Abstract

A fully quantized analysis is presented of induced magneto-electric rectification in individual diatomic molecules in the steady-state regime. Good agreement is obtained between this quantum theory and a classical model that includes the same key kinematic elements but predicts temporal dynamics as well. At the molecular level, an enhanced magneto-electric optical interaction driven by dual optical fields E and H* is shown to give rise to a static electric dipole (ED) moment oriented along the propagation direction of linearly-polarized light in dielectric materials. This longitudinal Hall effect or “charge separation” interaction is quadratic with respect to the incident field strength and exhibits an induced moment that is limited by the ED transition moment of the molecular resonance. Overall, the two-photon dynamics can be described as first establishing an electric polarization and imparting orbital angular momentum on which the magnetic field exerts torque in the excited state of the molecule. Magnetic torque mediates an exchange of orbital and rotational angular momenta that de-excites the molecule and simultaneously enhances magneto-electric rectification. Material properties that affect magneto-electric response at the molecular level are identified.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Optical magnetization, Part II: Theory of induced optical magnetism

Alexander A. Fisher, Elizabeth F. C. Dreyer, Ayan Chakrabarty, and Stephen C. Rand
Opt. Express 24(23) 26064-26079 (2016)

Dynamic symmetry-breaking in a simple quantum model of magneto-electric rectification, optical magnetization, and harmonic generation

A. A. Fisher, E. F. Cloos, W. M. Fisher, and S. C. Rand
Opt. Express 22(3) 2910-2924 (2014)

Optical magnetization, Part I: Experiments on radiant optical magnetization in solids

Alexander A. Fisher, Elizabeth F. C. Dreyer, Ayan Chakrabarty, and Stephen C. Rand
Opt. Express 24(23) 26055-26063 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108(9), 097402 (2012).
    [Crossref] [PubMed]
  2. W. F. Koehl, B. B. Buckley, F. J. Heremans, G. Calusine, and D. D. Awschalom, “Room temperature coherent control of defect spin qubits in silicon carbide,” Nature 479(7371), 84–87 (2011).
    [Crossref] [PubMed]
  3. G. D. Fuchs, G. Burkard, P. V. Klimov, and D. D. Awschalom, “A quantum memory intrinsic to single nitrogen–vacancy centres in diamond,” Nat. Phys. 7(10), 789–793 (2011).
    [Crossref]
  4. C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and T. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99(4), 047601 (2007).
    [Crossref] [PubMed]
  5. W. M. Fisher and S. C. Rand, “Optically-induced charge separation and terahertz emission in unbiased dielectrics,” J. Appl. Phys. 109(6), 064903 (2011).
    [Crossref]
  6. S. L. Oliveira and S. C. Rand, “Intense nonlinear magnetic dipole radiation at optical frequencies: molecular scattering in a dielectric liquid,” Phys. Rev. Lett. 98(9), 093901 (2007).
    [Crossref] [PubMed]
  7. S. C. Rand, W. M. Fisher, and S. L. Oliveira, “Optically-induced magnetization in homogeneous, undoped dielectric media,” J. Opt. Soc.Am. B 25(7), 1106 (2008).
    [Crossref]
  8. W. M. Fisher and S. C. Rand, “Dependence of optical magnetic response on molecular electronic structure,” J. Lumin. 129(12), 1407–1409 (2009).
    [Crossref]
  9. K. Y. Bliokh, Y. S. Kivshar, and F. Nori, “Magnetoelectric effects in local light-matter interactions,” Phys. Rev. Lett. 113(3), 033601 (2014).
    [Crossref] [PubMed]
  10. A. Einstein and W. J. de Haas, “Experimenteller nachweis der ampereschen molekularströme,” Deut. Phys. Ges., Verhandlungen 17, 152–170 (1915).
  11. S. Boettcher and C. M. Bender, “Real spectra in non-hermitian Hamiltonians having PT symmetry,” Phys. Rev. Lett. 80(24), 5243–5246 (1998).
    [Crossref]
  12. A. A. Fisher, E. F. C. Dreyer, A. Chakrabarty, and S. C. Rand, “Optical magnetization, Part I: Experiments on radiant optical magnetization in solids,” Opt. Express 24(23), 26064 (2016).
    [Crossref] [PubMed]
  13. A. A. Fisher, E. F. C. Dreyer, A. Chakrabarty, and S. C. Rand, “Optical magnetization, Part II: Theory of induced optical magnetism,” Opt. Express 24(23), 26055 (2016).
    [Crossref] [PubMed]
  14. N. A. Spaldin and M. Fiebig, “Materials science. The renaissance of magnetoelectric multiferroics,” Science 309(5733), 391–392 (2005).
    [Crossref] [PubMed]
  15. A. A. Fisher, E. F. Cloos, W. M. Fisher, and S. C. Rand, “Dynamic symmetry-breaking in a simple quantum model of magneto-electric rectification, optical magnetization, and harmonic generation,” Opt. Express 22(3), 2910–2924 (2014).
    [Crossref] [PubMed]
  16. V. O. Deutschbein, “Experimentelle untersuchungen uber die vorgange bei der lichtemission,” Ann. Phys. 428(2), 183–188 (1939).
    [Crossref]
  17. M. Kasperczyk, S. Person, D. Ananias, L. D. Carlos, and L. Novotny, “Excitation of magnetic dipole transitions at optical frequencies,” Phys. Rev. Lett. 114(16), 163903 (2015).
    [Crossref] [PubMed]
  18. N. R. Brewer, Z. N. Buckholtz, Z. J. Simmons, E. A. Mueller, and D. D. Yavuz, “Coherent magnetic response at optical frequencies using atomic transitions,” Phys. Rev. X 7(1), 011005 (2017).
    [Crossref]
  19. See for example E. Hecht, Optics, Third edition (Addison Wesley Longman, 1998), pp. 69.
  20. See for example G. R. Fowles, Analytic Mechanics (Holt Rinehart and Winston, 1962), pp. 206.
  21. A. Fisher, “Experiments and theory of induced optical magnetization,” Ph. D. dissertation, University of Michigan, 2016, p. 27 and p. 123.
  22. W. M. Fisher and S. C. Rand, “Light-induced dynamics in the Lorentz oscillator model with magnetic forces,” Phys. Rev. A 82(1), 013802 (2010).
    [Crossref]
  23. G. Herzberg, Spectra of Diatomic Molecules, Second edition (Van Nostrand Reinhold, 1950), p. 129.
  24. C. Cohen-Tannoudji and S. Reynaud, Dressed Atom Approach to resonance fluorescence, in Multiphoton Processes, eds. J. Eberly and P. Lambropoulos (J. Wiley & Sons, 1977), pp. 103–118.
  25. A. Lou, E. F. C. Dreyer, T. Marks, and S. C. Rand, “Design principles for magneto-electric materials: All-electric susceptibilities relevant to optimal molecular chromophores,” J. Phys. Chem. C 121(30), 16491–16500 (2017).
    [Crossref]

2017 (2)

N. R. Brewer, Z. N. Buckholtz, Z. J. Simmons, E. A. Mueller, and D. D. Yavuz, “Coherent magnetic response at optical frequencies using atomic transitions,” Phys. Rev. X 7(1), 011005 (2017).
[Crossref]

A. Lou, E. F. C. Dreyer, T. Marks, and S. C. Rand, “Design principles for magneto-electric materials: All-electric susceptibilities relevant to optimal molecular chromophores,” J. Phys. Chem. C 121(30), 16491–16500 (2017).
[Crossref]

2016 (2)

2015 (1)

M. Kasperczyk, S. Person, D. Ananias, L. D. Carlos, and L. Novotny, “Excitation of magnetic dipole transitions at optical frequencies,” Phys. Rev. Lett. 114(16), 163903 (2015).
[Crossref] [PubMed]

2014 (2)

2012 (1)

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108(9), 097402 (2012).
[Crossref] [PubMed]

2011 (3)

W. F. Koehl, B. B. Buckley, F. J. Heremans, G. Calusine, and D. D. Awschalom, “Room temperature coherent control of defect spin qubits in silicon carbide,” Nature 479(7371), 84–87 (2011).
[Crossref] [PubMed]

G. D. Fuchs, G. Burkard, P. V. Klimov, and D. D. Awschalom, “A quantum memory intrinsic to single nitrogen–vacancy centres in diamond,” Nat. Phys. 7(10), 789–793 (2011).
[Crossref]

W. M. Fisher and S. C. Rand, “Optically-induced charge separation and terahertz emission in unbiased dielectrics,” J. Appl. Phys. 109(6), 064903 (2011).
[Crossref]

2010 (1)

W. M. Fisher and S. C. Rand, “Light-induced dynamics in the Lorentz oscillator model with magnetic forces,” Phys. Rev. A 82(1), 013802 (2010).
[Crossref]

2009 (1)

W. M. Fisher and S. C. Rand, “Dependence of optical magnetic response on molecular electronic structure,” J. Lumin. 129(12), 1407–1409 (2009).
[Crossref]

2008 (1)

S. C. Rand, W. M. Fisher, and S. L. Oliveira, “Optically-induced magnetization in homogeneous, undoped dielectric media,” J. Opt. Soc.Am. B 25(7), 1106 (2008).
[Crossref]

2007 (2)

S. L. Oliveira and S. C. Rand, “Intense nonlinear magnetic dipole radiation at optical frequencies: molecular scattering in a dielectric liquid,” Phys. Rev. Lett. 98(9), 093901 (2007).
[Crossref] [PubMed]

C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and T. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99(4), 047601 (2007).
[Crossref] [PubMed]

2005 (1)

N. A. Spaldin and M. Fiebig, “Materials science. The renaissance of magnetoelectric multiferroics,” Science 309(5733), 391–392 (2005).
[Crossref] [PubMed]

1998 (1)

S. Boettcher and C. M. Bender, “Real spectra in non-hermitian Hamiltonians having PT symmetry,” Phys. Rev. Lett. 80(24), 5243–5246 (1998).
[Crossref]

1939 (1)

V. O. Deutschbein, “Experimentelle untersuchungen uber die vorgange bei der lichtemission,” Ann. Phys. 428(2), 183–188 (1939).
[Crossref]

1915 (1)

A. Einstein and W. J. de Haas, “Experimenteller nachweis der ampereschen molekularströme,” Deut. Phys. Ges., Verhandlungen 17, 152–170 (1915).

Ananias, D.

M. Kasperczyk, S. Person, D. Ananias, L. D. Carlos, and L. Novotny, “Excitation of magnetic dipole transitions at optical frequencies,” Phys. Rev. Lett. 114(16), 163903 (2015).
[Crossref] [PubMed]

Awschalom, D. D.

W. F. Koehl, B. B. Buckley, F. J. Heremans, G. Calusine, and D. D. Awschalom, “Room temperature coherent control of defect spin qubits in silicon carbide,” Nature 479(7371), 84–87 (2011).
[Crossref] [PubMed]

G. D. Fuchs, G. Burkard, P. V. Klimov, and D. D. Awschalom, “A quantum memory intrinsic to single nitrogen–vacancy centres in diamond,” Nat. Phys. 7(10), 789–793 (2011).
[Crossref]

Basilio, L. I.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108(9), 097402 (2012).
[Crossref] [PubMed]

Bender, C. M.

S. Boettcher and C. M. Bender, “Real spectra in non-hermitian Hamiltonians having PT symmetry,” Phys. Rev. Lett. 80(24), 5243–5246 (1998).
[Crossref]

Bliokh, K. Y.

K. Y. Bliokh, Y. S. Kivshar, and F. Nori, “Magnetoelectric effects in local light-matter interactions,” Phys. Rev. Lett. 113(3), 033601 (2014).
[Crossref] [PubMed]

Boettcher, S.

S. Boettcher and C. M. Bender, “Real spectra in non-hermitian Hamiltonians having PT symmetry,” Phys. Rev. Lett. 80(24), 5243–5246 (1998).
[Crossref]

Brener, I.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108(9), 097402 (2012).
[Crossref] [PubMed]

Brewer, N. R.

N. R. Brewer, Z. N. Buckholtz, Z. J. Simmons, E. A. Mueller, and D. D. Yavuz, “Coherent magnetic response at optical frequencies using atomic transitions,” Phys. Rev. X 7(1), 011005 (2017).
[Crossref]

Buckholtz, Z. N.

N. R. Brewer, Z. N. Buckholtz, Z. J. Simmons, E. A. Mueller, and D. D. Yavuz, “Coherent magnetic response at optical frequencies using atomic transitions,” Phys. Rev. X 7(1), 011005 (2017).
[Crossref]

Buckley, B. B.

W. F. Koehl, B. B. Buckley, F. J. Heremans, G. Calusine, and D. D. Awschalom, “Room temperature coherent control of defect spin qubits in silicon carbide,” Nature 479(7371), 84–87 (2011).
[Crossref] [PubMed]

Burkard, G.

G. D. Fuchs, G. Burkard, P. V. Klimov, and D. D. Awschalom, “A quantum memory intrinsic to single nitrogen–vacancy centres in diamond,” Nat. Phys. 7(10), 789–793 (2011).
[Crossref]

Calusine, G.

W. F. Koehl, B. B. Buckley, F. J. Heremans, G. Calusine, and D. D. Awschalom, “Room temperature coherent control of defect spin qubits in silicon carbide,” Nature 479(7371), 84–87 (2011).
[Crossref] [PubMed]

Carlos, L. D.

M. Kasperczyk, S. Person, D. Ananias, L. D. Carlos, and L. Novotny, “Excitation of magnetic dipole transitions at optical frequencies,” Phys. Rev. Lett. 114(16), 163903 (2015).
[Crossref] [PubMed]

Chakrabarty, A.

Clem, P. G.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108(9), 097402 (2012).
[Crossref] [PubMed]

Cloos, E. F.

de Haas, W. J.

A. Einstein and W. J. de Haas, “Experimenteller nachweis der ampereschen molekularströme,” Deut. Phys. Ges., Verhandlungen 17, 152–170 (1915).

Deutschbein, V. O.

V. O. Deutschbein, “Experimentelle untersuchungen uber die vorgange bei der lichtemission,” Ann. Phys. 428(2), 183–188 (1939).
[Crossref]

Dreyer, E. F. C.

Einstein, A.

A. Einstein and W. J. de Haas, “Experimenteller nachweis der ampereschen molekularströme,” Deut. Phys. Ges., Verhandlungen 17, 152–170 (1915).

Fiebig, M.

N. A. Spaldin and M. Fiebig, “Materials science. The renaissance of magnetoelectric multiferroics,” Science 309(5733), 391–392 (2005).
[Crossref] [PubMed]

Fisher, A. A.

Fisher, W. M.

A. A. Fisher, E. F. Cloos, W. M. Fisher, and S. C. Rand, “Dynamic symmetry-breaking in a simple quantum model of magneto-electric rectification, optical magnetization, and harmonic generation,” Opt. Express 22(3), 2910–2924 (2014).
[Crossref] [PubMed]

W. M. Fisher and S. C. Rand, “Optically-induced charge separation and terahertz emission in unbiased dielectrics,” J. Appl. Phys. 109(6), 064903 (2011).
[Crossref]

W. M. Fisher and S. C. Rand, “Light-induced dynamics in the Lorentz oscillator model with magnetic forces,” Phys. Rev. A 82(1), 013802 (2010).
[Crossref]

W. M. Fisher and S. C. Rand, “Dependence of optical magnetic response on molecular electronic structure,” J. Lumin. 129(12), 1407–1409 (2009).
[Crossref]

S. C. Rand, W. M. Fisher, and S. L. Oliveira, “Optically-induced magnetization in homogeneous, undoped dielectric media,” J. Opt. Soc.Am. B 25(7), 1106 (2008).
[Crossref]

Fuchs, G. D.

G. D. Fuchs, G. Burkard, P. V. Klimov, and D. D. Awschalom, “A quantum memory intrinsic to single nitrogen–vacancy centres in diamond,” Nat. Phys. 7(10), 789–793 (2011).
[Crossref]

Ginn, J. C.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108(9), 097402 (2012).
[Crossref] [PubMed]

Hansteen, F.

C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and T. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99(4), 047601 (2007).
[Crossref] [PubMed]

Heremans, F. J.

W. F. Koehl, B. B. Buckley, F. J. Heremans, G. Calusine, and D. D. Awschalom, “Room temperature coherent control of defect spin qubits in silicon carbide,” Nature 479(7371), 84–87 (2011).
[Crossref] [PubMed]

Hines, P. F.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108(9), 097402 (2012).
[Crossref] [PubMed]

Ihlefeld, J. F.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108(9), 097402 (2012).
[Crossref] [PubMed]

Itoh, A.

C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and T. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99(4), 047601 (2007).
[Crossref] [PubMed]

Kasperczyk, M.

M. Kasperczyk, S. Person, D. Ananias, L. D. Carlos, and L. Novotny, “Excitation of magnetic dipole transitions at optical frequencies,” Phys. Rev. Lett. 114(16), 163903 (2015).
[Crossref] [PubMed]

Kimel, A. V.

C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and T. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99(4), 047601 (2007).
[Crossref] [PubMed]

Kirilyuk, A.

C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and T. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99(4), 047601 (2007).
[Crossref] [PubMed]

Kivshar, Y. S.

K. Y. Bliokh, Y. S. Kivshar, and F. Nori, “Magnetoelectric effects in local light-matter interactions,” Phys. Rev. Lett. 113(3), 033601 (2014).
[Crossref] [PubMed]

Klimov, P. V.

G. D. Fuchs, G. Burkard, P. V. Klimov, and D. D. Awschalom, “A quantum memory intrinsic to single nitrogen–vacancy centres in diamond,” Nat. Phys. 7(10), 789–793 (2011).
[Crossref]

Koehl, W. F.

W. F. Koehl, B. B. Buckley, F. J. Heremans, G. Calusine, and D. D. Awschalom, “Room temperature coherent control of defect spin qubits in silicon carbide,” Nature 479(7371), 84–87 (2011).
[Crossref] [PubMed]

Lou, A.

A. Lou, E. F. C. Dreyer, T. Marks, and S. C. Rand, “Design principles for magneto-electric materials: All-electric susceptibilities relevant to optimal molecular chromophores,” J. Phys. Chem. C 121(30), 16491–16500 (2017).
[Crossref]

Marks, T.

A. Lou, E. F. C. Dreyer, T. Marks, and S. C. Rand, “Design principles for magneto-electric materials: All-electric susceptibilities relevant to optimal molecular chromophores,” J. Phys. Chem. C 121(30), 16491–16500 (2017).
[Crossref]

Mueller, E. A.

N. R. Brewer, Z. N. Buckholtz, Z. J. Simmons, E. A. Mueller, and D. D. Yavuz, “Coherent magnetic response at optical frequencies using atomic transitions,” Phys. Rev. X 7(1), 011005 (2017).
[Crossref]

Nori, F.

K. Y. Bliokh, Y. S. Kivshar, and F. Nori, “Magnetoelectric effects in local light-matter interactions,” Phys. Rev. Lett. 113(3), 033601 (2014).
[Crossref] [PubMed]

Novotny, L.

M. Kasperczyk, S. Person, D. Ananias, L. D. Carlos, and L. Novotny, “Excitation of magnetic dipole transitions at optical frequencies,” Phys. Rev. Lett. 114(16), 163903 (2015).
[Crossref] [PubMed]

Oliveira, S. L.

S. C. Rand, W. M. Fisher, and S. L. Oliveira, “Optically-induced magnetization in homogeneous, undoped dielectric media,” J. Opt. Soc.Am. B 25(7), 1106 (2008).
[Crossref]

S. L. Oliveira and S. C. Rand, “Intense nonlinear magnetic dipole radiation at optical frequencies: molecular scattering in a dielectric liquid,” Phys. Rev. Lett. 98(9), 093901 (2007).
[Crossref] [PubMed]

Person, S.

M. Kasperczyk, S. Person, D. Ananias, L. D. Carlos, and L. Novotny, “Excitation of magnetic dipole transitions at optical frequencies,” Phys. Rev. Lett. 114(16), 163903 (2015).
[Crossref] [PubMed]

Peters, D. W.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108(9), 097402 (2012).
[Crossref] [PubMed]

Rand, S. C.

A. Lou, E. F. C. Dreyer, T. Marks, and S. C. Rand, “Design principles for magneto-electric materials: All-electric susceptibilities relevant to optimal molecular chromophores,” J. Phys. Chem. C 121(30), 16491–16500 (2017).
[Crossref]

A. A. Fisher, E. F. C. Dreyer, A. Chakrabarty, and S. C. Rand, “Optical magnetization, Part II: Theory of induced optical magnetism,” Opt. Express 24(23), 26055 (2016).
[Crossref] [PubMed]

A. A. Fisher, E. F. C. Dreyer, A. Chakrabarty, and S. C. Rand, “Optical magnetization, Part I: Experiments on radiant optical magnetization in solids,” Opt. Express 24(23), 26064 (2016).
[Crossref] [PubMed]

A. A. Fisher, E. F. Cloos, W. M. Fisher, and S. C. Rand, “Dynamic symmetry-breaking in a simple quantum model of magneto-electric rectification, optical magnetization, and harmonic generation,” Opt. Express 22(3), 2910–2924 (2014).
[Crossref] [PubMed]

W. M. Fisher and S. C. Rand, “Optically-induced charge separation and terahertz emission in unbiased dielectrics,” J. Appl. Phys. 109(6), 064903 (2011).
[Crossref]

W. M. Fisher and S. C. Rand, “Light-induced dynamics in the Lorentz oscillator model with magnetic forces,” Phys. Rev. A 82(1), 013802 (2010).
[Crossref]

W. M. Fisher and S. C. Rand, “Dependence of optical magnetic response on molecular electronic structure,” J. Lumin. 129(12), 1407–1409 (2009).
[Crossref]

S. C. Rand, W. M. Fisher, and S. L. Oliveira, “Optically-induced magnetization in homogeneous, undoped dielectric media,” J. Opt. Soc.Am. B 25(7), 1106 (2008).
[Crossref]

S. L. Oliveira and S. C. Rand, “Intense nonlinear magnetic dipole radiation at optical frequencies: molecular scattering in a dielectric liquid,” Phys. Rev. Lett. 98(9), 093901 (2007).
[Crossref] [PubMed]

Rasing, T.

C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and T. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99(4), 047601 (2007).
[Crossref] [PubMed]

Simmons, Z. J.

N. R. Brewer, Z. N. Buckholtz, Z. J. Simmons, E. A. Mueller, and D. D. Yavuz, “Coherent magnetic response at optical frequencies using atomic transitions,” Phys. Rev. X 7(1), 011005 (2017).
[Crossref]

Sinclair, M. B.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108(9), 097402 (2012).
[Crossref] [PubMed]

Spaldin, N. A.

N. A. Spaldin and M. Fiebig, “Materials science. The renaissance of magnetoelectric multiferroics,” Science 309(5733), 391–392 (2005).
[Crossref] [PubMed]

Stanciu, C. D.

C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and T. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99(4), 047601 (2007).
[Crossref] [PubMed]

Stevens, J. O.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108(9), 097402 (2012).
[Crossref] [PubMed]

Tsukamoto, A.

C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and T. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99(4), 047601 (2007).
[Crossref] [PubMed]

Warne, L. K.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108(9), 097402 (2012).
[Crossref] [PubMed]

Wendt, J. R.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108(9), 097402 (2012).
[Crossref] [PubMed]

Yavuz, D. D.

N. R. Brewer, Z. N. Buckholtz, Z. J. Simmons, E. A. Mueller, and D. D. Yavuz, “Coherent magnetic response at optical frequencies using atomic transitions,” Phys. Rev. X 7(1), 011005 (2017).
[Crossref]

Ann. Phys. (1)

V. O. Deutschbein, “Experimentelle untersuchungen uber die vorgange bei der lichtemission,” Ann. Phys. 428(2), 183–188 (1939).
[Crossref]

Deut. Phys. Ges., Verhandlungen (1)

A. Einstein and W. J. de Haas, “Experimenteller nachweis der ampereschen molekularströme,” Deut. Phys. Ges., Verhandlungen 17, 152–170 (1915).

J. Appl. Phys. (1)

W. M. Fisher and S. C. Rand, “Optically-induced charge separation and terahertz emission in unbiased dielectrics,” J. Appl. Phys. 109(6), 064903 (2011).
[Crossref]

J. Lumin. (1)

W. M. Fisher and S. C. Rand, “Dependence of optical magnetic response on molecular electronic structure,” J. Lumin. 129(12), 1407–1409 (2009).
[Crossref]

J. Opt. Soc.Am. B (1)

S. C. Rand, W. M. Fisher, and S. L. Oliveira, “Optically-induced magnetization in homogeneous, undoped dielectric media,” J. Opt. Soc.Am. B 25(7), 1106 (2008).
[Crossref]

J. Phys. Chem. C (1)

A. Lou, E. F. C. Dreyer, T. Marks, and S. C. Rand, “Design principles for magneto-electric materials: All-electric susceptibilities relevant to optimal molecular chromophores,” J. Phys. Chem. C 121(30), 16491–16500 (2017).
[Crossref]

Nat. Phys. (1)

G. D. Fuchs, G. Burkard, P. V. Klimov, and D. D. Awschalom, “A quantum memory intrinsic to single nitrogen–vacancy centres in diamond,” Nat. Phys. 7(10), 789–793 (2011).
[Crossref]

Nature (1)

W. F. Koehl, B. B. Buckley, F. J. Heremans, G. Calusine, and D. D. Awschalom, “Room temperature coherent control of defect spin qubits in silicon carbide,” Nature 479(7371), 84–87 (2011).
[Crossref] [PubMed]

Opt. Express (3)

Phys. Rev. A (1)

W. M. Fisher and S. C. Rand, “Light-induced dynamics in the Lorentz oscillator model with magnetic forces,” Phys. Rev. A 82(1), 013802 (2010).
[Crossref]

Phys. Rev. Lett. (6)

S. Boettcher and C. M. Bender, “Real spectra in non-hermitian Hamiltonians having PT symmetry,” Phys. Rev. Lett. 80(24), 5243–5246 (1998).
[Crossref]

M. Kasperczyk, S. Person, D. Ananias, L. D. Carlos, and L. Novotny, “Excitation of magnetic dipole transitions at optical frequencies,” Phys. Rev. Lett. 114(16), 163903 (2015).
[Crossref] [PubMed]

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108(9), 097402 (2012).
[Crossref] [PubMed]

C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and T. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99(4), 047601 (2007).
[Crossref] [PubMed]

K. Y. Bliokh, Y. S. Kivshar, and F. Nori, “Magnetoelectric effects in local light-matter interactions,” Phys. Rev. Lett. 113(3), 033601 (2014).
[Crossref] [PubMed]

S. L. Oliveira and S. C. Rand, “Intense nonlinear magnetic dipole radiation at optical frequencies: molecular scattering in a dielectric liquid,” Phys. Rev. Lett. 98(9), 093901 (2007).
[Crossref] [PubMed]

Phys. Rev. X (1)

N. R. Brewer, Z. N. Buckholtz, Z. J. Simmons, E. A. Mueller, and D. D. Yavuz, “Coherent magnetic response at optical frequencies using atomic transitions,” Phys. Rev. X 7(1), 011005 (2017).
[Crossref]

Science (1)

N. A. Spaldin and M. Fiebig, “Materials science. The renaissance of magnetoelectric multiferroics,” Science 309(5733), 391–392 (2005).
[Crossref] [PubMed]

Other (5)

See for example E. Hecht, Optics, Third edition (Addison Wesley Longman, 1998), pp. 69.

See for example G. R. Fowles, Analytic Mechanics (Holt Rinehart and Winston, 1962), pp. 206.

A. Fisher, “Experiments and theory of induced optical magnetization,” Ph. D. dissertation, University of Michigan, 2016, p. 27 and p. 123.

G. Herzberg, Spectra of Diatomic Molecules, Second edition (Van Nostrand Reinhold, 1950), p. 129.

C. Cohen-Tannoudji and S. Reynaud, Dressed Atom Approach to resonance fluorescence, in Multiphoton Processes, eds. J. Eberly and P. Lambropoulos (J. Wiley & Sons, 1977), pp. 103–118.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Model of a homonuclear diatomic molecule, together with the coordinate system and position vectors ξ ¯ and r ¯ A specifying electron position and point of equilibrium respectively.
Fig. 2
Fig. 2 Evolution of charge separation, Pz(0), of the test charge versus time for I / I // =1(left) and I / I // =1000(right). Other fixed parameters were E=1× 10 9 V/m and γ=0.1 ω 0 .
Fig. 3
Fig. 3 Evolution of the magnetic moment (divided by c) versus time for I / I // =1(left) and I / I // =1000(right). Other fixed parameters were E=1× 10 9 V/m and γ=0.1 ω 0 .
Fig. 4
Fig. 4 Evolution of charge separation (top) and magnetization/c (bottom) versus time for different values of the magnetic (librational) damping coefficients: γ=0.03 ω 0 (left) and γ=0.3 ω 0 (right). Other fixed parameters were E=2× 10 9 V/m and I / I // =1000.
Fig. 5
Fig. 5 Evolution of charge separation (top) and magnetization/c (bottom) versus time for different values of the applied electric field. The electric field strength is E= 10 9 V/m (left) and E=3× 10 9 V/m (right). Other fixed parameters were I / I // =1000 and γ=0.03 ω 0 .
Fig. 6
Fig. 6 High-field charge separation (top) and high-field magnetization/c (bottom) computed for low damping, γ=0.05(left) and high damping, γ=0.2(right). Other fixed parameters were E=1× 10 10 V/m and I / I // =1000.
Fig. 7
Fig. 7 (a) Squared magnitudes of the magneto-electric rectification dipole moment (filled circles) compared to the linear ED moment (open circles) as a function of photon number. The ED moment is proportional to input photon number (or intensity) and determines Rayleigh scattering intensity. The nonlinear rectification moment is plotted as three curves with filled circles corresponding to different ratios of ω φ / ω 0 = 10 7 , 10 5 , 10 3 (left to right). (b) Squared magnitudes of the induced magnetic moment (proportional to the magnetic scattering intensity) versus number of incident photons for ratios of ω φ / ω 0 = 10 7 , 10 5 , 10 3 (left to right). In both (a) and (b) filled circles are nonlinear moments whereas open circles are linear ED moments shown for the purpose of direct comparison.
Fig. 8
Fig. 8 Energy levels of the molecular model showing the 2-photon transition (solid arrows) driven by the optical Eand H * fields The dashed downward arrow depicts a magnetic de-excitation channel that becomes an option if the excitation bandwidth exceeds ω φ .
Fig. 9
Fig. 9 Diagram of three dipole moments formed by strong excitation of a nominally 2-level molecule during a 2-photon E B * process. p (1) (ω) x ^ is the linear ED polarization along the quantization axis. p (2) (0) z ^ and m (2) (ω) y ^ are nonlinear rectification and magnetization moments oriented along z ^ and y ^ respectively.
Fig. 10
Fig. 10 (a) Squared quantum ED moment p (1) (ω) (open circles) and the nonlinear rectification moment p (2) (0) (filled circles) versus incident photon number in three curves reflecting different ratios of the rotational and resonance frequencies given by ω φ / ω 0 = 10 7 , 10 5 , 10 3 (left to right). (b) Squared quantum ED moment p (1) (ω) (open circles) and the MD moment plotted as m(ω)/c versus photon number for the same three values of the rotation frequency ω φ . In both (a) and (b) filled circles are nonlinear moments whereas open circles are linear ED moments shown for direct comparison.
Fig. 11
Fig. 11 Magnetic torque mediates a rotation of the axis about which there is electron angular momentum in a molecule. The axis rotation causes a transfer of orbital angular momentum to rotational (librational) angular momentum, thereby enlarging the area enclosed by circular electron motion.

Equations (30)

Equations on this page are rendered with MathJax. Learn more.

d 2 ξ ¯ (t) d t 2 +γ d ξ ¯ (t) dt + ω 0 2 ( ξ ¯ (t) r ¯ A )= F ¯ (t) m .
F ¯ (t)=q( E ¯ + v ¯ × B ¯ ),
T ¯ = r ¯ A ×(m ω 0 2 r ¯ )=m ω 0 2 r ¯ A × ξ ¯ .
I I y = I z ,
I // I x .
I // d Ω x dt = T x ,
I d Ω y dt = T y ,
I d Ω z dt = T z .
d r ¯ A (t) dt = Ω ¯ (t)× r ¯ A (t),
P ¯ (t)=e ξ ¯ (t),
M ¯ (t)= e 2m L ¯ = e 2 ξ ¯ (t)× d ξ ¯ (t) dt .
H ^ mf = H ^ mol + H ^ field =( ω 0 /2) σ ^ z + O ^ 2 /2I+ω a ^ + a ^ ,
E 1 = ω 0 2 +nω,
E 2 = E 1 +Δ= ω 0 2 +(n1)ω,
E 3 = E 2 Δ+ ω φ = ω 0 2 +nω.
H ^ int = H ^ int (e) + H ^ int (m) =g( σ ^ + a ^ +h.c.)+(f L ^ ' O ^ ' + a ^ + +h.c.),
( E 3 2f n 0 2 f * n E 2 g n 0 g * n E 1 )( c i b i a i )= E Di ( c i b i a i ).
( H E Di I )| D i (n)=0,
| D i (n)= a i | 100| 00|n+ b i | 210| 10| n1+ c i | 211| 11|n,
| D i (n)= a i | 100| 00|n+ b i | 210| 10| n1+ c i | 211| 11|n+ d i | 211| 11|n,
| p ^ (2) (0) |= 2 μ (e) [ j=1 4 | ( a j c j * + a j d j * )+c.c. | 2 ] 1/2 .
| m ^ (ω) |=2 μ eff (m) [ j=1 4 ( a j b j * +c.c.) 2 + ( a j d j * +c.c.) 2 ] 1/2 .
H ^ int (m) =(f L ^ ' O ^ ' + a ^ + +h.c.).
P ^ ( L ^ ± )= P ^ { L ^ x ±i L ^ y } = P ^ { ( y ^ p ^ z z ^ p ^ y )±i( z ^ p ^ x x ^ p ^ z ) } ={ [( y ^ )( p ^ z )( z ^ )( p ^ y )]±i[( z ^ )( p ^ x )( z ^ )( p ^ z )] } = L ^ ±
T ^ ( L ^ ± )= T ^ { L ^ x ±i L ^ y } = T ^ { ( y ^ p ^ z z ^ p ^ y )±i( z ^ p ^ x x ^ p ^ z ) } ={ [( y ^ )( p ^ z )( z ^ )( p ^ y )]±i[( z ^ )( p ^ x )( z ^ )( p ^ z )] } = L ^
P ^ { a ^ }= P ^ { ω 2 ( q ^ ±i p ^ ω ) } ={ ω 2 ( ( q ^ )±i ( p ^ ) ω ) } = a ^ a ^
T ^ { a ^ }= T ^ { ω 2 ( q ^ ±i p ^ ω ) } ={ ω 2 ( q ^ i p ^ ω ) } = { a ^ } + a ^
P ^ ( H ^ int (m) )= P ^ (f L ^ ' O ^ ' + a ^ + + f * L ^ ' + O ^ ' a ^ ) =f( L ^ ' )( O ^ ' + )( a ^ + )+ f * ( L ^ ' + )( O ^ ' )( a ^ ) = H ^ int (m) H ^ int (m)
T ^ ( H ^ int (m) )= T ^ (f L ^ ' O ^ ' + a ^ + + f * L ^ ' + O ^ ' a ^ ) =f( L ^ ' + )( O ^ ' )( a ^ )+ f * ( L ^ ' )( O ^ ' + )( a ^ + ) = H ^ int (m) H ^ int (m)
P ^ T ^ ( H ^ int (m) )= P ^ T ^ (f L ^ ' O ^ ' + a ^ + + f * L ^ ' + O ^ ' a ^ ) =f () 2 L ^ ' + () 2 O ^ ' )( a ^ )+ f * () 2 L ^ ' ) () 2 O ^ ' + )( a ^ + ) = H ^ int (m)