Abstract

Analysis of the operation of flowing-gas low power DPALs is crucial for designing high power devices. In particular, the comparison between the measured and calculated temperature rise in the laser cell makes it possible to estimate the contribution of the quenching of the alkali atoms electronic states to the gas heating. Here we report on an experimental and theoretical study of continuous wave flowing-gas Cs DPAL with He and CH4 buffer gases, flow velocities of 1-4 m/s and pump powers of 30-65 W. In the calculations we used a 3D computational fluid dynamics model, solving the fluid mechanics and kinetics equations relevant to the laser operation. Maximum CW output power of 24 W with a slope efficiency of 48% was obtained. The experimental and theoretical values of the power and gas temperature are in good agreement. The lasing power was not affected by the flow velocity at this range of pump power and the gas temperature rise was only several degrees. It was found that the best agreement between the measured and calculated temperature rise is achieved for quenching cross-section ~0.05 Å2.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Detailed analysis of kinetic and fluid dynamic processes in diode-pumped alkali lasers

Boris D. Barmashenko and Salman Rosenwaks
J. Opt. Soc. Am. B 30(5) 1118-1126 (2013)

References

  • View by:
  • |
  • |
  • |

  1. W. F. Krupke, “Diode pumped alkali lasers (DPALs) — A review (rev1),” J. Prog. Quantum Electron. 36(1), 4–28 (2012).
    [Crossref]
  2. B. V. Zhdanov and R. J. Knize, “Review of alkali laser research and development,” Opt. Eng. 52(021010), 1–8 (2013).
  3. G. A. Pitz, D. M. Stalnaker, E. M. Guild, B. Q. Oliker, P. J. Moran, S. W. Townsend, and D. A. Hostutler, “Advancements in flowing diode pumped alkali lasers,” Proc. SPIE 9729, 972902 (2016).
    [Crossref]
  4. D. Hostutler, “Characterization of a diode pumped alkali laser with a flowing gain medium,” presented at HPLS&A 2016 Conference, Gmunden, Austria, 5–9 Sept. 2016.
  5. A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Yeroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” J. Prog. Quantum Electron. 42(2), 95–98 (2012).
    [Crossref]
  6. B. V. Zhdanov, M. D. Rotondaro, M. K. Shaffer, and R. J. Knize, “Low-pressure cesium and potassium diode pumped alkali lasers: pros and cons,” Opt. Eng. 55(026105), 1–6 (2016).
  7. T. Yamamoto, F. Yamamoto, M. Endo, and F. Wani, “Experimental investigation of gas-flow type DPAL,” Proc. SPIE 10254, 102540S (2016).
  8. B. D. Barmashenko and S. Rosenwaks, “Feasibility of supersonic diode pumped alkali lasers: model calculations,” Appl. Phys. Lett. 102(141108), 1–4 (2013).
  9. E. Yacoby, K. Waichman, O. Sadot, B. D. Barmashenko, and S. Rosenwaks, “Modeling of supersonic diode pumped alkali lasers,” J. Opt. Soc. Am. B 32(9), 1824–1833 (2015).
    [Crossref]
  10. B. V. Zhdanov, M. D. Rotondaro, M. K. Shaffer, and R. J. Knize, “Measurements of the gain medium temperature in an operating Cs DPAL,” Opt. Express 24(17), 19286–19292 (2016).
    [Crossref] [PubMed]
  11. B. Shen, J. Huang, X. Xu, C. Xia, and B. Pan, “Modeling of steady-state temperature distribution in diode-pumped alkali vapor lasers: analysis of the experimental results,” IEEE J. Quantum Electron. 53(3), 1–7 (2017).
    [Crossref]
  12. I. Auslender, B. Barmashenko, S. Rosenwaks, B. Zhdanov, M. Rotondaro, and R. J. Knize, “Modeling of pulsed K diode pumped alkali laser: Analysis of the experimental results,” Opt. Express 23(16), 20986–20996 (2015).
    [Crossref] [PubMed]
  13. G. A. Pitz, C. D. Fox, and G. P. Perram, “Transfer between the cesium 62P1/2 and 62P3/2 levels induced by collisions with H2, HD, D2, CH4, C2H6, CF4, and C2F6,” Phys. Rev. A 84(3), 032708 (2011).
    [Crossref]

2017 (1)

B. Shen, J. Huang, X. Xu, C. Xia, and B. Pan, “Modeling of steady-state temperature distribution in diode-pumped alkali vapor lasers: analysis of the experimental results,” IEEE J. Quantum Electron. 53(3), 1–7 (2017).
[Crossref]

2016 (4)

G. A. Pitz, D. M. Stalnaker, E. M. Guild, B. Q. Oliker, P. J. Moran, S. W. Townsend, and D. A. Hostutler, “Advancements in flowing diode pumped alkali lasers,” Proc. SPIE 9729, 972902 (2016).
[Crossref]

B. V. Zhdanov, M. D. Rotondaro, M. K. Shaffer, and R. J. Knize, “Low-pressure cesium and potassium diode pumped alkali lasers: pros and cons,” Opt. Eng. 55(026105), 1–6 (2016).

T. Yamamoto, F. Yamamoto, M. Endo, and F. Wani, “Experimental investigation of gas-flow type DPAL,” Proc. SPIE 10254, 102540S (2016).

B. V. Zhdanov, M. D. Rotondaro, M. K. Shaffer, and R. J. Knize, “Measurements of the gain medium temperature in an operating Cs DPAL,” Opt. Express 24(17), 19286–19292 (2016).
[Crossref] [PubMed]

2015 (2)

2013 (2)

B. D. Barmashenko and S. Rosenwaks, “Feasibility of supersonic diode pumped alkali lasers: model calculations,” Appl. Phys. Lett. 102(141108), 1–4 (2013).

B. V. Zhdanov and R. J. Knize, “Review of alkali laser research and development,” Opt. Eng. 52(021010), 1–8 (2013).

2012 (2)

W. F. Krupke, “Diode pumped alkali lasers (DPALs) — A review (rev1),” J. Prog. Quantum Electron. 36(1), 4–28 (2012).
[Crossref]

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Yeroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” J. Prog. Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

2011 (1)

G. A. Pitz, C. D. Fox, and G. P. Perram, “Transfer between the cesium 62P1/2 and 62P3/2 levels induced by collisions with H2, HD, D2, CH4, C2H6, CF4, and C2F6,” Phys. Rev. A 84(3), 032708 (2011).
[Crossref]

Auslender, I.

Barmashenko, B.

Barmashenko, B. D.

E. Yacoby, K. Waichman, O. Sadot, B. D. Barmashenko, and S. Rosenwaks, “Modeling of supersonic diode pumped alkali lasers,” J. Opt. Soc. Am. B 32(9), 1824–1833 (2015).
[Crossref]

B. D. Barmashenko and S. Rosenwaks, “Feasibility of supersonic diode pumped alkali lasers: model calculations,” Appl. Phys. Lett. 102(141108), 1–4 (2013).

Bogachev, A. V.

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Yeroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” J. Prog. Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

Dudov, A. M.

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Yeroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” J. Prog. Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

Endo, M.

T. Yamamoto, F. Yamamoto, M. Endo, and F. Wani, “Experimental investigation of gas-flow type DPAL,” Proc. SPIE 10254, 102540S (2016).

Fox, C. D.

G. A. Pitz, C. D. Fox, and G. P. Perram, “Transfer between the cesium 62P1/2 and 62P3/2 levels induced by collisions with H2, HD, D2, CH4, C2H6, CF4, and C2F6,” Phys. Rev. A 84(3), 032708 (2011).
[Crossref]

Garanin, S. G.

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Yeroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” J. Prog. Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

Guild, E. M.

G. A. Pitz, D. M. Stalnaker, E. M. Guild, B. Q. Oliker, P. J. Moran, S. W. Townsend, and D. A. Hostutler, “Advancements in flowing diode pumped alkali lasers,” Proc. SPIE 9729, 972902 (2016).
[Crossref]

Hostutler, D. A.

G. A. Pitz, D. M. Stalnaker, E. M. Guild, B. Q. Oliker, P. J. Moran, S. W. Townsend, and D. A. Hostutler, “Advancements in flowing diode pumped alkali lasers,” Proc. SPIE 9729, 972902 (2016).
[Crossref]

Huang, J.

B. Shen, J. Huang, X. Xu, C. Xia, and B. Pan, “Modeling of steady-state temperature distribution in diode-pumped alkali vapor lasers: analysis of the experimental results,” IEEE J. Quantum Electron. 53(3), 1–7 (2017).
[Crossref]

Knize, R. J.

B. V. Zhdanov, M. D. Rotondaro, M. K. Shaffer, and R. J. Knize, “Low-pressure cesium and potassium diode pumped alkali lasers: pros and cons,” Opt. Eng. 55(026105), 1–6 (2016).

B. V. Zhdanov, M. D. Rotondaro, M. K. Shaffer, and R. J. Knize, “Measurements of the gain medium temperature in an operating Cs DPAL,” Opt. Express 24(17), 19286–19292 (2016).
[Crossref] [PubMed]

I. Auslender, B. Barmashenko, S. Rosenwaks, B. Zhdanov, M. Rotondaro, and R. J. Knize, “Modeling of pulsed K diode pumped alkali laser: Analysis of the experimental results,” Opt. Express 23(16), 20986–20996 (2015).
[Crossref] [PubMed]

B. V. Zhdanov and R. J. Knize, “Review of alkali laser research and development,” Opt. Eng. 52(021010), 1–8 (2013).

Krupke, W. F.

W. F. Krupke, “Diode pumped alkali lasers (DPALs) — A review (rev1),” J. Prog. Quantum Electron. 36(1), 4–28 (2012).
[Crossref]

Kulikov, S. M.

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Yeroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” J. Prog. Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

Mikaelian, G. T.

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Yeroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” J. Prog. Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

Moran, P. J.

G. A. Pitz, D. M. Stalnaker, E. M. Guild, B. Q. Oliker, P. J. Moran, S. W. Townsend, and D. A. Hostutler, “Advancements in flowing diode pumped alkali lasers,” Proc. SPIE 9729, 972902 (2016).
[Crossref]

Oliker, B. Q.

G. A. Pitz, D. M. Stalnaker, E. M. Guild, B. Q. Oliker, P. J. Moran, S. W. Townsend, and D. A. Hostutler, “Advancements in flowing diode pumped alkali lasers,” Proc. SPIE 9729, 972902 (2016).
[Crossref]

Pan, B.

B. Shen, J. Huang, X. Xu, C. Xia, and B. Pan, “Modeling of steady-state temperature distribution in diode-pumped alkali vapor lasers: analysis of the experimental results,” IEEE J. Quantum Electron. 53(3), 1–7 (2017).
[Crossref]

Panarin, V. A.

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Yeroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” J. Prog. Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

Pautov, V. O.

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Yeroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” J. Prog. Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

Perram, G. P.

G. A. Pitz, C. D. Fox, and G. P. Perram, “Transfer between the cesium 62P1/2 and 62P3/2 levels induced by collisions with H2, HD, D2, CH4, C2H6, CF4, and C2F6,” Phys. Rev. A 84(3), 032708 (2011).
[Crossref]

Pitz, G. A.

G. A. Pitz, D. M. Stalnaker, E. M. Guild, B. Q. Oliker, P. J. Moran, S. W. Townsend, and D. A. Hostutler, “Advancements in flowing diode pumped alkali lasers,” Proc. SPIE 9729, 972902 (2016).
[Crossref]

G. A. Pitz, C. D. Fox, and G. P. Perram, “Transfer between the cesium 62P1/2 and 62P3/2 levels induced by collisions with H2, HD, D2, CH4, C2H6, CF4, and C2F6,” Phys. Rev. A 84(3), 032708 (2011).
[Crossref]

Rosenwaks, S.

Rotondaro, M.

Rotondaro, M. D.

B. V. Zhdanov, M. D. Rotondaro, M. K. Shaffer, and R. J. Knize, “Measurements of the gain medium temperature in an operating Cs DPAL,” Opt. Express 24(17), 19286–19292 (2016).
[Crossref] [PubMed]

B. V. Zhdanov, M. D. Rotondaro, M. K. Shaffer, and R. J. Knize, “Low-pressure cesium and potassium diode pumped alkali lasers: pros and cons,” Opt. Eng. 55(026105), 1–6 (2016).

Rus, A. V.

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Yeroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” J. Prog. Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

Sadot, O.

Shaffer, M. K.

B. V. Zhdanov, M. D. Rotondaro, M. K. Shaffer, and R. J. Knize, “Measurements of the gain medium temperature in an operating Cs DPAL,” Opt. Express 24(17), 19286–19292 (2016).
[Crossref] [PubMed]

B. V. Zhdanov, M. D. Rotondaro, M. K. Shaffer, and R. J. Knize, “Low-pressure cesium and potassium diode pumped alkali lasers: pros and cons,” Opt. Eng. 55(026105), 1–6 (2016).

Shen, B.

B. Shen, J. Huang, X. Xu, C. Xia, and B. Pan, “Modeling of steady-state temperature distribution in diode-pumped alkali vapor lasers: analysis of the experimental results,” IEEE J. Quantum Electron. 53(3), 1–7 (2017).
[Crossref]

Stalnaker, D. M.

G. A. Pitz, D. M. Stalnaker, E. M. Guild, B. Q. Oliker, P. J. Moran, S. W. Townsend, and D. A. Hostutler, “Advancements in flowing diode pumped alkali lasers,” Proc. SPIE 9729, 972902 (2016).
[Crossref]

Sukharev, S. A.

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Yeroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” J. Prog. Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

Townsend, S. W.

G. A. Pitz, D. M. Stalnaker, E. M. Guild, B. Q. Oliker, P. J. Moran, S. W. Townsend, and D. A. Hostutler, “Advancements in flowing diode pumped alkali lasers,” Proc. SPIE 9729, 972902 (2016).
[Crossref]

Waichman, K.

Wani, F.

T. Yamamoto, F. Yamamoto, M. Endo, and F. Wani, “Experimental investigation of gas-flow type DPAL,” Proc. SPIE 10254, 102540S (2016).

Xia, C.

B. Shen, J. Huang, X. Xu, C. Xia, and B. Pan, “Modeling of steady-state temperature distribution in diode-pumped alkali vapor lasers: analysis of the experimental results,” IEEE J. Quantum Electron. 53(3), 1–7 (2017).
[Crossref]

Xu, X.

B. Shen, J. Huang, X. Xu, C. Xia, and B. Pan, “Modeling of steady-state temperature distribution in diode-pumped alkali vapor lasers: analysis of the experimental results,” IEEE J. Quantum Electron. 53(3), 1–7 (2017).
[Crossref]

Yacoby, E.

Yamamoto, F.

T. Yamamoto, F. Yamamoto, M. Endo, and F. Wani, “Experimental investigation of gas-flow type DPAL,” Proc. SPIE 10254, 102540S (2016).

Yamamoto, T.

T. Yamamoto, F. Yamamoto, M. Endo, and F. Wani, “Experimental investigation of gas-flow type DPAL,” Proc. SPIE 10254, 102540S (2016).

Yeroshenko, V. A.

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Yeroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” J. Prog. Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

Zhdanov, B.

Zhdanov, B. V.

B. V. Zhdanov, M. D. Rotondaro, M. K. Shaffer, and R. J. Knize, “Measurements of the gain medium temperature in an operating Cs DPAL,” Opt. Express 24(17), 19286–19292 (2016).
[Crossref] [PubMed]

B. V. Zhdanov, M. D. Rotondaro, M. K. Shaffer, and R. J. Knize, “Low-pressure cesium and potassium diode pumped alkali lasers: pros and cons,” Opt. Eng. 55(026105), 1–6 (2016).

B. V. Zhdanov and R. J. Knize, “Review of alkali laser research and development,” Opt. Eng. 52(021010), 1–8 (2013).

Appl. Phys. Lett. (1)

B. D. Barmashenko and S. Rosenwaks, “Feasibility of supersonic diode pumped alkali lasers: model calculations,” Appl. Phys. Lett. 102(141108), 1–4 (2013).

IEEE J. Quantum Electron. (1)

B. Shen, J. Huang, X. Xu, C. Xia, and B. Pan, “Modeling of steady-state temperature distribution in diode-pumped alkali vapor lasers: analysis of the experimental results,” IEEE J. Quantum Electron. 53(3), 1–7 (2017).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Prog. Quantum Electron. (2)

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Yeroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” J. Prog. Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

W. F. Krupke, “Diode pumped alkali lasers (DPALs) — A review (rev1),” J. Prog. Quantum Electron. 36(1), 4–28 (2012).
[Crossref]

Opt. Eng. (2)

B. V. Zhdanov and R. J. Knize, “Review of alkali laser research and development,” Opt. Eng. 52(021010), 1–8 (2013).

B. V. Zhdanov, M. D. Rotondaro, M. K. Shaffer, and R. J. Knize, “Low-pressure cesium and potassium diode pumped alkali lasers: pros and cons,” Opt. Eng. 55(026105), 1–6 (2016).

Opt. Express (2)

Phys. Rev. A (1)

G. A. Pitz, C. D. Fox, and G. P. Perram, “Transfer between the cesium 62P1/2 and 62P3/2 levels induced by collisions with H2, HD, D2, CH4, C2H6, CF4, and C2F6,” Phys. Rev. A 84(3), 032708 (2011).
[Crossref]

Proc. SPIE (2)

T. Yamamoto, F. Yamamoto, M. Endo, and F. Wani, “Experimental investigation of gas-flow type DPAL,” Proc. SPIE 10254, 102540S (2016).

G. A. Pitz, D. M. Stalnaker, E. M. Guild, B. Q. Oliker, P. J. Moran, S. W. Townsend, and D. A. Hostutler, “Advancements in flowing diode pumped alkali lasers,” Proc. SPIE 9729, 972902 (2016).
[Crossref]

Other (1)

D. Hostutler, “Characterization of a diode pumped alkali laser with a flowing gain medium,” presented at HPLS&A 2016 Conference, Gmunden, Austria, 5–9 Sept. 2016.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Diagram of the flowing-gas system. The flow system enables to circulate the gas mixture (Cs vapor, 300 Torr He and 300 Torr methane) and impede the temperature rise in the laser cell.
Fig. 2
Fig. 2 Schematic of the optical system.
Fig. 3
Fig. 3 Schematics of the laser cell geometry. In the calculation it was assumed that the device is pumped by a cylindrical beam (4.8 mm diameter). The flow is perpendicular to the laser and pump beams propagation axis.
Fig. 4
Fig. 4 Dependence of Plase on Pp for Vi = 1 m/s and 4 m/s.
Fig. 5
Fig. 5 Measured and calculated Plase for Pp = 65 W and for various flow velocities.
Fig. 6
Fig. 6 Dependence gas temperature rise at the laser cell for various flow velocities and different values of σ q .

Tables (1)

Tables Icon

Table 1 Parameters of the flow system. Ti, NCs,i, pi and Vi are the values at the laser section inlet