Abstract

A four-level N-type cold atomic system is proposed for optimizing images storage based on the electromagnetically induced transparency (EIT). Both analytical analysis and numerical simulation clearly show that the application, during the storage time, of an additional intensity-modulated signal field and an additional microwave field can impose an intensity and a phase-dependent factors on the atomic spin coherence in a controlled manner, then the amplitude of the retrieved images can be increased or decreased with an enhancement in the visibility. Our results are very promising for the realization of all-optical information processing of images coherently stored in EIT media in the future.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Generating and manipulating beating signals by a microwave field in four-level cold atoms

Qian-Qian Bao, Liu Yang, Nuo Ba, Cui-Li Cui, and Jin-Hui Wu
J. Opt. Soc. Am. B 30(6) 1532-1537 (2013)

Vortex-based all-optical manipulation of stored light at low light levels

Lu Zhao
Opt. Express 23(23) 29808-29822 (2015)

Efficient electromagnetically induced phase grating via quantum interference in a four-level N-type atomic system

Tayebeh Naseri and Rasoul Sadighi-Bonabi
J. Opt. Soc. Am. B 31(10) 2430-2437 (2014)

References

  • View by:
  • |
  • |
  • |

  1. S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997).
    [Crossref]
  2. M. D. Lukin, “Colloquium: Trapping and manipulating photon states in atomic ensembles,” Rev. Mod. Phys. 75(2), 457–472 (2003).
    [Crossref]
  3. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
    [Crossref]
  4. C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature (London) 409(25), 490–493 (2001).
    [Crossref]
  5. D. F. Phillips, M. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86(5), 783–786 (2001).
    [Crossref] [PubMed]
  6. K. Honda, D. Akamatsu, M. Arikawa, Y. Yokoi, K. Akiba, S. Nagatsuka, T. Tanimura, A. Furusawa, and M. Kozuma, “Storage and retrieval of a squeezed vacuum,” Phys. Rev. Lett. 100(9), 093601 (2008).
    [Crossref] [PubMed]
  7. J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A. I. Lvovsky, “Quantum memory for squeezed light,” Phys. Rev. Lett. 100(9), 093602 (2008).
    [Crossref] [PubMed]
  8. K. S. Choi, H. Deng, J. Laurat, and H. J. Kimble, “Mapping photonic entanglement into and out of a quantum memory,” Nature (London) 452(7183), 67–71 (2008).
    [Crossref]
  9. A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88(2), 023602 (2002).
    [Crossref] [PubMed]
  10. H. H. Wang, Y. F. Fan, R. Wang, L. Wang, D. M. Du, Z. H. Kang, Y. Jiang, J. H. Wu, and J. Y. Gao, “Slowing and storage of double light pulses in a Pr3+: Y2SiO5 crystal,” Opt. Lett. 34(17), 2596–2598 (2009).
    [Crossref] [PubMed]
  11. M. Shuker, O. Firstenberg, R. Pugatch, A. Ron, and N. Davidson, “Storing images in warm atomic vapor,” Phys. Rev. Lett. 100(22), 223601 (2008).
    [Crossref] [PubMed]
  12. D. S. Ding, J. H. Wu, Z. Y. Zhou, Y. Liu, B. S. Shi, X. B. Zou, and G. C. Guo, “Multimode image memory based on a cold atomic ensemble,” Phys. Rev. A 87(1), 013835 (2013).
    [Crossref]
  13. D. S. Ding, J. H. Wu, Z. Y. Zhou, B. S. Shi, X. B. Zou, and G. C. Guo, “Multiple image storage and frequency conversion in a cold atomic ensemble,” Phys. Rev. A 87(5), 053830 (2013).
    [Crossref]
  14. G. Heinze, N. Rentzsch, and T. Halfmann, “Multiplexed image storage by electromagnetically induced transparency in a solid,” Phys. Rev. A 86(5), 053837 (2012).
    [Crossref]
  15. Y. W. Cho, J. E. Oh, and Y. H. Kim, “Storage and retrieval of ghost images in hot atomic vapor,” Opt. Express 20(5), 5809–5816 (2012).
    [Crossref] [PubMed]
  16. M. Fleischhauer and M. D. Lukin, “Dark-State Polaritons in Electromagnetically Induced Transparency,” Phys. Rev. Lett. 84(22), 5094–5097 (2000).
    [Crossref] [PubMed]
  17. I. Novikova, D. F. Phillips, and R. L. Walsworth, “Slow light with integrated gain and large pulse delay,” Phys. Rev. Lett 99(17), 173604 (2007).
    [Crossref] [PubMed]
  18. Y. Xiao, I. Novikova, D. F. Phillips, and R. Walsworth, “Diffusion-induced ramsey narrowing,” Phys. Rev. Lett. 96(4), 043601 (2006).
    [Crossref] [PubMed]
  19. P. K. Vudyasetu, R. M. Camacho, and J. C. Howell, “Storage and retrieval of multimode transverse images in hot atomic rubidium vapor,” Phys. Rev. Lett. 100(12), 123903 (2008).
    [Crossref] [PubMed]
  20. R. Pugatch, M. Shuker, O. Firstenberg, A. Ron, and N. Davidson, “Topological stability of stored optical vortices,” Phys. Rev. Lett. 98(20), 203601 (2007).
    [Crossref] [PubMed]
  21. T. H. Qiu and M. Xie, “Double-image storage optimized by cross-phase modulation in a cold atomic system,” Phys. Rev. A 96(3), 033844 (2017).
    [Crossref]
  22. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).
  23. M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).
    [Crossref]

2017 (1)

T. H. Qiu and M. Xie, “Double-image storage optimized by cross-phase modulation in a cold atomic system,” Phys. Rev. A 96(3), 033844 (2017).
[Crossref]

2013 (2)

D. S. Ding, J. H. Wu, Z. Y. Zhou, Y. Liu, B. S. Shi, X. B. Zou, and G. C. Guo, “Multimode image memory based on a cold atomic ensemble,” Phys. Rev. A 87(1), 013835 (2013).
[Crossref]

D. S. Ding, J. H. Wu, Z. Y. Zhou, B. S. Shi, X. B. Zou, and G. C. Guo, “Multiple image storage and frequency conversion in a cold atomic ensemble,” Phys. Rev. A 87(5), 053830 (2013).
[Crossref]

2012 (2)

G. Heinze, N. Rentzsch, and T. Halfmann, “Multiplexed image storage by electromagnetically induced transparency in a solid,” Phys. Rev. A 86(5), 053837 (2012).
[Crossref]

Y. W. Cho, J. E. Oh, and Y. H. Kim, “Storage and retrieval of ghost images in hot atomic vapor,” Opt. Express 20(5), 5809–5816 (2012).
[Crossref] [PubMed]

2009 (1)

2008 (5)

M. Shuker, O. Firstenberg, R. Pugatch, A. Ron, and N. Davidson, “Storing images in warm atomic vapor,” Phys. Rev. Lett. 100(22), 223601 (2008).
[Crossref] [PubMed]

P. K. Vudyasetu, R. M. Camacho, and J. C. Howell, “Storage and retrieval of multimode transverse images in hot atomic rubidium vapor,” Phys. Rev. Lett. 100(12), 123903 (2008).
[Crossref] [PubMed]

K. Honda, D. Akamatsu, M. Arikawa, Y. Yokoi, K. Akiba, S. Nagatsuka, T. Tanimura, A. Furusawa, and M. Kozuma, “Storage and retrieval of a squeezed vacuum,” Phys. Rev. Lett. 100(9), 093601 (2008).
[Crossref] [PubMed]

J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A. I. Lvovsky, “Quantum memory for squeezed light,” Phys. Rev. Lett. 100(9), 093602 (2008).
[Crossref] [PubMed]

K. S. Choi, H. Deng, J. Laurat, and H. J. Kimble, “Mapping photonic entanglement into and out of a quantum memory,” Nature (London) 452(7183), 67–71 (2008).
[Crossref]

2007 (2)

R. Pugatch, M. Shuker, O. Firstenberg, A. Ron, and N. Davidson, “Topological stability of stored optical vortices,” Phys. Rev. Lett. 98(20), 203601 (2007).
[Crossref] [PubMed]

I. Novikova, D. F. Phillips, and R. L. Walsworth, “Slow light with integrated gain and large pulse delay,” Phys. Rev. Lett 99(17), 173604 (2007).
[Crossref] [PubMed]

2006 (1)

Y. Xiao, I. Novikova, D. F. Phillips, and R. Walsworth, “Diffusion-induced ramsey narrowing,” Phys. Rev. Lett. 96(4), 043601 (2006).
[Crossref] [PubMed]

2005 (1)

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[Crossref]

2003 (1)

M. D. Lukin, “Colloquium: Trapping and manipulating photon states in atomic ensembles,” Rev. Mod. Phys. 75(2), 457–472 (2003).
[Crossref]

2002 (1)

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88(2), 023602 (2002).
[Crossref] [PubMed]

2001 (2)

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature (London) 409(25), 490–493 (2001).
[Crossref]

D. F. Phillips, M. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86(5), 783–786 (2001).
[Crossref] [PubMed]

2000 (1)

M. Fleischhauer and M. D. Lukin, “Dark-State Polaritons in Electromagnetically Induced Transparency,” Phys. Rev. Lett. 84(22), 5094–5097 (2000).
[Crossref] [PubMed]

1997 (1)

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997).
[Crossref]

Akamatsu, D.

K. Honda, D. Akamatsu, M. Arikawa, Y. Yokoi, K. Akiba, S. Nagatsuka, T. Tanimura, A. Furusawa, and M. Kozuma, “Storage and retrieval of a squeezed vacuum,” Phys. Rev. Lett. 100(9), 093601 (2008).
[Crossref] [PubMed]

Akiba, K.

K. Honda, D. Akamatsu, M. Arikawa, Y. Yokoi, K. Akiba, S. Nagatsuka, T. Tanimura, A. Furusawa, and M. Kozuma, “Storage and retrieval of a squeezed vacuum,” Phys. Rev. Lett. 100(9), 093601 (2008).
[Crossref] [PubMed]

Appel, J.

J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A. I. Lvovsky, “Quantum memory for squeezed light,” Phys. Rev. Lett. 100(9), 093602 (2008).
[Crossref] [PubMed]

Arikawa, M.

K. Honda, D. Akamatsu, M. Arikawa, Y. Yokoi, K. Akiba, S. Nagatsuka, T. Tanimura, A. Furusawa, and M. Kozuma, “Storage and retrieval of a squeezed vacuum,” Phys. Rev. Lett. 100(9), 093601 (2008).
[Crossref] [PubMed]

Behroozi, C. H.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature (London) 409(25), 490–493 (2001).
[Crossref]

Born, M.

M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).
[Crossref]

Camacho, R. M.

P. K. Vudyasetu, R. M. Camacho, and J. C. Howell, “Storage and retrieval of multimode transverse images in hot atomic rubidium vapor,” Phys. Rev. Lett. 100(12), 123903 (2008).
[Crossref] [PubMed]

Cho, Y. W.

Choi, K. S.

K. S. Choi, H. Deng, J. Laurat, and H. J. Kimble, “Mapping photonic entanglement into and out of a quantum memory,” Nature (London) 452(7183), 67–71 (2008).
[Crossref]

Davidson, N.

M. Shuker, O. Firstenberg, R. Pugatch, A. Ron, and N. Davidson, “Storing images in warm atomic vapor,” Phys. Rev. Lett. 100(22), 223601 (2008).
[Crossref] [PubMed]

R. Pugatch, M. Shuker, O. Firstenberg, A. Ron, and N. Davidson, “Topological stability of stored optical vortices,” Phys. Rev. Lett. 98(20), 203601 (2007).
[Crossref] [PubMed]

Deng, H.

K. S. Choi, H. Deng, J. Laurat, and H. J. Kimble, “Mapping photonic entanglement into and out of a quantum memory,” Nature (London) 452(7183), 67–71 (2008).
[Crossref]

Ding, D. S.

D. S. Ding, J. H. Wu, Z. Y. Zhou, Y. Liu, B. S. Shi, X. B. Zou, and G. C. Guo, “Multimode image memory based on a cold atomic ensemble,” Phys. Rev. A 87(1), 013835 (2013).
[Crossref]

D. S. Ding, J. H. Wu, Z. Y. Zhou, B. S. Shi, X. B. Zou, and G. C. Guo, “Multiple image storage and frequency conversion in a cold atomic ensemble,” Phys. Rev. A 87(5), 053830 (2013).
[Crossref]

Du, D. M.

Dutton, Z.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature (London) 409(25), 490–493 (2001).
[Crossref]

Fan, Y. F.

Figueroa, E.

J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A. I. Lvovsky, “Quantum memory for squeezed light,” Phys. Rev. Lett. 100(9), 093602 (2008).
[Crossref] [PubMed]

Firstenberg, O.

M. Shuker, O. Firstenberg, R. Pugatch, A. Ron, and N. Davidson, “Storing images in warm atomic vapor,” Phys. Rev. Lett. 100(22), 223601 (2008).
[Crossref] [PubMed]

R. Pugatch, M. Shuker, O. Firstenberg, A. Ron, and N. Davidson, “Topological stability of stored optical vortices,” Phys. Rev. Lett. 98(20), 203601 (2007).
[Crossref] [PubMed]

Fleischhauer, M.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[Crossref]

D. F. Phillips, M. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86(5), 783–786 (2001).
[Crossref] [PubMed]

M. Fleischhauer and M. D. Lukin, “Dark-State Polaritons in Electromagnetically Induced Transparency,” Phys. Rev. Lett. 84(22), 5094–5097 (2000).
[Crossref] [PubMed]

Furusawa, A.

K. Honda, D. Akamatsu, M. Arikawa, Y. Yokoi, K. Akiba, S. Nagatsuka, T. Tanimura, A. Furusawa, and M. Kozuma, “Storage and retrieval of a squeezed vacuum,” Phys. Rev. Lett. 100(9), 093601 (2008).
[Crossref] [PubMed]

Gao, J. Y.

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).

Guo, G. C.

D. S. Ding, J. H. Wu, Z. Y. Zhou, B. S. Shi, X. B. Zou, and G. C. Guo, “Multiple image storage and frequency conversion in a cold atomic ensemble,” Phys. Rev. A 87(5), 053830 (2013).
[Crossref]

D. S. Ding, J. H. Wu, Z. Y. Zhou, Y. Liu, B. S. Shi, X. B. Zou, and G. C. Guo, “Multimode image memory based on a cold atomic ensemble,” Phys. Rev. A 87(1), 013835 (2013).
[Crossref]

Halfmann, T.

G. Heinze, N. Rentzsch, and T. Halfmann, “Multiplexed image storage by electromagnetically induced transparency in a solid,” Phys. Rev. A 86(5), 053837 (2012).
[Crossref]

Ham, B. S.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88(2), 023602 (2002).
[Crossref] [PubMed]

Harris, S. E.

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997).
[Crossref]

Hau, L. V.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature (London) 409(25), 490–493 (2001).
[Crossref]

Heinze, G.

G. Heinze, N. Rentzsch, and T. Halfmann, “Multiplexed image storage by electromagnetically induced transparency in a solid,” Phys. Rev. A 86(5), 053837 (2012).
[Crossref]

Hemmer, P. R.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88(2), 023602 (2002).
[Crossref] [PubMed]

Honda, K.

K. Honda, D. Akamatsu, M. Arikawa, Y. Yokoi, K. Akiba, S. Nagatsuka, T. Tanimura, A. Furusawa, and M. Kozuma, “Storage and retrieval of a squeezed vacuum,” Phys. Rev. Lett. 100(9), 093601 (2008).
[Crossref] [PubMed]

Howell, J. C.

P. K. Vudyasetu, R. M. Camacho, and J. C. Howell, “Storage and retrieval of multimode transverse images in hot atomic rubidium vapor,” Phys. Rev. Lett. 100(12), 123903 (2008).
[Crossref] [PubMed]

Imamoglu, A.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[Crossref]

Jiang, Y.

Kang, Z. H.

Kim, Y. H.

Kimble, H. J.

K. S. Choi, H. Deng, J. Laurat, and H. J. Kimble, “Mapping photonic entanglement into and out of a quantum memory,” Nature (London) 452(7183), 67–71 (2008).
[Crossref]

Korystov, D.

J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A. I. Lvovsky, “Quantum memory for squeezed light,” Phys. Rev. Lett. 100(9), 093602 (2008).
[Crossref] [PubMed]

Kozuma, M.

K. Honda, D. Akamatsu, M. Arikawa, Y. Yokoi, K. Akiba, S. Nagatsuka, T. Tanimura, A. Furusawa, and M. Kozuma, “Storage and retrieval of a squeezed vacuum,” Phys. Rev. Lett. 100(9), 093601 (2008).
[Crossref] [PubMed]

Laurat, J.

K. S. Choi, H. Deng, J. Laurat, and H. J. Kimble, “Mapping photonic entanglement into and out of a quantum memory,” Nature (London) 452(7183), 67–71 (2008).
[Crossref]

Liu, C.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature (London) 409(25), 490–493 (2001).
[Crossref]

Liu, Y.

D. S. Ding, J. H. Wu, Z. Y. Zhou, Y. Liu, B. S. Shi, X. B. Zou, and G. C. Guo, “Multimode image memory based on a cold atomic ensemble,” Phys. Rev. A 87(1), 013835 (2013).
[Crossref]

Lobino, M.

J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A. I. Lvovsky, “Quantum memory for squeezed light,” Phys. Rev. Lett. 100(9), 093602 (2008).
[Crossref] [PubMed]

Lukin, M. D.

M. D. Lukin, “Colloquium: Trapping and manipulating photon states in atomic ensembles,” Rev. Mod. Phys. 75(2), 457–472 (2003).
[Crossref]

D. F. Phillips, M. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86(5), 783–786 (2001).
[Crossref] [PubMed]

M. Fleischhauer and M. D. Lukin, “Dark-State Polaritons in Electromagnetically Induced Transparency,” Phys. Rev. Lett. 84(22), 5094–5097 (2000).
[Crossref] [PubMed]

Lvovsky, A. I.

J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A. I. Lvovsky, “Quantum memory for squeezed light,” Phys. Rev. Lett. 100(9), 093602 (2008).
[Crossref] [PubMed]

Mair, A.

D. F. Phillips, M. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86(5), 783–786 (2001).
[Crossref] [PubMed]

Marangos, J. P.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[Crossref]

Musser, J. A.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88(2), 023602 (2002).
[Crossref] [PubMed]

Nagatsuka, S.

K. Honda, D. Akamatsu, M. Arikawa, Y. Yokoi, K. Akiba, S. Nagatsuka, T. Tanimura, A. Furusawa, and M. Kozuma, “Storage and retrieval of a squeezed vacuum,” Phys. Rev. Lett. 100(9), 093601 (2008).
[Crossref] [PubMed]

Novikova, I.

I. Novikova, D. F. Phillips, and R. L. Walsworth, “Slow light with integrated gain and large pulse delay,” Phys. Rev. Lett 99(17), 173604 (2007).
[Crossref] [PubMed]

Y. Xiao, I. Novikova, D. F. Phillips, and R. Walsworth, “Diffusion-induced ramsey narrowing,” Phys. Rev. Lett. 96(4), 043601 (2006).
[Crossref] [PubMed]

Oh, J. E.

Phillips, D. F.

I. Novikova, D. F. Phillips, and R. L. Walsworth, “Slow light with integrated gain and large pulse delay,” Phys. Rev. Lett 99(17), 173604 (2007).
[Crossref] [PubMed]

Y. Xiao, I. Novikova, D. F. Phillips, and R. Walsworth, “Diffusion-induced ramsey narrowing,” Phys. Rev. Lett. 96(4), 043601 (2006).
[Crossref] [PubMed]

D. F. Phillips, M. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86(5), 783–786 (2001).
[Crossref] [PubMed]

Pugatch, R.

M. Shuker, O. Firstenberg, R. Pugatch, A. Ron, and N. Davidson, “Storing images in warm atomic vapor,” Phys. Rev. Lett. 100(22), 223601 (2008).
[Crossref] [PubMed]

R. Pugatch, M. Shuker, O. Firstenberg, A. Ron, and N. Davidson, “Topological stability of stored optical vortices,” Phys. Rev. Lett. 98(20), 203601 (2007).
[Crossref] [PubMed]

Qiu, T. H.

T. H. Qiu and M. Xie, “Double-image storage optimized by cross-phase modulation in a cold atomic system,” Phys. Rev. A 96(3), 033844 (2017).
[Crossref]

Rentzsch, N.

G. Heinze, N. Rentzsch, and T. Halfmann, “Multiplexed image storage by electromagnetically induced transparency in a solid,” Phys. Rev. A 86(5), 053837 (2012).
[Crossref]

Ron, A.

M. Shuker, O. Firstenberg, R. Pugatch, A. Ron, and N. Davidson, “Storing images in warm atomic vapor,” Phys. Rev. Lett. 100(22), 223601 (2008).
[Crossref] [PubMed]

R. Pugatch, M. Shuker, O. Firstenberg, A. Ron, and N. Davidson, “Topological stability of stored optical vortices,” Phys. Rev. Lett. 98(20), 203601 (2007).
[Crossref] [PubMed]

Shahriar, M. S.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88(2), 023602 (2002).
[Crossref] [PubMed]

Shi, B. S.

D. S. Ding, J. H. Wu, Z. Y. Zhou, Y. Liu, B. S. Shi, X. B. Zou, and G. C. Guo, “Multimode image memory based on a cold atomic ensemble,” Phys. Rev. A 87(1), 013835 (2013).
[Crossref]

D. S. Ding, J. H. Wu, Z. Y. Zhou, B. S. Shi, X. B. Zou, and G. C. Guo, “Multiple image storage and frequency conversion in a cold atomic ensemble,” Phys. Rev. A 87(5), 053830 (2013).
[Crossref]

Shuker, M.

M. Shuker, O. Firstenberg, R. Pugatch, A. Ron, and N. Davidson, “Storing images in warm atomic vapor,” Phys. Rev. Lett. 100(22), 223601 (2008).
[Crossref] [PubMed]

R. Pugatch, M. Shuker, O. Firstenberg, A. Ron, and N. Davidson, “Topological stability of stored optical vortices,” Phys. Rev. Lett. 98(20), 203601 (2007).
[Crossref] [PubMed]

Sudarshanam, V. S.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88(2), 023602 (2002).
[Crossref] [PubMed]

Tanimura, T.

K. Honda, D. Akamatsu, M. Arikawa, Y. Yokoi, K. Akiba, S. Nagatsuka, T. Tanimura, A. Furusawa, and M. Kozuma, “Storage and retrieval of a squeezed vacuum,” Phys. Rev. Lett. 100(9), 093601 (2008).
[Crossref] [PubMed]

Turukhin, A. V.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88(2), 023602 (2002).
[Crossref] [PubMed]

Vudyasetu, P. K.

P. K. Vudyasetu, R. M. Camacho, and J. C. Howell, “Storage and retrieval of multimode transverse images in hot atomic rubidium vapor,” Phys. Rev. Lett. 100(12), 123903 (2008).
[Crossref] [PubMed]

Walsworth, R.

Y. Xiao, I. Novikova, D. F. Phillips, and R. Walsworth, “Diffusion-induced ramsey narrowing,” Phys. Rev. Lett. 96(4), 043601 (2006).
[Crossref] [PubMed]

Walsworth, R. L.

I. Novikova, D. F. Phillips, and R. L. Walsworth, “Slow light with integrated gain and large pulse delay,” Phys. Rev. Lett 99(17), 173604 (2007).
[Crossref] [PubMed]

D. F. Phillips, M. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86(5), 783–786 (2001).
[Crossref] [PubMed]

Wang, H. H.

Wang, L.

Wang, R.

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).
[Crossref]

Wu, J. H.

D. S. Ding, J. H. Wu, Z. Y. Zhou, Y. Liu, B. S. Shi, X. B. Zou, and G. C. Guo, “Multimode image memory based on a cold atomic ensemble,” Phys. Rev. A 87(1), 013835 (2013).
[Crossref]

D. S. Ding, J. H. Wu, Z. Y. Zhou, B. S. Shi, X. B. Zou, and G. C. Guo, “Multiple image storage and frequency conversion in a cold atomic ensemble,” Phys. Rev. A 87(5), 053830 (2013).
[Crossref]

H. H. Wang, Y. F. Fan, R. Wang, L. Wang, D. M. Du, Z. H. Kang, Y. Jiang, J. H. Wu, and J. Y. Gao, “Slowing and storage of double light pulses in a Pr3+: Y2SiO5 crystal,” Opt. Lett. 34(17), 2596–2598 (2009).
[Crossref] [PubMed]

Xiao, Y.

Y. Xiao, I. Novikova, D. F. Phillips, and R. Walsworth, “Diffusion-induced ramsey narrowing,” Phys. Rev. Lett. 96(4), 043601 (2006).
[Crossref] [PubMed]

Xie, M.

T. H. Qiu and M. Xie, “Double-image storage optimized by cross-phase modulation in a cold atomic system,” Phys. Rev. A 96(3), 033844 (2017).
[Crossref]

Yokoi, Y.

K. Honda, D. Akamatsu, M. Arikawa, Y. Yokoi, K. Akiba, S. Nagatsuka, T. Tanimura, A. Furusawa, and M. Kozuma, “Storage and retrieval of a squeezed vacuum,” Phys. Rev. Lett. 100(9), 093601 (2008).
[Crossref] [PubMed]

Zhou, Z. Y.

D. S. Ding, J. H. Wu, Z. Y. Zhou, B. S. Shi, X. B. Zou, and G. C. Guo, “Multiple image storage and frequency conversion in a cold atomic ensemble,” Phys. Rev. A 87(5), 053830 (2013).
[Crossref]

D. S. Ding, J. H. Wu, Z. Y. Zhou, Y. Liu, B. S. Shi, X. B. Zou, and G. C. Guo, “Multimode image memory based on a cold atomic ensemble,” Phys. Rev. A 87(1), 013835 (2013).
[Crossref]

Zou, X. B.

D. S. Ding, J. H. Wu, Z. Y. Zhou, Y. Liu, B. S. Shi, X. B. Zou, and G. C. Guo, “Multimode image memory based on a cold atomic ensemble,” Phys. Rev. A 87(1), 013835 (2013).
[Crossref]

D. S. Ding, J. H. Wu, Z. Y. Zhou, B. S. Shi, X. B. Zou, and G. C. Guo, “Multiple image storage and frequency conversion in a cold atomic ensemble,” Phys. Rev. A 87(5), 053830 (2013).
[Crossref]

Nature (London) (2)

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature (London) 409(25), 490–493 (2001).
[Crossref]

K. S. Choi, H. Deng, J. Laurat, and H. J. Kimble, “Mapping photonic entanglement into and out of a quantum memory,” Nature (London) 452(7183), 67–71 (2008).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. A (4)

D. S. Ding, J. H. Wu, Z. Y. Zhou, Y. Liu, B. S. Shi, X. B. Zou, and G. C. Guo, “Multimode image memory based on a cold atomic ensemble,” Phys. Rev. A 87(1), 013835 (2013).
[Crossref]

D. S. Ding, J. H. Wu, Z. Y. Zhou, B. S. Shi, X. B. Zou, and G. C. Guo, “Multiple image storage and frequency conversion in a cold atomic ensemble,” Phys. Rev. A 87(5), 053830 (2013).
[Crossref]

G. Heinze, N. Rentzsch, and T. Halfmann, “Multiplexed image storage by electromagnetically induced transparency in a solid,” Phys. Rev. A 86(5), 053837 (2012).
[Crossref]

T. H. Qiu and M. Xie, “Double-image storage optimized by cross-phase modulation in a cold atomic system,” Phys. Rev. A 96(3), 033844 (2017).
[Crossref]

Phys. Rev. Lett (1)

I. Novikova, D. F. Phillips, and R. L. Walsworth, “Slow light with integrated gain and large pulse delay,” Phys. Rev. Lett 99(17), 173604 (2007).
[Crossref] [PubMed]

Phys. Rev. Lett. (9)

Y. Xiao, I. Novikova, D. F. Phillips, and R. Walsworth, “Diffusion-induced ramsey narrowing,” Phys. Rev. Lett. 96(4), 043601 (2006).
[Crossref] [PubMed]

P. K. Vudyasetu, R. M. Camacho, and J. C. Howell, “Storage and retrieval of multimode transverse images in hot atomic rubidium vapor,” Phys. Rev. Lett. 100(12), 123903 (2008).
[Crossref] [PubMed]

R. Pugatch, M. Shuker, O. Firstenberg, A. Ron, and N. Davidson, “Topological stability of stored optical vortices,” Phys. Rev. Lett. 98(20), 203601 (2007).
[Crossref] [PubMed]

M. Shuker, O. Firstenberg, R. Pugatch, A. Ron, and N. Davidson, “Storing images in warm atomic vapor,” Phys. Rev. Lett. 100(22), 223601 (2008).
[Crossref] [PubMed]

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88(2), 023602 (2002).
[Crossref] [PubMed]

D. F. Phillips, M. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86(5), 783–786 (2001).
[Crossref] [PubMed]

K. Honda, D. Akamatsu, M. Arikawa, Y. Yokoi, K. Akiba, S. Nagatsuka, T. Tanimura, A. Furusawa, and M. Kozuma, “Storage and retrieval of a squeezed vacuum,” Phys. Rev. Lett. 100(9), 093601 (2008).
[Crossref] [PubMed]

J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A. I. Lvovsky, “Quantum memory for squeezed light,” Phys. Rev. Lett. 100(9), 093602 (2008).
[Crossref] [PubMed]

M. Fleischhauer and M. D. Lukin, “Dark-State Polaritons in Electromagnetically Induced Transparency,” Phys. Rev. Lett. 84(22), 5094–5097 (2000).
[Crossref] [PubMed]

Phys. Today (1)

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997).
[Crossref]

Rev. Mod. Phys. (2)

M. D. Lukin, “Colloquium: Trapping and manipulating photon states in atomic ensembles,” Rev. Mod. Phys. 75(2), 457–472 (2003).
[Crossref]

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[Crossref]

Other (2)

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).

M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Schematic diagram of the atom-field interaction. (b) Timing sequence of the coupling, signal, and the microwave fields.
Fig. 2
Fig. 2 Setup to realize the storage and retrieval of images. PD: photodetector; P: pattern; PBS: polarizing beam splitter.
Fig. 3
Fig. 3 The energy retrieving rate (a) and the phase shift (b) of the retrieved probe field versus the Rabi frequency of the signal field in the absence of the microwave field. The parameters are Γ41 = Γ42 = Γ = 6MHz, γ21 = 0.001Γ, Δs = 30Γ, and ts = 3μs.
Fig. 4
Fig. 4 (a) The intensity profile of the pattern to be stored. The normalized retrieved images are achieved in the absence of the microwave field with Rabi frequency of signal field Ωs0 = 0 (ϕ = 0, ξ = 100%) (b), Ωs0 = 5.22Γ (ϕ = 1.3π, ξ = 87.3%) (c), and Ωs0 = 6.47Γ (ϕ = 2π, ξ = 81.1%) (d). λp = 795nm, and z0 = z1 = f = 1m. The other parameters are the same as in Fig. 3. The size of the images is 3*3mm2.
Fig. 5
Fig. 5 The energy retrieving rate (a) and the phase shift (b) of the retrieved probe field versus the relative phase of the microwave field with a fixed signal field. The curves 1–5 are related to the Rabi frequency of the microwave field Ωm/Γ = 0.0, 0.2, 0.4, 0.6, 0.8. Ωs = 6.47Γ. The other parameters are the same as in Fig. 3.
Fig. 6
Fig. 6 The normalized retrieved images are achieved in the presence of the microwave field Φ = 0, Ωm = 0 (a), Φ = 0, Ωm = 0.005Γ (b), Φ = 0, Ωm = 0.01Γ (c), Φ = 0.5π, Ωm = 0.01Γ (d), Φ = π, Ωm = 0.01Γ (e), and Φ = 1.5π, Ωm = 0.01Γ (f). Ωs0 = 6.47Γ. The other parameters are the same as in Fig. 3. The size of the images is 3*3mm2.
Fig. 7
Fig. 7 The ratio of the output and input image energies via the Rabi frequency of the microwave field with different relative phase Φ. The other parameters are the same as in Fig. 6.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

H int = Δ s | 4 4 | 2 ( Ω s | 4 2 | + Ω m e i Φ | 2 1 | + H . c . ) ,
d ρ 21 d t = i Ω s * ( x , y ) 2 ρ 41 + i Ω m e i Φ 2 ( ρ 11 ρ 22 ) γ 21 ρ 21 , d ρ 41 d t = i Δ s ρ 41 + i Ω s ( x , y ) 2 ρ 21 i Ω m e i Φ 2 ρ 42 Γ 41 2 ρ 41 , d ρ 42 d t = i Δ s ρ 42 + i Ω s ( x , y ) 2 ( ρ 22 ρ 44 ) i Ω m * e i Φ 2 ρ 41 Γ 42 2 ρ 42 ,
ρ 21 ( x , y , t s ) = [ ρ 21 ( x , y , 0 ) + β α ] e α t s β α ,
I p ( x 1 , y 1 ) | E p ( x 1 , y 1 ) | 2 | + E p r ( x , y ) exp [ i k p ( x 2 + y 2 ) / 2 f ] h ( x 1 , x 0 ; y 1 , y 0 ; z 1 ) d x d y | 2 ,