Abstract

Circularly polarized light (CPL) is utilized in various fields, including optical communication and biological imaging. To overcome the lack of circular-polarization-sensitive absorbers working at high temperature, a refractory and circular-polarization-sensitive absorber comprised of molybdenum zigzag arrays is proposed. At certain resonant wavelengths, one component of circular polarization is absorbed by confining electromagnetic field in the dielectric layer, while the other component is backscattered. The circular-polarization-sensitive absorber could be applied as a CPL thermal radiator as well as a reflective linear-to-circular polarizer. As a CPL thermal radiator, left-handed circular radiation and right-handed circular radiation are dominant at different temperatures, respectively. As a linear-to-circular polarizer, both perfect left-handed circularly polarized light and nearly perfect right-handed circularly polarized light are obtained.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Multi-band circular polarizer using planar spiral metamaterial structure

Xiaoliang Ma, Cheng Huang, Mingbo Pu, Chenggang Hu, Qin Feng, and Xiangang Luo
Opt. Express 20(14) 16050-16058 (2012)

Chiral metamaterial absorber with high selectivity for terahertz circular polarization waves

Yongzhi Cheng, Haoran Chen, Jingcheng Zhao, Xuesong Mao, and Zhengze Cheng
Opt. Mater. Express 8(5) 1399-1409 (2018)

Perfect dual-band circular polarizer based on twisted split-ring structure asymmetric chiral metamaterial

Yongzhi Cheng, Rongzhou Gong, Zhengze Cheng, and Yan Nie
Appl. Opt. 53(25) 5763-5768 (2014)

References

  • View by:
  • |
  • |
  • |

  1. C. Wagenknecht, C. Li, A. Reingruber, X. Bao, A. Goebel, Y. Chen, Q. Zhang, K. Chen, and J. Pan, “Experimental demonstration of a heralded entanglement source,” Nat. Photonics 4(8), 549–552 (2010).
    [Crossref]
  2. E. Karimi, S. A. Schulz, I. De Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light Sci. Appl. 3(5), e167 (2014).
    [Crossref]
  3. C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and T. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99(4), 047601 (2007).
    [Crossref] [PubMed]
  4. S. M. Kelly and N. C. Price, “The use of circular dichroism in the investigation of protein structure and function,” Curr. Protein Pept. Sci. 1(4), 349–384 (2000).
    [Crossref] [PubMed]
  5. L. Huang, X. Chen, H. Muhlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K. Cheah, C. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4(1), 2808 (2013).
    [Crossref]
  6. J. Yeom, B. Yeom, H. Chan, K. W. Smith, S. Dominguez-Medina, J. H. Bahng, G. Zhao, W. S. Chang, S. J. Chang, A. Chuvilin, D. Melnikau, A. L. Rogach, P. Zhang, S. Link, P. Král, and N. A. Kotov, “Chiral templating of self-assembling nanostructures by circularly polarized light,” Nat. Mater. 14(1), 66–72 (2015).
    [Crossref] [PubMed]
  7. Y. Zhao and A. Alù, “Tailoring the dispersion of plasmonic nanorods to realize broadband optical meta-waveplates,” Nano Lett. 13(3), 1086–1091 (2013).
    [Crossref] [PubMed]
  8. P. Ginzburg, F. J. Rodríguez Fortuño, G. A. Wurtz, W. Dickson, A. Murphy, F. Morgan, R. J. Pollard, I. Iorsh, A. Atrashchenko, P. A. Belov, Y. S. Kivshar, A. Nevet, G. Ankonina, M. Orenstein, and A. V. Zayats, “Manipulating polarization of light with ultrathin epsilon-near-zero metamaterials,” Opt. Express 21(12), 14907–14917 (2013).
    [Crossref] [PubMed]
  9. M. Decker, M. W. Klein, M. Wegener, and S. Linden, “Circular dichroism of planar chiral magnetic metamaterials,” Opt. Lett. 32(7), 856–858 (2007).
    [Crossref] [PubMed]
  10. A. Shaltout, J. Liu, V. M. Shalaev, and A. V. Kildishev, “Optically active metasurface with non-chiral plasmonic nanoantennas,” Nano Lett. 14(8), 4426–4431 (2014).
    [Crossref] [PubMed]
  11. S. Kruk, B. Hopkins, A. Kravchenko, A. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Invited article: broadband highly efficient dielectric metadevices for polarization control,” APL Photonics 1(3), 030801 (2016).
    [Crossref]
  12. K. A. Bachman, J. J. Peltzer, P. D. Flammer, T. E. Furtak, R. T. Collins, and R. E. Hollingsworth, “Spiral plasmonic nanoantennas as circular polarization transmission filters,” Opt. Express 20(2), 1308–1319 (2012).
    [Crossref] [PubMed]
  13. Y. Cui, L. Kang, S. Lan, S. Rodrigues, and W. Cai, “Giant chiral optical response from a twisted-arc metamaterial,” Nano Lett. 14(2), 1021–1025 (2014).
    [Crossref] [PubMed]
  14. R. Ji, S. W. Wang, X. Liu, X. Chen, and W. Lu, “Broadband circular polarizers constructed using helix-like chiral metamaterials,” Nanoscale 8(31), 14725–14729 (2016).
    [Crossref] [PubMed]
  15. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
    [Crossref] [PubMed]
  16. J. K. Gansel, M. Latzel, A. Frolich, J. Kaschke, M. Thiel, and M. Wegener, “Tapered gold-helix metamaterials as improved circular polarizers,” Appl. Phys. Lett. 100(10), 101109 (2012).
    [Crossref]
  17. I. Sakellari, X. Yin, M. L. Nesterov, K. Terzaki, A. Xomalis, and M. Farsari, “3D chiral plasmonic metamaterials fabricated by direct laser writing: the twisted omega particle,” Adv. Opt. Mater. 5(16), 1700200 (2017).
    [Crossref]
  18. J. C. W. Lee and C. T. Chan, “Circularly polarized thermal radiation from layer-by-layer photonic crystal structures,” Appl. Phys. Lett. 90(5), 051912 (2007).
    [Crossref]
  19. Z. Wang, H. Jia, K. Yao, W. Cai, H. Chen, and Y. Liu, “Circular dichroism metamirrors with near-perfect extinction,” ACS Photonics 3(11), 2096–2101 (2016).
    [Crossref]
  20. Y. Yang, R. C. Costa, M. J. Fuchter, and A. J. Campbell, “Circularly polarized light detection by a chiral organic semiconductor transistor,” Nat. Photonics 7(8), 634–638 (2013).
    [Crossref]
  21. X. T. Kong, L. Khosravi Khorashad, Z. Wang, and A. O. Govorov, “Photothermal circular dichroism induced by plasmon resonances in chiral metamaterial absorbers and bolometers,” Nano Lett. 18(3), 2001–2008 (2018).
    [PubMed]
  22. W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6(1), 8379 (2015).
    [Crossref] [PubMed]
  23. W. Wang, Y. Qu, K. Du, S. Bai, J. Tian, M. Pan, H. Ye, M. Qiu, and Q. Li, “Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high-ε″ metal,” Appl. Phys. Lett. 110(10), 101101 (2017).
    [Crossref]
  24. X. Zhu, G. Liu, Y. Guo, and Y. Tian, “Study of PMMA thermal bonding,” Microsyst. Technol. 13(3–4), 403–407 (2007).
  25. Q. Jiang, S. Zhang, and M. Zhao, “Size-dependent melting point of noble metals,” Mater. Chem. Phys. 82(1), 225–227 (2003).
    [Crossref]
  26. S. R. Bhattacharyya, D. Datta, I. Shyjumon, B. M. Smirnov, T. K. Chini, D. Ghose, and R. Hippler, “Growth and melting of silicon supported silver nanocluster films,” J. Phys. D Appl. Phys. 42(3), 035306 (2009).
    [Crossref]
  27. T. Yokoyama, T. Dao, K. Chen, S. Ishii, R. P. Sugavaneshwar, M. Kitajima, and T. Nagao, “Spectrally selective mid-infrared thermal emission from molybdenum plasmonic metamaterial operated up to 1000 °C,” Adv. Opt. Mater. 4(12), 1987–1992 (2016).
    [Crossref]
  28. M. A. Ordal, R. J. Bell, R. W. Alexander, L. A. Newquist, and M. R. Querry, “Optical properties of Al, Fe, Ti, Ta, W, and Mo at submillimeter wavelengths,” Appl. Opt. 27(6), 1203–1209 (1988).
    [Crossref] [PubMed]
  29. M. Hentschel, V. E. Ferry, and A. P. Alivisatos, “Optical rotation reversal in the optical response of chiral plasmonic nanosystems: the role of plasmon hybridization,” ACS Photonics 2(9), 1253–1259 (2015).
    [Crossref]
  30. Y. Yang, A. E. Miroshnichenko, S. V. Kostinski, M. Odit, P. Kapitanova, M. Qiu, and Y. S. Kivshar, “Multimode directionality in all-dielectric metasurfaces,” Phys. Rev. B 95(16), 165426 (2017).
    [Crossref]
  31. J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83(16), 165107 (2011).
    [Crossref]
  32. A. E. Grigorescu and C. W. Hagen, “Resists for sub-20-nm electron beam lithography with a focus on HSQ: state of the art,” Nanotechnology 20(29), 292001 (2009).
    [Crossref] [PubMed]
  33. J. F. Pierson, D. Wiederkehr, and A. Billard, “Reactive magnetron sputtering of copper, silver, and gold,” Thin Solid Films 478(1–2), 196–205 (2005).
    [Crossref]
  34. Y. Qu, Q. Li, L. Cai, M. Pan, P. Ghosh, K. Du, and M. Qiu, “Thermal camouflage based on the phase-changing material GST, ” Light Sci. Appl. 7 (to be published)
  35. Y. Qu, Q. Li, H. Gong, K. Du, S. Bai, D. Zhao, H. Ye, and M. Qiu, “Spatially and spectrally resolved narrowband optical absorber based on 2D grating nanostructures on metallic films,” Adv. Opt. Mater. 4(3), 480–486 (2016).
    [Crossref]
  36. K. Du, Q. Li, Y. Lyu, J. Ding, Y. Lu, Z. Cheng, and M. Qiu, “Control over emissivity of zero-static-power thermal emitters based on phase-changing material GST,” Light Sci. Appl. 6(1), e16194 (2017).
    [Crossref]
  37. Y. Qu, Q. Li, K. Du, L. Cai, J. Lu, and M. Qiu, “Dynamic thermal emission control based on ultrathin plasmonic metamaterials including phase-changing material GST,” Laser Photonics Rev. 11(5), 1700091 (2017).
    [Crossref]
  38. K. Du, L. Cai, H. Luo, Y. Lu, J. Tian, Y. Qu, P. Ghosh, Y. Lyu, Z. Cheng, M. Qiu, and Q. Li, “Wavelength-tunable mid-infrared thermal emitters with a non-volatile phase changing material,” Nanoscale 10(9), 4415–4420 (2018).
    [Crossref] [PubMed]
  39. L. Cai, K. Du, Y. Qu, H. Luo, M. Pan, M. Qiu, and Q. Li, “Nonvolatile tunable silicon-carbide-based midinfrared thermal emitter enabled by phase-changing materials,” Opt. Lett. 43(6), 1295–1298 (2018).
    [Crossref] [PubMed]
  40. D. Wang, Y. Gu, Y. Gong, C. W. Qiu, and M. Hong, “An ultrathin terahertz quarter-wave plate using planar babinet-inverted metasurface,” Opt. Express 23(9), 11114–11122 (2015).
    [Crossref] [PubMed]
  41. Z. C. Ren, L. J. Kong, S. M. Li, S. X. Qian, Y. Li, C. Tu, and H. T. Wang, “Generalized poincaré sphere,” Opt. Express 23(20), 26586–26595 (2015).
    [Crossref] [PubMed]

2018 (3)

X. T. Kong, L. Khosravi Khorashad, Z. Wang, and A. O. Govorov, “Photothermal circular dichroism induced by plasmon resonances in chiral metamaterial absorbers and bolometers,” Nano Lett. 18(3), 2001–2008 (2018).
[PubMed]

K. Du, L. Cai, H. Luo, Y. Lu, J. Tian, Y. Qu, P. Ghosh, Y. Lyu, Z. Cheng, M. Qiu, and Q. Li, “Wavelength-tunable mid-infrared thermal emitters with a non-volatile phase changing material,” Nanoscale 10(9), 4415–4420 (2018).
[Crossref] [PubMed]

L. Cai, K. Du, Y. Qu, H. Luo, M. Pan, M. Qiu, and Q. Li, “Nonvolatile tunable silicon-carbide-based midinfrared thermal emitter enabled by phase-changing materials,” Opt. Lett. 43(6), 1295–1298 (2018).
[Crossref] [PubMed]

2017 (5)

K. Du, Q. Li, Y. Lyu, J. Ding, Y. Lu, Z. Cheng, and M. Qiu, “Control over emissivity of zero-static-power thermal emitters based on phase-changing material GST,” Light Sci. Appl. 6(1), e16194 (2017).
[Crossref]

Y. Qu, Q. Li, K. Du, L. Cai, J. Lu, and M. Qiu, “Dynamic thermal emission control based on ultrathin plasmonic metamaterials including phase-changing material GST,” Laser Photonics Rev. 11(5), 1700091 (2017).
[Crossref]

W. Wang, Y. Qu, K. Du, S. Bai, J. Tian, M. Pan, H. Ye, M. Qiu, and Q. Li, “Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high-ε″ metal,” Appl. Phys. Lett. 110(10), 101101 (2017).
[Crossref]

Y. Yang, A. E. Miroshnichenko, S. V. Kostinski, M. Odit, P. Kapitanova, M. Qiu, and Y. S. Kivshar, “Multimode directionality in all-dielectric metasurfaces,” Phys. Rev. B 95(16), 165426 (2017).
[Crossref]

I. Sakellari, X. Yin, M. L. Nesterov, K. Terzaki, A. Xomalis, and M. Farsari, “3D chiral plasmonic metamaterials fabricated by direct laser writing: the twisted omega particle,” Adv. Opt. Mater. 5(16), 1700200 (2017).
[Crossref]

2016 (5)

R. Ji, S. W. Wang, X. Liu, X. Chen, and W. Lu, “Broadband circular polarizers constructed using helix-like chiral metamaterials,” Nanoscale 8(31), 14725–14729 (2016).
[Crossref] [PubMed]

S. Kruk, B. Hopkins, A. Kravchenko, A. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Invited article: broadband highly efficient dielectric metadevices for polarization control,” APL Photonics 1(3), 030801 (2016).
[Crossref]

T. Yokoyama, T. Dao, K. Chen, S. Ishii, R. P. Sugavaneshwar, M. Kitajima, and T. Nagao, “Spectrally selective mid-infrared thermal emission from molybdenum plasmonic metamaterial operated up to 1000 °C,” Adv. Opt. Mater. 4(12), 1987–1992 (2016).
[Crossref]

Y. Qu, Q. Li, H. Gong, K. Du, S. Bai, D. Zhao, H. Ye, and M. Qiu, “Spatially and spectrally resolved narrowband optical absorber based on 2D grating nanostructures on metallic films,” Adv. Opt. Mater. 4(3), 480–486 (2016).
[Crossref]

Z. Wang, H. Jia, K. Yao, W. Cai, H. Chen, and Y. Liu, “Circular dichroism metamirrors with near-perfect extinction,” ACS Photonics 3(11), 2096–2101 (2016).
[Crossref]

2015 (5)

W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6(1), 8379 (2015).
[Crossref] [PubMed]

M. Hentschel, V. E. Ferry, and A. P. Alivisatos, “Optical rotation reversal in the optical response of chiral plasmonic nanosystems: the role of plasmon hybridization,” ACS Photonics 2(9), 1253–1259 (2015).
[Crossref]

J. Yeom, B. Yeom, H. Chan, K. W. Smith, S. Dominguez-Medina, J. H. Bahng, G. Zhao, W. S. Chang, S. J. Chang, A. Chuvilin, D. Melnikau, A. L. Rogach, P. Zhang, S. Link, P. Král, and N. A. Kotov, “Chiral templating of self-assembling nanostructures by circularly polarized light,” Nat. Mater. 14(1), 66–72 (2015).
[Crossref] [PubMed]

D. Wang, Y. Gu, Y. Gong, C. W. Qiu, and M. Hong, “An ultrathin terahertz quarter-wave plate using planar babinet-inverted metasurface,” Opt. Express 23(9), 11114–11122 (2015).
[Crossref] [PubMed]

Z. C. Ren, L. J. Kong, S. M. Li, S. X. Qian, Y. Li, C. Tu, and H. T. Wang, “Generalized poincaré sphere,” Opt. Express 23(20), 26586–26595 (2015).
[Crossref] [PubMed]

2014 (3)

E. Karimi, S. A. Schulz, I. De Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light Sci. Appl. 3(5), e167 (2014).
[Crossref]

A. Shaltout, J. Liu, V. M. Shalaev, and A. V. Kildishev, “Optically active metasurface with non-chiral plasmonic nanoantennas,” Nano Lett. 14(8), 4426–4431 (2014).
[Crossref] [PubMed]

Y. Cui, L. Kang, S. Lan, S. Rodrigues, and W. Cai, “Giant chiral optical response from a twisted-arc metamaterial,” Nano Lett. 14(2), 1021–1025 (2014).
[Crossref] [PubMed]

2013 (4)

L. Huang, X. Chen, H. Muhlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K. Cheah, C. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4(1), 2808 (2013).
[Crossref]

Y. Zhao and A. Alù, “Tailoring the dispersion of plasmonic nanorods to realize broadband optical meta-waveplates,” Nano Lett. 13(3), 1086–1091 (2013).
[Crossref] [PubMed]

P. Ginzburg, F. J. Rodríguez Fortuño, G. A. Wurtz, W. Dickson, A. Murphy, F. Morgan, R. J. Pollard, I. Iorsh, A. Atrashchenko, P. A. Belov, Y. S. Kivshar, A. Nevet, G. Ankonina, M. Orenstein, and A. V. Zayats, “Manipulating polarization of light with ultrathin epsilon-near-zero metamaterials,” Opt. Express 21(12), 14907–14917 (2013).
[Crossref] [PubMed]

Y. Yang, R. C. Costa, M. J. Fuchter, and A. J. Campbell, “Circularly polarized light detection by a chiral organic semiconductor transistor,” Nat. Photonics 7(8), 634–638 (2013).
[Crossref]

2012 (2)

J. K. Gansel, M. Latzel, A. Frolich, J. Kaschke, M. Thiel, and M. Wegener, “Tapered gold-helix metamaterials as improved circular polarizers,” Appl. Phys. Lett. 100(10), 101109 (2012).
[Crossref]

K. A. Bachman, J. J. Peltzer, P. D. Flammer, T. E. Furtak, R. T. Collins, and R. E. Hollingsworth, “Spiral plasmonic nanoantennas as circular polarization transmission filters,” Opt. Express 20(2), 1308–1319 (2012).
[Crossref] [PubMed]

2011 (1)

J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83(16), 165107 (2011).
[Crossref]

2010 (1)

C. Wagenknecht, C. Li, A. Reingruber, X. Bao, A. Goebel, Y. Chen, Q. Zhang, K. Chen, and J. Pan, “Experimental demonstration of a heralded entanglement source,” Nat. Photonics 4(8), 549–552 (2010).
[Crossref]

2009 (3)

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

A. E. Grigorescu and C. W. Hagen, “Resists for sub-20-nm electron beam lithography with a focus on HSQ: state of the art,” Nanotechnology 20(29), 292001 (2009).
[Crossref] [PubMed]

S. R. Bhattacharyya, D. Datta, I. Shyjumon, B. M. Smirnov, T. K. Chini, D. Ghose, and R. Hippler, “Growth and melting of silicon supported silver nanocluster films,” J. Phys. D Appl. Phys. 42(3), 035306 (2009).
[Crossref]

2007 (4)

X. Zhu, G. Liu, Y. Guo, and Y. Tian, “Study of PMMA thermal bonding,” Microsyst. Technol. 13(3–4), 403–407 (2007).

J. C. W. Lee and C. T. Chan, “Circularly polarized thermal radiation from layer-by-layer photonic crystal structures,” Appl. Phys. Lett. 90(5), 051912 (2007).
[Crossref]

C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and T. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99(4), 047601 (2007).
[Crossref] [PubMed]

M. Decker, M. W. Klein, M. Wegener, and S. Linden, “Circular dichroism of planar chiral magnetic metamaterials,” Opt. Lett. 32(7), 856–858 (2007).
[Crossref] [PubMed]

2005 (1)

J. F. Pierson, D. Wiederkehr, and A. Billard, “Reactive magnetron sputtering of copper, silver, and gold,” Thin Solid Films 478(1–2), 196–205 (2005).
[Crossref]

2003 (1)

Q. Jiang, S. Zhang, and M. Zhao, “Size-dependent melting point of noble metals,” Mater. Chem. Phys. 82(1), 225–227 (2003).
[Crossref]

2000 (1)

S. M. Kelly and N. C. Price, “The use of circular dichroism in the investigation of protein structure and function,” Curr. Protein Pept. Sci. 1(4), 349–384 (2000).
[Crossref] [PubMed]

1988 (1)

Alexander, R. W.

Alivisatos, A. P.

M. Hentschel, V. E. Ferry, and A. P. Alivisatos, “Optical rotation reversal in the optical response of chiral plasmonic nanosystems: the role of plasmon hybridization,” ACS Photonics 2(9), 1253–1259 (2015).
[Crossref]

Alù, A.

Y. Zhao and A. Alù, “Tailoring the dispersion of plasmonic nanorods to realize broadband optical meta-waveplates,” Nano Lett. 13(3), 1086–1091 (2013).
[Crossref] [PubMed]

Ankonina, G.

Atrashchenko, A.

Bachman, K. A.

Bade, K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Bahng, J. H.

J. Yeom, B. Yeom, H. Chan, K. W. Smith, S. Dominguez-Medina, J. H. Bahng, G. Zhao, W. S. Chang, S. J. Chang, A. Chuvilin, D. Melnikau, A. L. Rogach, P. Zhang, S. Link, P. Král, and N. A. Kotov, “Chiral templating of self-assembling nanostructures by circularly polarized light,” Nat. Mater. 14(1), 66–72 (2015).
[Crossref] [PubMed]

Bai, B.

L. Huang, X. Chen, H. Muhlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K. Cheah, C. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4(1), 2808 (2013).
[Crossref]

Bai, S.

W. Wang, Y. Qu, K. Du, S. Bai, J. Tian, M. Pan, H. Ye, M. Qiu, and Q. Li, “Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high-ε″ metal,” Appl. Phys. Lett. 110(10), 101101 (2017).
[Crossref]

Y. Qu, Q. Li, H. Gong, K. Du, S. Bai, D. Zhao, H. Ye, and M. Qiu, “Spatially and spectrally resolved narrowband optical absorber based on 2D grating nanostructures on metallic films,” Adv. Opt. Mater. 4(3), 480–486 (2016).
[Crossref]

Bao, X.

C. Wagenknecht, C. Li, A. Reingruber, X. Bao, A. Goebel, Y. Chen, Q. Zhang, K. Chen, and J. Pan, “Experimental demonstration of a heralded entanglement source,” Nat. Photonics 4(8), 549–552 (2010).
[Crossref]

Bell, R. J.

Belov, P. A.

Besteiro, L. V.

W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6(1), 8379 (2015).
[Crossref] [PubMed]

Bhattacharyya, S. R.

S. R. Bhattacharyya, D. Datta, I. Shyjumon, B. M. Smirnov, T. K. Chini, D. Ghose, and R. Hippler, “Growth and melting of silicon supported silver nanocluster films,” J. Phys. D Appl. Phys. 42(3), 035306 (2009).
[Crossref]

Billard, A.

J. F. Pierson, D. Wiederkehr, and A. Billard, “Reactive magnetron sputtering of copper, silver, and gold,” Thin Solid Films 478(1–2), 196–205 (2005).
[Crossref]

Boyd, R. W.

E. Karimi, S. A. Schulz, I. De Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light Sci. Appl. 3(5), e167 (2014).
[Crossref]

Cai, L.

K. Du, L. Cai, H. Luo, Y. Lu, J. Tian, Y. Qu, P. Ghosh, Y. Lyu, Z. Cheng, M. Qiu, and Q. Li, “Wavelength-tunable mid-infrared thermal emitters with a non-volatile phase changing material,” Nanoscale 10(9), 4415–4420 (2018).
[Crossref] [PubMed]

L. Cai, K. Du, Y. Qu, H. Luo, M. Pan, M. Qiu, and Q. Li, “Nonvolatile tunable silicon-carbide-based midinfrared thermal emitter enabled by phase-changing materials,” Opt. Lett. 43(6), 1295–1298 (2018).
[Crossref] [PubMed]

Y. Qu, Q. Li, K. Du, L. Cai, J. Lu, and M. Qiu, “Dynamic thermal emission control based on ultrathin plasmonic metamaterials including phase-changing material GST,” Laser Photonics Rev. 11(5), 1700091 (2017).
[Crossref]

Cai, W.

Z. Wang, H. Jia, K. Yao, W. Cai, H. Chen, and Y. Liu, “Circular dichroism metamirrors with near-perfect extinction,” ACS Photonics 3(11), 2096–2101 (2016).
[Crossref]

Y. Cui, L. Kang, S. Lan, S. Rodrigues, and W. Cai, “Giant chiral optical response from a twisted-arc metamaterial,” Nano Lett. 14(2), 1021–1025 (2014).
[Crossref] [PubMed]

Campbell, A. J.

Y. Yang, R. C. Costa, M. J. Fuchter, and A. J. Campbell, “Circularly polarized light detection by a chiral organic semiconductor transistor,” Nat. Photonics 7(8), 634–638 (2013).
[Crossref]

Chan, C. T.

J. C. W. Lee and C. T. Chan, “Circularly polarized thermal radiation from layer-by-layer photonic crystal structures,” Appl. Phys. Lett. 90(5), 051912 (2007).
[Crossref]

Chan, H.

J. Yeom, B. Yeom, H. Chan, K. W. Smith, S. Dominguez-Medina, J. H. Bahng, G. Zhao, W. S. Chang, S. J. Chang, A. Chuvilin, D. Melnikau, A. L. Rogach, P. Zhang, S. Link, P. Král, and N. A. Kotov, “Chiral templating of self-assembling nanostructures by circularly polarized light,” Nat. Mater. 14(1), 66–72 (2015).
[Crossref] [PubMed]

Chang, S. J.

J. Yeom, B. Yeom, H. Chan, K. W. Smith, S. Dominguez-Medina, J. H. Bahng, G. Zhao, W. S. Chang, S. J. Chang, A. Chuvilin, D. Melnikau, A. L. Rogach, P. Zhang, S. Link, P. Král, and N. A. Kotov, “Chiral templating of self-assembling nanostructures by circularly polarized light,” Nat. Mater. 14(1), 66–72 (2015).
[Crossref] [PubMed]

Chang, W. S.

J. Yeom, B. Yeom, H. Chan, K. W. Smith, S. Dominguez-Medina, J. H. Bahng, G. Zhao, W. S. Chang, S. J. Chang, A. Chuvilin, D. Melnikau, A. L. Rogach, P. Zhang, S. Link, P. Král, and N. A. Kotov, “Chiral templating of self-assembling nanostructures by circularly polarized light,” Nat. Mater. 14(1), 66–72 (2015).
[Crossref] [PubMed]

Cheah, K.

L. Huang, X. Chen, H. Muhlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K. Cheah, C. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4(1), 2808 (2013).
[Crossref]

Chen, H.

Z. Wang, H. Jia, K. Yao, W. Cai, H. Chen, and Y. Liu, “Circular dichroism metamirrors with near-perfect extinction,” ACS Photonics 3(11), 2096–2101 (2016).
[Crossref]

Chen, K.

T. Yokoyama, T. Dao, K. Chen, S. Ishii, R. P. Sugavaneshwar, M. Kitajima, and T. Nagao, “Spectrally selective mid-infrared thermal emission from molybdenum plasmonic metamaterial operated up to 1000 °C,” Adv. Opt. Mater. 4(12), 1987–1992 (2016).
[Crossref]

C. Wagenknecht, C. Li, A. Reingruber, X. Bao, A. Goebel, Y. Chen, Q. Zhang, K. Chen, and J. Pan, “Experimental demonstration of a heralded entanglement source,” Nat. Photonics 4(8), 549–552 (2010).
[Crossref]

Chen, S.

L. Huang, X. Chen, H. Muhlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K. Cheah, C. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4(1), 2808 (2013).
[Crossref]

Chen, X.

R. Ji, S. W. Wang, X. Liu, X. Chen, and W. Lu, “Broadband circular polarizers constructed using helix-like chiral metamaterials,” Nanoscale 8(31), 14725–14729 (2016).
[Crossref] [PubMed]

L. Huang, X. Chen, H. Muhlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K. Cheah, C. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4(1), 2808 (2013).
[Crossref]

Chen, Y.

C. Wagenknecht, C. Li, A. Reingruber, X. Bao, A. Goebel, Y. Chen, Q. Zhang, K. Chen, and J. Pan, “Experimental demonstration of a heralded entanglement source,” Nat. Photonics 4(8), 549–552 (2010).
[Crossref]

Cheng, Z.

K. Du, L. Cai, H. Luo, Y. Lu, J. Tian, Y. Qu, P. Ghosh, Y. Lyu, Z. Cheng, M. Qiu, and Q. Li, “Wavelength-tunable mid-infrared thermal emitters with a non-volatile phase changing material,” Nanoscale 10(9), 4415–4420 (2018).
[Crossref] [PubMed]

K. Du, Q. Li, Y. Lyu, J. Ding, Y. Lu, Z. Cheng, and M. Qiu, “Control over emissivity of zero-static-power thermal emitters based on phase-changing material GST,” Light Sci. Appl. 6(1), e16194 (2017).
[Crossref]

Chini, T. K.

S. R. Bhattacharyya, D. Datta, I. Shyjumon, B. M. Smirnov, T. K. Chini, D. Ghose, and R. Hippler, “Growth and melting of silicon supported silver nanocluster films,” J. Phys. D Appl. Phys. 42(3), 035306 (2009).
[Crossref]

Chuvilin, A.

J. Yeom, B. Yeom, H. Chan, K. W. Smith, S. Dominguez-Medina, J. H. Bahng, G. Zhao, W. S. Chang, S. J. Chang, A. Chuvilin, D. Melnikau, A. L. Rogach, P. Zhang, S. Link, P. Král, and N. A. Kotov, “Chiral templating of self-assembling nanostructures by circularly polarized light,” Nat. Mater. 14(1), 66–72 (2015).
[Crossref] [PubMed]

Collins, R. T.

Coppens, Z. J.

W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6(1), 8379 (2015).
[Crossref] [PubMed]

Costa, R. C.

Y. Yang, R. C. Costa, M. J. Fuchter, and A. J. Campbell, “Circularly polarized light detection by a chiral organic semiconductor transistor,” Nat. Photonics 7(8), 634–638 (2013).
[Crossref]

Cui, Y.

Y. Cui, L. Kang, S. Lan, S. Rodrigues, and W. Cai, “Giant chiral optical response from a twisted-arc metamaterial,” Nano Lett. 14(2), 1021–1025 (2014).
[Crossref] [PubMed]

Dao, T.

T. Yokoyama, T. Dao, K. Chen, S. Ishii, R. P. Sugavaneshwar, M. Kitajima, and T. Nagao, “Spectrally selective mid-infrared thermal emission from molybdenum plasmonic metamaterial operated up to 1000 °C,” Adv. Opt. Mater. 4(12), 1987–1992 (2016).
[Crossref]

Datta, D.

S. R. Bhattacharyya, D. Datta, I. Shyjumon, B. M. Smirnov, T. K. Chini, D. Ghose, and R. Hippler, “Growth and melting of silicon supported silver nanocluster films,” J. Phys. D Appl. Phys. 42(3), 035306 (2009).
[Crossref]

De Leon, I.

E. Karimi, S. A. Schulz, I. De Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light Sci. Appl. 3(5), e167 (2014).
[Crossref]

Decker, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

M. Decker, M. W. Klein, M. Wegener, and S. Linden, “Circular dichroism of planar chiral magnetic metamaterials,” Opt. Lett. 32(7), 856–858 (2007).
[Crossref] [PubMed]

Dickson, W.

Ding, J.

K. Du, Q. Li, Y. Lyu, J. Ding, Y. Lu, Z. Cheng, and M. Qiu, “Control over emissivity of zero-static-power thermal emitters based on phase-changing material GST,” Light Sci. Appl. 6(1), e16194 (2017).
[Crossref]

Dominguez-Medina, S.

J. Yeom, B. Yeom, H. Chan, K. W. Smith, S. Dominguez-Medina, J. H. Bahng, G. Zhao, W. S. Chang, S. J. Chang, A. Chuvilin, D. Melnikau, A. L. Rogach, P. Zhang, S. Link, P. Král, and N. A. Kotov, “Chiral templating of self-assembling nanostructures by circularly polarized light,” Nat. Mater. 14(1), 66–72 (2015).
[Crossref] [PubMed]

Du, K.

K. Du, L. Cai, H. Luo, Y. Lu, J. Tian, Y. Qu, P. Ghosh, Y. Lyu, Z. Cheng, M. Qiu, and Q. Li, “Wavelength-tunable mid-infrared thermal emitters with a non-volatile phase changing material,” Nanoscale 10(9), 4415–4420 (2018).
[Crossref] [PubMed]

L. Cai, K. Du, Y. Qu, H. Luo, M. Pan, M. Qiu, and Q. Li, “Nonvolatile tunable silicon-carbide-based midinfrared thermal emitter enabled by phase-changing materials,” Opt. Lett. 43(6), 1295–1298 (2018).
[Crossref] [PubMed]

Y. Qu, Q. Li, K. Du, L. Cai, J. Lu, and M. Qiu, “Dynamic thermal emission control based on ultrathin plasmonic metamaterials including phase-changing material GST,” Laser Photonics Rev. 11(5), 1700091 (2017).
[Crossref]

K. Du, Q. Li, Y. Lyu, J. Ding, Y. Lu, Z. Cheng, and M. Qiu, “Control over emissivity of zero-static-power thermal emitters based on phase-changing material GST,” Light Sci. Appl. 6(1), e16194 (2017).
[Crossref]

W. Wang, Y. Qu, K. Du, S. Bai, J. Tian, M. Pan, H. Ye, M. Qiu, and Q. Li, “Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high-ε″ metal,” Appl. Phys. Lett. 110(10), 101101 (2017).
[Crossref]

Y. Qu, Q. Li, H. Gong, K. Du, S. Bai, D. Zhao, H. Ye, and M. Qiu, “Spatially and spectrally resolved narrowband optical absorber based on 2D grating nanostructures on metallic films,” Adv. Opt. Mater. 4(3), 480–486 (2016).
[Crossref]

Farsari, M.

I. Sakellari, X. Yin, M. L. Nesterov, K. Terzaki, A. Xomalis, and M. Farsari, “3D chiral plasmonic metamaterials fabricated by direct laser writing: the twisted omega particle,” Adv. Opt. Mater. 5(16), 1700200 (2017).
[Crossref]

Ferry, V. E.

M. Hentschel, V. E. Ferry, and A. P. Alivisatos, “Optical rotation reversal in the optical response of chiral plasmonic nanosystems: the role of plasmon hybridization,” ACS Photonics 2(9), 1253–1259 (2015).
[Crossref]

Flammer, P. D.

Frolich, A.

J. K. Gansel, M. Latzel, A. Frolich, J. Kaschke, M. Thiel, and M. Wegener, “Tapered gold-helix metamaterials as improved circular polarizers,” Appl. Phys. Lett. 100(10), 101109 (2012).
[Crossref]

Fuchter, M. J.

Y. Yang, R. C. Costa, M. J. Fuchter, and A. J. Campbell, “Circularly polarized light detection by a chiral organic semiconductor transistor,” Nat. Photonics 7(8), 634–638 (2013).
[Crossref]

Furtak, T. E.

Gansel, J. K.

J. K. Gansel, M. Latzel, A. Frolich, J. Kaschke, M. Thiel, and M. Wegener, “Tapered gold-helix metamaterials as improved circular polarizers,” Appl. Phys. Lett. 100(10), 101109 (2012).
[Crossref]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Ghose, D.

S. R. Bhattacharyya, D. Datta, I. Shyjumon, B. M. Smirnov, T. K. Chini, D. Ghose, and R. Hippler, “Growth and melting of silicon supported silver nanocluster films,” J. Phys. D Appl. Phys. 42(3), 035306 (2009).
[Crossref]

Ghosh, P.

K. Du, L. Cai, H. Luo, Y. Lu, J. Tian, Y. Qu, P. Ghosh, Y. Lyu, Z. Cheng, M. Qiu, and Q. Li, “Wavelength-tunable mid-infrared thermal emitters with a non-volatile phase changing material,” Nanoscale 10(9), 4415–4420 (2018).
[Crossref] [PubMed]

Ginzburg, P.

Goebel, A.

C. Wagenknecht, C. Li, A. Reingruber, X. Bao, A. Goebel, Y. Chen, Q. Zhang, K. Chen, and J. Pan, “Experimental demonstration of a heralded entanglement source,” Nat. Photonics 4(8), 549–552 (2010).
[Crossref]

Gong, H.

Y. Qu, Q. Li, H. Gong, K. Du, S. Bai, D. Zhao, H. Ye, and M. Qiu, “Spatially and spectrally resolved narrowband optical absorber based on 2D grating nanostructures on metallic films,” Adv. Opt. Mater. 4(3), 480–486 (2016).
[Crossref]

Gong, Y.

Govorov, A. O.

X. T. Kong, L. Khosravi Khorashad, Z. Wang, and A. O. Govorov, “Photothermal circular dichroism induced by plasmon resonances in chiral metamaterial absorbers and bolometers,” Nano Lett. 18(3), 2001–2008 (2018).
[PubMed]

W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6(1), 8379 (2015).
[Crossref] [PubMed]

Grigorescu, A. E.

A. E. Grigorescu and C. W. Hagen, “Resists for sub-20-nm electron beam lithography with a focus on HSQ: state of the art,” Nanotechnology 20(29), 292001 (2009).
[Crossref] [PubMed]

Gu, Y.

Guo, Y.

X. Zhu, G. Liu, Y. Guo, and Y. Tian, “Study of PMMA thermal bonding,” Microsyst. Technol. 13(3–4), 403–407 (2007).

Hagen, C. W.

A. E. Grigorescu and C. W. Hagen, “Resists for sub-20-nm electron beam lithography with a focus on HSQ: state of the art,” Nanotechnology 20(29), 292001 (2009).
[Crossref] [PubMed]

Hansteen, F.

C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and T. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99(4), 047601 (2007).
[Crossref] [PubMed]

Hao, J.

J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83(16), 165107 (2011).
[Crossref]

Hentschel, M.

M. Hentschel, V. E. Ferry, and A. P. Alivisatos, “Optical rotation reversal in the optical response of chiral plasmonic nanosystems: the role of plasmon hybridization,” ACS Photonics 2(9), 1253–1259 (2015).
[Crossref]

Hippler, R.

S. R. Bhattacharyya, D. Datta, I. Shyjumon, B. M. Smirnov, T. K. Chini, D. Ghose, and R. Hippler, “Growth and melting of silicon supported silver nanocluster films,” J. Phys. D Appl. Phys. 42(3), 035306 (2009).
[Crossref]

Hollingsworth, R. E.

Hong, M.

Hopkins, B.

S. Kruk, B. Hopkins, A. Kravchenko, A. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Invited article: broadband highly efficient dielectric metadevices for polarization control,” APL Photonics 1(3), 030801 (2016).
[Crossref]

Huang, L.

L. Huang, X. Chen, H. Muhlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K. Cheah, C. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4(1), 2808 (2013).
[Crossref]

Iorsh, I.

Ishii, S.

T. Yokoyama, T. Dao, K. Chen, S. Ishii, R. P. Sugavaneshwar, M. Kitajima, and T. Nagao, “Spectrally selective mid-infrared thermal emission from molybdenum plasmonic metamaterial operated up to 1000 °C,” Adv. Opt. Mater. 4(12), 1987–1992 (2016).
[Crossref]

Itoh, A.

C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and T. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99(4), 047601 (2007).
[Crossref] [PubMed]

Ji, R.

R. Ji, S. W. Wang, X. Liu, X. Chen, and W. Lu, “Broadband circular polarizers constructed using helix-like chiral metamaterials,” Nanoscale 8(31), 14725–14729 (2016).
[Crossref] [PubMed]

Jia, H.

Z. Wang, H. Jia, K. Yao, W. Cai, H. Chen, and Y. Liu, “Circular dichroism metamirrors with near-perfect extinction,” ACS Photonics 3(11), 2096–2101 (2016).
[Crossref]

Jiang, Q.

Q. Jiang, S. Zhang, and M. Zhao, “Size-dependent melting point of noble metals,” Mater. Chem. Phys. 82(1), 225–227 (2003).
[Crossref]

Jin, G.

L. Huang, X. Chen, H. Muhlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K. Cheah, C. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4(1), 2808 (2013).
[Crossref]

Kang, L.

Y. Cui, L. Kang, S. Lan, S. Rodrigues, and W. Cai, “Giant chiral optical response from a twisted-arc metamaterial,” Nano Lett. 14(2), 1021–1025 (2014).
[Crossref] [PubMed]

Kapitanova, P.

Y. Yang, A. E. Miroshnichenko, S. V. Kostinski, M. Odit, P. Kapitanova, M. Qiu, and Y. S. Kivshar, “Multimode directionality in all-dielectric metasurfaces,” Phys. Rev. B 95(16), 165426 (2017).
[Crossref]

Karimi, E.

E. Karimi, S. A. Schulz, I. De Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light Sci. Appl. 3(5), e167 (2014).
[Crossref]

Kaschke, J.

J. K. Gansel, M. Latzel, A. Frolich, J. Kaschke, M. Thiel, and M. Wegener, “Tapered gold-helix metamaterials as improved circular polarizers,” Appl. Phys. Lett. 100(10), 101109 (2012).
[Crossref]

Kelly, S. M.

S. M. Kelly and N. C. Price, “The use of circular dichroism in the investigation of protein structure and function,” Curr. Protein Pept. Sci. 1(4), 349–384 (2000).
[Crossref] [PubMed]

Khosravi Khorashad, L.

X. T. Kong, L. Khosravi Khorashad, Z. Wang, and A. O. Govorov, “Photothermal circular dichroism induced by plasmon resonances in chiral metamaterial absorbers and bolometers,” Nano Lett. 18(3), 2001–2008 (2018).
[PubMed]

Kildishev, A. V.

A. Shaltout, J. Liu, V. M. Shalaev, and A. V. Kildishev, “Optically active metasurface with non-chiral plasmonic nanoantennas,” Nano Lett. 14(8), 4426–4431 (2014).
[Crossref] [PubMed]

Kimel, A. V.

C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and T. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99(4), 047601 (2007).
[Crossref] [PubMed]

Kirilyuk, A.

C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and T. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99(4), 047601 (2007).
[Crossref] [PubMed]

Kitajima, M.

T. Yokoyama, T. Dao, K. Chen, S. Ishii, R. P. Sugavaneshwar, M. Kitajima, and T. Nagao, “Spectrally selective mid-infrared thermal emission from molybdenum plasmonic metamaterial operated up to 1000 °C,” Adv. Opt. Mater. 4(12), 1987–1992 (2016).
[Crossref]

Kivshar, Y. S.

Y. Yang, A. E. Miroshnichenko, S. V. Kostinski, M. Odit, P. Kapitanova, M. Qiu, and Y. S. Kivshar, “Multimode directionality in all-dielectric metasurfaces,” Phys. Rev. B 95(16), 165426 (2017).
[Crossref]

S. Kruk, B. Hopkins, A. Kravchenko, A. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Invited article: broadband highly efficient dielectric metadevices for polarization control,” APL Photonics 1(3), 030801 (2016).
[Crossref]

P. Ginzburg, F. J. Rodríguez Fortuño, G. A. Wurtz, W. Dickson, A. Murphy, F. Morgan, R. J. Pollard, I. Iorsh, A. Atrashchenko, P. A. Belov, Y. S. Kivshar, A. Nevet, G. Ankonina, M. Orenstein, and A. V. Zayats, “Manipulating polarization of light with ultrathin epsilon-near-zero metamaterials,” Opt. Express 21(12), 14907–14917 (2013).
[Crossref] [PubMed]

Klein, M. W.

Kong, L. J.

Kong, X. T.

X. T. Kong, L. Khosravi Khorashad, Z. Wang, and A. O. Govorov, “Photothermal circular dichroism induced by plasmon resonances in chiral metamaterial absorbers and bolometers,” Nano Lett. 18(3), 2001–2008 (2018).
[PubMed]

Kostinski, S. V.

Y. Yang, A. E. Miroshnichenko, S. V. Kostinski, M. Odit, P. Kapitanova, M. Qiu, and Y. S. Kivshar, “Multimode directionality in all-dielectric metasurfaces,” Phys. Rev. B 95(16), 165426 (2017).
[Crossref]

Kotov, N. A.

J. Yeom, B. Yeom, H. Chan, K. W. Smith, S. Dominguez-Medina, J. H. Bahng, G. Zhao, W. S. Chang, S. J. Chang, A. Chuvilin, D. Melnikau, A. L. Rogach, P. Zhang, S. Link, P. Král, and N. A. Kotov, “Chiral templating of self-assembling nanostructures by circularly polarized light,” Nat. Mater. 14(1), 66–72 (2015).
[Crossref] [PubMed]

Král, P.

J. Yeom, B. Yeom, H. Chan, K. W. Smith, S. Dominguez-Medina, J. H. Bahng, G. Zhao, W. S. Chang, S. J. Chang, A. Chuvilin, D. Melnikau, A. L. Rogach, P. Zhang, S. Link, P. Král, and N. A. Kotov, “Chiral templating of self-assembling nanostructures by circularly polarized light,” Nat. Mater. 14(1), 66–72 (2015).
[Crossref] [PubMed]

Kravchenko, A.

S. Kruk, B. Hopkins, A. Kravchenko, A. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Invited article: broadband highly efficient dielectric metadevices for polarization control,” APL Photonics 1(3), 030801 (2016).
[Crossref]

Kruk, S.

S. Kruk, B. Hopkins, A. Kravchenko, A. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Invited article: broadband highly efficient dielectric metadevices for polarization control,” APL Photonics 1(3), 030801 (2016).
[Crossref]

Lan, S.

Y. Cui, L. Kang, S. Lan, S. Rodrigues, and W. Cai, “Giant chiral optical response from a twisted-arc metamaterial,” Nano Lett. 14(2), 1021–1025 (2014).
[Crossref] [PubMed]

Latzel, M.

J. K. Gansel, M. Latzel, A. Frolich, J. Kaschke, M. Thiel, and M. Wegener, “Tapered gold-helix metamaterials as improved circular polarizers,” Appl. Phys. Lett. 100(10), 101109 (2012).
[Crossref]

Lee, J. C. W.

J. C. W. Lee and C. T. Chan, “Circularly polarized thermal radiation from layer-by-layer photonic crystal structures,” Appl. Phys. Lett. 90(5), 051912 (2007).
[Crossref]

Li, C.

C. Wagenknecht, C. Li, A. Reingruber, X. Bao, A. Goebel, Y. Chen, Q. Zhang, K. Chen, and J. Pan, “Experimental demonstration of a heralded entanglement source,” Nat. Photonics 4(8), 549–552 (2010).
[Crossref]

Li, J.

L. Huang, X. Chen, H. Muhlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K. Cheah, C. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4(1), 2808 (2013).
[Crossref]

Li, Q.

K. Du, L. Cai, H. Luo, Y. Lu, J. Tian, Y. Qu, P. Ghosh, Y. Lyu, Z. Cheng, M. Qiu, and Q. Li, “Wavelength-tunable mid-infrared thermal emitters with a non-volatile phase changing material,” Nanoscale 10(9), 4415–4420 (2018).
[Crossref] [PubMed]

L. Cai, K. Du, Y. Qu, H. Luo, M. Pan, M. Qiu, and Q. Li, “Nonvolatile tunable silicon-carbide-based midinfrared thermal emitter enabled by phase-changing materials,” Opt. Lett. 43(6), 1295–1298 (2018).
[Crossref] [PubMed]

K. Du, Q. Li, Y. Lyu, J. Ding, Y. Lu, Z. Cheng, and M. Qiu, “Control over emissivity of zero-static-power thermal emitters based on phase-changing material GST,” Light Sci. Appl. 6(1), e16194 (2017).
[Crossref]

Y. Qu, Q. Li, K. Du, L. Cai, J. Lu, and M. Qiu, “Dynamic thermal emission control based on ultrathin plasmonic metamaterials including phase-changing material GST,” Laser Photonics Rev. 11(5), 1700091 (2017).
[Crossref]

W. Wang, Y. Qu, K. Du, S. Bai, J. Tian, M. Pan, H. Ye, M. Qiu, and Q. Li, “Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high-ε″ metal,” Appl. Phys. Lett. 110(10), 101101 (2017).
[Crossref]

Y. Qu, Q. Li, H. Gong, K. Du, S. Bai, D. Zhao, H. Ye, and M. Qiu, “Spatially and spectrally resolved narrowband optical absorber based on 2D grating nanostructures on metallic films,” Adv. Opt. Mater. 4(3), 480–486 (2016).
[Crossref]

Li, S. M.

Li, W.

W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6(1), 8379 (2015).
[Crossref] [PubMed]

Li, Y.

Linden, S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

M. Decker, M. W. Klein, M. Wegener, and S. Linden, “Circular dichroism of planar chiral magnetic metamaterials,” Opt. Lett. 32(7), 856–858 (2007).
[Crossref] [PubMed]

Link, S.

J. Yeom, B. Yeom, H. Chan, K. W. Smith, S. Dominguez-Medina, J. H. Bahng, G. Zhao, W. S. Chang, S. J. Chang, A. Chuvilin, D. Melnikau, A. L. Rogach, P. Zhang, S. Link, P. Král, and N. A. Kotov, “Chiral templating of self-assembling nanostructures by circularly polarized light,” Nat. Mater. 14(1), 66–72 (2015).
[Crossref] [PubMed]

Liu, G.

X. Zhu, G. Liu, Y. Guo, and Y. Tian, “Study of PMMA thermal bonding,” Microsyst. Technol. 13(3–4), 403–407 (2007).

Liu, J.

A. Shaltout, J. Liu, V. M. Shalaev, and A. V. Kildishev, “Optically active metasurface with non-chiral plasmonic nanoantennas,” Nano Lett. 14(8), 4426–4431 (2014).
[Crossref] [PubMed]

Liu, X.

R. Ji, S. W. Wang, X. Liu, X. Chen, and W. Lu, “Broadband circular polarizers constructed using helix-like chiral metamaterials,” Nanoscale 8(31), 14725–14729 (2016).
[Crossref] [PubMed]

Liu, Y.

Z. Wang, H. Jia, K. Yao, W. Cai, H. Chen, and Y. Liu, “Circular dichroism metamirrors with near-perfect extinction,” ACS Photonics 3(11), 2096–2101 (2016).
[Crossref]

Lu, J.

Y. Qu, Q. Li, K. Du, L. Cai, J. Lu, and M. Qiu, “Dynamic thermal emission control based on ultrathin plasmonic metamaterials including phase-changing material GST,” Laser Photonics Rev. 11(5), 1700091 (2017).
[Crossref]

Lu, W.

R. Ji, S. W. Wang, X. Liu, X. Chen, and W. Lu, “Broadband circular polarizers constructed using helix-like chiral metamaterials,” Nanoscale 8(31), 14725–14729 (2016).
[Crossref] [PubMed]

Lu, Y.

K. Du, L. Cai, H. Luo, Y. Lu, J. Tian, Y. Qu, P. Ghosh, Y. Lyu, Z. Cheng, M. Qiu, and Q. Li, “Wavelength-tunable mid-infrared thermal emitters with a non-volatile phase changing material,” Nanoscale 10(9), 4415–4420 (2018).
[Crossref] [PubMed]

K. Du, Q. Li, Y. Lyu, J. Ding, Y. Lu, Z. Cheng, and M. Qiu, “Control over emissivity of zero-static-power thermal emitters based on phase-changing material GST,” Light Sci. Appl. 6(1), e16194 (2017).
[Crossref]

Luo, H.

K. Du, L. Cai, H. Luo, Y. Lu, J. Tian, Y. Qu, P. Ghosh, Y. Lyu, Z. Cheng, M. Qiu, and Q. Li, “Wavelength-tunable mid-infrared thermal emitters with a non-volatile phase changing material,” Nanoscale 10(9), 4415–4420 (2018).
[Crossref] [PubMed]

L. Cai, K. Du, Y. Qu, H. Luo, M. Pan, M. Qiu, and Q. Li, “Nonvolatile tunable silicon-carbide-based midinfrared thermal emitter enabled by phase-changing materials,” Opt. Lett. 43(6), 1295–1298 (2018).
[Crossref] [PubMed]

Lyu, Y.

K. Du, L. Cai, H. Luo, Y. Lu, J. Tian, Y. Qu, P. Ghosh, Y. Lyu, Z. Cheng, M. Qiu, and Q. Li, “Wavelength-tunable mid-infrared thermal emitters with a non-volatile phase changing material,” Nanoscale 10(9), 4415–4420 (2018).
[Crossref] [PubMed]

K. Du, Q. Li, Y. Lyu, J. Ding, Y. Lu, Z. Cheng, and M. Qiu, “Control over emissivity of zero-static-power thermal emitters based on phase-changing material GST,” Light Sci. Appl. 6(1), e16194 (2017).
[Crossref]

Melnikau, D.

J. Yeom, B. Yeom, H. Chan, K. W. Smith, S. Dominguez-Medina, J. H. Bahng, G. Zhao, W. S. Chang, S. J. Chang, A. Chuvilin, D. Melnikau, A. L. Rogach, P. Zhang, S. Link, P. Král, and N. A. Kotov, “Chiral templating of self-assembling nanostructures by circularly polarized light,” Nat. Mater. 14(1), 66–72 (2015).
[Crossref] [PubMed]

Miroshnichenko, A.

S. Kruk, B. Hopkins, A. Kravchenko, A. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Invited article: broadband highly efficient dielectric metadevices for polarization control,” APL Photonics 1(3), 030801 (2016).
[Crossref]

Miroshnichenko, A. E.

Y. Yang, A. E. Miroshnichenko, S. V. Kostinski, M. Odit, P. Kapitanova, M. Qiu, and Y. S. Kivshar, “Multimode directionality in all-dielectric metasurfaces,” Phys. Rev. B 95(16), 165426 (2017).
[Crossref]

Morgan, F.

Muhlenbernd, H.

L. Huang, X. Chen, H. Muhlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K. Cheah, C. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4(1), 2808 (2013).
[Crossref]

Murphy, A.

Nagao, T.

T. Yokoyama, T. Dao, K. Chen, S. Ishii, R. P. Sugavaneshwar, M. Kitajima, and T. Nagao, “Spectrally selective mid-infrared thermal emission from molybdenum plasmonic metamaterial operated up to 1000 °C,” Adv. Opt. Mater. 4(12), 1987–1992 (2016).
[Crossref]

Neshev, D. N.

S. Kruk, B. Hopkins, A. Kravchenko, A. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Invited article: broadband highly efficient dielectric metadevices for polarization control,” APL Photonics 1(3), 030801 (2016).
[Crossref]

Nesterov, M. L.

I. Sakellari, X. Yin, M. L. Nesterov, K. Terzaki, A. Xomalis, and M. Farsari, “3D chiral plasmonic metamaterials fabricated by direct laser writing: the twisted omega particle,” Adv. Opt. Mater. 5(16), 1700200 (2017).
[Crossref]

Nevet, A.

Newquist, L. A.

Odit, M.

Y. Yang, A. E. Miroshnichenko, S. V. Kostinski, M. Odit, P. Kapitanova, M. Qiu, and Y. S. Kivshar, “Multimode directionality in all-dielectric metasurfaces,” Phys. Rev. B 95(16), 165426 (2017).
[Crossref]

Ordal, M. A.

Orenstein, M.

Pan, J.

C. Wagenknecht, C. Li, A. Reingruber, X. Bao, A. Goebel, Y. Chen, Q. Zhang, K. Chen, and J. Pan, “Experimental demonstration of a heralded entanglement source,” Nat. Photonics 4(8), 549–552 (2010).
[Crossref]

Pan, M.

L. Cai, K. Du, Y. Qu, H. Luo, M. Pan, M. Qiu, and Q. Li, “Nonvolatile tunable silicon-carbide-based midinfrared thermal emitter enabled by phase-changing materials,” Opt. Lett. 43(6), 1295–1298 (2018).
[Crossref] [PubMed]

W. Wang, Y. Qu, K. Du, S. Bai, J. Tian, M. Pan, H. Ye, M. Qiu, and Q. Li, “Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high-ε″ metal,” Appl. Phys. Lett. 110(10), 101101 (2017).
[Crossref]

Peltzer, J. J.

Pierson, J. F.

J. F. Pierson, D. Wiederkehr, and A. Billard, “Reactive magnetron sputtering of copper, silver, and gold,” Thin Solid Films 478(1–2), 196–205 (2005).
[Crossref]

Pollard, R. J.

Price, N. C.

S. M. Kelly and N. C. Price, “The use of circular dichroism in the investigation of protein structure and function,” Curr. Protein Pept. Sci. 1(4), 349–384 (2000).
[Crossref] [PubMed]

Qassim, H.

E. Karimi, S. A. Schulz, I. De Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light Sci. Appl. 3(5), e167 (2014).
[Crossref]

Qian, S. X.

Qiu, C.

L. Huang, X. Chen, H. Muhlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K. Cheah, C. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4(1), 2808 (2013).
[Crossref]

Qiu, C. W.

Qiu, M.

L. Cai, K. Du, Y. Qu, H. Luo, M. Pan, M. Qiu, and Q. Li, “Nonvolatile tunable silicon-carbide-based midinfrared thermal emitter enabled by phase-changing materials,” Opt. Lett. 43(6), 1295–1298 (2018).
[Crossref] [PubMed]

K. Du, L. Cai, H. Luo, Y. Lu, J. Tian, Y. Qu, P. Ghosh, Y. Lyu, Z. Cheng, M. Qiu, and Q. Li, “Wavelength-tunable mid-infrared thermal emitters with a non-volatile phase changing material,” Nanoscale 10(9), 4415–4420 (2018).
[Crossref] [PubMed]

Y. Qu, Q. Li, K. Du, L. Cai, J. Lu, and M. Qiu, “Dynamic thermal emission control based on ultrathin plasmonic metamaterials including phase-changing material GST,” Laser Photonics Rev. 11(5), 1700091 (2017).
[Crossref]

Y. Yang, A. E. Miroshnichenko, S. V. Kostinski, M. Odit, P. Kapitanova, M. Qiu, and Y. S. Kivshar, “Multimode directionality in all-dielectric metasurfaces,” Phys. Rev. B 95(16), 165426 (2017).
[Crossref]

K. Du, Q. Li, Y. Lyu, J. Ding, Y. Lu, Z. Cheng, and M. Qiu, “Control over emissivity of zero-static-power thermal emitters based on phase-changing material GST,” Light Sci. Appl. 6(1), e16194 (2017).
[Crossref]

W. Wang, Y. Qu, K. Du, S. Bai, J. Tian, M. Pan, H. Ye, M. Qiu, and Q. Li, “Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high-ε″ metal,” Appl. Phys. Lett. 110(10), 101101 (2017).
[Crossref]

Y. Qu, Q. Li, H. Gong, K. Du, S. Bai, D. Zhao, H. Ye, and M. Qiu, “Spatially and spectrally resolved narrowband optical absorber based on 2D grating nanostructures on metallic films,” Adv. Opt. Mater. 4(3), 480–486 (2016).
[Crossref]

J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83(16), 165107 (2011).
[Crossref]

Qu, Y.

K. Du, L. Cai, H. Luo, Y. Lu, J. Tian, Y. Qu, P. Ghosh, Y. Lyu, Z. Cheng, M. Qiu, and Q. Li, “Wavelength-tunable mid-infrared thermal emitters with a non-volatile phase changing material,” Nanoscale 10(9), 4415–4420 (2018).
[Crossref] [PubMed]

L. Cai, K. Du, Y. Qu, H. Luo, M. Pan, M. Qiu, and Q. Li, “Nonvolatile tunable silicon-carbide-based midinfrared thermal emitter enabled by phase-changing materials,” Opt. Lett. 43(6), 1295–1298 (2018).
[Crossref] [PubMed]

Y. Qu, Q. Li, K. Du, L. Cai, J. Lu, and M. Qiu, “Dynamic thermal emission control based on ultrathin plasmonic metamaterials including phase-changing material GST,” Laser Photonics Rev. 11(5), 1700091 (2017).
[Crossref]

W. Wang, Y. Qu, K. Du, S. Bai, J. Tian, M. Pan, H. Ye, M. Qiu, and Q. Li, “Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high-ε″ metal,” Appl. Phys. Lett. 110(10), 101101 (2017).
[Crossref]

Y. Qu, Q. Li, H. Gong, K. Du, S. Bai, D. Zhao, H. Ye, and M. Qiu, “Spatially and spectrally resolved narrowband optical absorber based on 2D grating nanostructures on metallic films,” Adv. Opt. Mater. 4(3), 480–486 (2016).
[Crossref]

Querry, M. R.

Rasing, T.

C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and T. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99(4), 047601 (2007).
[Crossref] [PubMed]

Reingruber, A.

C. Wagenknecht, C. Li, A. Reingruber, X. Bao, A. Goebel, Y. Chen, Q. Zhang, K. Chen, and J. Pan, “Experimental demonstration of a heralded entanglement source,” Nat. Photonics 4(8), 549–552 (2010).
[Crossref]

Ren, Z. C.

Rill, M. S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Rodrigues, S.

Y. Cui, L. Kang, S. Lan, S. Rodrigues, and W. Cai, “Giant chiral optical response from a twisted-arc metamaterial,” Nano Lett. 14(2), 1021–1025 (2014).
[Crossref] [PubMed]

Rodríguez Fortuño, F. J.

Rogach, A. L.

J. Yeom, B. Yeom, H. Chan, K. W. Smith, S. Dominguez-Medina, J. H. Bahng, G. Zhao, W. S. Chang, S. J. Chang, A. Chuvilin, D. Melnikau, A. L. Rogach, P. Zhang, S. Link, P. Král, and N. A. Kotov, “Chiral templating of self-assembling nanostructures by circularly polarized light,” Nat. Mater. 14(1), 66–72 (2015).
[Crossref] [PubMed]

Saile, V.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Sakellari, I.

I. Sakellari, X. Yin, M. L. Nesterov, K. Terzaki, A. Xomalis, and M. Farsari, “3D chiral plasmonic metamaterials fabricated by direct laser writing: the twisted omega particle,” Adv. Opt. Mater. 5(16), 1700200 (2017).
[Crossref]

Schulz, S. A.

E. Karimi, S. A. Schulz, I. De Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light Sci. Appl. 3(5), e167 (2014).
[Crossref]

Shalaev, V. M.

A. Shaltout, J. Liu, V. M. Shalaev, and A. V. Kildishev, “Optically active metasurface with non-chiral plasmonic nanoantennas,” Nano Lett. 14(8), 4426–4431 (2014).
[Crossref] [PubMed]

Shaltout, A.

A. Shaltout, J. Liu, V. M. Shalaev, and A. V. Kildishev, “Optically active metasurface with non-chiral plasmonic nanoantennas,” Nano Lett. 14(8), 4426–4431 (2014).
[Crossref] [PubMed]

Shyjumon, I.

S. R. Bhattacharyya, D. Datta, I. Shyjumon, B. M. Smirnov, T. K. Chini, D. Ghose, and R. Hippler, “Growth and melting of silicon supported silver nanocluster films,” J. Phys. D Appl. Phys. 42(3), 035306 (2009).
[Crossref]

Smirnov, B. M.

S. R. Bhattacharyya, D. Datta, I. Shyjumon, B. M. Smirnov, T. K. Chini, D. Ghose, and R. Hippler, “Growth and melting of silicon supported silver nanocluster films,” J. Phys. D Appl. Phys. 42(3), 035306 (2009).
[Crossref]

Smith, K. W.

J. Yeom, B. Yeom, H. Chan, K. W. Smith, S. Dominguez-Medina, J. H. Bahng, G. Zhao, W. S. Chang, S. J. Chang, A. Chuvilin, D. Melnikau, A. L. Rogach, P. Zhang, S. Link, P. Král, and N. A. Kotov, “Chiral templating of self-assembling nanostructures by circularly polarized light,” Nat. Mater. 14(1), 66–72 (2015).
[Crossref] [PubMed]

Stanciu, C. D.

C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and T. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99(4), 047601 (2007).
[Crossref] [PubMed]

Sugavaneshwar, R. P.

T. Yokoyama, T. Dao, K. Chen, S. Ishii, R. P. Sugavaneshwar, M. Kitajima, and T. Nagao, “Spectrally selective mid-infrared thermal emission from molybdenum plasmonic metamaterial operated up to 1000 °C,” Adv. Opt. Mater. 4(12), 1987–1992 (2016).
[Crossref]

Tan, Q.

L. Huang, X. Chen, H. Muhlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K. Cheah, C. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4(1), 2808 (2013).
[Crossref]

Terzaki, K.

I. Sakellari, X. Yin, M. L. Nesterov, K. Terzaki, A. Xomalis, and M. Farsari, “3D chiral plasmonic metamaterials fabricated by direct laser writing: the twisted omega particle,” Adv. Opt. Mater. 5(16), 1700200 (2017).
[Crossref]

Thiel, M.

J. K. Gansel, M. Latzel, A. Frolich, J. Kaschke, M. Thiel, and M. Wegener, “Tapered gold-helix metamaterials as improved circular polarizers,” Appl. Phys. Lett. 100(10), 101109 (2012).
[Crossref]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Tian, J.

K. Du, L. Cai, H. Luo, Y. Lu, J. Tian, Y. Qu, P. Ghosh, Y. Lyu, Z. Cheng, M. Qiu, and Q. Li, “Wavelength-tunable mid-infrared thermal emitters with a non-volatile phase changing material,” Nanoscale 10(9), 4415–4420 (2018).
[Crossref] [PubMed]

W. Wang, Y. Qu, K. Du, S. Bai, J. Tian, M. Pan, H. Ye, M. Qiu, and Q. Li, “Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high-ε″ metal,” Appl. Phys. Lett. 110(10), 101101 (2017).
[Crossref]

Tian, Y.

X. Zhu, G. Liu, Y. Guo, and Y. Tian, “Study of PMMA thermal bonding,” Microsyst. Technol. 13(3–4), 403–407 (2007).

Tsukamoto, A.

C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and T. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99(4), 047601 (2007).
[Crossref] [PubMed]

Tu, C.

Upham, J.

E. Karimi, S. A. Schulz, I. De Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light Sci. Appl. 3(5), e167 (2014).
[Crossref]

Valentine, J.

W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6(1), 8379 (2015).
[Crossref] [PubMed]

von Freymann, G.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Wagenknecht, C.

C. Wagenknecht, C. Li, A. Reingruber, X. Bao, A. Goebel, Y. Chen, Q. Zhang, K. Chen, and J. Pan, “Experimental demonstration of a heralded entanglement source,” Nat. Photonics 4(8), 549–552 (2010).
[Crossref]

Wang, D.

Wang, H. T.

Wang, S. W.

R. Ji, S. W. Wang, X. Liu, X. Chen, and W. Lu, “Broadband circular polarizers constructed using helix-like chiral metamaterials,” Nanoscale 8(31), 14725–14729 (2016).
[Crossref] [PubMed]

Wang, W.

W. Wang, Y. Qu, K. Du, S. Bai, J. Tian, M. Pan, H. Ye, M. Qiu, and Q. Li, “Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high-ε″ metal,” Appl. Phys. Lett. 110(10), 101101 (2017).
[Crossref]

W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6(1), 8379 (2015).
[Crossref] [PubMed]

Wang, Z.

X. T. Kong, L. Khosravi Khorashad, Z. Wang, and A. O. Govorov, “Photothermal circular dichroism induced by plasmon resonances in chiral metamaterial absorbers and bolometers,” Nano Lett. 18(3), 2001–2008 (2018).
[PubMed]

Z. Wang, H. Jia, K. Yao, W. Cai, H. Chen, and Y. Liu, “Circular dichroism metamirrors with near-perfect extinction,” ACS Photonics 3(11), 2096–2101 (2016).
[Crossref]

Wegener, M.

J. K. Gansel, M. Latzel, A. Frolich, J. Kaschke, M. Thiel, and M. Wegener, “Tapered gold-helix metamaterials as improved circular polarizers,” Appl. Phys. Lett. 100(10), 101109 (2012).
[Crossref]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

M. Decker, M. W. Klein, M. Wegener, and S. Linden, “Circular dichroism of planar chiral magnetic metamaterials,” Opt. Lett. 32(7), 856–858 (2007).
[Crossref] [PubMed]

Wiederkehr, D.

J. F. Pierson, D. Wiederkehr, and A. Billard, “Reactive magnetron sputtering of copper, silver, and gold,” Thin Solid Films 478(1–2), 196–205 (2005).
[Crossref]

Wurtz, G. A.

Xomalis, A.

I. Sakellari, X. Yin, M. L. Nesterov, K. Terzaki, A. Xomalis, and M. Farsari, “3D chiral plasmonic metamaterials fabricated by direct laser writing: the twisted omega particle,” Adv. Opt. Mater. 5(16), 1700200 (2017).
[Crossref]

Yang, Y.

Y. Yang, A. E. Miroshnichenko, S. V. Kostinski, M. Odit, P. Kapitanova, M. Qiu, and Y. S. Kivshar, “Multimode directionality in all-dielectric metasurfaces,” Phys. Rev. B 95(16), 165426 (2017).
[Crossref]

Y. Yang, R. C. Costa, M. J. Fuchter, and A. J. Campbell, “Circularly polarized light detection by a chiral organic semiconductor transistor,” Nat. Photonics 7(8), 634–638 (2013).
[Crossref]

Yao, K.

Z. Wang, H. Jia, K. Yao, W. Cai, H. Chen, and Y. Liu, “Circular dichroism metamirrors with near-perfect extinction,” ACS Photonics 3(11), 2096–2101 (2016).
[Crossref]

Ye, H.

W. Wang, Y. Qu, K. Du, S. Bai, J. Tian, M. Pan, H. Ye, M. Qiu, and Q. Li, “Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high-ε″ metal,” Appl. Phys. Lett. 110(10), 101101 (2017).
[Crossref]

Y. Qu, Q. Li, H. Gong, K. Du, S. Bai, D. Zhao, H. Ye, and M. Qiu, “Spatially and spectrally resolved narrowband optical absorber based on 2D grating nanostructures on metallic films,” Adv. Opt. Mater. 4(3), 480–486 (2016).
[Crossref]

Yeom, B.

J. Yeom, B. Yeom, H. Chan, K. W. Smith, S. Dominguez-Medina, J. H. Bahng, G. Zhao, W. S. Chang, S. J. Chang, A. Chuvilin, D. Melnikau, A. L. Rogach, P. Zhang, S. Link, P. Král, and N. A. Kotov, “Chiral templating of self-assembling nanostructures by circularly polarized light,” Nat. Mater. 14(1), 66–72 (2015).
[Crossref] [PubMed]

Yeom, J.

J. Yeom, B. Yeom, H. Chan, K. W. Smith, S. Dominguez-Medina, J. H. Bahng, G. Zhao, W. S. Chang, S. J. Chang, A. Chuvilin, D. Melnikau, A. L. Rogach, P. Zhang, S. Link, P. Král, and N. A. Kotov, “Chiral templating of self-assembling nanostructures by circularly polarized light,” Nat. Mater. 14(1), 66–72 (2015).
[Crossref] [PubMed]

Yin, X.

I. Sakellari, X. Yin, M. L. Nesterov, K. Terzaki, A. Xomalis, and M. Farsari, “3D chiral plasmonic metamaterials fabricated by direct laser writing: the twisted omega particle,” Adv. Opt. Mater. 5(16), 1700200 (2017).
[Crossref]

Yokoyama, T.

T. Yokoyama, T. Dao, K. Chen, S. Ishii, R. P. Sugavaneshwar, M. Kitajima, and T. Nagao, “Spectrally selective mid-infrared thermal emission from molybdenum plasmonic metamaterial operated up to 1000 °C,” Adv. Opt. Mater. 4(12), 1987–1992 (2016).
[Crossref]

Zayats, A. V.

Zentgraf, T.

L. Huang, X. Chen, H. Muhlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K. Cheah, C. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4(1), 2808 (2013).
[Crossref]

Zhang, H.

L. Huang, X. Chen, H. Muhlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K. Cheah, C. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4(1), 2808 (2013).
[Crossref]

Zhang, P.

J. Yeom, B. Yeom, H. Chan, K. W. Smith, S. Dominguez-Medina, J. H. Bahng, G. Zhao, W. S. Chang, S. J. Chang, A. Chuvilin, D. Melnikau, A. L. Rogach, P. Zhang, S. Link, P. Král, and N. A. Kotov, “Chiral templating of self-assembling nanostructures by circularly polarized light,” Nat. Mater. 14(1), 66–72 (2015).
[Crossref] [PubMed]

Zhang, Q.

C. Wagenknecht, C. Li, A. Reingruber, X. Bao, A. Goebel, Y. Chen, Q. Zhang, K. Chen, and J. Pan, “Experimental demonstration of a heralded entanglement source,” Nat. Photonics 4(8), 549–552 (2010).
[Crossref]

Zhang, S.

L. Huang, X. Chen, H. Muhlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K. Cheah, C. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4(1), 2808 (2013).
[Crossref]

Q. Jiang, S. Zhang, and M. Zhao, “Size-dependent melting point of noble metals,” Mater. Chem. Phys. 82(1), 225–227 (2003).
[Crossref]

Zhao, D.

Y. Qu, Q. Li, H. Gong, K. Du, S. Bai, D. Zhao, H. Ye, and M. Qiu, “Spatially and spectrally resolved narrowband optical absorber based on 2D grating nanostructures on metallic films,” Adv. Opt. Mater. 4(3), 480–486 (2016).
[Crossref]

Zhao, G.

J. Yeom, B. Yeom, H. Chan, K. W. Smith, S. Dominguez-Medina, J. H. Bahng, G. Zhao, W. S. Chang, S. J. Chang, A. Chuvilin, D. Melnikau, A. L. Rogach, P. Zhang, S. Link, P. Král, and N. A. Kotov, “Chiral templating of self-assembling nanostructures by circularly polarized light,” Nat. Mater. 14(1), 66–72 (2015).
[Crossref] [PubMed]

Zhao, M.

Q. Jiang, S. Zhang, and M. Zhao, “Size-dependent melting point of noble metals,” Mater. Chem. Phys. 82(1), 225–227 (2003).
[Crossref]

Zhao, Y.

Y. Zhao and A. Alù, “Tailoring the dispersion of plasmonic nanorods to realize broadband optical meta-waveplates,” Nano Lett. 13(3), 1086–1091 (2013).
[Crossref] [PubMed]

Zhou, L.

J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83(16), 165107 (2011).
[Crossref]

Zhu, X.

X. Zhu, G. Liu, Y. Guo, and Y. Tian, “Study of PMMA thermal bonding,” Microsyst. Technol. 13(3–4), 403–407 (2007).

ACS Photonics (2)

Z. Wang, H. Jia, K. Yao, W. Cai, H. Chen, and Y. Liu, “Circular dichroism metamirrors with near-perfect extinction,” ACS Photonics 3(11), 2096–2101 (2016).
[Crossref]

M. Hentschel, V. E. Ferry, and A. P. Alivisatos, “Optical rotation reversal in the optical response of chiral plasmonic nanosystems: the role of plasmon hybridization,” ACS Photonics 2(9), 1253–1259 (2015).
[Crossref]

Adv. Opt. Mater. (3)

Y. Qu, Q. Li, H. Gong, K. Du, S. Bai, D. Zhao, H. Ye, and M. Qiu, “Spatially and spectrally resolved narrowband optical absorber based on 2D grating nanostructures on metallic films,” Adv. Opt. Mater. 4(3), 480–486 (2016).
[Crossref]

T. Yokoyama, T. Dao, K. Chen, S. Ishii, R. P. Sugavaneshwar, M. Kitajima, and T. Nagao, “Spectrally selective mid-infrared thermal emission from molybdenum plasmonic metamaterial operated up to 1000 °C,” Adv. Opt. Mater. 4(12), 1987–1992 (2016).
[Crossref]

I. Sakellari, X. Yin, M. L. Nesterov, K. Terzaki, A. Xomalis, and M. Farsari, “3D chiral plasmonic metamaterials fabricated by direct laser writing: the twisted omega particle,” Adv. Opt. Mater. 5(16), 1700200 (2017).
[Crossref]

APL Photonics (1)

S. Kruk, B. Hopkins, A. Kravchenko, A. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Invited article: broadband highly efficient dielectric metadevices for polarization control,” APL Photonics 1(3), 030801 (2016).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

J. K. Gansel, M. Latzel, A. Frolich, J. Kaschke, M. Thiel, and M. Wegener, “Tapered gold-helix metamaterials as improved circular polarizers,” Appl. Phys. Lett. 100(10), 101109 (2012).
[Crossref]

W. Wang, Y. Qu, K. Du, S. Bai, J. Tian, M. Pan, H. Ye, M. Qiu, and Q. Li, “Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high-ε″ metal,” Appl. Phys. Lett. 110(10), 101101 (2017).
[Crossref]

J. C. W. Lee and C. T. Chan, “Circularly polarized thermal radiation from layer-by-layer photonic crystal structures,” Appl. Phys. Lett. 90(5), 051912 (2007).
[Crossref]

Curr. Protein Pept. Sci. (1)

S. M. Kelly and N. C. Price, “The use of circular dichroism in the investigation of protein structure and function,” Curr. Protein Pept. Sci. 1(4), 349–384 (2000).
[Crossref] [PubMed]

J. Phys. D Appl. Phys. (1)

S. R. Bhattacharyya, D. Datta, I. Shyjumon, B. M. Smirnov, T. K. Chini, D. Ghose, and R. Hippler, “Growth and melting of silicon supported silver nanocluster films,” J. Phys. D Appl. Phys. 42(3), 035306 (2009).
[Crossref]

Laser Photonics Rev. (1)

Y. Qu, Q. Li, K. Du, L. Cai, J. Lu, and M. Qiu, “Dynamic thermal emission control based on ultrathin plasmonic metamaterials including phase-changing material GST,” Laser Photonics Rev. 11(5), 1700091 (2017).
[Crossref]

Light Sci. Appl. (2)

K. Du, Q. Li, Y. Lyu, J. Ding, Y. Lu, Z. Cheng, and M. Qiu, “Control over emissivity of zero-static-power thermal emitters based on phase-changing material GST,” Light Sci. Appl. 6(1), e16194 (2017).
[Crossref]

E. Karimi, S. A. Schulz, I. De Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light Sci. Appl. 3(5), e167 (2014).
[Crossref]

Mater. Chem. Phys. (1)

Q. Jiang, S. Zhang, and M. Zhao, “Size-dependent melting point of noble metals,” Mater. Chem. Phys. 82(1), 225–227 (2003).
[Crossref]

Microsyst. Technol. (1)

X. Zhu, G. Liu, Y. Guo, and Y. Tian, “Study of PMMA thermal bonding,” Microsyst. Technol. 13(3–4), 403–407 (2007).

Nano Lett. (4)

X. T. Kong, L. Khosravi Khorashad, Z. Wang, and A. O. Govorov, “Photothermal circular dichroism induced by plasmon resonances in chiral metamaterial absorbers and bolometers,” Nano Lett. 18(3), 2001–2008 (2018).
[PubMed]

Y. Zhao and A. Alù, “Tailoring the dispersion of plasmonic nanorods to realize broadband optical meta-waveplates,” Nano Lett. 13(3), 1086–1091 (2013).
[Crossref] [PubMed]

A. Shaltout, J. Liu, V. M. Shalaev, and A. V. Kildishev, “Optically active metasurface with non-chiral plasmonic nanoantennas,” Nano Lett. 14(8), 4426–4431 (2014).
[Crossref] [PubMed]

Y. Cui, L. Kang, S. Lan, S. Rodrigues, and W. Cai, “Giant chiral optical response from a twisted-arc metamaterial,” Nano Lett. 14(2), 1021–1025 (2014).
[Crossref] [PubMed]

Nanoscale (2)

R. Ji, S. W. Wang, X. Liu, X. Chen, and W. Lu, “Broadband circular polarizers constructed using helix-like chiral metamaterials,” Nanoscale 8(31), 14725–14729 (2016).
[Crossref] [PubMed]

K. Du, L. Cai, H. Luo, Y. Lu, J. Tian, Y. Qu, P. Ghosh, Y. Lyu, Z. Cheng, M. Qiu, and Q. Li, “Wavelength-tunable mid-infrared thermal emitters with a non-volatile phase changing material,” Nanoscale 10(9), 4415–4420 (2018).
[Crossref] [PubMed]

Nanotechnology (1)

A. E. Grigorescu and C. W. Hagen, “Resists for sub-20-nm electron beam lithography with a focus on HSQ: state of the art,” Nanotechnology 20(29), 292001 (2009).
[Crossref] [PubMed]

Nat. Commun. (2)

W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6(1), 8379 (2015).
[Crossref] [PubMed]

L. Huang, X. Chen, H. Muhlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K. Cheah, C. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4(1), 2808 (2013).
[Crossref]

Nat. Mater. (1)

J. Yeom, B. Yeom, H. Chan, K. W. Smith, S. Dominguez-Medina, J. H. Bahng, G. Zhao, W. S. Chang, S. J. Chang, A. Chuvilin, D. Melnikau, A. L. Rogach, P. Zhang, S. Link, P. Král, and N. A. Kotov, “Chiral templating of self-assembling nanostructures by circularly polarized light,” Nat. Mater. 14(1), 66–72 (2015).
[Crossref] [PubMed]

Nat. Photonics (2)

C. Wagenknecht, C. Li, A. Reingruber, X. Bao, A. Goebel, Y. Chen, Q. Zhang, K. Chen, and J. Pan, “Experimental demonstration of a heralded entanglement source,” Nat. Photonics 4(8), 549–552 (2010).
[Crossref]

Y. Yang, R. C. Costa, M. J. Fuchter, and A. J. Campbell, “Circularly polarized light detection by a chiral organic semiconductor transistor,” Nat. Photonics 7(8), 634–638 (2013).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Phys. Rev. B (2)

Y. Yang, A. E. Miroshnichenko, S. V. Kostinski, M. Odit, P. Kapitanova, M. Qiu, and Y. S. Kivshar, “Multimode directionality in all-dielectric metasurfaces,” Phys. Rev. B 95(16), 165426 (2017).
[Crossref]

J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83(16), 165107 (2011).
[Crossref]

Phys. Rev. Lett. (1)

C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and T. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99(4), 047601 (2007).
[Crossref] [PubMed]

Science (1)

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Thin Solid Films (1)

J. F. Pierson, D. Wiederkehr, and A. Billard, “Reactive magnetron sputtering of copper, silver, and gold,” Thin Solid Films 478(1–2), 196–205 (2005).
[Crossref]

Other (1)

Y. Qu, Q. Li, L. Cai, M. Pan, P. Ghosh, K. Du, and M. Qiu, “Thermal camouflage based on the phase-changing material GST, ” Light Sci. Appl. 7 (to be published)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematic of the proposed circular-polarization-sensitive absorber where a Mo zigzag array and a Mo film is separated by a same zigzag array of Al2O3. The parameters are: t = 170 nm, hd = 550 nm, v1 = 570 nm, v2 = 2450 nm, v3 = 930 nm, px = 2300 nm, py = v2 + v3 = 3380 nm. The smallest width of the structure is ws = 344 nm. (b) Simulated CPL absorption of the proposed circular-polarization-sensitive absorber. Absorptivity of normally incident LCP is indicated by the blue curve and absorptivity of normally incident RCP is indicated by the red curve.
Fig. 2
Fig. 2 Simulated normalized electromagnetic field profiles at the three peak absorption wavelengths. (a) Three-dimensional view of simulated circular-polarization-sensitive absorber structure in a periodic unit with cross-sections along the top air (z = 100 nm) and sandwiched Al2O3 layer (z = −100 nm). z = 0 is set at the center of the Mo pattern. (b) Electric field patterns at the indicated xy crossection at three wavelengths: 4.6 μm (the first column), 2.6 μm (the second column) and 3.4 μm (the third and fourth columns). (c) Three-dimensional view of simulated circular-polarization-sensitive absorber structure in a periodic unit with yz cross-section at x = 0. (d) Electric field patterns, magnetic fields and electric displacement vectors distributions at the indicated yz-plane at the resonant wavelengths. The intensities in each row are normalized with the same reference.
Fig. 3
Fig. 3 Dependence of the absorptivity by the proposed chiral metamaterial on the incident angle with (a) and (c): LCP incidence; (b) and (d): RCP incidence. The 3D schematics of the oblique incidences to the simulated structure in a periodic unit are shown on the left.
Fig. 4
Fig. 4 CPL absorption for the proposed structure by varying the geometric parameters: (a) radius of corners: 0 (sharp) and 200 nm (round); (b) periodicity along the x axis; (c) thicknesses of Mo zigzag pattern; (d) thickness of the insulator Al2O3 layer; (e) v1; (f) v2 and (g) v3 which determine the periodicity along y axis. Positive/negative value means that the corresponding parameter is larger/smaller than that of the optimized design, whose features are illustrated by the black curves. Responses to LCP are illustrated by solid lines while that to RCP are illustrated by dash lines.
Fig. 5
Fig. 5 (a) Calculated thermal radiation intensities of the proposed circular-polarization-sensitive absorber at different temperatures: 100 °C, 360 °C, 582 °C and 844 °C. (b) Comparison of total radiated energy in the wavelength range of 2.3-5.3 μm between LCP and RCP. (c) Comparison of average emissivity in the wavelength range of 2.3-5.3 μm between LCP and RCP.
Fig. 6
Fig. 6 (a) Sketch of the application of the proposed structure as a reflective linear-to-circular polarizer. (b) Schematic drawing of the circular-polarization-sensitive absorber from the top view. The linearly polarized light is normally incident and the polarization angle is indicated as Φ. (c) Effect of polarization angle on the ellipticities (χ) at 2.6 μm and 4.6μm.

Metrics