Li, X. Wang, H. Zhao, and D. Jiang, “980nm Yb-doped double-clad photonic crystal fiber amplifier and its frequency doubling,” Opt. Laser Technol. 44(7), 2202–2205 (2012).
[Crossref]

Limpert, J.

Liu, Y.

Liu, Z.

P. Li, G. Zhong, Z. Liu, J. Chi, X. Zhang, C. Yang, Z. Zhao, Y. Li, X. Wang, H. Zhao, and D. Jiang, “980nm Yb-doped double-clad photonic crystal fiber amplifier and its frequency doubling,” Opt. Laser Technol. 44(7), 2202–2205 (2012).
[Crossref]

Lou, Q.

Lu, Q.

J. Cao, S. Guo, X. Xu, J. Chen, and Q. Lu, “Investigation on power scalability of diffraction-limited Yb-doped fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 373–383 (2014).
[Crossref]

Mackechnie, C. J.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fibre lasers: versatile sources for the 1-1.2µm region,” IEEE J. Sel. Top. Quantum Electron. 1(1), 2–13 (1995).
[Crossref]

Marciante, J. R.

Minelly, J. D.

Nilsson, J.

D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives,” J. Opt. Soc. Am. B 27(11), 63–92 (2010).
[Crossref]

J. Nilsson, J. D. Minelly, R. Paschotta, A. C. Tropper, and D. C. Hanna, “Ring-doped cladding-pumped single-mode three-level fiber laser,” Opt. Lett. 23(5), 355–357 (1998).
[Crossref] [PubMed]

Norin, L.

Paschotta, R.

Pask, H. M.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fibre lasers: versatile sources for the 1-1.2µm region,” IEEE J. Sel. Top. Quantum Electron. 1(1), 2–13 (1995).
[Crossref]

Perry, I. R.

D. C. Hanna, I. R. Perry, R. G. Smart, P. J. Suni, J. E. Townsend, and A. C. Tropper, “Efficient superfluorescent emission at 974 nm and 1040 nm from an Yb-doped fiber,” Opt. Commun. 72(3), 230–234 (1989).
[Crossref]

Richardson, D. J.

D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives,” J. Opt. Soc. Am. B 27(11), 63–92 (2010).
[Crossref]

Robin, T.

Röser, F.

Saby, J.

Salin, F.

Si, L.

Smart, R. G.

D. C. Hanna, I. R. Perry, R. G. Smart, P. J. Suni, J. E. Townsend, and A. C. Tropper, “Efficient superfluorescent emission at 974 nm and 1040 nm from an Yb-doped fiber,” Opt. Commun. 72(3), 230–234 (1989).
[Crossref]

Soh, D. B. S.

D. B. S. Soh, C. Codemard, and S. Wang, “A 980-nm Yb-doped Fiber MOPA Source and Its Frequency Doubling,” IEEE Photonics Technol. Lett. 16(4), 1032–1034 (2004).
[Crossref]

Suni, P. J.

D. C. Hanna, I. R. Perry, R. G. Smart, P. J. Suni, J. E. Townsend, and A. C. Tropper, “Efficient superfluorescent emission at 974 nm and 1040 nm from an Yb-doped fiber,” Opt. Commun. 72(3), 230–234 (1989).
[Crossref]

Townsend, J. E.

D. C. Hanna, I. R. Perry, R. G. Smart, P. J. Suni, J. E. Townsend, and A. C. Tropper, “Efficient superfluorescent emission at 974 nm and 1040 nm from an Yb-doped fiber,” Opt. Commun. 72(3), 230–234 (1989).
[Crossref]

Tropper, A. C.

J. Nilsson, J. D. Minelly, R. Paschotta, A. C. Tropper, and D. C. Hanna, “Ring-doped cladding-pumped single-mode three-level fiber laser,” Opt. Lett. 23(5), 355–357 (1998).
[Crossref] [PubMed]

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fibre lasers: versatile sources for the 1-1.2µm region,” IEEE J. Sel. Top. Quantum Electron. 1(1), 2–13 (1995).
[Crossref]

D. C. Hanna, I. R. Perry, R. G. Smart, P. J. Suni, J. E. Townsend, and A. C. Tropper, “Efficient superfluorescent emission at 974 nm and 1040 nm from an Yb-doped fiber,” Opt. Commun. 72(3), 230–234 (1989).
[Crossref]

Tünnermann, A.

Wang, R.

Wang, S.

D. B. S. Soh, C. Codemard, and S. Wang, “A 980-nm Yb-doped Fiber MOPA Source and Its Frequency Doubling,” IEEE Photonics Technol. Lett. 16(4), 1032–1034 (2004).
[Crossref]

Wang, X.

P. Li, G. Zhong, Z. Liu, J. Chi, X. Zhang, C. Yang, Z. Zhao, Y. Li, X. Wang, H. Zhao, and D. Jiang, “980nm Yb-doped double-clad photonic crystal fiber amplifier and its frequency doubling,” Opt. Laser Technol. 44(7), 2202–2205 (2012).
[Crossref]

Wang, Z.

Wyatt, R.

J. R. Armitage, R. Wyatt, B. J. Ainslie, and S. P. Craig-Ryan, “Highly efficient 980 nm operation of a Yb/sup 3+/−doped silica fibre laser,” Electron. Lett. 25(5), 298–299 (1989).
[Crossref]

Xiao, H.

Xu, X.

Y. Yu, Y. An, J. Cao, S. Guo, and X. Xu, “Experimental Study on All-Fiberized Continuous-Wave Yb-Doped Fiber Amplifier Operating Near 980 nm,” IEEE Photonics Technol. Lett. 28(4), 398–401 (2016).
[Crossref]

Z. Huang, J. Cao, S. Guo, J. Chen, and X. Xu, “Comparison of fiber lasers based on distributed side-coupled cladding-pumped fibers and double-cladding fibers,” Appl. Opt. 53(10), 2187–2195 (2014).
[Crossref] [PubMed]

Y. An, J. Cao, Z. Huang, S. Guo, X. Xu, and J. Chen, “High-power all-fiberized superfluorescent source with distributed side-coupled cladding-pumped fiber,” Appl. Opt. 53(36), 8564–8570 (2014).
[Crossref] [PubMed]

J. Cao, S. Guo, X. Xu, J. Chen, and Q. Lu, “Investigation on power scalability of diffraction-limited Yb-doped fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 373–383 (2014).
[Crossref]

Yang, C.

P. Li, G. Zhong, Z. Liu, J. Chi, X. Zhang, C. Yang, Z. Zhao, Y. Li, X. Wang, H. Zhao, and D. Jiang, “980nm Yb-doped double-clad photonic crystal fiber amplifier and its frequency doubling,” Opt. Laser Technol. 44(7), 2202–2205 (2012).
[Crossref]

Yu, Y.

Y. Yu, Y. An, J. Cao, S. Guo, and X. Xu, “Experimental Study on All-Fiberized Continuous-Wave Yb-Doped Fiber Amplifier Operating Near 980 nm,” IEEE Photonics Technol. Lett. 28(4), 398–401 (2016).
[Crossref]

Y. An, Y. Yu, J. Cao, and J. Chen, “Power scalability of a single-stage Yb-doped superfluorescent fiber source,” Laser Phys. Lett. 13(2), 1612–2011 (2016).
[Crossref]

Zaouter, Y.

Zhang, X.

P. Li, G. Zhong, Z. Liu, J. Chi, X. Zhang, C. Yang, Z. Zhao, Y. Li, X. Wang, H. Zhao, and D. Jiang, “980nm Yb-doped double-clad photonic crystal fiber amplifier and its frequency doubling,” Opt. Laser Technol. 44(7), 2202–2205 (2012).
[Crossref]

Zhao, H.

P. Li, G. Zhong, Z. Liu, J. Chi, X. Zhang, C. Yang, Z. Zhao, Y. Li, X. Wang, H. Zhao, and D. Jiang, “980nm Yb-doped double-clad photonic crystal fiber amplifier and its frequency doubling,” Opt. Laser Technol. 44(7), 2202–2205 (2012).
[Crossref]

Zhao, Z.

P. Li, G. Zhong, Z. Liu, J. Chi, X. Zhang, C. Yang, Z. Zhao, Y. Li, X. Wang, H. Zhao, and D. Jiang, “980nm Yb-doped double-clad photonic crystal fiber amplifier and its frequency doubling,” Opt. Laser Technol. 44(7), 2202–2205 (2012).
[Crossref]

Zhong, G.

P. Li, G. Zhong, Z. Liu, J. Chi, X. Zhang, C. Yang, Z. Zhao, Y. Li, X. Wang, H. Zhao, and D. Jiang, “980nm Yb-doped double-clad photonic crystal fiber amplifier and its frequency doubling,” Opt. Laser Technol. 44(7), 2202–2205 (2012).
[Crossref]

Zhou, J.

Appl. Opt. (3)

Electron. Lett. (1)

J. R. Armitage, R. Wyatt, B. J. Ainslie, and S. P. Craig-Ryan, “Highly efficient 980 nm operation of a Yb/sup 3+/−doped silica fibre laser,” Electron. Lett. 25(5), 298–299 (1989).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

J. Cao, S. Guo, X. Xu, J. Chen, and Q. Lu, “Investigation on power scalability of diffraction-limited Yb-doped fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 373–383 (2014).
[Crossref]

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fibre lasers: versatile sources for the 1-1.2µm region,” IEEE J. Sel. Top. Quantum Electron. 1(1), 2–13 (1995).
[Crossref]

IEEE Photonics Technol. Lett. (2)

D. B. S. Soh, C. Codemard, and S. Wang, “A 980-nm Yb-doped Fiber MOPA Source and Its Frequency Doubling,” IEEE Photonics Technol. Lett. 16(4), 1032–1034 (2004).
[Crossref]

Y. Yu, Y. An, J. Cao, S. Guo, and X. Xu, “Experimental Study on All-Fiberized Continuous-Wave Yb-Doped Fiber Amplifier Operating Near 980 nm,” IEEE Photonics Technol. Lett. 28(4), 398–401 (2016).
[Crossref]

J. Lightwave Technol. (1)

C. Henry, “Theory of spontaneous emission noise in open resonators and its application to lasers and optical amplifiers,” J. Lightwave Technol. 4(3), 288–297 (1986).
[Crossref]

J. Opt. Soc. Am. B (4)

Laser Phys. Lett. (3)

A. S. Kurkov, “Oscillation spectral range of Yb-doped fiber lasers,” Laser Phys. Lett. 4(2), 93–102 (2007).
[Crossref]

M. Leich, M. Jäger, S. Grimm, D. Hoh, S. Jetschke, M. Becker, A. Hartung, and H. Bartelt, “Tapered large-core 976 nm Yb-doped fiber laser with 10 W output power,” Laser Phys. Lett. 11(4), 045102 (2014).
[Crossref]

Y. An, Y. Yu, J. Cao, and J. Chen, “Power scalability of a single-stage Yb-doped superfluorescent fiber source,” Laser Phys. Lett. 13(2), 1612–2011 (2016).
[Crossref]

Opt. Commun. (1)

D. C. Hanna, I. R. Perry, R. G. Smart, P. J. Suni, J. E. Townsend, and A. C. Tropper, “Efficient superfluorescent emission at 974 nm and 1040 nm from an Yb-doped fiber,” Opt. Commun. 72(3), 230–234 (1989).
[Crossref]

Opt. Express (3)

Opt. Laser Technol. (1)

P. Li, G. Zhong, Z. Liu, J. Chi, X. Zhang, C. Yang, Z. Zhao, Y. Li, X. Wang, H. Zhao, and D. Jiang, “980nm Yb-doped double-clad photonic crystal fiber amplifier and its frequency doubling,” Opt. Laser Technol. 44(7), 2202–2205 (2012).
[Crossref]

Opt. Lett. (2)

Other (5)

G. Machinet, J. Lhermite, and E. Cormier, “40 W picosecond fiber laser at 976 nm,” inCLEO:2011- Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CMS2.

M. Laroche, C. Bartolacci, G. Hervé, G. Sylvain, T. Robin, and B. Cadier, “All-fiber Yb-doped CW and pulsed laser sources operating near 980nm,” in Advances in Optical Materials, OSA Technical Digest (CD) (Optical Society of America, 2011), paper ATuB9.

K. H. Ylä-Jarkko, R. Selvas, D. B. S. Son, J. K. Sahu, C. A. Codemard, J. Nilsson, S. A. Alam, and A. B. Grudinin, “A 3.5 W 977 nm Cladding-pumped Jacketed Air-Clad Ytterbium-Doped Fiber Laser,” in Advanced Solid-State Photonics, J. Zayhowski, ed., Vol. 83 of OSA Trends in Optics and Photonics (Optical Society of America, 2003), paper 103.

D. B. S. Soh, C. Codemard, J. K. Sahu, J. Nilsson, V. Philippov, C. Alegria, and Y. Jeong, “A 4.3 W 977 nm ytterbium-doped jacketed-air-clad fiber amplifier,” in Advanced Solid-State Photonics, OSA Technical Digest (Optical Society of America, 2004), paper MA3.

Y. Ren, J. Cao, H. Ying, H. Chen, Z. Pan, S. Du, J. Chen, and C. Zhang, “8-W all-fiber superfluorescent source operating near 980 nm,” in Laser Congress 2017 (ASSL, LAC), OSA Technical Digest (online) (Optical Society of America, 2017), paper JTh2A.22.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic diagram of the all-fiber 980-nm SYFS. The inset gives the cross section of DSCCP YDF. LD: laser diode.
Fig. 2
Fig. 2 Plots of the output powers of the 980-nm (a) and 1030-nm (b) ASE via the pump power.
Fig. 3
Fig. 3 Output ASE spectra (a) and Zoom-in spectra of the 980-nm ASE (b) with various pump powers.
Fig. 4
Fig. 4 Comparison of output power of 980nm ASE between the numerical and experimental results (a), numerical spectra results (b) and zoom-in plot of the numerical spectra results (c) with the 2 × 10−6 optical feedback.
Fig. 5
Fig. 5 Output spectra (a) and pertinent parameter GR (b) corresponding to the various values of R when total injected pump power is 200W.
Fig. 6
Fig. 6 Plots of the peak value of GR via the values of R in different fiber length when total injected pump power is 200W. Two dotted line marks the value of R (i.e. 7 × 10-6 and 3 × 10-5 corresponding to 0.5-m and 0.4-m, respectively) beyond which the parasitic laser oscillation around 1030 nm begin to present.
Fig. 7
Fig. 7 Plots of the threshold of 980-nm ASE power via the values of R in different fiber length.
Fig. 8
Fig. 8 The variations of the output power of 980-nm ASE (a) and the variation of slope efficiency and thresholds of parasitic laser oscillation (b) corresponding to various coupling coefficient k with the 2 × 10−6 optical feedback and 0.5m fiber length.

Tables (2)

Tables Icon

Table 1 Parameters used in the experiment

Tables Icon

Table 2 Parameters used in the simulation

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

N 2 (z) N = [ P p + (z)+ P p (z)] Γ p σ ap h ν p A + Γ s hcA σ a (λ)[ P + (z,λ)+ P (z,λ)]λdλ [ P p + (z)+ P p (z)]( σ ap + σ ep ) Γ p h ν p A + 1 τ + Γ s hcA ( σ a (λ)+ σ e (λ))[ P + (z,λ)+ P (z,λ)]λdλ
± d P ± (z,λ) dz = Γ s {[ σ e (λ)+ σ a (λ)] N 2 (z) σ a (λ)N} P ± (z,λ) + Γ s σ e (λ) N 2 (z) P o (λ)α(z,λ) P ± (z,λ)
± d P p ± (z) dz = Γ p { σ ap [N N 2 (z)] σ ep N 2 (z)} P p ± (z)α(z, λ p ) P p ± (z) + k 1 P pp ± (z) k 2 P p ± (z)
± d P pp ± dz =α(z, λ p ) P pp ± (z) k 1 P pp ± (z)+ k 2 P p ± (z)
P 0 (λ)=mh c 2 / λ 3
P + (0,λ)= R 1 (λ) P (0,λ)
P (L,λ)= R 2 (λ) P + (L,λ)
GR(λ)= R 1 R 2 P s + (L,λ) P s (0,λ) P s + (0,λ) P s (L,λ)