Abstract

Increasing photosensitizer concentration has been considered as an effective approach to improve the performance of holographic material. In this paper, we report on new method for increasing the saturated dissolvability of photosensitizer PQ within polymeric media by introducing copolymerization monomer into the PQ/PMMA. The photosensitizer concentration of PQ was increased from 0.7wt% to 1.3wt%, compared with the typical PQ/PMMA sample. Besides, we investigated performance of polarization holographic recordings in typical PQ/PMMA and copolymerization monomer-containing PQ/PMMA with the orthogonally polarized signal and reference waves. And the doping of THFMA component resulted in a significant improvement of diffraction intensity and photosensitivity. In addition, high-quality holographic image reconstruction was realized in our home-made material.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Volume holographic recording in Irgacure 784-doped PMMA photopolymer

Ying Liu, Fenglan Fan, Yifan Hong, Jinliang Zang, Guoguo Kang, and Xiaodi Tan
Opt. Express 25(17) 20654-20662 (2017)

Modeling the photochemical kinetics induced by holographic exposures in PQ/PMMA photopolymer material

Shui Liu, Michael R. Gleeson, Jinxin Guo, John T. Sheridan, Elen Tolstik, Vladislav Matusevich, and Richard Kowarschik
J. Opt. Soc. Am. B 28(11) 2833-2843 (2011)

Holographic memory performances of titanocene dispersed poly (methyl methacrylate) photopolymer with different preparation conditions

Peng Liu, Linlin Wang, Yu Zhao, Zeren Li, and Xiudong Sun
Opt. Mater. Express 8(6) 1441-1453 (2018)

References

  • View by:
  • |
  • |
  • |

  1. G. Aswathy, C. S. Rajesh, K. Sreekumar, R. Joseph, and C. S. Kartha, “Improving the performance of methylene blue sensitized photopolymer by doping with nickel ion,” Opt. Mater. 55, 27–32 (2016).
    [Crossref]
  2. G. G. Goourey, P. W. W. Chung, F. D. Jestin, B. Légeret, L. Balan, and Y. Israëli, “Photostability of acrylate photopolymers used as components in recording materials,” Polym. Degrad. Stabil. 119, 208–216 (2015).
    [Crossref]
  3. N. Suzuki and Y. Tomita, “Holographic scattering in SiO2 nanoparticle-dispersed photopolymer films,” Appl. Opt. 46(27), 6809–6814 (2007).
    [Crossref] [PubMed]
  4. C. Li, X. Li, X. Xue, and M. Huang, “Holographic properties of Fe3O4 nanoparticle-doped organic–inorganic hybrid photopolymer,” Optik (Stuttg.) 125(21), 6509–6512 (2014).
    [Crossref]
  5. Y. F. Chen, Y. N. Hsiao, S. H. Lin, K. Y. Hsu, W. S. Cheng, and W. T. Whang, “Effect of lanthanoid organometallic compounds on holographic storage characteristics of doped PQ/poly(hydroxyethyl methacrylate-co-methyl methacrylate) hybrids,” J. Opt. A, Pure Appl. Opt. 11(12), 1–6 (2009).
    [Crossref]
  6. D. Yu, H. Liu, J. Wang, Y. Jiang, and X. Sun, “Study on holographic characteristics in ZnMA doped PQ-PMMA photopolymer,” Opt. Commun. 284(12), 2784–2788 (2011).
    [Crossref]
  7. J. Zang, G. Kang, P. Li, Y. Liu, F. Fan, Y. Hong, Y. Huang, X. Tan, A. Wu, T. Shimura, and K. Kuroda, “Dual-channel recording based on the null reconstruction effect of orthogonal linear polarization holography,” Opt. Lett. 42(7), 1377–1380 (2017).
    [Crossref] [PubMed]
  8. G. J. Steckman, I. Solomatine, G. Zhou, and D. Psaltis, “Characterization of phenanthrenequinone-doped poly(methyl methacrylate) for holographic memory,” Opt. Lett. 23(16), 1310–1312 (1998).
    [Crossref] [PubMed]
  9. S. H. Lin, K. Y. Hsu, W. Z. Chen, and W. T. Whang, “Phenanthrenequinone-doped poly(methyl methacrylate) photopolymer bulk for volume holographic data storage,” Opt. Lett. 25(7), 451–453 (2000).
    [Crossref] [PubMed]
  10. H. Liu, D. Yu, X. Li, S. Luo, Y. Jiang, and X. Sun, “Diffusional enhancement of volume gratings as an optimized strategy for holographic memory in PQ-PMMA photopolymer,” Opt. Express 18(7), 6447–6454 (2010).
    [Crossref] [PubMed]
  11. U. V. Mahilny, D. N. Marmysh, A. I. Stankevich, A. L. Tolstik, V. Matusevich, and R. Kowarschik, “Holographic volume gratings in a glass-like polymer material,” Appl. Phys. B 82(2), 299–302 (2005).
    [Crossref]
  12. F. L. Fan, Y. Liu, Y. F. Hong, J. L. Zang, G. G. Kang, T. B. Zhao, X. D. Tan, and T. Shimura, “Volume polarization holographic recording in phenanthrenequinone doped poly(MMA-Co-BzMA) photopolymer,” Chem. Lett. 47(4), 520–523 (2018).
    [Crossref]
  13. K. Rajendrakumar and R. Dhamodharan, “Ambient temperature Atom Transfer Radical copolymerization of tetrahydrofurfuryl methacrylate and methyl methacrylate: Reactivity ratio determination,” Eur. Polym. J. 45(9), 2685–2694 (2009).
    [Crossref]
  14. C. Li, L. Cao, Z. Wang, and G. Jin, “Hybrid polarization-angle multiplexing for volume holography in gold nanoparticle-doped photopolymer,” Opt. Lett. 39(24), 6891–6894 (2014).
    [Crossref] [PubMed]
  15. U. Mahilny, A. Trofimova, S. Nazarov, A. Tolstik, R. Heintzmann, and E. Tolstik, “Highly concentrated phenanthrenequinone-polymethylmethacrylate composite for thick reflection holograms recording at 532 nm,” Opt. Mater. Express 6(11), 3427–3437 (2016).
    [Crossref]
  16. N. Kawatsuki, “Photoalignment and Photoinduced Molecular Reorientation of Photosensitive Materials,” Chem. Lett. 40(6), 548–554 (2011).
    [Crossref]
  17. P. L. Chen, “Phenanthrenequinone-doped copolymers for holographic data storage,” Opt. Eng. 48(3), 035802 (2009).
    [Crossref]
  18. G. J. Steckman, V. Shelkovnikov, V. Berezhnaya, T. Gerasimova, I. Solomatine, and D. Psaltis, “Holographic recording in a photopolymer by optically induced detachment of chromophores,” Opt. Lett. 25(9), 607–609 (2000).
    [Crossref] [PubMed]
  19. Y. N. Hsiao, “Analyses on physical mechanism of holographic recording in phenanthrenequinone-doped poly(methyl methacrylate) hybrid materials,” Opt. Eng. 43(9), 1993–2002 (2004).
    [Crossref]
  20. T. Nakamura, J. Nozaki, Y. Tomita, K. Ohmori, and M. Hidaka, “Holographic recording sensitivity enhancement of ZrO2 nanoparticle–polymer composites by hydrogen donor and acceptor agents,” J. Opt. A, Pure Appl. Opt. 11(2), 024010 (2009).
    [Crossref]

2018 (1)

F. L. Fan, Y. Liu, Y. F. Hong, J. L. Zang, G. G. Kang, T. B. Zhao, X. D. Tan, and T. Shimura, “Volume polarization holographic recording in phenanthrenequinone doped poly(MMA-Co-BzMA) photopolymer,” Chem. Lett. 47(4), 520–523 (2018).
[Crossref]

2017 (1)

2016 (2)

G. Aswathy, C. S. Rajesh, K. Sreekumar, R. Joseph, and C. S. Kartha, “Improving the performance of methylene blue sensitized photopolymer by doping with nickel ion,” Opt. Mater. 55, 27–32 (2016).
[Crossref]

U. Mahilny, A. Trofimova, S. Nazarov, A. Tolstik, R. Heintzmann, and E. Tolstik, “Highly concentrated phenanthrenequinone-polymethylmethacrylate composite for thick reflection holograms recording at 532 nm,” Opt. Mater. Express 6(11), 3427–3437 (2016).
[Crossref]

2015 (1)

G. G. Goourey, P. W. W. Chung, F. D. Jestin, B. Légeret, L. Balan, and Y. Israëli, “Photostability of acrylate photopolymers used as components in recording materials,” Polym. Degrad. Stabil. 119, 208–216 (2015).
[Crossref]

2014 (2)

C. Li, X. Li, X. Xue, and M. Huang, “Holographic properties of Fe3O4 nanoparticle-doped organic–inorganic hybrid photopolymer,” Optik (Stuttg.) 125(21), 6509–6512 (2014).
[Crossref]

C. Li, L. Cao, Z. Wang, and G. Jin, “Hybrid polarization-angle multiplexing for volume holography in gold nanoparticle-doped photopolymer,” Opt. Lett. 39(24), 6891–6894 (2014).
[Crossref] [PubMed]

2011 (2)

D. Yu, H. Liu, J. Wang, Y. Jiang, and X. Sun, “Study on holographic characteristics in ZnMA doped PQ-PMMA photopolymer,” Opt. Commun. 284(12), 2784–2788 (2011).
[Crossref]

N. Kawatsuki, “Photoalignment and Photoinduced Molecular Reorientation of Photosensitive Materials,” Chem. Lett. 40(6), 548–554 (2011).
[Crossref]

2010 (1)

2009 (4)

K. Rajendrakumar and R. Dhamodharan, “Ambient temperature Atom Transfer Radical copolymerization of tetrahydrofurfuryl methacrylate and methyl methacrylate: Reactivity ratio determination,” Eur. Polym. J. 45(9), 2685–2694 (2009).
[Crossref]

P. L. Chen, “Phenanthrenequinone-doped copolymers for holographic data storage,” Opt. Eng. 48(3), 035802 (2009).
[Crossref]

Y. F. Chen, Y. N. Hsiao, S. H. Lin, K. Y. Hsu, W. S. Cheng, and W. T. Whang, “Effect of lanthanoid organometallic compounds on holographic storage characteristics of doped PQ/poly(hydroxyethyl methacrylate-co-methyl methacrylate) hybrids,” J. Opt. A, Pure Appl. Opt. 11(12), 1–6 (2009).
[Crossref]

T. Nakamura, J. Nozaki, Y. Tomita, K. Ohmori, and M. Hidaka, “Holographic recording sensitivity enhancement of ZrO2 nanoparticle–polymer composites by hydrogen donor and acceptor agents,” J. Opt. A, Pure Appl. Opt. 11(2), 024010 (2009).
[Crossref]

2007 (1)

2005 (1)

U. V. Mahilny, D. N. Marmysh, A. I. Stankevich, A. L. Tolstik, V. Matusevich, and R. Kowarschik, “Holographic volume gratings in a glass-like polymer material,” Appl. Phys. B 82(2), 299–302 (2005).
[Crossref]

2004 (1)

Y. N. Hsiao, “Analyses on physical mechanism of holographic recording in phenanthrenequinone-doped poly(methyl methacrylate) hybrid materials,” Opt. Eng. 43(9), 1993–2002 (2004).
[Crossref]

2000 (2)

1998 (1)

Aswathy, G.

G. Aswathy, C. S. Rajesh, K. Sreekumar, R. Joseph, and C. S. Kartha, “Improving the performance of methylene blue sensitized photopolymer by doping with nickel ion,” Opt. Mater. 55, 27–32 (2016).
[Crossref]

Balan, L.

G. G. Goourey, P. W. W. Chung, F. D. Jestin, B. Légeret, L. Balan, and Y. Israëli, “Photostability of acrylate photopolymers used as components in recording materials,” Polym. Degrad. Stabil. 119, 208–216 (2015).
[Crossref]

Berezhnaya, V.

Cao, L.

Chen, P. L.

P. L. Chen, “Phenanthrenequinone-doped copolymers for holographic data storage,” Opt. Eng. 48(3), 035802 (2009).
[Crossref]

Chen, W. Z.

Chen, Y. F.

Y. F. Chen, Y. N. Hsiao, S. H. Lin, K. Y. Hsu, W. S. Cheng, and W. T. Whang, “Effect of lanthanoid organometallic compounds on holographic storage characteristics of doped PQ/poly(hydroxyethyl methacrylate-co-methyl methacrylate) hybrids,” J. Opt. A, Pure Appl. Opt. 11(12), 1–6 (2009).
[Crossref]

Cheng, W. S.

Y. F. Chen, Y. N. Hsiao, S. H. Lin, K. Y. Hsu, W. S. Cheng, and W. T. Whang, “Effect of lanthanoid organometallic compounds on holographic storage characteristics of doped PQ/poly(hydroxyethyl methacrylate-co-methyl methacrylate) hybrids,” J. Opt. A, Pure Appl. Opt. 11(12), 1–6 (2009).
[Crossref]

Chung, P. W. W.

G. G. Goourey, P. W. W. Chung, F. D. Jestin, B. Légeret, L. Balan, and Y. Israëli, “Photostability of acrylate photopolymers used as components in recording materials,” Polym. Degrad. Stabil. 119, 208–216 (2015).
[Crossref]

Dhamodharan, R.

K. Rajendrakumar and R. Dhamodharan, “Ambient temperature Atom Transfer Radical copolymerization of tetrahydrofurfuryl methacrylate and methyl methacrylate: Reactivity ratio determination,” Eur. Polym. J. 45(9), 2685–2694 (2009).
[Crossref]

Fan, F.

Fan, F. L.

F. L. Fan, Y. Liu, Y. F. Hong, J. L. Zang, G. G. Kang, T. B. Zhao, X. D. Tan, and T. Shimura, “Volume polarization holographic recording in phenanthrenequinone doped poly(MMA-Co-BzMA) photopolymer,” Chem. Lett. 47(4), 520–523 (2018).
[Crossref]

Gerasimova, T.

Goourey, G. G.

G. G. Goourey, P. W. W. Chung, F. D. Jestin, B. Légeret, L. Balan, and Y. Israëli, “Photostability of acrylate photopolymers used as components in recording materials,” Polym. Degrad. Stabil. 119, 208–216 (2015).
[Crossref]

Heintzmann, R.

Hidaka, M.

T. Nakamura, J. Nozaki, Y. Tomita, K. Ohmori, and M. Hidaka, “Holographic recording sensitivity enhancement of ZrO2 nanoparticle–polymer composites by hydrogen donor and acceptor agents,” J. Opt. A, Pure Appl. Opt. 11(2), 024010 (2009).
[Crossref]

Hong, Y.

Hong, Y. F.

F. L. Fan, Y. Liu, Y. F. Hong, J. L. Zang, G. G. Kang, T. B. Zhao, X. D. Tan, and T. Shimura, “Volume polarization holographic recording in phenanthrenequinone doped poly(MMA-Co-BzMA) photopolymer,” Chem. Lett. 47(4), 520–523 (2018).
[Crossref]

Hsiao, Y. N.

Y. F. Chen, Y. N. Hsiao, S. H. Lin, K. Y. Hsu, W. S. Cheng, and W. T. Whang, “Effect of lanthanoid organometallic compounds on holographic storage characteristics of doped PQ/poly(hydroxyethyl methacrylate-co-methyl methacrylate) hybrids,” J. Opt. A, Pure Appl. Opt. 11(12), 1–6 (2009).
[Crossref]

Y. N. Hsiao, “Analyses on physical mechanism of holographic recording in phenanthrenequinone-doped poly(methyl methacrylate) hybrid materials,” Opt. Eng. 43(9), 1993–2002 (2004).
[Crossref]

Hsu, K. Y.

Y. F. Chen, Y. N. Hsiao, S. H. Lin, K. Y. Hsu, W. S. Cheng, and W. T. Whang, “Effect of lanthanoid organometallic compounds on holographic storage characteristics of doped PQ/poly(hydroxyethyl methacrylate-co-methyl methacrylate) hybrids,” J. Opt. A, Pure Appl. Opt. 11(12), 1–6 (2009).
[Crossref]

S. H. Lin, K. Y. Hsu, W. Z. Chen, and W. T. Whang, “Phenanthrenequinone-doped poly(methyl methacrylate) photopolymer bulk for volume holographic data storage,” Opt. Lett. 25(7), 451–453 (2000).
[Crossref] [PubMed]

Huang, M.

C. Li, X. Li, X. Xue, and M. Huang, “Holographic properties of Fe3O4 nanoparticle-doped organic–inorganic hybrid photopolymer,” Optik (Stuttg.) 125(21), 6509–6512 (2014).
[Crossref]

Huang, Y.

Israëli, Y.

G. G. Goourey, P. W. W. Chung, F. D. Jestin, B. Légeret, L. Balan, and Y. Israëli, “Photostability of acrylate photopolymers used as components in recording materials,” Polym. Degrad. Stabil. 119, 208–216 (2015).
[Crossref]

Jestin, F. D.

G. G. Goourey, P. W. W. Chung, F. D. Jestin, B. Légeret, L. Balan, and Y. Israëli, “Photostability of acrylate photopolymers used as components in recording materials,” Polym. Degrad. Stabil. 119, 208–216 (2015).
[Crossref]

Jiang, Y.

D. Yu, H. Liu, J. Wang, Y. Jiang, and X. Sun, “Study on holographic characteristics in ZnMA doped PQ-PMMA photopolymer,” Opt. Commun. 284(12), 2784–2788 (2011).
[Crossref]

H. Liu, D. Yu, X. Li, S. Luo, Y. Jiang, and X. Sun, “Diffusional enhancement of volume gratings as an optimized strategy for holographic memory in PQ-PMMA photopolymer,” Opt. Express 18(7), 6447–6454 (2010).
[Crossref] [PubMed]

Jin, G.

Joseph, R.

G. Aswathy, C. S. Rajesh, K. Sreekumar, R. Joseph, and C. S. Kartha, “Improving the performance of methylene blue sensitized photopolymer by doping with nickel ion,” Opt. Mater. 55, 27–32 (2016).
[Crossref]

Kang, G.

Kang, G. G.

F. L. Fan, Y. Liu, Y. F. Hong, J. L. Zang, G. G. Kang, T. B. Zhao, X. D. Tan, and T. Shimura, “Volume polarization holographic recording in phenanthrenequinone doped poly(MMA-Co-BzMA) photopolymer,” Chem. Lett. 47(4), 520–523 (2018).
[Crossref]

Kartha, C. S.

G. Aswathy, C. S. Rajesh, K. Sreekumar, R. Joseph, and C. S. Kartha, “Improving the performance of methylene blue sensitized photopolymer by doping with nickel ion,” Opt. Mater. 55, 27–32 (2016).
[Crossref]

Kawatsuki, N.

N. Kawatsuki, “Photoalignment and Photoinduced Molecular Reorientation of Photosensitive Materials,” Chem. Lett. 40(6), 548–554 (2011).
[Crossref]

Kowarschik, R.

U. V. Mahilny, D. N. Marmysh, A. I. Stankevich, A. L. Tolstik, V. Matusevich, and R. Kowarschik, “Holographic volume gratings in a glass-like polymer material,” Appl. Phys. B 82(2), 299–302 (2005).
[Crossref]

Kuroda, K.

Légeret, B.

G. G. Goourey, P. W. W. Chung, F. D. Jestin, B. Légeret, L. Balan, and Y. Israëli, “Photostability of acrylate photopolymers used as components in recording materials,” Polym. Degrad. Stabil. 119, 208–216 (2015).
[Crossref]

Li, C.

C. Li, X. Li, X. Xue, and M. Huang, “Holographic properties of Fe3O4 nanoparticle-doped organic–inorganic hybrid photopolymer,” Optik (Stuttg.) 125(21), 6509–6512 (2014).
[Crossref]

C. Li, L. Cao, Z. Wang, and G. Jin, “Hybrid polarization-angle multiplexing for volume holography in gold nanoparticle-doped photopolymer,” Opt. Lett. 39(24), 6891–6894 (2014).
[Crossref] [PubMed]

Li, P.

Li, X.

C. Li, X. Li, X. Xue, and M. Huang, “Holographic properties of Fe3O4 nanoparticle-doped organic–inorganic hybrid photopolymer,” Optik (Stuttg.) 125(21), 6509–6512 (2014).
[Crossref]

H. Liu, D. Yu, X. Li, S. Luo, Y. Jiang, and X. Sun, “Diffusional enhancement of volume gratings as an optimized strategy for holographic memory in PQ-PMMA photopolymer,” Opt. Express 18(7), 6447–6454 (2010).
[Crossref] [PubMed]

Lin, S. H.

Y. F. Chen, Y. N. Hsiao, S. H. Lin, K. Y. Hsu, W. S. Cheng, and W. T. Whang, “Effect of lanthanoid organometallic compounds on holographic storage characteristics of doped PQ/poly(hydroxyethyl methacrylate-co-methyl methacrylate) hybrids,” J. Opt. A, Pure Appl. Opt. 11(12), 1–6 (2009).
[Crossref]

S. H. Lin, K. Y. Hsu, W. Z. Chen, and W. T. Whang, “Phenanthrenequinone-doped poly(methyl methacrylate) photopolymer bulk for volume holographic data storage,” Opt. Lett. 25(7), 451–453 (2000).
[Crossref] [PubMed]

Liu, H.

D. Yu, H. Liu, J. Wang, Y. Jiang, and X. Sun, “Study on holographic characteristics in ZnMA doped PQ-PMMA photopolymer,” Opt. Commun. 284(12), 2784–2788 (2011).
[Crossref]

H. Liu, D. Yu, X. Li, S. Luo, Y. Jiang, and X. Sun, “Diffusional enhancement of volume gratings as an optimized strategy for holographic memory in PQ-PMMA photopolymer,” Opt. Express 18(7), 6447–6454 (2010).
[Crossref] [PubMed]

Liu, Y.

F. L. Fan, Y. Liu, Y. F. Hong, J. L. Zang, G. G. Kang, T. B. Zhao, X. D. Tan, and T. Shimura, “Volume polarization holographic recording in phenanthrenequinone doped poly(MMA-Co-BzMA) photopolymer,” Chem. Lett. 47(4), 520–523 (2018).
[Crossref]

J. Zang, G. Kang, P. Li, Y. Liu, F. Fan, Y. Hong, Y. Huang, X. Tan, A. Wu, T. Shimura, and K. Kuroda, “Dual-channel recording based on the null reconstruction effect of orthogonal linear polarization holography,” Opt. Lett. 42(7), 1377–1380 (2017).
[Crossref] [PubMed]

Luo, S.

Mahilny, U.

Mahilny, U. V.

U. V. Mahilny, D. N. Marmysh, A. I. Stankevich, A. L. Tolstik, V. Matusevich, and R. Kowarschik, “Holographic volume gratings in a glass-like polymer material,” Appl. Phys. B 82(2), 299–302 (2005).
[Crossref]

Marmysh, D. N.

U. V. Mahilny, D. N. Marmysh, A. I. Stankevich, A. L. Tolstik, V. Matusevich, and R. Kowarschik, “Holographic volume gratings in a glass-like polymer material,” Appl. Phys. B 82(2), 299–302 (2005).
[Crossref]

Matusevich, V.

U. V. Mahilny, D. N. Marmysh, A. I. Stankevich, A. L. Tolstik, V. Matusevich, and R. Kowarschik, “Holographic volume gratings in a glass-like polymer material,” Appl. Phys. B 82(2), 299–302 (2005).
[Crossref]

Nakamura, T.

T. Nakamura, J. Nozaki, Y. Tomita, K. Ohmori, and M. Hidaka, “Holographic recording sensitivity enhancement of ZrO2 nanoparticle–polymer composites by hydrogen donor and acceptor agents,” J. Opt. A, Pure Appl. Opt. 11(2), 024010 (2009).
[Crossref]

Nazarov, S.

Nozaki, J.

T. Nakamura, J. Nozaki, Y. Tomita, K. Ohmori, and M. Hidaka, “Holographic recording sensitivity enhancement of ZrO2 nanoparticle–polymer composites by hydrogen donor and acceptor agents,” J. Opt. A, Pure Appl. Opt. 11(2), 024010 (2009).
[Crossref]

Ohmori, K.

T. Nakamura, J. Nozaki, Y. Tomita, K. Ohmori, and M. Hidaka, “Holographic recording sensitivity enhancement of ZrO2 nanoparticle–polymer composites by hydrogen donor and acceptor agents,” J. Opt. A, Pure Appl. Opt. 11(2), 024010 (2009).
[Crossref]

Psaltis, D.

Rajendrakumar, K.

K. Rajendrakumar and R. Dhamodharan, “Ambient temperature Atom Transfer Radical copolymerization of tetrahydrofurfuryl methacrylate and methyl methacrylate: Reactivity ratio determination,” Eur. Polym. J. 45(9), 2685–2694 (2009).
[Crossref]

Rajesh, C. S.

G. Aswathy, C. S. Rajesh, K. Sreekumar, R. Joseph, and C. S. Kartha, “Improving the performance of methylene blue sensitized photopolymer by doping with nickel ion,” Opt. Mater. 55, 27–32 (2016).
[Crossref]

Shelkovnikov, V.

Shimura, T.

F. L. Fan, Y. Liu, Y. F. Hong, J. L. Zang, G. G. Kang, T. B. Zhao, X. D. Tan, and T. Shimura, “Volume polarization holographic recording in phenanthrenequinone doped poly(MMA-Co-BzMA) photopolymer,” Chem. Lett. 47(4), 520–523 (2018).
[Crossref]

J. Zang, G. Kang, P. Li, Y. Liu, F. Fan, Y. Hong, Y. Huang, X. Tan, A. Wu, T. Shimura, and K. Kuroda, “Dual-channel recording based on the null reconstruction effect of orthogonal linear polarization holography,” Opt. Lett. 42(7), 1377–1380 (2017).
[Crossref] [PubMed]

Solomatine, I.

Sreekumar, K.

G. Aswathy, C. S. Rajesh, K. Sreekumar, R. Joseph, and C. S. Kartha, “Improving the performance of methylene blue sensitized photopolymer by doping with nickel ion,” Opt. Mater. 55, 27–32 (2016).
[Crossref]

Stankevich, A. I.

U. V. Mahilny, D. N. Marmysh, A. I. Stankevich, A. L. Tolstik, V. Matusevich, and R. Kowarschik, “Holographic volume gratings in a glass-like polymer material,” Appl. Phys. B 82(2), 299–302 (2005).
[Crossref]

Steckman, G. J.

Sun, X.

D. Yu, H. Liu, J. Wang, Y. Jiang, and X. Sun, “Study on holographic characteristics in ZnMA doped PQ-PMMA photopolymer,” Opt. Commun. 284(12), 2784–2788 (2011).
[Crossref]

H. Liu, D. Yu, X. Li, S. Luo, Y. Jiang, and X. Sun, “Diffusional enhancement of volume gratings as an optimized strategy for holographic memory in PQ-PMMA photopolymer,” Opt. Express 18(7), 6447–6454 (2010).
[Crossref] [PubMed]

Suzuki, N.

Tan, X.

Tan, X. D.

F. L. Fan, Y. Liu, Y. F. Hong, J. L. Zang, G. G. Kang, T. B. Zhao, X. D. Tan, and T. Shimura, “Volume polarization holographic recording in phenanthrenequinone doped poly(MMA-Co-BzMA) photopolymer,” Chem. Lett. 47(4), 520–523 (2018).
[Crossref]

Tolstik, A.

Tolstik, A. L.

U. V. Mahilny, D. N. Marmysh, A. I. Stankevich, A. L. Tolstik, V. Matusevich, and R. Kowarschik, “Holographic volume gratings in a glass-like polymer material,” Appl. Phys. B 82(2), 299–302 (2005).
[Crossref]

Tolstik, E.

Tomita, Y.

T. Nakamura, J. Nozaki, Y. Tomita, K. Ohmori, and M. Hidaka, “Holographic recording sensitivity enhancement of ZrO2 nanoparticle–polymer composites by hydrogen donor and acceptor agents,” J. Opt. A, Pure Appl. Opt. 11(2), 024010 (2009).
[Crossref]

N. Suzuki and Y. Tomita, “Holographic scattering in SiO2 nanoparticle-dispersed photopolymer films,” Appl. Opt. 46(27), 6809–6814 (2007).
[Crossref] [PubMed]

Trofimova, A.

Wang, J.

D. Yu, H. Liu, J. Wang, Y. Jiang, and X. Sun, “Study on holographic characteristics in ZnMA doped PQ-PMMA photopolymer,” Opt. Commun. 284(12), 2784–2788 (2011).
[Crossref]

Wang, Z.

Whang, W. T.

Y. F. Chen, Y. N. Hsiao, S. H. Lin, K. Y. Hsu, W. S. Cheng, and W. T. Whang, “Effect of lanthanoid organometallic compounds on holographic storage characteristics of doped PQ/poly(hydroxyethyl methacrylate-co-methyl methacrylate) hybrids,” J. Opt. A, Pure Appl. Opt. 11(12), 1–6 (2009).
[Crossref]

S. H. Lin, K. Y. Hsu, W. Z. Chen, and W. T. Whang, “Phenanthrenequinone-doped poly(methyl methacrylate) photopolymer bulk for volume holographic data storage,” Opt. Lett. 25(7), 451–453 (2000).
[Crossref] [PubMed]

Wu, A.

Xue, X.

C. Li, X. Li, X. Xue, and M. Huang, “Holographic properties of Fe3O4 nanoparticle-doped organic–inorganic hybrid photopolymer,” Optik (Stuttg.) 125(21), 6509–6512 (2014).
[Crossref]

Yu, D.

D. Yu, H. Liu, J. Wang, Y. Jiang, and X. Sun, “Study on holographic characteristics in ZnMA doped PQ-PMMA photopolymer,” Opt. Commun. 284(12), 2784–2788 (2011).
[Crossref]

H. Liu, D. Yu, X. Li, S. Luo, Y. Jiang, and X. Sun, “Diffusional enhancement of volume gratings as an optimized strategy for holographic memory in PQ-PMMA photopolymer,” Opt. Express 18(7), 6447–6454 (2010).
[Crossref] [PubMed]

Zang, J.

Zang, J. L.

F. L. Fan, Y. Liu, Y. F. Hong, J. L. Zang, G. G. Kang, T. B. Zhao, X. D. Tan, and T. Shimura, “Volume polarization holographic recording in phenanthrenequinone doped poly(MMA-Co-BzMA) photopolymer,” Chem. Lett. 47(4), 520–523 (2018).
[Crossref]

Zhao, T. B.

F. L. Fan, Y. Liu, Y. F. Hong, J. L. Zang, G. G. Kang, T. B. Zhao, X. D. Tan, and T. Shimura, “Volume polarization holographic recording in phenanthrenequinone doped poly(MMA-Co-BzMA) photopolymer,” Chem. Lett. 47(4), 520–523 (2018).
[Crossref]

Zhou, G.

Appl. Opt. (1)

Appl. Phys. B (1)

U. V. Mahilny, D. N. Marmysh, A. I. Stankevich, A. L. Tolstik, V. Matusevich, and R. Kowarschik, “Holographic volume gratings in a glass-like polymer material,” Appl. Phys. B 82(2), 299–302 (2005).
[Crossref]

Chem. Lett. (2)

F. L. Fan, Y. Liu, Y. F. Hong, J. L. Zang, G. G. Kang, T. B. Zhao, X. D. Tan, and T. Shimura, “Volume polarization holographic recording in phenanthrenequinone doped poly(MMA-Co-BzMA) photopolymer,” Chem. Lett. 47(4), 520–523 (2018).
[Crossref]

N. Kawatsuki, “Photoalignment and Photoinduced Molecular Reorientation of Photosensitive Materials,” Chem. Lett. 40(6), 548–554 (2011).
[Crossref]

Eur. Polym. J. (1)

K. Rajendrakumar and R. Dhamodharan, “Ambient temperature Atom Transfer Radical copolymerization of tetrahydrofurfuryl methacrylate and methyl methacrylate: Reactivity ratio determination,” Eur. Polym. J. 45(9), 2685–2694 (2009).
[Crossref]

J. Opt. A, Pure Appl. Opt. (2)

Y. F. Chen, Y. N. Hsiao, S. H. Lin, K. Y. Hsu, W. S. Cheng, and W. T. Whang, “Effect of lanthanoid organometallic compounds on holographic storage characteristics of doped PQ/poly(hydroxyethyl methacrylate-co-methyl methacrylate) hybrids,” J. Opt. A, Pure Appl. Opt. 11(12), 1–6 (2009).
[Crossref]

T. Nakamura, J. Nozaki, Y. Tomita, K. Ohmori, and M. Hidaka, “Holographic recording sensitivity enhancement of ZrO2 nanoparticle–polymer composites by hydrogen donor and acceptor agents,” J. Opt. A, Pure Appl. Opt. 11(2), 024010 (2009).
[Crossref]

Opt. Commun. (1)

D. Yu, H. Liu, J. Wang, Y. Jiang, and X. Sun, “Study on holographic characteristics in ZnMA doped PQ-PMMA photopolymer,” Opt. Commun. 284(12), 2784–2788 (2011).
[Crossref]

Opt. Eng. (2)

P. L. Chen, “Phenanthrenequinone-doped copolymers for holographic data storage,” Opt. Eng. 48(3), 035802 (2009).
[Crossref]

Y. N. Hsiao, “Analyses on physical mechanism of holographic recording in phenanthrenequinone-doped poly(methyl methacrylate) hybrid materials,” Opt. Eng. 43(9), 1993–2002 (2004).
[Crossref]

Opt. Express (1)

Opt. Lett. (5)

Opt. Mater. (1)

G. Aswathy, C. S. Rajesh, K. Sreekumar, R. Joseph, and C. S. Kartha, “Improving the performance of methylene blue sensitized photopolymer by doping with nickel ion,” Opt. Mater. 55, 27–32 (2016).
[Crossref]

Opt. Mater. Express (1)

Optik (Stuttg.) (1)

C. Li, X. Li, X. Xue, and M. Huang, “Holographic properties of Fe3O4 nanoparticle-doped organic–inorganic hybrid photopolymer,” Optik (Stuttg.) 125(21), 6509–6512 (2014).
[Crossref]

Polym. Degrad. Stabil. (1)

G. G. Goourey, P. W. W. Chung, F. D. Jestin, B. Légeret, L. Balan, and Y. Israëli, “Photostability of acrylate photopolymers used as components in recording materials,” Polym. Degrad. Stabil. 119, 208–216 (2015).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Chemical structures of the components in our photopolymer.
Fig. 2
Fig. 2 Scheme of PQ photoproducts attachment to the monomer.
Fig. 3
Fig. 3 FT-IR absorption spectra of (a) unexposed PQ, MMA and exposed PQ/MMA liquid sample, and (b) unexposed PQ, MMA, THFMA and exposed PQ/THFMA liquid sample.
Fig. 4
Fig. 4 Optical absorption spectra of PQ/PMMA, and P(T3M7) samples doped with different PQ 's concentration photopolymers.
Fig. 5
Fig. 5 Photoinduced birefringence versus exposure time.
Fig. 6
Fig. 6 Schematic of polarization holography.
Fig. 7
Fig. 7 Schematic of experimental setup. M: mirror; HWP: half-wave plate; PBS: polarizing beam splitter.
Fig. 8
Fig. 8 Evolution of diffraction intensity as a function of exposure time.
Fig. 9
Fig. 9 The S of the three kinds of samples.
Fig. 10
Fig. 10 Experimental setup for recording the image. PBS, polarization beam splitter; HWP, half-wave plates; M, mirrors; and SLM, spatial light modulator [7].
Fig. 11
Fig. 11 Image reconstruction results in polarization holography system: (a) original transmitted image and (b) reconstructed image.

Tables (2)

Tables Icon

Table 1 Chemical structures of the dopants for our photopolymer.

Tables Icon

Table 2 Periodic Polarization Modulation in recording with two waves for different Polarization Geometries.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

S= ( η / t | t= t ind )/ I 0 d .