Abstract

An iterative algorithm based on optical path difference (OPD) and ray deflection is proposed to obtain the DT (deuterium-tritium)-layer refractive index and thickness of the ICF (inertial confinement fusion) target simultaneously. Starting from an assumed initial value, the refractive index and thickness are solved back and forth until the iteration stopping criterion is reached. Simulations show that the relative retrieval error of the DT-layer refractive index is better than 0.05% after finite iterations, and that of the thickness is better than 0.1%. Experiments show that the target shell refractive index and thickness can be retrieved with a relative error below ±2%. The test uncertainties from experiments were also analyzed.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Thickness and refractive index measurement of a silicon wafer based on an optical comb

Jonghan Jin, Jae Wan Kim, Chu-Shik Kang, Jong-Ahn Kim, and Tae Bong Eom
Opt. Express 18(17) 18339-18346 (2010)

Optical measurement of the refractive index, layer thickness, and volume changes of thin films

A. H. M. Holtslag and P. M. L. O. Scholte
Appl. Opt. 28(23) 5095-5104 (1989)

Measurement method for the refractive index of thick solid and liquid layers

Branko Šantić, Davor Gracin, and Krunoslav Juraić
Appl. Opt. 48(22) 4430-4436 (2009)

References

  • View by:
  • |
  • |
  • |

  1. O. A. Hurricane, D. A. Callahan, D. T. Casey, P. M. Celliers, C. Cerjan, E. L. Dewald, T. R. Dittrich, T. Döppner, D. E. Hinkel, L. F. Berzak Hopkins, J. L. Kline, S. Le Pape, T. Ma, A. G. MacPhee, J. L. Milovich, A. Pak, H. S. Park, P. K. Patel, B. A. Remington, J. D. Salmonson, P. T. Springer, and R. Tommasini, “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506(7488), 343–348 (2014).
    [Crossref] [PubMed]
  2. J. A. Koch, J. Sater, T. Bernat, D. Bittner, G. Collins, B. Hammel, Y. Lee, and A. Mackinnon, “Quantitative Analysis of Backlit Shadowgraphy as a Diagnostic of Hydrogen Ice Surface Quality in ICF Capsules,” Office of Scientific & Technical Information Technical Reports 38, 123–131 (1999).
  3. I. V. Aleksandrova, S. V. Bazdenkov, V. I. Chtcherbakov, A. I. Gromov, E. R. Koresheva, E. A. Koshelev, I. E. Osipov, and L. S. Yaguzinskiy, “An efficient method of fuel ice formation in moving free-standing ICF/IFE targets,” J. Phys. D Appl. Phys. 37(8), 1163–1178 (2004).
    [Crossref]
  4. H. J. Kong, M. D. Wittman, and H. G. Kim, “New shearing interferometer for real‐time characterization of cryogenic laser fusion targets,” Appl. Phys. Lett. 55(22), 2274–2276 (1989).
    [Crossref]
  5. T. P. Bernat, D. H. Darling, and J. J. Sanchez, “Applications of holographic interferometry to cryogenic ICF target characterization,” J. Vac. Sci. Technol. 20(4), 1362–1365 (1982).
    [Crossref]
  6. T. Ling, D. Liu, L. Sun, Y. Yang, and Z. Cheng, “Wavefront retrieval for cross-grating lateral shearing interferometer based on differential Zernike polynomial fitting,” Proc. SPIE 8838, 88380J (2013).
    [Crossref]
  7. A. Choux, E. Busvelle, J. P. Gauthier, and G. Pascal, “Observer for a thick layer of solid deuterium-tritium using backlit optical shadowgraphy and interferometry,” Appl. Opt. 46(33), 8193–8201 (2007).
    [Crossref] [PubMed]
  8. F. Lamy, Y. Voisin, A. Diou, M. Martin, L. Jeannot, G. Pascal, and C. Hermerel, “A Model to Characterize the DT-Layer of ICF Targets by Backlit Optical Shadowgraphy,” Fus. Sci. Technol. 48(3), 1307–1319 (2005).
    [Crossref]
  9. E. R. Koresheva, I. E. Osipov, I. V. Aleksandrova, A. I. Nikitenko, S. M. Tolokonnikov, V. I. Listratov, I. D. Timofeev, A. I. Kupriyashin, V. N. Leonov, E. L. Koshelev, G. D. Baranov, G. S. Usachev, T. P. Timasheva, and A. I. Gromov, “Creation of a diagnostic complex for the characterization of cryogenic laser-fusion targets using the tomography method with probing irradiation in the visible spectrum,” J. Russ. Laser Res. 28(2), 163–206 (2007).
    [Crossref]
  10. A. I. Nikitenko and S. M. Tolokonnikov, “Optimal ‘Tomography’ of 2-Layered Targets: 3D Parameters Reconstruction from Shadow Images,” Fus. Sci. Technol. 51(4), 705–716 (2007).
    [Crossref]
  11. H. Huang, R. B. Stephens, S. A. Eddinger, J. Gunther, A. Nikroo, K. C. Chen, and H. W. Xu, “Nondestructive quantitative dopant profiling technique by contact radiography,” Fus. Sci. Technol. 49(4), 650–656 (2006).
    [Crossref]
  12. Z. Wang, Q. Wang, X. Ma, D. Gao, X. He, J. Meng, K. Jiang, Y. Hu, Q. Gu, X. Chen, W. Tong, and X. Tang, “Determination of Doped Concentrations in ICF Shells by X-Ray Equivalent Absorption,” Fus. Sci. Technol. 72(1), 69–75 (2017).
    [Crossref]
  13. J. Stoer and R. Bulirsch, “Finding Zeros and Minimum Points by Iterative Methods,” in Introduction to Numerical Analysis (Springer Science & Business Media, 2013), pp.289–363.
  14. P. E. Murphy, T. G. Brown, and D. T. Moore, “Interference imaging for aspheric surface testing,” Appl. Opt. 39(13), 2122–2129 (2000).
    [Crossref] [PubMed]
  15. S. Li, Y. Wang, Q. Wang, X. Ma, L. Wang, W. Zhao, and X. Zhang, “Rapid measurement and compensation method of eccentricity in automatic profile measurement of the ICF capsule,” Appl. Opt. 57(14), 3761–3769 (2018).
    [Crossref] [PubMed]
  16. T. M. Adams, “G104-A2LA Guide for estimation of measurement uncertainty in testing,” American Association of Laboratory Accreditation Manual 10, (2002).

2018 (1)

2017 (1)

Z. Wang, Q. Wang, X. Ma, D. Gao, X. He, J. Meng, K. Jiang, Y. Hu, Q. Gu, X. Chen, W. Tong, and X. Tang, “Determination of Doped Concentrations in ICF Shells by X-Ray Equivalent Absorption,” Fus. Sci. Technol. 72(1), 69–75 (2017).
[Crossref]

2014 (1)

O. A. Hurricane, D. A. Callahan, D. T. Casey, P. M. Celliers, C. Cerjan, E. L. Dewald, T. R. Dittrich, T. Döppner, D. E. Hinkel, L. F. Berzak Hopkins, J. L. Kline, S. Le Pape, T. Ma, A. G. MacPhee, J. L. Milovich, A. Pak, H. S. Park, P. K. Patel, B. A. Remington, J. D. Salmonson, P. T. Springer, and R. Tommasini, “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506(7488), 343–348 (2014).
[Crossref] [PubMed]

2013 (1)

T. Ling, D. Liu, L. Sun, Y. Yang, and Z. Cheng, “Wavefront retrieval for cross-grating lateral shearing interferometer based on differential Zernike polynomial fitting,” Proc. SPIE 8838, 88380J (2013).
[Crossref]

2007 (3)

A. Choux, E. Busvelle, J. P. Gauthier, and G. Pascal, “Observer for a thick layer of solid deuterium-tritium using backlit optical shadowgraphy and interferometry,” Appl. Opt. 46(33), 8193–8201 (2007).
[Crossref] [PubMed]

E. R. Koresheva, I. E. Osipov, I. V. Aleksandrova, A. I. Nikitenko, S. M. Tolokonnikov, V. I. Listratov, I. D. Timofeev, A. I. Kupriyashin, V. N. Leonov, E. L. Koshelev, G. D. Baranov, G. S. Usachev, T. P. Timasheva, and A. I. Gromov, “Creation of a diagnostic complex for the characterization of cryogenic laser-fusion targets using the tomography method with probing irradiation in the visible spectrum,” J. Russ. Laser Res. 28(2), 163–206 (2007).
[Crossref]

A. I. Nikitenko and S. M. Tolokonnikov, “Optimal ‘Tomography’ of 2-Layered Targets: 3D Parameters Reconstruction from Shadow Images,” Fus. Sci. Technol. 51(4), 705–716 (2007).
[Crossref]

2006 (1)

H. Huang, R. B. Stephens, S. A. Eddinger, J. Gunther, A. Nikroo, K. C. Chen, and H. W. Xu, “Nondestructive quantitative dopant profiling technique by contact radiography,” Fus. Sci. Technol. 49(4), 650–656 (2006).
[Crossref]

2005 (1)

F. Lamy, Y. Voisin, A. Diou, M. Martin, L. Jeannot, G. Pascal, and C. Hermerel, “A Model to Characterize the DT-Layer of ICF Targets by Backlit Optical Shadowgraphy,” Fus. Sci. Technol. 48(3), 1307–1319 (2005).
[Crossref]

2004 (1)

I. V. Aleksandrova, S. V. Bazdenkov, V. I. Chtcherbakov, A. I. Gromov, E. R. Koresheva, E. A. Koshelev, I. E. Osipov, and L. S. Yaguzinskiy, “An efficient method of fuel ice formation in moving free-standing ICF/IFE targets,” J. Phys. D Appl. Phys. 37(8), 1163–1178 (2004).
[Crossref]

2000 (1)

1999 (1)

J. A. Koch, J. Sater, T. Bernat, D. Bittner, G. Collins, B. Hammel, Y. Lee, and A. Mackinnon, “Quantitative Analysis of Backlit Shadowgraphy as a Diagnostic of Hydrogen Ice Surface Quality in ICF Capsules,” Office of Scientific & Technical Information Technical Reports 38, 123–131 (1999).

1989 (1)

H. J. Kong, M. D. Wittman, and H. G. Kim, “New shearing interferometer for real‐time characterization of cryogenic laser fusion targets,” Appl. Phys. Lett. 55(22), 2274–2276 (1989).
[Crossref]

1982 (1)

T. P. Bernat, D. H. Darling, and J. J. Sanchez, “Applications of holographic interferometry to cryogenic ICF target characterization,” J. Vac. Sci. Technol. 20(4), 1362–1365 (1982).
[Crossref]

Aleksandrova, I. V.

E. R. Koresheva, I. E. Osipov, I. V. Aleksandrova, A. I. Nikitenko, S. M. Tolokonnikov, V. I. Listratov, I. D. Timofeev, A. I. Kupriyashin, V. N. Leonov, E. L. Koshelev, G. D. Baranov, G. S. Usachev, T. P. Timasheva, and A. I. Gromov, “Creation of a diagnostic complex for the characterization of cryogenic laser-fusion targets using the tomography method with probing irradiation in the visible spectrum,” J. Russ. Laser Res. 28(2), 163–206 (2007).
[Crossref]

I. V. Aleksandrova, S. V. Bazdenkov, V. I. Chtcherbakov, A. I. Gromov, E. R. Koresheva, E. A. Koshelev, I. E. Osipov, and L. S. Yaguzinskiy, “An efficient method of fuel ice formation in moving free-standing ICF/IFE targets,” J. Phys. D Appl. Phys. 37(8), 1163–1178 (2004).
[Crossref]

Baranov, G. D.

E. R. Koresheva, I. E. Osipov, I. V. Aleksandrova, A. I. Nikitenko, S. M. Tolokonnikov, V. I. Listratov, I. D. Timofeev, A. I. Kupriyashin, V. N. Leonov, E. L. Koshelev, G. D. Baranov, G. S. Usachev, T. P. Timasheva, and A. I. Gromov, “Creation of a diagnostic complex for the characterization of cryogenic laser-fusion targets using the tomography method with probing irradiation in the visible spectrum,” J. Russ. Laser Res. 28(2), 163–206 (2007).
[Crossref]

Bazdenkov, S. V.

I. V. Aleksandrova, S. V. Bazdenkov, V. I. Chtcherbakov, A. I. Gromov, E. R. Koresheva, E. A. Koshelev, I. E. Osipov, and L. S. Yaguzinskiy, “An efficient method of fuel ice formation in moving free-standing ICF/IFE targets,” J. Phys. D Appl. Phys. 37(8), 1163–1178 (2004).
[Crossref]

Bernat, T.

J. A. Koch, J. Sater, T. Bernat, D. Bittner, G. Collins, B. Hammel, Y. Lee, and A. Mackinnon, “Quantitative Analysis of Backlit Shadowgraphy as a Diagnostic of Hydrogen Ice Surface Quality in ICF Capsules,” Office of Scientific & Technical Information Technical Reports 38, 123–131 (1999).

Bernat, T. P.

T. P. Bernat, D. H. Darling, and J. J. Sanchez, “Applications of holographic interferometry to cryogenic ICF target characterization,” J. Vac. Sci. Technol. 20(4), 1362–1365 (1982).
[Crossref]

Berzak Hopkins, L. F.

O. A. Hurricane, D. A. Callahan, D. T. Casey, P. M. Celliers, C. Cerjan, E. L. Dewald, T. R. Dittrich, T. Döppner, D. E. Hinkel, L. F. Berzak Hopkins, J. L. Kline, S. Le Pape, T. Ma, A. G. MacPhee, J. L. Milovich, A. Pak, H. S. Park, P. K. Patel, B. A. Remington, J. D. Salmonson, P. T. Springer, and R. Tommasini, “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506(7488), 343–348 (2014).
[Crossref] [PubMed]

Bittner, D.

J. A. Koch, J. Sater, T. Bernat, D. Bittner, G. Collins, B. Hammel, Y. Lee, and A. Mackinnon, “Quantitative Analysis of Backlit Shadowgraphy as a Diagnostic of Hydrogen Ice Surface Quality in ICF Capsules,” Office of Scientific & Technical Information Technical Reports 38, 123–131 (1999).

Brown, T. G.

Busvelle, E.

Callahan, D. A.

O. A. Hurricane, D. A. Callahan, D. T. Casey, P. M. Celliers, C. Cerjan, E. L. Dewald, T. R. Dittrich, T. Döppner, D. E. Hinkel, L. F. Berzak Hopkins, J. L. Kline, S. Le Pape, T. Ma, A. G. MacPhee, J. L. Milovich, A. Pak, H. S. Park, P. K. Patel, B. A. Remington, J. D. Salmonson, P. T. Springer, and R. Tommasini, “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506(7488), 343–348 (2014).
[Crossref] [PubMed]

Casey, D. T.

O. A. Hurricane, D. A. Callahan, D. T. Casey, P. M. Celliers, C. Cerjan, E. L. Dewald, T. R. Dittrich, T. Döppner, D. E. Hinkel, L. F. Berzak Hopkins, J. L. Kline, S. Le Pape, T. Ma, A. G. MacPhee, J. L. Milovich, A. Pak, H. S. Park, P. K. Patel, B. A. Remington, J. D. Salmonson, P. T. Springer, and R. Tommasini, “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506(7488), 343–348 (2014).
[Crossref] [PubMed]

Celliers, P. M.

O. A. Hurricane, D. A. Callahan, D. T. Casey, P. M. Celliers, C. Cerjan, E. L. Dewald, T. R. Dittrich, T. Döppner, D. E. Hinkel, L. F. Berzak Hopkins, J. L. Kline, S. Le Pape, T. Ma, A. G. MacPhee, J. L. Milovich, A. Pak, H. S. Park, P. K. Patel, B. A. Remington, J. D. Salmonson, P. T. Springer, and R. Tommasini, “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506(7488), 343–348 (2014).
[Crossref] [PubMed]

Cerjan, C.

O. A. Hurricane, D. A. Callahan, D. T. Casey, P. M. Celliers, C. Cerjan, E. L. Dewald, T. R. Dittrich, T. Döppner, D. E. Hinkel, L. F. Berzak Hopkins, J. L. Kline, S. Le Pape, T. Ma, A. G. MacPhee, J. L. Milovich, A. Pak, H. S. Park, P. K. Patel, B. A. Remington, J. D. Salmonson, P. T. Springer, and R. Tommasini, “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506(7488), 343–348 (2014).
[Crossref] [PubMed]

Chen, K. C.

H. Huang, R. B. Stephens, S. A. Eddinger, J. Gunther, A. Nikroo, K. C. Chen, and H. W. Xu, “Nondestructive quantitative dopant profiling technique by contact radiography,” Fus. Sci. Technol. 49(4), 650–656 (2006).
[Crossref]

Chen, X.

Z. Wang, Q. Wang, X. Ma, D. Gao, X. He, J. Meng, K. Jiang, Y. Hu, Q. Gu, X. Chen, W. Tong, and X. Tang, “Determination of Doped Concentrations in ICF Shells by X-Ray Equivalent Absorption,” Fus. Sci. Technol. 72(1), 69–75 (2017).
[Crossref]

Cheng, Z.

T. Ling, D. Liu, L. Sun, Y. Yang, and Z. Cheng, “Wavefront retrieval for cross-grating lateral shearing interferometer based on differential Zernike polynomial fitting,” Proc. SPIE 8838, 88380J (2013).
[Crossref]

Choux, A.

Chtcherbakov, V. I.

I. V. Aleksandrova, S. V. Bazdenkov, V. I. Chtcherbakov, A. I. Gromov, E. R. Koresheva, E. A. Koshelev, I. E. Osipov, and L. S. Yaguzinskiy, “An efficient method of fuel ice formation in moving free-standing ICF/IFE targets,” J. Phys. D Appl. Phys. 37(8), 1163–1178 (2004).
[Crossref]

Collins, G.

J. A. Koch, J. Sater, T. Bernat, D. Bittner, G. Collins, B. Hammel, Y. Lee, and A. Mackinnon, “Quantitative Analysis of Backlit Shadowgraphy as a Diagnostic of Hydrogen Ice Surface Quality in ICF Capsules,” Office of Scientific & Technical Information Technical Reports 38, 123–131 (1999).

Darling, D. H.

T. P. Bernat, D. H. Darling, and J. J. Sanchez, “Applications of holographic interferometry to cryogenic ICF target characterization,” J. Vac. Sci. Technol. 20(4), 1362–1365 (1982).
[Crossref]

Dewald, E. L.

O. A. Hurricane, D. A. Callahan, D. T. Casey, P. M. Celliers, C. Cerjan, E. L. Dewald, T. R. Dittrich, T. Döppner, D. E. Hinkel, L. F. Berzak Hopkins, J. L. Kline, S. Le Pape, T. Ma, A. G. MacPhee, J. L. Milovich, A. Pak, H. S. Park, P. K. Patel, B. A. Remington, J. D. Salmonson, P. T. Springer, and R. Tommasini, “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506(7488), 343–348 (2014).
[Crossref] [PubMed]

Diou, A.

F. Lamy, Y. Voisin, A. Diou, M. Martin, L. Jeannot, G. Pascal, and C. Hermerel, “A Model to Characterize the DT-Layer of ICF Targets by Backlit Optical Shadowgraphy,” Fus. Sci. Technol. 48(3), 1307–1319 (2005).
[Crossref]

Dittrich, T. R.

O. A. Hurricane, D. A. Callahan, D. T. Casey, P. M. Celliers, C. Cerjan, E. L. Dewald, T. R. Dittrich, T. Döppner, D. E. Hinkel, L. F. Berzak Hopkins, J. L. Kline, S. Le Pape, T. Ma, A. G. MacPhee, J. L. Milovich, A. Pak, H. S. Park, P. K. Patel, B. A. Remington, J. D. Salmonson, P. T. Springer, and R. Tommasini, “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506(7488), 343–348 (2014).
[Crossref] [PubMed]

Döppner, T.

O. A. Hurricane, D. A. Callahan, D. T. Casey, P. M. Celliers, C. Cerjan, E. L. Dewald, T. R. Dittrich, T. Döppner, D. E. Hinkel, L. F. Berzak Hopkins, J. L. Kline, S. Le Pape, T. Ma, A. G. MacPhee, J. L. Milovich, A. Pak, H. S. Park, P. K. Patel, B. A. Remington, J. D. Salmonson, P. T. Springer, and R. Tommasini, “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506(7488), 343–348 (2014).
[Crossref] [PubMed]

Eddinger, S. A.

H. Huang, R. B. Stephens, S. A. Eddinger, J. Gunther, A. Nikroo, K. C. Chen, and H. W. Xu, “Nondestructive quantitative dopant profiling technique by contact radiography,” Fus. Sci. Technol. 49(4), 650–656 (2006).
[Crossref]

Gao, D.

Z. Wang, Q. Wang, X. Ma, D. Gao, X. He, J. Meng, K. Jiang, Y. Hu, Q. Gu, X. Chen, W. Tong, and X. Tang, “Determination of Doped Concentrations in ICF Shells by X-Ray Equivalent Absorption,” Fus. Sci. Technol. 72(1), 69–75 (2017).
[Crossref]

Gauthier, J. P.

Gromov, A. I.

E. R. Koresheva, I. E. Osipov, I. V. Aleksandrova, A. I. Nikitenko, S. M. Tolokonnikov, V. I. Listratov, I. D. Timofeev, A. I. Kupriyashin, V. N. Leonov, E. L. Koshelev, G. D. Baranov, G. S. Usachev, T. P. Timasheva, and A. I. Gromov, “Creation of a diagnostic complex for the characterization of cryogenic laser-fusion targets using the tomography method with probing irradiation in the visible spectrum,” J. Russ. Laser Res. 28(2), 163–206 (2007).
[Crossref]

I. V. Aleksandrova, S. V. Bazdenkov, V. I. Chtcherbakov, A. I. Gromov, E. R. Koresheva, E. A. Koshelev, I. E. Osipov, and L. S. Yaguzinskiy, “An efficient method of fuel ice formation in moving free-standing ICF/IFE targets,” J. Phys. D Appl. Phys. 37(8), 1163–1178 (2004).
[Crossref]

Gu, Q.

Z. Wang, Q. Wang, X. Ma, D. Gao, X. He, J. Meng, K. Jiang, Y. Hu, Q. Gu, X. Chen, W. Tong, and X. Tang, “Determination of Doped Concentrations in ICF Shells by X-Ray Equivalent Absorption,” Fus. Sci. Technol. 72(1), 69–75 (2017).
[Crossref]

Gunther, J.

H. Huang, R. B. Stephens, S. A. Eddinger, J. Gunther, A. Nikroo, K. C. Chen, and H. W. Xu, “Nondestructive quantitative dopant profiling technique by contact radiography,” Fus. Sci. Technol. 49(4), 650–656 (2006).
[Crossref]

Hammel, B.

J. A. Koch, J. Sater, T. Bernat, D. Bittner, G. Collins, B. Hammel, Y. Lee, and A. Mackinnon, “Quantitative Analysis of Backlit Shadowgraphy as a Diagnostic of Hydrogen Ice Surface Quality in ICF Capsules,” Office of Scientific & Technical Information Technical Reports 38, 123–131 (1999).

He, X.

Z. Wang, Q. Wang, X. Ma, D. Gao, X. He, J. Meng, K. Jiang, Y. Hu, Q. Gu, X. Chen, W. Tong, and X. Tang, “Determination of Doped Concentrations in ICF Shells by X-Ray Equivalent Absorption,” Fus. Sci. Technol. 72(1), 69–75 (2017).
[Crossref]

Hermerel, C.

F. Lamy, Y. Voisin, A. Diou, M. Martin, L. Jeannot, G. Pascal, and C. Hermerel, “A Model to Characterize the DT-Layer of ICF Targets by Backlit Optical Shadowgraphy,” Fus. Sci. Technol. 48(3), 1307–1319 (2005).
[Crossref]

Hinkel, D. E.

O. A. Hurricane, D. A. Callahan, D. T. Casey, P. M. Celliers, C. Cerjan, E. L. Dewald, T. R. Dittrich, T. Döppner, D. E. Hinkel, L. F. Berzak Hopkins, J. L. Kline, S. Le Pape, T. Ma, A. G. MacPhee, J. L. Milovich, A. Pak, H. S. Park, P. K. Patel, B. A. Remington, J. D. Salmonson, P. T. Springer, and R. Tommasini, “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506(7488), 343–348 (2014).
[Crossref] [PubMed]

Hu, Y.

Z. Wang, Q. Wang, X. Ma, D. Gao, X. He, J. Meng, K. Jiang, Y. Hu, Q. Gu, X. Chen, W. Tong, and X. Tang, “Determination of Doped Concentrations in ICF Shells by X-Ray Equivalent Absorption,” Fus. Sci. Technol. 72(1), 69–75 (2017).
[Crossref]

Huang, H.

H. Huang, R. B. Stephens, S. A. Eddinger, J. Gunther, A. Nikroo, K. C. Chen, and H. W. Xu, “Nondestructive quantitative dopant profiling technique by contact radiography,” Fus. Sci. Technol. 49(4), 650–656 (2006).
[Crossref]

Hurricane, O. A.

O. A. Hurricane, D. A. Callahan, D. T. Casey, P. M. Celliers, C. Cerjan, E. L. Dewald, T. R. Dittrich, T. Döppner, D. E. Hinkel, L. F. Berzak Hopkins, J. L. Kline, S. Le Pape, T. Ma, A. G. MacPhee, J. L. Milovich, A. Pak, H. S. Park, P. K. Patel, B. A. Remington, J. D. Salmonson, P. T. Springer, and R. Tommasini, “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506(7488), 343–348 (2014).
[Crossref] [PubMed]

Jeannot, L.

F. Lamy, Y. Voisin, A. Diou, M. Martin, L. Jeannot, G. Pascal, and C. Hermerel, “A Model to Characterize the DT-Layer of ICF Targets by Backlit Optical Shadowgraphy,” Fus. Sci. Technol. 48(3), 1307–1319 (2005).
[Crossref]

Jiang, K.

Z. Wang, Q. Wang, X. Ma, D. Gao, X. He, J. Meng, K. Jiang, Y. Hu, Q. Gu, X. Chen, W. Tong, and X. Tang, “Determination of Doped Concentrations in ICF Shells by X-Ray Equivalent Absorption,” Fus. Sci. Technol. 72(1), 69–75 (2017).
[Crossref]

Kim, H. G.

H. J. Kong, M. D. Wittman, and H. G. Kim, “New shearing interferometer for real‐time characterization of cryogenic laser fusion targets,” Appl. Phys. Lett. 55(22), 2274–2276 (1989).
[Crossref]

Kline, J. L.

O. A. Hurricane, D. A. Callahan, D. T. Casey, P. M. Celliers, C. Cerjan, E. L. Dewald, T. R. Dittrich, T. Döppner, D. E. Hinkel, L. F. Berzak Hopkins, J. L. Kline, S. Le Pape, T. Ma, A. G. MacPhee, J. L. Milovich, A. Pak, H. S. Park, P. K. Patel, B. A. Remington, J. D. Salmonson, P. T. Springer, and R. Tommasini, “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506(7488), 343–348 (2014).
[Crossref] [PubMed]

Koch, J. A.

J. A. Koch, J. Sater, T. Bernat, D. Bittner, G. Collins, B. Hammel, Y. Lee, and A. Mackinnon, “Quantitative Analysis of Backlit Shadowgraphy as a Diagnostic of Hydrogen Ice Surface Quality in ICF Capsules,” Office of Scientific & Technical Information Technical Reports 38, 123–131 (1999).

Kong, H. J.

H. J. Kong, M. D. Wittman, and H. G. Kim, “New shearing interferometer for real‐time characterization of cryogenic laser fusion targets,” Appl. Phys. Lett. 55(22), 2274–2276 (1989).
[Crossref]

Koresheva, E. R.

E. R. Koresheva, I. E. Osipov, I. V. Aleksandrova, A. I. Nikitenko, S. M. Tolokonnikov, V. I. Listratov, I. D. Timofeev, A. I. Kupriyashin, V. N. Leonov, E. L. Koshelev, G. D. Baranov, G. S. Usachev, T. P. Timasheva, and A. I. Gromov, “Creation of a diagnostic complex for the characterization of cryogenic laser-fusion targets using the tomography method with probing irradiation in the visible spectrum,” J. Russ. Laser Res. 28(2), 163–206 (2007).
[Crossref]

I. V. Aleksandrova, S. V. Bazdenkov, V. I. Chtcherbakov, A. I. Gromov, E. R. Koresheva, E. A. Koshelev, I. E. Osipov, and L. S. Yaguzinskiy, “An efficient method of fuel ice formation in moving free-standing ICF/IFE targets,” J. Phys. D Appl. Phys. 37(8), 1163–1178 (2004).
[Crossref]

Koshelev, E. A.

I. V. Aleksandrova, S. V. Bazdenkov, V. I. Chtcherbakov, A. I. Gromov, E. R. Koresheva, E. A. Koshelev, I. E. Osipov, and L. S. Yaguzinskiy, “An efficient method of fuel ice formation in moving free-standing ICF/IFE targets,” J. Phys. D Appl. Phys. 37(8), 1163–1178 (2004).
[Crossref]

Koshelev, E. L.

E. R. Koresheva, I. E. Osipov, I. V. Aleksandrova, A. I. Nikitenko, S. M. Tolokonnikov, V. I. Listratov, I. D. Timofeev, A. I. Kupriyashin, V. N. Leonov, E. L. Koshelev, G. D. Baranov, G. S. Usachev, T. P. Timasheva, and A. I. Gromov, “Creation of a diagnostic complex for the characterization of cryogenic laser-fusion targets using the tomography method with probing irradiation in the visible spectrum,” J. Russ. Laser Res. 28(2), 163–206 (2007).
[Crossref]

Kupriyashin, A. I.

E. R. Koresheva, I. E. Osipov, I. V. Aleksandrova, A. I. Nikitenko, S. M. Tolokonnikov, V. I. Listratov, I. D. Timofeev, A. I. Kupriyashin, V. N. Leonov, E. L. Koshelev, G. D. Baranov, G. S. Usachev, T. P. Timasheva, and A. I. Gromov, “Creation of a diagnostic complex for the characterization of cryogenic laser-fusion targets using the tomography method with probing irradiation in the visible spectrum,” J. Russ. Laser Res. 28(2), 163–206 (2007).
[Crossref]

Lamy, F.

F. Lamy, Y. Voisin, A. Diou, M. Martin, L. Jeannot, G. Pascal, and C. Hermerel, “A Model to Characterize the DT-Layer of ICF Targets by Backlit Optical Shadowgraphy,” Fus. Sci. Technol. 48(3), 1307–1319 (2005).
[Crossref]

Le Pape, S.

O. A. Hurricane, D. A. Callahan, D. T. Casey, P. M. Celliers, C. Cerjan, E. L. Dewald, T. R. Dittrich, T. Döppner, D. E. Hinkel, L. F. Berzak Hopkins, J. L. Kline, S. Le Pape, T. Ma, A. G. MacPhee, J. L. Milovich, A. Pak, H. S. Park, P. K. Patel, B. A. Remington, J. D. Salmonson, P. T. Springer, and R. Tommasini, “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506(7488), 343–348 (2014).
[Crossref] [PubMed]

Lee, Y.

J. A. Koch, J. Sater, T. Bernat, D. Bittner, G. Collins, B. Hammel, Y. Lee, and A. Mackinnon, “Quantitative Analysis of Backlit Shadowgraphy as a Diagnostic of Hydrogen Ice Surface Quality in ICF Capsules,” Office of Scientific & Technical Information Technical Reports 38, 123–131 (1999).

Leonov, V. N.

E. R. Koresheva, I. E. Osipov, I. V. Aleksandrova, A. I. Nikitenko, S. M. Tolokonnikov, V. I. Listratov, I. D. Timofeev, A. I. Kupriyashin, V. N. Leonov, E. L. Koshelev, G. D. Baranov, G. S. Usachev, T. P. Timasheva, and A. I. Gromov, “Creation of a diagnostic complex for the characterization of cryogenic laser-fusion targets using the tomography method with probing irradiation in the visible spectrum,” J. Russ. Laser Res. 28(2), 163–206 (2007).
[Crossref]

Li, S.

Ling, T.

T. Ling, D. Liu, L. Sun, Y. Yang, and Z. Cheng, “Wavefront retrieval for cross-grating lateral shearing interferometer based on differential Zernike polynomial fitting,” Proc. SPIE 8838, 88380J (2013).
[Crossref]

Listratov, V. I.

E. R. Koresheva, I. E. Osipov, I. V. Aleksandrova, A. I. Nikitenko, S. M. Tolokonnikov, V. I. Listratov, I. D. Timofeev, A. I. Kupriyashin, V. N. Leonov, E. L. Koshelev, G. D. Baranov, G. S. Usachev, T. P. Timasheva, and A. I. Gromov, “Creation of a diagnostic complex for the characterization of cryogenic laser-fusion targets using the tomography method with probing irradiation in the visible spectrum,” J. Russ. Laser Res. 28(2), 163–206 (2007).
[Crossref]

Liu, D.

T. Ling, D. Liu, L. Sun, Y. Yang, and Z. Cheng, “Wavefront retrieval for cross-grating lateral shearing interferometer based on differential Zernike polynomial fitting,” Proc. SPIE 8838, 88380J (2013).
[Crossref]

Ma, T.

O. A. Hurricane, D. A. Callahan, D. T. Casey, P. M. Celliers, C. Cerjan, E. L. Dewald, T. R. Dittrich, T. Döppner, D. E. Hinkel, L. F. Berzak Hopkins, J. L. Kline, S. Le Pape, T. Ma, A. G. MacPhee, J. L. Milovich, A. Pak, H. S. Park, P. K. Patel, B. A. Remington, J. D. Salmonson, P. T. Springer, and R. Tommasini, “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506(7488), 343–348 (2014).
[Crossref] [PubMed]

Ma, X.

S. Li, Y. Wang, Q. Wang, X. Ma, L. Wang, W. Zhao, and X. Zhang, “Rapid measurement and compensation method of eccentricity in automatic profile measurement of the ICF capsule,” Appl. Opt. 57(14), 3761–3769 (2018).
[Crossref] [PubMed]

Z. Wang, Q. Wang, X. Ma, D. Gao, X. He, J. Meng, K. Jiang, Y. Hu, Q. Gu, X. Chen, W. Tong, and X. Tang, “Determination of Doped Concentrations in ICF Shells by X-Ray Equivalent Absorption,” Fus. Sci. Technol. 72(1), 69–75 (2017).
[Crossref]

Mackinnon, A.

J. A. Koch, J. Sater, T. Bernat, D. Bittner, G. Collins, B. Hammel, Y. Lee, and A. Mackinnon, “Quantitative Analysis of Backlit Shadowgraphy as a Diagnostic of Hydrogen Ice Surface Quality in ICF Capsules,” Office of Scientific & Technical Information Technical Reports 38, 123–131 (1999).

MacPhee, A. G.

O. A. Hurricane, D. A. Callahan, D. T. Casey, P. M. Celliers, C. Cerjan, E. L. Dewald, T. R. Dittrich, T. Döppner, D. E. Hinkel, L. F. Berzak Hopkins, J. L. Kline, S. Le Pape, T. Ma, A. G. MacPhee, J. L. Milovich, A. Pak, H. S. Park, P. K. Patel, B. A. Remington, J. D. Salmonson, P. T. Springer, and R. Tommasini, “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506(7488), 343–348 (2014).
[Crossref] [PubMed]

Martin, M.

F. Lamy, Y. Voisin, A. Diou, M. Martin, L. Jeannot, G. Pascal, and C. Hermerel, “A Model to Characterize the DT-Layer of ICF Targets by Backlit Optical Shadowgraphy,” Fus. Sci. Technol. 48(3), 1307–1319 (2005).
[Crossref]

Meng, J.

Z. Wang, Q. Wang, X. Ma, D. Gao, X. He, J. Meng, K. Jiang, Y. Hu, Q. Gu, X. Chen, W. Tong, and X. Tang, “Determination of Doped Concentrations in ICF Shells by X-Ray Equivalent Absorption,” Fus. Sci. Technol. 72(1), 69–75 (2017).
[Crossref]

Milovich, J. L.

O. A. Hurricane, D. A. Callahan, D. T. Casey, P. M. Celliers, C. Cerjan, E. L. Dewald, T. R. Dittrich, T. Döppner, D. E. Hinkel, L. F. Berzak Hopkins, J. L. Kline, S. Le Pape, T. Ma, A. G. MacPhee, J. L. Milovich, A. Pak, H. S. Park, P. K. Patel, B. A. Remington, J. D. Salmonson, P. T. Springer, and R. Tommasini, “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506(7488), 343–348 (2014).
[Crossref] [PubMed]

Moore, D. T.

Murphy, P. E.

Nikitenko, A. I.

E. R. Koresheva, I. E. Osipov, I. V. Aleksandrova, A. I. Nikitenko, S. M. Tolokonnikov, V. I. Listratov, I. D. Timofeev, A. I. Kupriyashin, V. N. Leonov, E. L. Koshelev, G. D. Baranov, G. S. Usachev, T. P. Timasheva, and A. I. Gromov, “Creation of a diagnostic complex for the characterization of cryogenic laser-fusion targets using the tomography method with probing irradiation in the visible spectrum,” J. Russ. Laser Res. 28(2), 163–206 (2007).
[Crossref]

A. I. Nikitenko and S. M. Tolokonnikov, “Optimal ‘Tomography’ of 2-Layered Targets: 3D Parameters Reconstruction from Shadow Images,” Fus. Sci. Technol. 51(4), 705–716 (2007).
[Crossref]

Nikroo, A.

H. Huang, R. B. Stephens, S. A. Eddinger, J. Gunther, A. Nikroo, K. C. Chen, and H. W. Xu, “Nondestructive quantitative dopant profiling technique by contact radiography,” Fus. Sci. Technol. 49(4), 650–656 (2006).
[Crossref]

Osipov, I. E.

E. R. Koresheva, I. E. Osipov, I. V. Aleksandrova, A. I. Nikitenko, S. M. Tolokonnikov, V. I. Listratov, I. D. Timofeev, A. I. Kupriyashin, V. N. Leonov, E. L. Koshelev, G. D. Baranov, G. S. Usachev, T. P. Timasheva, and A. I. Gromov, “Creation of a diagnostic complex for the characterization of cryogenic laser-fusion targets using the tomography method with probing irradiation in the visible spectrum,” J. Russ. Laser Res. 28(2), 163–206 (2007).
[Crossref]

I. V. Aleksandrova, S. V. Bazdenkov, V. I. Chtcherbakov, A. I. Gromov, E. R. Koresheva, E. A. Koshelev, I. E. Osipov, and L. S. Yaguzinskiy, “An efficient method of fuel ice formation in moving free-standing ICF/IFE targets,” J. Phys. D Appl. Phys. 37(8), 1163–1178 (2004).
[Crossref]

Pak, A.

O. A. Hurricane, D. A. Callahan, D. T. Casey, P. M. Celliers, C. Cerjan, E. L. Dewald, T. R. Dittrich, T. Döppner, D. E. Hinkel, L. F. Berzak Hopkins, J. L. Kline, S. Le Pape, T. Ma, A. G. MacPhee, J. L. Milovich, A. Pak, H. S. Park, P. K. Patel, B. A. Remington, J. D. Salmonson, P. T. Springer, and R. Tommasini, “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506(7488), 343–348 (2014).
[Crossref] [PubMed]

Park, H. S.

O. A. Hurricane, D. A. Callahan, D. T. Casey, P. M. Celliers, C. Cerjan, E. L. Dewald, T. R. Dittrich, T. Döppner, D. E. Hinkel, L. F. Berzak Hopkins, J. L. Kline, S. Le Pape, T. Ma, A. G. MacPhee, J. L. Milovich, A. Pak, H. S. Park, P. K. Patel, B. A. Remington, J. D. Salmonson, P. T. Springer, and R. Tommasini, “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506(7488), 343–348 (2014).
[Crossref] [PubMed]

Pascal, G.

A. Choux, E. Busvelle, J. P. Gauthier, and G. Pascal, “Observer for a thick layer of solid deuterium-tritium using backlit optical shadowgraphy and interferometry,” Appl. Opt. 46(33), 8193–8201 (2007).
[Crossref] [PubMed]

F. Lamy, Y. Voisin, A. Diou, M. Martin, L. Jeannot, G. Pascal, and C. Hermerel, “A Model to Characterize the DT-Layer of ICF Targets by Backlit Optical Shadowgraphy,” Fus. Sci. Technol. 48(3), 1307–1319 (2005).
[Crossref]

Patel, P. K.

O. A. Hurricane, D. A. Callahan, D. T. Casey, P. M. Celliers, C. Cerjan, E. L. Dewald, T. R. Dittrich, T. Döppner, D. E. Hinkel, L. F. Berzak Hopkins, J. L. Kline, S. Le Pape, T. Ma, A. G. MacPhee, J. L. Milovich, A. Pak, H. S. Park, P. K. Patel, B. A. Remington, J. D. Salmonson, P. T. Springer, and R. Tommasini, “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506(7488), 343–348 (2014).
[Crossref] [PubMed]

Remington, B. A.

O. A. Hurricane, D. A. Callahan, D. T. Casey, P. M. Celliers, C. Cerjan, E. L. Dewald, T. R. Dittrich, T. Döppner, D. E. Hinkel, L. F. Berzak Hopkins, J. L. Kline, S. Le Pape, T. Ma, A. G. MacPhee, J. L. Milovich, A. Pak, H. S. Park, P. K. Patel, B. A. Remington, J. D. Salmonson, P. T. Springer, and R. Tommasini, “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506(7488), 343–348 (2014).
[Crossref] [PubMed]

Salmonson, J. D.

O. A. Hurricane, D. A. Callahan, D. T. Casey, P. M. Celliers, C. Cerjan, E. L. Dewald, T. R. Dittrich, T. Döppner, D. E. Hinkel, L. F. Berzak Hopkins, J. L. Kline, S. Le Pape, T. Ma, A. G. MacPhee, J. L. Milovich, A. Pak, H. S. Park, P. K. Patel, B. A. Remington, J. D. Salmonson, P. T. Springer, and R. Tommasini, “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506(7488), 343–348 (2014).
[Crossref] [PubMed]

Sanchez, J. J.

T. P. Bernat, D. H. Darling, and J. J. Sanchez, “Applications of holographic interferometry to cryogenic ICF target characterization,” J. Vac. Sci. Technol. 20(4), 1362–1365 (1982).
[Crossref]

Sater, J.

J. A. Koch, J. Sater, T. Bernat, D. Bittner, G. Collins, B. Hammel, Y. Lee, and A. Mackinnon, “Quantitative Analysis of Backlit Shadowgraphy as a Diagnostic of Hydrogen Ice Surface Quality in ICF Capsules,” Office of Scientific & Technical Information Technical Reports 38, 123–131 (1999).

Springer, P. T.

O. A. Hurricane, D. A. Callahan, D. T. Casey, P. M. Celliers, C. Cerjan, E. L. Dewald, T. R. Dittrich, T. Döppner, D. E. Hinkel, L. F. Berzak Hopkins, J. L. Kline, S. Le Pape, T. Ma, A. G. MacPhee, J. L. Milovich, A. Pak, H. S. Park, P. K. Patel, B. A. Remington, J. D. Salmonson, P. T. Springer, and R. Tommasini, “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506(7488), 343–348 (2014).
[Crossref] [PubMed]

Stephens, R. B.

H. Huang, R. B. Stephens, S. A. Eddinger, J. Gunther, A. Nikroo, K. C. Chen, and H. W. Xu, “Nondestructive quantitative dopant profiling technique by contact radiography,” Fus. Sci. Technol. 49(4), 650–656 (2006).
[Crossref]

Sun, L.

T. Ling, D. Liu, L. Sun, Y. Yang, and Z. Cheng, “Wavefront retrieval for cross-grating lateral shearing interferometer based on differential Zernike polynomial fitting,” Proc. SPIE 8838, 88380J (2013).
[Crossref]

Tang, X.

Z. Wang, Q. Wang, X. Ma, D. Gao, X. He, J. Meng, K. Jiang, Y. Hu, Q. Gu, X. Chen, W. Tong, and X. Tang, “Determination of Doped Concentrations in ICF Shells by X-Ray Equivalent Absorption,” Fus. Sci. Technol. 72(1), 69–75 (2017).
[Crossref]

Timasheva, T. P.

E. R. Koresheva, I. E. Osipov, I. V. Aleksandrova, A. I. Nikitenko, S. M. Tolokonnikov, V. I. Listratov, I. D. Timofeev, A. I. Kupriyashin, V. N. Leonov, E. L. Koshelev, G. D. Baranov, G. S. Usachev, T. P. Timasheva, and A. I. Gromov, “Creation of a diagnostic complex for the characterization of cryogenic laser-fusion targets using the tomography method with probing irradiation in the visible spectrum,” J. Russ. Laser Res. 28(2), 163–206 (2007).
[Crossref]

Timofeev, I. D.

E. R. Koresheva, I. E. Osipov, I. V. Aleksandrova, A. I. Nikitenko, S. M. Tolokonnikov, V. I. Listratov, I. D. Timofeev, A. I. Kupriyashin, V. N. Leonov, E. L. Koshelev, G. D. Baranov, G. S. Usachev, T. P. Timasheva, and A. I. Gromov, “Creation of a diagnostic complex for the characterization of cryogenic laser-fusion targets using the tomography method with probing irradiation in the visible spectrum,” J. Russ. Laser Res. 28(2), 163–206 (2007).
[Crossref]

Tolokonnikov, S. M.

E. R. Koresheva, I. E. Osipov, I. V. Aleksandrova, A. I. Nikitenko, S. M. Tolokonnikov, V. I. Listratov, I. D. Timofeev, A. I. Kupriyashin, V. N. Leonov, E. L. Koshelev, G. D. Baranov, G. S. Usachev, T. P. Timasheva, and A. I. Gromov, “Creation of a diagnostic complex for the characterization of cryogenic laser-fusion targets using the tomography method with probing irradiation in the visible spectrum,” J. Russ. Laser Res. 28(2), 163–206 (2007).
[Crossref]

A. I. Nikitenko and S. M. Tolokonnikov, “Optimal ‘Tomography’ of 2-Layered Targets: 3D Parameters Reconstruction from Shadow Images,” Fus. Sci. Technol. 51(4), 705–716 (2007).
[Crossref]

Tommasini, R.

O. A. Hurricane, D. A. Callahan, D. T. Casey, P. M. Celliers, C. Cerjan, E. L. Dewald, T. R. Dittrich, T. Döppner, D. E. Hinkel, L. F. Berzak Hopkins, J. L. Kline, S. Le Pape, T. Ma, A. G. MacPhee, J. L. Milovich, A. Pak, H. S. Park, P. K. Patel, B. A. Remington, J. D. Salmonson, P. T. Springer, and R. Tommasini, “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506(7488), 343–348 (2014).
[Crossref] [PubMed]

Tong, W.

Z. Wang, Q. Wang, X. Ma, D. Gao, X. He, J. Meng, K. Jiang, Y. Hu, Q. Gu, X. Chen, W. Tong, and X. Tang, “Determination of Doped Concentrations in ICF Shells by X-Ray Equivalent Absorption,” Fus. Sci. Technol. 72(1), 69–75 (2017).
[Crossref]

Usachev, G. S.

E. R. Koresheva, I. E. Osipov, I. V. Aleksandrova, A. I. Nikitenko, S. M. Tolokonnikov, V. I. Listratov, I. D. Timofeev, A. I. Kupriyashin, V. N. Leonov, E. L. Koshelev, G. D. Baranov, G. S. Usachev, T. P. Timasheva, and A. I. Gromov, “Creation of a diagnostic complex for the characterization of cryogenic laser-fusion targets using the tomography method with probing irradiation in the visible spectrum,” J. Russ. Laser Res. 28(2), 163–206 (2007).
[Crossref]

Voisin, Y.

F. Lamy, Y. Voisin, A. Diou, M. Martin, L. Jeannot, G. Pascal, and C. Hermerel, “A Model to Characterize the DT-Layer of ICF Targets by Backlit Optical Shadowgraphy,” Fus. Sci. Technol. 48(3), 1307–1319 (2005).
[Crossref]

Wang, L.

Wang, Q.

S. Li, Y. Wang, Q. Wang, X. Ma, L. Wang, W. Zhao, and X. Zhang, “Rapid measurement and compensation method of eccentricity in automatic profile measurement of the ICF capsule,” Appl. Opt. 57(14), 3761–3769 (2018).
[Crossref] [PubMed]

Z. Wang, Q. Wang, X. Ma, D. Gao, X. He, J. Meng, K. Jiang, Y. Hu, Q. Gu, X. Chen, W. Tong, and X. Tang, “Determination of Doped Concentrations in ICF Shells by X-Ray Equivalent Absorption,” Fus. Sci. Technol. 72(1), 69–75 (2017).
[Crossref]

Wang, Y.

Wang, Z.

Z. Wang, Q. Wang, X. Ma, D. Gao, X. He, J. Meng, K. Jiang, Y. Hu, Q. Gu, X. Chen, W. Tong, and X. Tang, “Determination of Doped Concentrations in ICF Shells by X-Ray Equivalent Absorption,” Fus. Sci. Technol. 72(1), 69–75 (2017).
[Crossref]

Wittman, M. D.

H. J. Kong, M. D. Wittman, and H. G. Kim, “New shearing interferometer for real‐time characterization of cryogenic laser fusion targets,” Appl. Phys. Lett. 55(22), 2274–2276 (1989).
[Crossref]

Xu, H. W.

H. Huang, R. B. Stephens, S. A. Eddinger, J. Gunther, A. Nikroo, K. C. Chen, and H. W. Xu, “Nondestructive quantitative dopant profiling technique by contact radiography,” Fus. Sci. Technol. 49(4), 650–656 (2006).
[Crossref]

Yaguzinskiy, L. S.

I. V. Aleksandrova, S. V. Bazdenkov, V. I. Chtcherbakov, A. I. Gromov, E. R. Koresheva, E. A. Koshelev, I. E. Osipov, and L. S. Yaguzinskiy, “An efficient method of fuel ice formation in moving free-standing ICF/IFE targets,” J. Phys. D Appl. Phys. 37(8), 1163–1178 (2004).
[Crossref]

Yang, Y.

T. Ling, D. Liu, L. Sun, Y. Yang, and Z. Cheng, “Wavefront retrieval for cross-grating lateral shearing interferometer based on differential Zernike polynomial fitting,” Proc. SPIE 8838, 88380J (2013).
[Crossref]

Zhang, X.

Zhao, W.

Appl. Opt. (3)

Appl. Phys. Lett. (1)

H. J. Kong, M. D. Wittman, and H. G. Kim, “New shearing interferometer for real‐time characterization of cryogenic laser fusion targets,” Appl. Phys. Lett. 55(22), 2274–2276 (1989).
[Crossref]

Fus. Sci. Technol. (4)

A. I. Nikitenko and S. M. Tolokonnikov, “Optimal ‘Tomography’ of 2-Layered Targets: 3D Parameters Reconstruction from Shadow Images,” Fus. Sci. Technol. 51(4), 705–716 (2007).
[Crossref]

H. Huang, R. B. Stephens, S. A. Eddinger, J. Gunther, A. Nikroo, K. C. Chen, and H. W. Xu, “Nondestructive quantitative dopant profiling technique by contact radiography,” Fus. Sci. Technol. 49(4), 650–656 (2006).
[Crossref]

Z. Wang, Q. Wang, X. Ma, D. Gao, X. He, J. Meng, K. Jiang, Y. Hu, Q. Gu, X. Chen, W. Tong, and X. Tang, “Determination of Doped Concentrations in ICF Shells by X-Ray Equivalent Absorption,” Fus. Sci. Technol. 72(1), 69–75 (2017).
[Crossref]

F. Lamy, Y. Voisin, A. Diou, M. Martin, L. Jeannot, G. Pascal, and C. Hermerel, “A Model to Characterize the DT-Layer of ICF Targets by Backlit Optical Shadowgraphy,” Fus. Sci. Technol. 48(3), 1307–1319 (2005).
[Crossref]

J. Phys. D Appl. Phys. (1)

I. V. Aleksandrova, S. V. Bazdenkov, V. I. Chtcherbakov, A. I. Gromov, E. R. Koresheva, E. A. Koshelev, I. E. Osipov, and L. S. Yaguzinskiy, “An efficient method of fuel ice formation in moving free-standing ICF/IFE targets,” J. Phys. D Appl. Phys. 37(8), 1163–1178 (2004).
[Crossref]

J. Russ. Laser Res. (1)

E. R. Koresheva, I. E. Osipov, I. V. Aleksandrova, A. I. Nikitenko, S. M. Tolokonnikov, V. I. Listratov, I. D. Timofeev, A. I. Kupriyashin, V. N. Leonov, E. L. Koshelev, G. D. Baranov, G. S. Usachev, T. P. Timasheva, and A. I. Gromov, “Creation of a diagnostic complex for the characterization of cryogenic laser-fusion targets using the tomography method with probing irradiation in the visible spectrum,” J. Russ. Laser Res. 28(2), 163–206 (2007).
[Crossref]

J. Vac. Sci. Technol. (1)

T. P. Bernat, D. H. Darling, and J. J. Sanchez, “Applications of holographic interferometry to cryogenic ICF target characterization,” J. Vac. Sci. Technol. 20(4), 1362–1365 (1982).
[Crossref]

Nature (1)

O. A. Hurricane, D. A. Callahan, D. T. Casey, P. M. Celliers, C. Cerjan, E. L. Dewald, T. R. Dittrich, T. Döppner, D. E. Hinkel, L. F. Berzak Hopkins, J. L. Kline, S. Le Pape, T. Ma, A. G. MacPhee, J. L. Milovich, A. Pak, H. S. Park, P. K. Patel, B. A. Remington, J. D. Salmonson, P. T. Springer, and R. Tommasini, “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506(7488), 343–348 (2014).
[Crossref] [PubMed]

Office of Scientific & Technical Information Technical Reports (1)

J. A. Koch, J. Sater, T. Bernat, D. Bittner, G. Collins, B. Hammel, Y. Lee, and A. Mackinnon, “Quantitative Analysis of Backlit Shadowgraphy as a Diagnostic of Hydrogen Ice Surface Quality in ICF Capsules,” Office of Scientific & Technical Information Technical Reports 38, 123–131 (1999).

Proc. SPIE (1)

T. Ling, D. Liu, L. Sun, Y. Yang, and Z. Cheng, “Wavefront retrieval for cross-grating lateral shearing interferometer based on differential Zernike polynomial fitting,” Proc. SPIE 8838, 88380J (2013).
[Crossref]

Other (2)

J. Stoer and R. Bulirsch, “Finding Zeros and Minimum Points by Iterative Methods,” in Introduction to Numerical Analysis (Springer Science & Business Media, 2013), pp.289–363.

T. M. Adams, “G104-A2LA Guide for estimation of measurement uncertainty in testing,” American Association of Laboratory Accreditation Manual 10, (2002).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 System diagram of the proposed iterative algorithm.
Fig. 2
Fig. 2 Diagram of refractive index measurement based on OPD.
Fig. 3
Fig. 3 Diagram of thickness measurement based on ray deflection.
Fig. 4
Fig. 4 Flow chart of the proposed iterative algorithm.
Fig. 5
Fig. 5 Simulations of (a) interference map, and (b) backlit shadowgraph.
Fig. 6
Fig. 6 The iteration process for the 4 double-layer targets.
Fig. 7
Fig. 7 (a) The setup of the interference test; (b) The setup of the backlit shadowgraph test.
Fig. 8
Fig. 8 (a) The interference map; (b) The backlit shadowgraph.
Fig. 9
Fig. 9 The fitted relationship between sharpness and positions in 5 tests.
Fig. 10
Fig. 10 The obtained (a) first and second fringes positions, and (b) bright ring positions.
Fig. 11
Fig. 11 (a) Relative test uncertainties of n 2 from r 1 , r 2 , and X 2 ; (b) Relative test uncertainties of t 2 from r 1 , r 2 , and X 2 .

Tables (2)

Tables Icon

Table 1 Parameters of four targets

Tables Icon

Table 2 Iteration results of two targets

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

OPL( x 1 , n 2 , t 2 )OPL( x 2 , n 2 , t 2 )=OPD,
x+Δx=r,
{ OPL( x 1 , n 2 , t 2 )OPL( x 2 , n 2 , t 2 )=OPD x 1 +Δ x 1 = r 1 x 2 +Δ x 2 = r 2 ,
X 2 = X 1 Y 2 tanφ,
d X 2 dX =0,
{ X 2 = X 1 Y 2 tanφ d X 2 dX =0 ,
{ δ n 2 =0.1205δ r 1 5.2526e04 δ n 2 =0.6099δ r 2 5.2522e04 δ n 2 =0.6413δ X 2 5.1912e04 { δ t 2 =0.3831δ r 1 +0.0011 δ t 2 =1.9388δ r 2 +0.0010 δ t 2 =2.9411δ X 2 +0.0010 ,