Abstract

A comparative study of quantitative phase imaging techniques for refractometry of optical waveguides is presented. Three techniques were examined: a method based on the transport-of-intensity equation, quadri-wave lateral shearing interferometry and digital holographic microscopy. The refractive index profile of a SMF-28 optical fiber was thoroughly characterized and served as a gold standard to assess the accuracy and precision of the phase imaging methods. Optical waveguides were inscribed in an Eagle2000 glass chip using a femtosecond laser and used to evaluate the sensitivity limit of these phase imaging approaches. It is shown that all three techniques provide accurate, repeatable and sensitive refractive index measurements. Using these phase imaging methods, we report a comprehensive map of the photosensitivity to femtosecond pulses of Eagle2000 glass. Finally, the reported data suggests that the phase imaging techniques are suited to be used as precise and non-destructive refractive index shift measuring tools to study and control the inscription process of optical waveguides.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Quantitative phase imaging of adherent mammalian cells: a comparative study

C. Allier, L. Hervé, O. Mandula, P. Blandin, Y. Usson, J. Savatier, S. Monneret, and S. Morales
Biomed. Opt. Express 10(6) 2768-2783 (2019)

Comparative study between the standard type I and the type A femtosecond laser induced refractive index change in silver containing glasses

Alain Abou Khalil, Jean-Philippe Bérubé, Sylvain Danto, Thierry Cardinal, Yannick Petit, Lionel Canioni, and Réal Vallée
Opt. Mater. Express 9(6) 2640-2651 (2019)

Femtosecond laser direct inscription of mid-IR transmitting waveguides in BGG glasses

Jean-Philippe Bérubé, Arthur Le Camus, Sandra Helena Messaddeq, Yannick Petit, Younès Messaddeq, Lionel Canioni, and Réal Vallée
Opt. Mater. Express 7(9) 3124-3135 (2017)

References

  • View by:
  • |
  • |
  • |

  1. M. J. Saunders, “Optical fiber profiles using the refracted near-field technique: a comparison with other methods,” Appl. Opt. 20(9), 1645–1651 (1981).
    [Crossref] [PubMed]
  2. V. R. Bhardwaj, E. Simova, P. B. Corkum, D. M. Rayner, C. Hnatovsky, R. S. Taylor, B. Schreder, M. Kluge, and J. Zimmer, “Femtosecond laser-induced refractive index modification in multicomponent glasses,” J. Appl. Phys. 97(8), 083102 (2005).
    [Crossref]
  3. A. Barty, K. A. Nugent, D. Paganin, and A. Roberts, “Quantitative optical phase microscopy,” Opt. Lett. 23(11), 817–819 (1998).
    [Crossref] [PubMed]
  4. P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30(5), 468–470 (2005).
    [Crossref] [PubMed]
  5. B. Rappaz, P. Marquet, E. Cuche, Y. Emery, C. Depeursinge, and P. Magistretti, “Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy,” Opt. Express 13(23), 9361–9373 (2005).
    [Crossref] [PubMed]
  6. B. Kemper, S. Kosmeier, P. Langehanenberg, G. von Bally, I. Bredebusch, W. Domschke, and J. Schnekenburger, “Integral refractive index determination of living suspension cells by multifocus digital holographic phase contrast microscopy,” J. Biomed. Opt. 12(5), 054009 (2007).
    [Crossref] [PubMed]
  7. A. Roberts, E. Ampem-Lassen, A. Barty, K. A. Nugent, G. W. Baxter, N. M. Dragomir, and S. T. Huntington, “Refractive-index profiling of optical fibers with axial symmetry by use of quantitative phase microscopy,” Opt. Lett. 27(23), 2061–2063 (2002).
    [Crossref] [PubMed]
  8. E. Ampem-Lassen, S. T. Huntington, N. M. Dragomir, K. A. Nugent, and A. Roberts, “Refractive index profiling of axially symmetric optical fibers: a new technique,” Opt. Express 13(9), 3277–3282 (2005).
    [Crossref] [PubMed]
  9. E. Ampem-Lassen, F. Sidiroglou, J. L. Peng, S. T. Huntington, and A. Roberts, “Index mapping for fibres with symmetric and asymmetric refractive index profiles,” Opt. Express 16(15), 10912–10917 (2008).
    [Crossref] [PubMed]
  10. J. Frank, J. Matrisch, J. Horstmann, S. Altmeyer, and G. Wernicke, “Refractive index determination of transparent samples by noniterative phase retrieval,” Appl. Opt. 50(4), 427–433 (2011).
    [Crossref] [PubMed]
  11. M. Hughes, W. Yang, and D. Hewak, “Fabrication and characterization of femtosecond laser written waveguides in chalcogenide glass,” Appl. Phys. Lett. 90(13), 131113 (2007).
    [Crossref]
  12. T. Allsop, M. Dubov, V. Mezentsev, and I. Bennion, “Inscription and characterization of waveguides written into borosilicate glass by a high-repetition-rate femtosecond laser at 800 nm,” Appl. Opt. 49(10), 1938–1950 (2010).
    [Crossref] [PubMed]
  13. J. P. Bérubé, M. Bernier, and R. Vallée, “Femtosecond laser-induced refractive index modifications in fluoride glass,” Opt. Mater. Express 3(5), 598–611 (2013).
    [Crossref]
  14. P. Ferraro, D. Alferi, S. De Nicola, L. De Petrocellis, A. Finizio, and G. Pierattini, “Quantitative phase-contrast microscopy by a lateral shear approach to digital holographic image reconstruction,” Opt. Lett. 31(10), 1405–1407 (2006).
    [Crossref] [PubMed]
  15. G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett. 31(6), 775–777 (2006).
    [Crossref] [PubMed]
  16. P. Langehanenberg, B. Kemper, D. Dirksen, and G. von Bally, “Autofocusing in digital holographic phase contrast microscopy on pure phase objects for live cell imaging,” Appl. Opt. 47(19), D176–D182 (2008).
    [Crossref] [PubMed]
  17. P. Bon, G. Maucort, B. Wattellier, and S. Monneret, “Quadriwave lateral shearing interferometry for quantitative phase microscopy of living cells,” Opt. Express 17(15), 13080–13094 (2009).
    [Crossref] [PubMed]
  18. Z. Wang, L. Millet, M. Mir, H. Ding, S. Unarunotai, J. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt. Express 19(2), 1016–1026 (2011).
    [Crossref] [PubMed]
  19. E. Watanabe, T. Hoshiba, and B. Javidi, “High-precision microscopic phase imaging without phase unwrapping for cancer cell identification,” Opt. Lett. 38(8), 1319–1321 (2013).
    [Crossref] [PubMed]
  20. G. Coppola, P. Ferraro, M. Iodice, S. De Nicola, A. Finizio, and S. Grilli, “A digital holographic microscope for complete characterization of microelectromechanical systems,” Meas. Sci. Technol. 15(3), 529–539 (2004).
    [Crossref]
  21. F. Charrière, J. Kühn, T. Colomb, F. Montfort, E. Cuche, Y. Emery, K. Weible, P. Marquet, and C. Depeursinge, “Characterization of microlenses by digital holographic microscopy,” Appl. Opt. 45(5), 829–835 (2006).
    [Crossref] [PubMed]
  22. S. Velghe, R. Haïdar, N. Guérineau, M. Tauvy, S. Rommeluère, S. Thétas, G. Dunet, and J. Primot, “In situ optical testing of infrared lenses for high-performance cameras,” Appl. Opt. 45(23), 5903–5909 (2006).
    [Crossref] [PubMed]
  23. B. Kemper and G. von Bally, “Digital holographic microscopy for live cell applications and technical inspection,” Appl. Opt. 47(4), A52–A61 (2008).
    [Crossref] [PubMed]
  24. T. Colomb, S. Krivec, H. Hutter, A. A. Akatay, N. Pavillon, F. Montfort, E. Cuche, J. Kühn, C. Depeursinge, and Y. Emery, “Digital holographic reflectometry,” Opt. Express 18(4), 3719–3731 (2010).
    [Crossref] [PubMed]
  25. D. B. L. Douti, M. Chrayteh, S. Aknoun, T. Doualle, C. Hecquet, S. Monneret, and L. Gallais, “Quantitative phase imaging applied to laser damage detection and analysis,” Appl. Opt. 54(28), 8375–8382 (2015).
    [Crossref] [PubMed]
  26. T. Colomb, F. Dürr, E. Cuche, P. Marquet, H. G. Limberger, R. P. Salathé, and C. Depeursinge, “Polarization microscopy by use of digital holography: application to optical-fiber birefringence measurements,” Appl. Opt. 44(21), 4461–4469 (2005).
    [Crossref] [PubMed]
  27. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
    [Crossref] [PubMed]
  28. B. Kouskousis, D. J. Kitcher, S. Collins, A. Roberts, and G. W. Baxter, “Quantitative phase and refractive index analysis of optical fibers using differential interference contrast microscopy,” Appl. Opt. 47(28), 5182–5189 (2008).
    [Crossref] [PubMed]
  29. A. D. Yablon, “Multi-wavelength optical fiber refractive index profiling by spatially resolved fourier transform spectroscopy,” J. Lightwave Technol. 28(4), 360–364 (2010).
    [Crossref]
  30. A. Crespi, R. Osellame, R. Ramponi, D. J. Brod, E. F. Galvão, N. Spagnolo, C. Vitelli, E. Maiorino, P. Mataloni, and F. Sciarrino, “Integrated multimode interferometers with arbitrary designs for photonic boson sampling,” Nat. Photonics 7(7), 545–549 (2013).
    [Crossref]
  31. R. R. Thomson, T. A. Birks, S. G. Leon-Saval, A. K. Kar, and J. Bland-Hawthorn, “Ultrafast laser inscription of an integrated photonic lantern,” Opt. Express 19(6), 5698–5705 (2011).
    [Crossref] [PubMed]
  32. N. Riesen, S. Gross, J. D. Love, and M. J. Withford, “Femtosecond direct-written integrated mode couplers,” Opt. Express 22(24), 29855–29861 (2014).
    [Crossref] [PubMed]
  33. R. Osellame, S. Taccheo, M. Marangoni, R. Ramponi, P. Laporta, D. Polli, S. De Silvestri, and G. Cerullo, “Femtosecond writing of active optical waveguides with astigmatically shaped beams,” J. Opt. Soc. Am. B 20(7), 1559–1567 (2003).
    [Crossref]
  34. E. D. Barone-Nugent, A. Barty, and K. A. Nugent, “Quantitative phase-amplitude microscopy I: optical microscopy,” J. Microsc. 206(3), 194–203 (2002).
    [Crossref] [PubMed]
  35. J. Primot and N. Guérineau, “Extended hartmann test based on the pseudoguiding property of a hartmann mask completed by a phase chessboard,” Appl. Opt. 39(31), 5715–5720 (2000).
    [Crossref] [PubMed]
  36. J. Primot, “Theoretical description of Shack-Hartmann wave-front sensor,” Opt. Commun. 222(1–6), 81–92 (2003).
    [Crossref]
  37. E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38(34), 6994–7001 (1999).
    [Crossref] [PubMed]
  38. G. Demetriou, J. P. Bérubé, R. Vallée, Y. Messaddeq, C. R. Petersen, D. Jain, O. Bang, C. Craig, D. W. Hewak, and A. K. Kar, “Refractive index and dispersion control of ultrafast laser inscribed waveguides in gallium lanthanum sulphide for near and mid-infrared applications,” Opt. Express 24(6), 6350–6358 (2016).
    [Crossref] [PubMed]
  39. S. A. Lévesque, J. M. Mugnes, E. Bélanger, and P. Marquet, “Sample and substrate preparation for exploring living neurons in culture with quantitative-phase imaging,” Methods 136, 90–107 (2018).
    [Crossref] [PubMed]
  40. S. R. Nagel, J. B. MacChesney, and K. L. Walker, “An Overview of the Modified Chemical Vapor Deposition (MCVD) Process and Performance,” IEEE J. Quantum Electron. 18(4), 459–476 (1982).
    [Crossref]
  41. C. J. Bellair, C. L. Curl, B. E. Allman, P. J. Harris, A. Roberts, L. M. D. Delbridge, and K. A. Nugent, “Quantitative phase amplitude microscopy IV: Imaging thick specimens,” J. Microsc. 214(1), 62–69 (2004).
    [Crossref] [PubMed]
  42. C. Zuo, Q. Chen, W. Qu, and A. Asundi, “High-speed transport-of-intensity phase microscopy with an electrically tunable lens,” Opt. Express 21(20), 24060–24075 (2013).
    [Crossref] [PubMed]
  43. A. Arriola, S. Gross, N. Jovanovic, N. Charles, P. G. Tuthill, S. M. Olaizola, A. Fuerbach, and M. J. Withford, “Low bend loss waveguides enable compact, efficient 3D photonic chips,” Opt. Express 21(3), 2978–2986 (2013).
    [Crossref] [PubMed]
  44. H. Zhang, S. M. Eaton, and P. R. Herman, “Low-loss Type II waveguide writing in fused silica with single picosecond laser pulses,” Opt. Express 14(11), 4826–4834 (2006).
    [Crossref] [PubMed]
  45. J. P. Bérubé, S. H. Messaddeq, M. Bernier, I. Skripachev, Y. Messaddeq, and R. Vallée, “Tailoring the refractive index of Ge-S based glass for 3D embedded waveguides operating in the mid-IR region,” Opt. Express 22(21), 26103–26116 (2014).
    [Crossref] [PubMed]
  46. T. Meany, S. Gross, N. Jovanovic, A. Arriola, M. J. Steel, and M. J. Withford, “Towards low-loss lightwave circuits for non-classical optics at 800 and 1,550 nm,” Appl. Phys., A Mater. Sci. Process. 114(1), 113–118 (2014).
    [Crossref]
  47. R. Osellame, N. Chiodo, V. Maselli, A. Yin, M. Zavelani-Rossi, G. Cerullo, P. Laporta, L. Aiello, S. De Nicola, P. Ferraro, A. Finizio, and G. Pierattini, “Optical properties of waveguides written by a 26 MHz stretched cavity Ti:sapphire femtosecond oscillator,” Opt. Express 13(2), 612–620 (2005).
    [Crossref] [PubMed]
  48. A. Barty, K. A. Nugent, A. Roberts, and D. Paganin, “Quantitative phase tomography,” Opt. Commun. 175(4–6), 329–336 (2000).
    [Crossref]
  49. B. L. Bachim and T. K. Gaylord, “Microinterferometric optical phase tomography for measuring small, asymmetric refractive-index differences in the profiles of optical fibers and fiber devices,” Appl. Opt. 44(3), 316–327 (2005).
    [Crossref] [PubMed]
  50. W. Gorski and W. Osten, “Tomographic imaging of photonic crystal fibers,” Opt. Lett. 32(14), 1977–1979 (2007).
    [Crossref] [PubMed]
  51. T. Kozacki, R. Krajewski, and M. Kujawińska, “Reconstruction of refractive-index distribution in off-axis digital holography optical diffraction tomographic system,” Opt. Express 17(16), 13758–13767 (2009).
    [Crossref] [PubMed]
  52. H. H. Wahba, “Reconstruction of 3D refractive index profiles of PM PANDA optical fiber using digital holographic method,” Opt. Fiber Technol. 20(5), 520–526 (2014).
    [Crossref]

2018 (1)

S. A. Lévesque, J. M. Mugnes, E. Bélanger, and P. Marquet, “Sample and substrate preparation for exploring living neurons in culture with quantitative-phase imaging,” Methods 136, 90–107 (2018).
[Crossref] [PubMed]

2016 (1)

2015 (1)

2014 (4)

N. Riesen, S. Gross, J. D. Love, and M. J. Withford, “Femtosecond direct-written integrated mode couplers,” Opt. Express 22(24), 29855–29861 (2014).
[Crossref] [PubMed]

J. P. Bérubé, S. H. Messaddeq, M. Bernier, I. Skripachev, Y. Messaddeq, and R. Vallée, “Tailoring the refractive index of Ge-S based glass for 3D embedded waveguides operating in the mid-IR region,” Opt. Express 22(21), 26103–26116 (2014).
[Crossref] [PubMed]

T. Meany, S. Gross, N. Jovanovic, A. Arriola, M. J. Steel, and M. J. Withford, “Towards low-loss lightwave circuits for non-classical optics at 800 and 1,550 nm,” Appl. Phys., A Mater. Sci. Process. 114(1), 113–118 (2014).
[Crossref]

H. H. Wahba, “Reconstruction of 3D refractive index profiles of PM PANDA optical fiber using digital holographic method,” Opt. Fiber Technol. 20(5), 520–526 (2014).
[Crossref]

2013 (5)

2011 (3)

2010 (3)

2009 (2)

2008 (4)

2007 (3)

M. Hughes, W. Yang, and D. Hewak, “Fabrication and characterization of femtosecond laser written waveguides in chalcogenide glass,” Appl. Phys. Lett. 90(13), 131113 (2007).
[Crossref]

B. Kemper, S. Kosmeier, P. Langehanenberg, G. von Bally, I. Bredebusch, W. Domschke, and J. Schnekenburger, “Integral refractive index determination of living suspension cells by multifocus digital holographic phase contrast microscopy,” J. Biomed. Opt. 12(5), 054009 (2007).
[Crossref] [PubMed]

W. Gorski and W. Osten, “Tomographic imaging of photonic crystal fibers,” Opt. Lett. 32(14), 1977–1979 (2007).
[Crossref] [PubMed]

2006 (5)

2005 (7)

T. Colomb, F. Dürr, E. Cuche, P. Marquet, H. G. Limberger, R. P. Salathé, and C. Depeursinge, “Polarization microscopy by use of digital holography: application to optical-fiber birefringence measurements,” Appl. Opt. 44(21), 4461–4469 (2005).
[Crossref] [PubMed]

E. Ampem-Lassen, S. T. Huntington, N. M. Dragomir, K. A. Nugent, and A. Roberts, “Refractive index profiling of axially symmetric optical fibers: a new technique,” Opt. Express 13(9), 3277–3282 (2005).
[Crossref] [PubMed]

V. R. Bhardwaj, E. Simova, P. B. Corkum, D. M. Rayner, C. Hnatovsky, R. S. Taylor, B. Schreder, M. Kluge, and J. Zimmer, “Femtosecond laser-induced refractive index modification in multicomponent glasses,” J. Appl. Phys. 97(8), 083102 (2005).
[Crossref]

P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30(5), 468–470 (2005).
[Crossref] [PubMed]

B. Rappaz, P. Marquet, E. Cuche, Y. Emery, C. Depeursinge, and P. Magistretti, “Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy,” Opt. Express 13(23), 9361–9373 (2005).
[Crossref] [PubMed]

B. L. Bachim and T. K. Gaylord, “Microinterferometric optical phase tomography for measuring small, asymmetric refractive-index differences in the profiles of optical fibers and fiber devices,” Appl. Opt. 44(3), 316–327 (2005).
[Crossref] [PubMed]

R. Osellame, N. Chiodo, V. Maselli, A. Yin, M. Zavelani-Rossi, G. Cerullo, P. Laporta, L. Aiello, S. De Nicola, P. Ferraro, A. Finizio, and G. Pierattini, “Optical properties of waveguides written by a 26 MHz stretched cavity Ti:sapphire femtosecond oscillator,” Opt. Express 13(2), 612–620 (2005).
[Crossref] [PubMed]

2004 (2)

C. J. Bellair, C. L. Curl, B. E. Allman, P. J. Harris, A. Roberts, L. M. D. Delbridge, and K. A. Nugent, “Quantitative phase amplitude microscopy IV: Imaging thick specimens,” J. Microsc. 214(1), 62–69 (2004).
[Crossref] [PubMed]

G. Coppola, P. Ferraro, M. Iodice, S. De Nicola, A. Finizio, and S. Grilli, “A digital holographic microscope for complete characterization of microelectromechanical systems,” Meas. Sci. Technol. 15(3), 529–539 (2004).
[Crossref]

2003 (2)

2002 (2)

2000 (2)

1999 (1)

1998 (1)

1996 (1)

1982 (1)

S. R. Nagel, J. B. MacChesney, and K. L. Walker, “An Overview of the Modified Chemical Vapor Deposition (MCVD) Process and Performance,” IEEE J. Quantum Electron. 18(4), 459–476 (1982).
[Crossref]

1981 (1)

Aiello, L.

Akatay, A. A.

Aknoun, S.

Alferi, D.

Allman, B. E.

C. J. Bellair, C. L. Curl, B. E. Allman, P. J. Harris, A. Roberts, L. M. D. Delbridge, and K. A. Nugent, “Quantitative phase amplitude microscopy IV: Imaging thick specimens,” J. Microsc. 214(1), 62–69 (2004).
[Crossref] [PubMed]

Allsop, T.

Altmeyer, S.

Ampem-Lassen, E.

Arriola, A.

T. Meany, S. Gross, N. Jovanovic, A. Arriola, M. J. Steel, and M. J. Withford, “Towards low-loss lightwave circuits for non-classical optics at 800 and 1,550 nm,” Appl. Phys., A Mater. Sci. Process. 114(1), 113–118 (2014).
[Crossref]

A. Arriola, S. Gross, N. Jovanovic, N. Charles, P. G. Tuthill, S. M. Olaizola, A. Fuerbach, and M. J. Withford, “Low bend loss waveguides enable compact, efficient 3D photonic chips,” Opt. Express 21(3), 2978–2986 (2013).
[Crossref] [PubMed]

Asundi, A.

Bachim, B. L.

Bang, O.

Barone-Nugent, E. D.

E. D. Barone-Nugent, A. Barty, and K. A. Nugent, “Quantitative phase-amplitude microscopy I: optical microscopy,” J. Microsc. 206(3), 194–203 (2002).
[Crossref] [PubMed]

Barty, A.

Baxter, G. W.

Bélanger, E.

S. A. Lévesque, J. M. Mugnes, E. Bélanger, and P. Marquet, “Sample and substrate preparation for exploring living neurons in culture with quantitative-phase imaging,” Methods 136, 90–107 (2018).
[Crossref] [PubMed]

Bellair, C. J.

C. J. Bellair, C. L. Curl, B. E. Allman, P. J. Harris, A. Roberts, L. M. D. Delbridge, and K. A. Nugent, “Quantitative phase amplitude microscopy IV: Imaging thick specimens,” J. Microsc. 214(1), 62–69 (2004).
[Crossref] [PubMed]

Bennion, I.

Bernier, M.

Bérubé, J. P.

Bhardwaj, V. R.

V. R. Bhardwaj, E. Simova, P. B. Corkum, D. M. Rayner, C. Hnatovsky, R. S. Taylor, B. Schreder, M. Kluge, and J. Zimmer, “Femtosecond laser-induced refractive index modification in multicomponent glasses,” J. Appl. Phys. 97(8), 083102 (2005).
[Crossref]

Birks, T. A.

Bland-Hawthorn, J.

Bon, P.

Bredebusch, I.

B. Kemper, S. Kosmeier, P. Langehanenberg, G. von Bally, I. Bredebusch, W. Domschke, and J. Schnekenburger, “Integral refractive index determination of living suspension cells by multifocus digital holographic phase contrast microscopy,” J. Biomed. Opt. 12(5), 054009 (2007).
[Crossref] [PubMed]

Brod, D. J.

A. Crespi, R. Osellame, R. Ramponi, D. J. Brod, E. F. Galvão, N. Spagnolo, C. Vitelli, E. Maiorino, P. Mataloni, and F. Sciarrino, “Integrated multimode interferometers with arbitrary designs for photonic boson sampling,” Nat. Photonics 7(7), 545–549 (2013).
[Crossref]

Cerullo, G.

Charles, N.

Charrière, F.

Chen, Q.

Chiodo, N.

Chrayteh, M.

Collins, S.

Colomb, T.

Coppola, G.

G. Coppola, P. Ferraro, M. Iodice, S. De Nicola, A. Finizio, and S. Grilli, “A digital holographic microscope for complete characterization of microelectromechanical systems,” Meas. Sci. Technol. 15(3), 529–539 (2004).
[Crossref]

Corkum, P. B.

V. R. Bhardwaj, E. Simova, P. B. Corkum, D. M. Rayner, C. Hnatovsky, R. S. Taylor, B. Schreder, M. Kluge, and J. Zimmer, “Femtosecond laser-induced refractive index modification in multicomponent glasses,” J. Appl. Phys. 97(8), 083102 (2005).
[Crossref]

Craig, C.

Crespi, A.

A. Crespi, R. Osellame, R. Ramponi, D. J. Brod, E. F. Galvão, N. Spagnolo, C. Vitelli, E. Maiorino, P. Mataloni, and F. Sciarrino, “Integrated multimode interferometers with arbitrary designs for photonic boson sampling,” Nat. Photonics 7(7), 545–549 (2013).
[Crossref]

Cuche, E.

T. Colomb, S. Krivec, H. Hutter, A. A. Akatay, N. Pavillon, F. Montfort, E. Cuche, J. Kühn, C. Depeursinge, and Y. Emery, “Digital holographic reflectometry,” Opt. Express 18(4), 3719–3731 (2010).
[Crossref] [PubMed]

F. Charrière, J. Kühn, T. Colomb, F. Montfort, E. Cuche, Y. Emery, K. Weible, P. Marquet, and C. Depeursinge, “Characterization of microlenses by digital holographic microscopy,” Appl. Opt. 45(5), 829–835 (2006).
[Crossref] [PubMed]

B. Rappaz, P. Marquet, E. Cuche, Y. Emery, C. Depeursinge, and P. Magistretti, “Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy,” Opt. Express 13(23), 9361–9373 (2005).
[Crossref] [PubMed]

T. Colomb, F. Dürr, E. Cuche, P. Marquet, H. G. Limberger, R. P. Salathé, and C. Depeursinge, “Polarization microscopy by use of digital holography: application to optical-fiber birefringence measurements,” Appl. Opt. 44(21), 4461–4469 (2005).
[Crossref] [PubMed]

P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30(5), 468–470 (2005).
[Crossref] [PubMed]

E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38(34), 6994–7001 (1999).
[Crossref] [PubMed]

Curl, C. L.

C. J. Bellair, C. L. Curl, B. E. Allman, P. J. Harris, A. Roberts, L. M. D. Delbridge, and K. A. Nugent, “Quantitative phase amplitude microscopy IV: Imaging thick specimens,” J. Microsc. 214(1), 62–69 (2004).
[Crossref] [PubMed]

Dasari, R. R.

Davis, K. M.

De Nicola, S.

De Petrocellis, L.

De Silvestri, S.

Delbridge, L. M. D.

C. J. Bellair, C. L. Curl, B. E. Allman, P. J. Harris, A. Roberts, L. M. D. Delbridge, and K. A. Nugent, “Quantitative phase amplitude microscopy IV: Imaging thick specimens,” J. Microsc. 214(1), 62–69 (2004).
[Crossref] [PubMed]

Demetriou, G.

Depeursinge, C.

T. Colomb, S. Krivec, H. Hutter, A. A. Akatay, N. Pavillon, F. Montfort, E. Cuche, J. Kühn, C. Depeursinge, and Y. Emery, “Digital holographic reflectometry,” Opt. Express 18(4), 3719–3731 (2010).
[Crossref] [PubMed]

F. Charrière, J. Kühn, T. Colomb, F. Montfort, E. Cuche, Y. Emery, K. Weible, P. Marquet, and C. Depeursinge, “Characterization of microlenses by digital holographic microscopy,” Appl. Opt. 45(5), 829–835 (2006).
[Crossref] [PubMed]

B. Rappaz, P. Marquet, E. Cuche, Y. Emery, C. Depeursinge, and P. Magistretti, “Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy,” Opt. Express 13(23), 9361–9373 (2005).
[Crossref] [PubMed]

T. Colomb, F. Dürr, E. Cuche, P. Marquet, H. G. Limberger, R. P. Salathé, and C. Depeursinge, “Polarization microscopy by use of digital holography: application to optical-fiber birefringence measurements,” Appl. Opt. 44(21), 4461–4469 (2005).
[Crossref] [PubMed]

P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30(5), 468–470 (2005).
[Crossref] [PubMed]

E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38(34), 6994–7001 (1999).
[Crossref] [PubMed]

Ding, H.

Dirksen, D.

Domschke, W.

B. Kemper, S. Kosmeier, P. Langehanenberg, G. von Bally, I. Bredebusch, W. Domschke, and J. Schnekenburger, “Integral refractive index determination of living suspension cells by multifocus digital holographic phase contrast microscopy,” J. Biomed. Opt. 12(5), 054009 (2007).
[Crossref] [PubMed]

Doualle, T.

Douti, D. B. L.

Dragomir, N. M.

Dubov, M.

Dunet, G.

Dürr, F.

Eaton, S. M.

Emery, Y.

Feld, M. S.

Ferraro, P.

Finizio, A.

Frank, J.

Fuerbach, A.

Gallais, L.

Galvão, E. F.

A. Crespi, R. Osellame, R. Ramponi, D. J. Brod, E. F. Galvão, N. Spagnolo, C. Vitelli, E. Maiorino, P. Mataloni, and F. Sciarrino, “Integrated multimode interferometers with arbitrary designs for photonic boson sampling,” Nat. Photonics 7(7), 545–549 (2013).
[Crossref]

Gaylord, T. K.

Gillette, M. U.

Gorski, W.

Grilli, S.

G. Coppola, P. Ferraro, M. Iodice, S. De Nicola, A. Finizio, and S. Grilli, “A digital holographic microscope for complete characterization of microelectromechanical systems,” Meas. Sci. Technol. 15(3), 529–539 (2004).
[Crossref]

Gross, S.

Guérineau, N.

Haïdar, R.

Harris, P. J.

C. J. Bellair, C. L. Curl, B. E. Allman, P. J. Harris, A. Roberts, L. M. D. Delbridge, and K. A. Nugent, “Quantitative phase amplitude microscopy IV: Imaging thick specimens,” J. Microsc. 214(1), 62–69 (2004).
[Crossref] [PubMed]

Hecquet, C.

Herman, P. R.

Hewak, D.

M. Hughes, W. Yang, and D. Hewak, “Fabrication and characterization of femtosecond laser written waveguides in chalcogenide glass,” Appl. Phys. Lett. 90(13), 131113 (2007).
[Crossref]

Hewak, D. W.

Hirao, K.

Hnatovsky, C.

V. R. Bhardwaj, E. Simova, P. B. Corkum, D. M. Rayner, C. Hnatovsky, R. S. Taylor, B. Schreder, M. Kluge, and J. Zimmer, “Femtosecond laser-induced refractive index modification in multicomponent glasses,” J. Appl. Phys. 97(8), 083102 (2005).
[Crossref]

Horstmann, J.

Hoshiba, T.

Hughes, M.

M. Hughes, W. Yang, and D. Hewak, “Fabrication and characterization of femtosecond laser written waveguides in chalcogenide glass,” Appl. Phys. Lett. 90(13), 131113 (2007).
[Crossref]

Huntington, S. T.

Hutter, H.

Ikeda, T.

Iodice, M.

G. Coppola, P. Ferraro, M. Iodice, S. De Nicola, A. Finizio, and S. Grilli, “A digital holographic microscope for complete characterization of microelectromechanical systems,” Meas. Sci. Technol. 15(3), 529–539 (2004).
[Crossref]

Jain, D.

Javidi, B.

Jovanovic, N.

T. Meany, S. Gross, N. Jovanovic, A. Arriola, M. J. Steel, and M. J. Withford, “Towards low-loss lightwave circuits for non-classical optics at 800 and 1,550 nm,” Appl. Phys., A Mater. Sci. Process. 114(1), 113–118 (2014).
[Crossref]

A. Arriola, S. Gross, N. Jovanovic, N. Charles, P. G. Tuthill, S. M. Olaizola, A. Fuerbach, and M. J. Withford, “Low bend loss waveguides enable compact, efficient 3D photonic chips,” Opt. Express 21(3), 2978–2986 (2013).
[Crossref] [PubMed]

Kar, A. K.

Kemper, B.

P. Langehanenberg, B. Kemper, D. Dirksen, and G. von Bally, “Autofocusing in digital holographic phase contrast microscopy on pure phase objects for live cell imaging,” Appl. Opt. 47(19), D176–D182 (2008).
[Crossref] [PubMed]

B. Kemper and G. von Bally, “Digital holographic microscopy for live cell applications and technical inspection,” Appl. Opt. 47(4), A52–A61 (2008).
[Crossref] [PubMed]

B. Kemper, S. Kosmeier, P. Langehanenberg, G. von Bally, I. Bredebusch, W. Domschke, and J. Schnekenburger, “Integral refractive index determination of living suspension cells by multifocus digital holographic phase contrast microscopy,” J. Biomed. Opt. 12(5), 054009 (2007).
[Crossref] [PubMed]

Kitcher, D. J.

Kluge, M.

V. R. Bhardwaj, E. Simova, P. B. Corkum, D. M. Rayner, C. Hnatovsky, R. S. Taylor, B. Schreder, M. Kluge, and J. Zimmer, “Femtosecond laser-induced refractive index modification in multicomponent glasses,” J. Appl. Phys. 97(8), 083102 (2005).
[Crossref]

Kosmeier, S.

B. Kemper, S. Kosmeier, P. Langehanenberg, G. von Bally, I. Bredebusch, W. Domschke, and J. Schnekenburger, “Integral refractive index determination of living suspension cells by multifocus digital holographic phase contrast microscopy,” J. Biomed. Opt. 12(5), 054009 (2007).
[Crossref] [PubMed]

Kouskousis, B.

Kozacki, T.

Krajewski, R.

Krivec, S.

Kühn, J.

Kujawinska, M.

Langehanenberg, P.

P. Langehanenberg, B. Kemper, D. Dirksen, and G. von Bally, “Autofocusing in digital holographic phase contrast microscopy on pure phase objects for live cell imaging,” Appl. Opt. 47(19), D176–D182 (2008).
[Crossref] [PubMed]

B. Kemper, S. Kosmeier, P. Langehanenberg, G. von Bally, I. Bredebusch, W. Domschke, and J. Schnekenburger, “Integral refractive index determination of living suspension cells by multifocus digital holographic phase contrast microscopy,” J. Biomed. Opt. 12(5), 054009 (2007).
[Crossref] [PubMed]

Laporta, P.

Leon-Saval, S. G.

Lévesque, S. A.

S. A. Lévesque, J. M. Mugnes, E. Bélanger, and P. Marquet, “Sample and substrate preparation for exploring living neurons in culture with quantitative-phase imaging,” Methods 136, 90–107 (2018).
[Crossref] [PubMed]

Limberger, H. G.

Love, J. D.

MacChesney, J. B.

S. R. Nagel, J. B. MacChesney, and K. L. Walker, “An Overview of the Modified Chemical Vapor Deposition (MCVD) Process and Performance,” IEEE J. Quantum Electron. 18(4), 459–476 (1982).
[Crossref]

Magistretti, P.

Magistretti, P. J.

Maiorino, E.

A. Crespi, R. Osellame, R. Ramponi, D. J. Brod, E. F. Galvão, N. Spagnolo, C. Vitelli, E. Maiorino, P. Mataloni, and F. Sciarrino, “Integrated multimode interferometers with arbitrary designs for photonic boson sampling,” Nat. Photonics 7(7), 545–549 (2013).
[Crossref]

Marangoni, M.

Marquet, P.

S. A. Lévesque, J. M. Mugnes, E. Bélanger, and P. Marquet, “Sample and substrate preparation for exploring living neurons in culture with quantitative-phase imaging,” Methods 136, 90–107 (2018).
[Crossref] [PubMed]

F. Charrière, J. Kühn, T. Colomb, F. Montfort, E. Cuche, Y. Emery, K. Weible, P. Marquet, and C. Depeursinge, “Characterization of microlenses by digital holographic microscopy,” Appl. Opt. 45(5), 829–835 (2006).
[Crossref] [PubMed]

B. Rappaz, P. Marquet, E. Cuche, Y. Emery, C. Depeursinge, and P. Magistretti, “Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy,” Opt. Express 13(23), 9361–9373 (2005).
[Crossref] [PubMed]

T. Colomb, F. Dürr, E. Cuche, P. Marquet, H. G. Limberger, R. P. Salathé, and C. Depeursinge, “Polarization microscopy by use of digital holography: application to optical-fiber birefringence measurements,” Appl. Opt. 44(21), 4461–4469 (2005).
[Crossref] [PubMed]

P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30(5), 468–470 (2005).
[Crossref] [PubMed]

E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38(34), 6994–7001 (1999).
[Crossref] [PubMed]

Maselli, V.

Mataloni, P.

A. Crespi, R. Osellame, R. Ramponi, D. J. Brod, E. F. Galvão, N. Spagnolo, C. Vitelli, E. Maiorino, P. Mataloni, and F. Sciarrino, “Integrated multimode interferometers with arbitrary designs for photonic boson sampling,” Nat. Photonics 7(7), 545–549 (2013).
[Crossref]

Matrisch, J.

Maucort, G.

Meany, T.

T. Meany, S. Gross, N. Jovanovic, A. Arriola, M. J. Steel, and M. J. Withford, “Towards low-loss lightwave circuits for non-classical optics at 800 and 1,550 nm,” Appl. Phys., A Mater. Sci. Process. 114(1), 113–118 (2014).
[Crossref]

Messaddeq, S. H.

Messaddeq, Y.

Mezentsev, V.

Millet, L.

Mir, M.

Miura, K.

Monneret, S.

Montfort, F.

Mugnes, J. M.

S. A. Lévesque, J. M. Mugnes, E. Bélanger, and P. Marquet, “Sample and substrate preparation for exploring living neurons in culture with quantitative-phase imaging,” Methods 136, 90–107 (2018).
[Crossref] [PubMed]

Nagel, S. R.

S. R. Nagel, J. B. MacChesney, and K. L. Walker, “An Overview of the Modified Chemical Vapor Deposition (MCVD) Process and Performance,” IEEE J. Quantum Electron. 18(4), 459–476 (1982).
[Crossref]

Nugent, K. A.

E. Ampem-Lassen, S. T. Huntington, N. M. Dragomir, K. A. Nugent, and A. Roberts, “Refractive index profiling of axially symmetric optical fibers: a new technique,” Opt. Express 13(9), 3277–3282 (2005).
[Crossref] [PubMed]

C. J. Bellair, C. L. Curl, B. E. Allman, P. J. Harris, A. Roberts, L. M. D. Delbridge, and K. A. Nugent, “Quantitative phase amplitude microscopy IV: Imaging thick specimens,” J. Microsc. 214(1), 62–69 (2004).
[Crossref] [PubMed]

E. D. Barone-Nugent, A. Barty, and K. A. Nugent, “Quantitative phase-amplitude microscopy I: optical microscopy,” J. Microsc. 206(3), 194–203 (2002).
[Crossref] [PubMed]

A. Roberts, E. Ampem-Lassen, A. Barty, K. A. Nugent, G. W. Baxter, N. M. Dragomir, and S. T. Huntington, “Refractive-index profiling of optical fibers with axial symmetry by use of quantitative phase microscopy,” Opt. Lett. 27(23), 2061–2063 (2002).
[Crossref] [PubMed]

A. Barty, K. A. Nugent, A. Roberts, and D. Paganin, “Quantitative phase tomography,” Opt. Commun. 175(4–6), 329–336 (2000).
[Crossref]

A. Barty, K. A. Nugent, D. Paganin, and A. Roberts, “Quantitative optical phase microscopy,” Opt. Lett. 23(11), 817–819 (1998).
[Crossref] [PubMed]

Olaizola, S. M.

Osellame, R.

Osten, W.

Paganin, D.

A. Barty, K. A. Nugent, A. Roberts, and D. Paganin, “Quantitative phase tomography,” Opt. Commun. 175(4–6), 329–336 (2000).
[Crossref]

A. Barty, K. A. Nugent, D. Paganin, and A. Roberts, “Quantitative optical phase microscopy,” Opt. Lett. 23(11), 817–819 (1998).
[Crossref] [PubMed]

Pavillon, N.

Peng, J. L.

Petersen, C. R.

Pierattini, G.

Polli, D.

Popescu, G.

Primot, J.

Qu, W.

Ramponi, R.

A. Crespi, R. Osellame, R. Ramponi, D. J. Brod, E. F. Galvão, N. Spagnolo, C. Vitelli, E. Maiorino, P. Mataloni, and F. Sciarrino, “Integrated multimode interferometers with arbitrary designs for photonic boson sampling,” Nat. Photonics 7(7), 545–549 (2013).
[Crossref]

R. Osellame, S. Taccheo, M. Marangoni, R. Ramponi, P. Laporta, D. Polli, S. De Silvestri, and G. Cerullo, “Femtosecond writing of active optical waveguides with astigmatically shaped beams,” J. Opt. Soc. Am. B 20(7), 1559–1567 (2003).
[Crossref]

Rappaz, B.

Rayner, D. M.

V. R. Bhardwaj, E. Simova, P. B. Corkum, D. M. Rayner, C. Hnatovsky, R. S. Taylor, B. Schreder, M. Kluge, and J. Zimmer, “Femtosecond laser-induced refractive index modification in multicomponent glasses,” J. Appl. Phys. 97(8), 083102 (2005).
[Crossref]

Riesen, N.

Roberts, A.

E. Ampem-Lassen, F. Sidiroglou, J. L. Peng, S. T. Huntington, and A. Roberts, “Index mapping for fibres with symmetric and asymmetric refractive index profiles,” Opt. Express 16(15), 10912–10917 (2008).
[Crossref] [PubMed]

B. Kouskousis, D. J. Kitcher, S. Collins, A. Roberts, and G. W. Baxter, “Quantitative phase and refractive index analysis of optical fibers using differential interference contrast microscopy,” Appl. Opt. 47(28), 5182–5189 (2008).
[Crossref] [PubMed]

E. Ampem-Lassen, S. T. Huntington, N. M. Dragomir, K. A. Nugent, and A. Roberts, “Refractive index profiling of axially symmetric optical fibers: a new technique,” Opt. Express 13(9), 3277–3282 (2005).
[Crossref] [PubMed]

C. J. Bellair, C. L. Curl, B. E. Allman, P. J. Harris, A. Roberts, L. M. D. Delbridge, and K. A. Nugent, “Quantitative phase amplitude microscopy IV: Imaging thick specimens,” J. Microsc. 214(1), 62–69 (2004).
[Crossref] [PubMed]

A. Roberts, E. Ampem-Lassen, A. Barty, K. A. Nugent, G. W. Baxter, N. M. Dragomir, and S. T. Huntington, “Refractive-index profiling of optical fibers with axial symmetry by use of quantitative phase microscopy,” Opt. Lett. 27(23), 2061–2063 (2002).
[Crossref] [PubMed]

A. Barty, K. A. Nugent, A. Roberts, and D. Paganin, “Quantitative phase tomography,” Opt. Commun. 175(4–6), 329–336 (2000).
[Crossref]

A. Barty, K. A. Nugent, D. Paganin, and A. Roberts, “Quantitative optical phase microscopy,” Opt. Lett. 23(11), 817–819 (1998).
[Crossref] [PubMed]

Rogers, J.

Rommeluère, S.

Salathé, R. P.

Saunders, M. J.

Schnekenburger, J.

B. Kemper, S. Kosmeier, P. Langehanenberg, G. von Bally, I. Bredebusch, W. Domschke, and J. Schnekenburger, “Integral refractive index determination of living suspension cells by multifocus digital holographic phase contrast microscopy,” J. Biomed. Opt. 12(5), 054009 (2007).
[Crossref] [PubMed]

Schreder, B.

V. R. Bhardwaj, E. Simova, P. B. Corkum, D. M. Rayner, C. Hnatovsky, R. S. Taylor, B. Schreder, M. Kluge, and J. Zimmer, “Femtosecond laser-induced refractive index modification in multicomponent glasses,” J. Appl. Phys. 97(8), 083102 (2005).
[Crossref]

Sciarrino, F.

A. Crespi, R. Osellame, R. Ramponi, D. J. Brod, E. F. Galvão, N. Spagnolo, C. Vitelli, E. Maiorino, P. Mataloni, and F. Sciarrino, “Integrated multimode interferometers with arbitrary designs for photonic boson sampling,” Nat. Photonics 7(7), 545–549 (2013).
[Crossref]

Sidiroglou, F.

Simova, E.

V. R. Bhardwaj, E. Simova, P. B. Corkum, D. M. Rayner, C. Hnatovsky, R. S. Taylor, B. Schreder, M. Kluge, and J. Zimmer, “Femtosecond laser-induced refractive index modification in multicomponent glasses,” J. Appl. Phys. 97(8), 083102 (2005).
[Crossref]

Skripachev, I.

Spagnolo, N.

A. Crespi, R. Osellame, R. Ramponi, D. J. Brod, E. F. Galvão, N. Spagnolo, C. Vitelli, E. Maiorino, P. Mataloni, and F. Sciarrino, “Integrated multimode interferometers with arbitrary designs for photonic boson sampling,” Nat. Photonics 7(7), 545–549 (2013).
[Crossref]

Steel, M. J.

T. Meany, S. Gross, N. Jovanovic, A. Arriola, M. J. Steel, and M. J. Withford, “Towards low-loss lightwave circuits for non-classical optics at 800 and 1,550 nm,” Appl. Phys., A Mater. Sci. Process. 114(1), 113–118 (2014).
[Crossref]

Sugimoto, N.

Taccheo, S.

Tauvy, M.

Taylor, R. S.

V. R. Bhardwaj, E. Simova, P. B. Corkum, D. M. Rayner, C. Hnatovsky, R. S. Taylor, B. Schreder, M. Kluge, and J. Zimmer, “Femtosecond laser-induced refractive index modification in multicomponent glasses,” J. Appl. Phys. 97(8), 083102 (2005).
[Crossref]

Thétas, S.

Thomson, R. R.

Tuthill, P. G.

Unarunotai, S.

Vallée, R.

Velghe, S.

Vitelli, C.

A. Crespi, R. Osellame, R. Ramponi, D. J. Brod, E. F. Galvão, N. Spagnolo, C. Vitelli, E. Maiorino, P. Mataloni, and F. Sciarrino, “Integrated multimode interferometers with arbitrary designs for photonic boson sampling,” Nat. Photonics 7(7), 545–549 (2013).
[Crossref]

von Bally, G.

B. Kemper and G. von Bally, “Digital holographic microscopy for live cell applications and technical inspection,” Appl. Opt. 47(4), A52–A61 (2008).
[Crossref] [PubMed]

P. Langehanenberg, B. Kemper, D. Dirksen, and G. von Bally, “Autofocusing in digital holographic phase contrast microscopy on pure phase objects for live cell imaging,” Appl. Opt. 47(19), D176–D182 (2008).
[Crossref] [PubMed]

B. Kemper, S. Kosmeier, P. Langehanenberg, G. von Bally, I. Bredebusch, W. Domschke, and J. Schnekenburger, “Integral refractive index determination of living suspension cells by multifocus digital holographic phase contrast microscopy,” J. Biomed. Opt. 12(5), 054009 (2007).
[Crossref] [PubMed]

Wahba, H. H.

H. H. Wahba, “Reconstruction of 3D refractive index profiles of PM PANDA optical fiber using digital holographic method,” Opt. Fiber Technol. 20(5), 520–526 (2014).
[Crossref]

Walker, K. L.

S. R. Nagel, J. B. MacChesney, and K. L. Walker, “An Overview of the Modified Chemical Vapor Deposition (MCVD) Process and Performance,” IEEE J. Quantum Electron. 18(4), 459–476 (1982).
[Crossref]

Wang, Z.

Watanabe, E.

Wattellier, B.

Weible, K.

Wernicke, G.

Withford, M. J.

Yablon, A. D.

Yang, W.

M. Hughes, W. Yang, and D. Hewak, “Fabrication and characterization of femtosecond laser written waveguides in chalcogenide glass,” Appl. Phys. Lett. 90(13), 131113 (2007).
[Crossref]

Yin, A.

Zavelani-Rossi, M.

Zhang, H.

Zimmer, J.

V. R. Bhardwaj, E. Simova, P. B. Corkum, D. M. Rayner, C. Hnatovsky, R. S. Taylor, B. Schreder, M. Kluge, and J. Zimmer, “Femtosecond laser-induced refractive index modification in multicomponent glasses,” J. Appl. Phys. 97(8), 083102 (2005).
[Crossref]

Zuo, C.

Appl. Opt. (13)

M. J. Saunders, “Optical fiber profiles using the refracted near-field technique: a comparison with other methods,” Appl. Opt. 20(9), 1645–1651 (1981).
[Crossref] [PubMed]

J. Frank, J. Matrisch, J. Horstmann, S. Altmeyer, and G. Wernicke, “Refractive index determination of transparent samples by noniterative phase retrieval,” Appl. Opt. 50(4), 427–433 (2011).
[Crossref] [PubMed]

T. Allsop, M. Dubov, V. Mezentsev, and I. Bennion, “Inscription and characterization of waveguides written into borosilicate glass by a high-repetition-rate femtosecond laser at 800 nm,” Appl. Opt. 49(10), 1938–1950 (2010).
[Crossref] [PubMed]

P. Langehanenberg, B. Kemper, D. Dirksen, and G. von Bally, “Autofocusing in digital holographic phase contrast microscopy on pure phase objects for live cell imaging,” Appl. Opt. 47(19), D176–D182 (2008).
[Crossref] [PubMed]

F. Charrière, J. Kühn, T. Colomb, F. Montfort, E. Cuche, Y. Emery, K. Weible, P. Marquet, and C. Depeursinge, “Characterization of microlenses by digital holographic microscopy,” Appl. Opt. 45(5), 829–835 (2006).
[Crossref] [PubMed]

S. Velghe, R. Haïdar, N. Guérineau, M. Tauvy, S. Rommeluère, S. Thétas, G. Dunet, and J. Primot, “In situ optical testing of infrared lenses for high-performance cameras,” Appl. Opt. 45(23), 5903–5909 (2006).
[Crossref] [PubMed]

B. Kemper and G. von Bally, “Digital holographic microscopy for live cell applications and technical inspection,” Appl. Opt. 47(4), A52–A61 (2008).
[Crossref] [PubMed]

B. Kouskousis, D. J. Kitcher, S. Collins, A. Roberts, and G. W. Baxter, “Quantitative phase and refractive index analysis of optical fibers using differential interference contrast microscopy,” Appl. Opt. 47(28), 5182–5189 (2008).
[Crossref] [PubMed]

D. B. L. Douti, M. Chrayteh, S. Aknoun, T. Doualle, C. Hecquet, S. Monneret, and L. Gallais, “Quantitative phase imaging applied to laser damage detection and analysis,” Appl. Opt. 54(28), 8375–8382 (2015).
[Crossref] [PubMed]

T. Colomb, F. Dürr, E. Cuche, P. Marquet, H. G. Limberger, R. P. Salathé, and C. Depeursinge, “Polarization microscopy by use of digital holography: application to optical-fiber birefringence measurements,” Appl. Opt. 44(21), 4461–4469 (2005).
[Crossref] [PubMed]

J. Primot and N. Guérineau, “Extended hartmann test based on the pseudoguiding property of a hartmann mask completed by a phase chessboard,” Appl. Opt. 39(31), 5715–5720 (2000).
[Crossref] [PubMed]

E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38(34), 6994–7001 (1999).
[Crossref] [PubMed]

B. L. Bachim and T. K. Gaylord, “Microinterferometric optical phase tomography for measuring small, asymmetric refractive-index differences in the profiles of optical fibers and fiber devices,” Appl. Opt. 44(3), 316–327 (2005).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

M. Hughes, W. Yang, and D. Hewak, “Fabrication and characterization of femtosecond laser written waveguides in chalcogenide glass,” Appl. Phys. Lett. 90(13), 131113 (2007).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

T. Meany, S. Gross, N. Jovanovic, A. Arriola, M. J. Steel, and M. J. Withford, “Towards low-loss lightwave circuits for non-classical optics at 800 and 1,550 nm,” Appl. Phys., A Mater. Sci. Process. 114(1), 113–118 (2014).
[Crossref]

IEEE J. Quantum Electron. (1)

S. R. Nagel, J. B. MacChesney, and K. L. Walker, “An Overview of the Modified Chemical Vapor Deposition (MCVD) Process and Performance,” IEEE J. Quantum Electron. 18(4), 459–476 (1982).
[Crossref]

J. Appl. Phys. (1)

V. R. Bhardwaj, E. Simova, P. B. Corkum, D. M. Rayner, C. Hnatovsky, R. S. Taylor, B. Schreder, M. Kluge, and J. Zimmer, “Femtosecond laser-induced refractive index modification in multicomponent glasses,” J. Appl. Phys. 97(8), 083102 (2005).
[Crossref]

J. Biomed. Opt. (1)

B. Kemper, S. Kosmeier, P. Langehanenberg, G. von Bally, I. Bredebusch, W. Domschke, and J. Schnekenburger, “Integral refractive index determination of living suspension cells by multifocus digital holographic phase contrast microscopy,” J. Biomed. Opt. 12(5), 054009 (2007).
[Crossref] [PubMed]

J. Lightwave Technol. (1)

J. Microsc. (2)

E. D. Barone-Nugent, A. Barty, and K. A. Nugent, “Quantitative phase-amplitude microscopy I: optical microscopy,” J. Microsc. 206(3), 194–203 (2002).
[Crossref] [PubMed]

C. J. Bellair, C. L. Curl, B. E. Allman, P. J. Harris, A. Roberts, L. M. D. Delbridge, and K. A. Nugent, “Quantitative phase amplitude microscopy IV: Imaging thick specimens,” J. Microsc. 214(1), 62–69 (2004).
[Crossref] [PubMed]

J. Opt. Soc. Am. B (1)

Meas. Sci. Technol. (1)

G. Coppola, P. Ferraro, M. Iodice, S. De Nicola, A. Finizio, and S. Grilli, “A digital holographic microscope for complete characterization of microelectromechanical systems,” Meas. Sci. Technol. 15(3), 529–539 (2004).
[Crossref]

Methods (1)

S. A. Lévesque, J. M. Mugnes, E. Bélanger, and P. Marquet, “Sample and substrate preparation for exploring living neurons in culture with quantitative-phase imaging,” Methods 136, 90–107 (2018).
[Crossref] [PubMed]

Nat. Photonics (1)

A. Crespi, R. Osellame, R. Ramponi, D. J. Brod, E. F. Galvão, N. Spagnolo, C. Vitelli, E. Maiorino, P. Mataloni, and F. Sciarrino, “Integrated multimode interferometers with arbitrary designs for photonic boson sampling,” Nat. Photonics 7(7), 545–549 (2013).
[Crossref]

Opt. Commun. (2)

A. Barty, K. A. Nugent, A. Roberts, and D. Paganin, “Quantitative phase tomography,” Opt. Commun. 175(4–6), 329–336 (2000).
[Crossref]

J. Primot, “Theoretical description of Shack-Hartmann wave-front sensor,” Opt. Commun. 222(1–6), 81–92 (2003).
[Crossref]

Opt. Express (15)

G. Demetriou, J. P. Bérubé, R. Vallée, Y. Messaddeq, C. R. Petersen, D. Jain, O. Bang, C. Craig, D. W. Hewak, and A. K. Kar, “Refractive index and dispersion control of ultrafast laser inscribed waveguides in gallium lanthanum sulphide for near and mid-infrared applications,” Opt. Express 24(6), 6350–6358 (2016).
[Crossref] [PubMed]

C. Zuo, Q. Chen, W. Qu, and A. Asundi, “High-speed transport-of-intensity phase microscopy with an electrically tunable lens,” Opt. Express 21(20), 24060–24075 (2013).
[Crossref] [PubMed]

A. Arriola, S. Gross, N. Jovanovic, N. Charles, P. G. Tuthill, S. M. Olaizola, A. Fuerbach, and M. J. Withford, “Low bend loss waveguides enable compact, efficient 3D photonic chips,” Opt. Express 21(3), 2978–2986 (2013).
[Crossref] [PubMed]

H. Zhang, S. M. Eaton, and P. R. Herman, “Low-loss Type II waveguide writing in fused silica with single picosecond laser pulses,” Opt. Express 14(11), 4826–4834 (2006).
[Crossref] [PubMed]

J. P. Bérubé, S. H. Messaddeq, M. Bernier, I. Skripachev, Y. Messaddeq, and R. Vallée, “Tailoring the refractive index of Ge-S based glass for 3D embedded waveguides operating in the mid-IR region,” Opt. Express 22(21), 26103–26116 (2014).
[Crossref] [PubMed]

R. Osellame, N. Chiodo, V. Maselli, A. Yin, M. Zavelani-Rossi, G. Cerullo, P. Laporta, L. Aiello, S. De Nicola, P. Ferraro, A. Finizio, and G. Pierattini, “Optical properties of waveguides written by a 26 MHz stretched cavity Ti:sapphire femtosecond oscillator,” Opt. Express 13(2), 612–620 (2005).
[Crossref] [PubMed]

T. Kozacki, R. Krajewski, and M. Kujawińska, “Reconstruction of refractive-index distribution in off-axis digital holography optical diffraction tomographic system,” Opt. Express 17(16), 13758–13767 (2009).
[Crossref] [PubMed]

R. R. Thomson, T. A. Birks, S. G. Leon-Saval, A. K. Kar, and J. Bland-Hawthorn, “Ultrafast laser inscription of an integrated photonic lantern,” Opt. Express 19(6), 5698–5705 (2011).
[Crossref] [PubMed]

N. Riesen, S. Gross, J. D. Love, and M. J. Withford, “Femtosecond direct-written integrated mode couplers,” Opt. Express 22(24), 29855–29861 (2014).
[Crossref] [PubMed]

B. Rappaz, P. Marquet, E. Cuche, Y. Emery, C. Depeursinge, and P. Magistretti, “Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy,” Opt. Express 13(23), 9361–9373 (2005).
[Crossref] [PubMed]

T. Colomb, S. Krivec, H. Hutter, A. A. Akatay, N. Pavillon, F. Montfort, E. Cuche, J. Kühn, C. Depeursinge, and Y. Emery, “Digital holographic reflectometry,” Opt. Express 18(4), 3719–3731 (2010).
[Crossref] [PubMed]

E. Ampem-Lassen, S. T. Huntington, N. M. Dragomir, K. A. Nugent, and A. Roberts, “Refractive index profiling of axially symmetric optical fibers: a new technique,” Opt. Express 13(9), 3277–3282 (2005).
[Crossref] [PubMed]

E. Ampem-Lassen, F. Sidiroglou, J. L. Peng, S. T. Huntington, and A. Roberts, “Index mapping for fibres with symmetric and asymmetric refractive index profiles,” Opt. Express 16(15), 10912–10917 (2008).
[Crossref] [PubMed]

P. Bon, G. Maucort, B. Wattellier, and S. Monneret, “Quadriwave lateral shearing interferometry for quantitative phase microscopy of living cells,” Opt. Express 17(15), 13080–13094 (2009).
[Crossref] [PubMed]

Z. Wang, L. Millet, M. Mir, H. Ding, S. Unarunotai, J. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt. Express 19(2), 1016–1026 (2011).
[Crossref] [PubMed]

Opt. Fiber Technol. (1)

H. H. Wahba, “Reconstruction of 3D refractive index profiles of PM PANDA optical fiber using digital holographic method,” Opt. Fiber Technol. 20(5), 520–526 (2014).
[Crossref]

Opt. Lett. (8)

W. Gorski and W. Osten, “Tomographic imaging of photonic crystal fibers,” Opt. Lett. 32(14), 1977–1979 (2007).
[Crossref] [PubMed]

E. Watanabe, T. Hoshiba, and B. Javidi, “High-precision microscopic phase imaging without phase unwrapping for cancer cell identification,” Opt. Lett. 38(8), 1319–1321 (2013).
[Crossref] [PubMed]

A. Roberts, E. Ampem-Lassen, A. Barty, K. A. Nugent, G. W. Baxter, N. M. Dragomir, and S. T. Huntington, “Refractive-index profiling of optical fibers with axial symmetry by use of quantitative phase microscopy,” Opt. Lett. 27(23), 2061–2063 (2002).
[Crossref] [PubMed]

A. Barty, K. A. Nugent, D. Paganin, and A. Roberts, “Quantitative optical phase microscopy,” Opt. Lett. 23(11), 817–819 (1998).
[Crossref] [PubMed]

P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30(5), 468–470 (2005).
[Crossref] [PubMed]

P. Ferraro, D. Alferi, S. De Nicola, L. De Petrocellis, A. Finizio, and G. Pierattini, “Quantitative phase-contrast microscopy by a lateral shear approach to digital holographic image reconstruction,” Opt. Lett. 31(10), 1405–1407 (2006).
[Crossref] [PubMed]

G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett. 31(6), 775–777 (2006).
[Crossref] [PubMed]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
[Crossref] [PubMed]

Opt. Mater. Express (1)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a)-(c) Quantitative phase images of a segment of a Corning SMF-28 optical fiber obtained with TIE, QWLSI and DHM respectively. All scale bars are 10 µm. (d)-(f) Single-line phase profiles corresponding to the white lines in (a)-(c). (g)-(i) Leveled phase profiles (left) and OPL (right) of the region of the core obtained with TIE, QWLSI and DHM respectively.
Fig. 2
Fig. 2 SEM images of (a) the end-face of a Corning SMF-28 optical fiber, (b) close-up of the core and (c) the central index depression caused by the MCVD process. Scale bars in (a), (b) and (c) are 20, 2 and 0.2 µm respectively. (d)-(e) The ∆n(r) of the optical fiber, at two different scales, obtained with TIE, QWLSI, DHM, PSI (Yablon [29]) and RNF. Solid lines represent average ∆n(r) of the three processed images for each QPI technique whereas the shaded areas denote their standard deviation.
Fig. 3
Fig. 3 (a)-(c) Quantitative phase images of a representative waveguide photo-induced in Corning Eagle2000 glass obtained with TIE, QWLSI and DHM respectively. All scale bars are 10 µm. (d)-(f) Single-line phase profiles corresponding to the white lines in (a)-(c). (g)-(i) Leveled phase profiles (left) and OPL (right) obtained with TIE, QWLSI and DHM respectively. The blue line corresponds to the values over 90% of the maximum.
Fig. 4
Fig. 4 (a) Bright-field images of five representative waveguides obtained from a cut and polished end-face of the glass chip in a side-view perspective. The size of the images is 24 × 24 µm. (b)-(c) Photo-induced refractive index Δ n ¯ for series of waveguides inscribed with increasing power and number of passes. The label and laser power, in mW, for each series and the thickness, in µm, of each waveguide are written in roman bold, bold and normal font respectively.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δn(r)= λ 2 π 2 r R dΔφ(x) dx ( x 2 r 2 ) 1/2 dx
Δ n ¯ = λΔ φ ¯ 360t

Metrics