Abstract

—A novel photonic crystal fiber (PCF) design that yields very high birefringence is proposed and analyzed. Its significantly enhanced birefringence is achieved by filling selected air holes in the cladding with an epsilon-near-zero (ENZ) material. Extensive simulation results of this asymmetric material distribution in the lower THz range demonstrate that the reported PCF has a birefringence above 0.1 and a loss below 0.01 cm−1 over a wide band of frequencies. Moreover, it exhibits near zero dispersion at 0.75 THz for both the X- and Y-polarization modes and a birefringence equal to 0.28. This THz PCF is then scaled successfully to optical frequencies. While the high birefringence is maintained, this optical PCF has a very high loss in its Y-polarization mode and, consequently, yields single-polarization single-mode (SPSM) propagation, exhibiting near zero dispersion at the optical telecom wavelength of 1.55 μm. The ideal ENZ materials used for these conceptual models are replaced with realistic ones for both the THz and optical PCF designs. With the currently available ENZ materials, the realistic PCFs still have a high birefringence, but with higher losses compared to the idealized results. Future developments of ENZ materials that achieve lower loss properties will mitigate this issue in any frequency band of high interest.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Polarization-maintaining low-loss porous-core spiral photonic crystal fiber for terahertz wave guidance

Md. Rabiul Hasan, Md. Shamim Anower, Md. Ariful Islam, and S. M. A. Razzak
Appl. Opt. 55(15) 4145-4152 (2016)

Zeonex-based asymmetrical terahertz photonic crystal fiber for multichannel communication and polarization maintaining applications

Md. Saiful Islam, Jakeya Sultana, Alex Dinovitser, Mohammad Faisal, Mohammad Rakibul Islam, Brian W.-H. Ng, and Derek Abbott
Appl. Opt. 57(4) 666-672 (2018)

Extremely low loss porous-core photonic crystal fiber with ultra-flat dispersion in terahertz regime

Md. Shariful Islam, Mohammad Faisal, and S. M. Abdur Razzak
J. Opt. Soc. Am. B 34(8) 1747-1754 (2017)

References

  • View by:
  • |
  • |
  • |

  1. A. Redo-Sanchez and X.-C. Zhang, “Terahertz science and technology trends,” IEEE J. Sel. Top. Quantum Electron. 14(2), 260–269 (2008).
    [Crossref]
  2. D. O. Otuya, K. Kasai, M. Yoshida, T. Hirooka, and M. Nakazawa, “A single-channel 1.92 Tbit/s, 64 QAM coherent optical pulse transmission over 150 km using frequency-domain equalization,” Opt. Express 21(19), 22808–22816 (2013).
    [Crossref] [PubMed]
  3. K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432(7015), 376–379 (2004).
    [Crossref] [PubMed]
  4. J. Harrington, R. George, P. Pedersen, and E. Mueller, “Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation,” Opt. Express 12(21), 5263–5268 (2004).
    [Crossref] [PubMed]
  5. J. Li, K. Nallappan, H. Guerboukha, and M. Skorobogatiy, “3D printed hollow core terahertz Bragg waveguides with defect layers for surface sensing applications,” Opt. Express 25(4), 4126–4144 (2017).
    [Crossref] [PubMed]
  6. P. St. J. Russell, “Photonic-Crystal Fibers,” J. Lightwave Technol. 24(12), 4729–4749 (2006).
    [Crossref]
  7. G. K. M. Hasanuzzaman, M. S. Habib, S. M. A. Razzak, M. A. Hossain, and Y. Namihira, “Low loss single-mode porous-core Kagome photonic crystal fiber for THz wave guidance,” J. Lightwave Technol. 33(19), 4027–4031 (2015).
    [Crossref]
  8. A. Aming, M. Uthman, R. Chitaree, W. Mohammed, and B. M. A. Rahman, “Design and characterization of porous core polarization maintaining photonic crystal fiber for THz guidance,” J. Lightwave Technol. 34(23), 5583–5590 (2016).
    [Crossref]
  9. S. F. Kaijage, Z. B. Ouyang, and X. Jin, “Porous-core photonic crystal fiber for low loss terahertz wave guiding,” IEEE Photonics Technol. Lett. 25(15), 1454–1457 (2013).
    [Crossref]
  10. J. Yang, B. Yang, Z. Wang, and W. W. Liu, “Design of the low-loss wide bandwidth hollow-core terahertz inhibited coupling fibers,” Opt. Commun. 343, 150–156 (2015).
    [Crossref]
  11. M. Sharma, N. Borogohain, and S. Konar, “Index guiding photonic crystal fibers with large birefringence and walk-off,” J. Lightwave Technol. 31(21), 3339–3344 (2013).
    [Crossref]
  12. A. Hassani, A. Dupuis, and M. Skorobogatiy, “Porous polymer fibers for low-loss Terahertz guiding,” Opt. Express 16(9), 6340–6351 (2008).
    [Crossref] [PubMed]
  13. K. Ahmed, S. Chowdhury, B. K. Paul, M. Shadidul Islam, S. Sen, M. Ibadul Islam, and S. Asaduzzaman, “Ultrahigh birefringence, ultralow material loss porous core single-mode fiber for terahertz wave guidance,” Appl. Opt. 56(12), 3477–3483 (2017).
    [Crossref] [PubMed]
  14. S. Atakaramians, S. Afshar V, H. Ebendorff-Heidepriem, M. Nagel, B. M. Fischer, D. Abbott, and T. M. Monro, “THz porous fibers: design, fabrication and experimental characterization,” Opt. Express 17(16), 14053–15062 (2009).
    [Crossref] [PubMed]
  15. M. Islam, M. S. Habib, G. K. M. Hasanuzzaman, R. Ahmad, S. Rana, and S. F. Kaijage, “Extremely high-birefringent asymmetric slotted-core photonic crystal fiber in THz regime,” IEEE Photonics Technol. Lett. 27(21), 2222–2225 (2015).
    [Crossref]
  16. T. Yang, E. Wang, H. Jiang, Z. Hu, and K. Xie, “High birefringence photonic crystal fiber with high nonlinearity and low confinement loss,” Opt. Express 23(7), 8329–8337 (2015).
    [Crossref] [PubMed]
  17. G. K. M. Hasanuzzaman, S. Rana, and M. S. Habib, “A novel low loss, highly birefringent photonic crystal fiber in THz regime,” IEEE Photonics Technol. Lett. 28(8), 899–902 (2016).
    [Crossref]
  18. R. Islam, M. S. Habib, G. K. M. Hasanuzzaman, S. Rana, and M. A. Sadath, “Novel porous fiber based on dual-asymmetry for low-loss polarization maintaining THz wave guidance,” Opt. Lett. 41(3), 440–443 (2016).
    [Crossref] [PubMed]
  19. H. Chen, H. Wang, H. Hou, and D. Chen, “A terahertz single-polarization single-mode photonic crystal fiber with a rectangular array of micro-holes in the core region,” Opt. Commun. 285(18), 3726–3729 (2012).
    [Crossref]
  20. J. Ju, W. Jin, and M. S. Demokan, “Design of single-polarization single-mode photonic crystal fiber at 1.30 and 1.55 µm,” J. Lightwave Technol. 24(2), 825–830 (2006).
    [Crossref]
  21. X. Lin, H.-J. Zheng, C.-Q. Wu, and S.-L. Liu, “A novel single-polarization single-mode photonic crystal fiber with circular and elliptical air-holes arrays,” Opt. Lett. 9(2), 0120–0123 (2013).
    [Crossref]
  22. J. Dai, J. Q. Zhang, W. L. Zhang, and D. Grischkowsky, “Terahertz time-domain spectroscopy characterization of the far-infrared absorption and index of refraction of high-resistivity, float-zone silicon,” Opt. Soc. Am. B 21(7), 1379–1386 (2004).
    [Crossref]
  23. COMSOL Multiphysics, COMSOL, Stockholm, Sweden. http://cn.comsol.com/rf-module .
  24. R. W. Ziolkowski, “Propagation in and scattering from a matched metamaterial having a zero index of refraction,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(4), 046608 (2004).
    [Crossref] [PubMed]
  25. N. Engheta and R. W. Ziolkowski, Metamaterials: Physics and Engineering Explorations (Wiley, 2006).
  26. A. Reyes-Coronado, M. F. Acosta, R. I. Merino, V. M. Orera, G. Kenanakis, N. Katsarakis, M. Kafesaki, Ch. Mavidis, J. García de Abajo, E. N. Economou, and C. M. Soukoulis, “Self-organization approach for THz polaritonic metamaterials,” Opt. Express 20(13), 14663–14682 (2012).
    [Crossref] [PubMed]
  27. G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
    [Crossref] [PubMed]
  28. A. Boltasseva, School of Electrical and Computer Engineering and Birck Nanotechnology Center, Purdue University, 1205 West State Street, West Lafayette, IN 47907–2057, USA (most recently obtained AZO values, private communication, 2018).
  29. T.-Y. Yang, C. Ding, R. W. Ziolkowski, and Y. J. Guo, “A scalable THz ultra-high birefringence and ultra-low loss partially-slotted photonic crystal fiber,” IEEE J. Lightwave Technol., in press (2018).
  30. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55(10), 1205–1209 (1965).
    [Crossref]
  31. J. Ballato and P. Dragic, “Rethinking optical fiber: New demands, old glasses,” J. Am. Ceram. Soc. 96(9), 2675–2692 (2013).
    [Crossref]
  32. J. Ballato and P. Dragic, “Materials development for next generation optical fiber,” Materials (Basel) 7(6), 4411–4430 (2014).
    [Crossref] [PubMed]
  33. M. A. Schmidt, A. Argyros, and F. Sorin, “Hybrid optical fiber – an innovative platform for in-fiber photonic devices,” Adv. Optical Mater. 4(1), 13–36 (2016).
    [Crossref]
  34. C. Markos, J. C. Travers, A. Abdolvand, B. J. Eggleton, and O. Bang, “Hybrid photonic-crystal fiber,” Rev. Mod. Phys. 89(4), 045003 (2017).
    [Crossref]
  35. J. Hou, D. Bird, A. George, S. Maier, B. Kuhlmey, and J. C. Knight, “Metallic mode confinement in microstructured fibres,” Opt. Express 16(9), 5983–5990 (2008).
    [Crossref] [PubMed]
  36. H. W. Lee, M. A. Schmidt, R. F. Russell, N. Y. Joly, H. K. Tyagi, P. Uebel, and P. St. J. Russell, “Pressure-assisted melt-filling and optical characterization of Au nano-wires in microstructured fibers,” Opt. Express 19(13), 12180–12189 (2011).
    [Crossref] [PubMed]
  37. A. Amezcua-Correa, J. Yang, C. E. Finlayson, A. C. Peacock, J. R. Hayes, P. J. A. Sazio, J. J. Baumberg, and S. M. Howdle, “Surface-enhanced Raman scattering using microstructured optical fiber substrates,” Adv. Funct. Mater. 17(13), 2024–2030 (2007).
    [Crossref]
  38. N. F. Baril, R. He, T. D. Day, J. R. Sparks, B. Keshavarzi, M. Krishnamurthi, A. Borhan, V. Gopalan, A. C. Peacock, N. Healy, P. J. Sazio, and J. V. Badding, “Confined high-pressure chemical deposition of hydrogenated amorphous silicon,” J. Am. Chem. Soc. 134(1), 19–22 (2012).
    [Crossref] [PubMed]
  39. R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres,” Nat. Photonics 6(3), 174–179 (2012).
    [Crossref]
  40. G. V. Naik and A. Boltasseva, “A comparative study of semiconductor-based plasmonic metamaterials,” Metamaterials (Amst.) 5(1), 1–7 (2011).
    [Crossref]
  41. P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2011).
    [Crossref]
  42. V. Pacheco-Pena, N. Engheta, S. Kuznetsov, A. Gentselev, and M. Beruete, “Experimental realization of an epsilon-near-zero graded-index metalens at terahertz frequencies,” Phys. Rev. Appl. 8(3), 034036 (2017).
    [Crossref]
  43. I. Liberal and N. Engheta, “Zero-index platforms: Where light defies geometry,” Opt. Photonics News 27(7), 26–33 (2016).
    [Crossref]
  44. I. Liberal and N. Engheta, “Near-zero refractive index photonics,” Nat. Photonics 11(3), 149–158 (2017).
    [Crossref]

2017 (5)

C. Markos, J. C. Travers, A. Abdolvand, B. J. Eggleton, and O. Bang, “Hybrid photonic-crystal fiber,” Rev. Mod. Phys. 89(4), 045003 (2017).
[Crossref]

V. Pacheco-Pena, N. Engheta, S. Kuznetsov, A. Gentselev, and M. Beruete, “Experimental realization of an epsilon-near-zero graded-index metalens at terahertz frequencies,” Phys. Rev. Appl. 8(3), 034036 (2017).
[Crossref]

I. Liberal and N. Engheta, “Near-zero refractive index photonics,” Nat. Photonics 11(3), 149–158 (2017).
[Crossref]

J. Li, K. Nallappan, H. Guerboukha, and M. Skorobogatiy, “3D printed hollow core terahertz Bragg waveguides with defect layers for surface sensing applications,” Opt. Express 25(4), 4126–4144 (2017).
[Crossref] [PubMed]

K. Ahmed, S. Chowdhury, B. K. Paul, M. Shadidul Islam, S. Sen, M. Ibadul Islam, and S. Asaduzzaman, “Ultrahigh birefringence, ultralow material loss porous core single-mode fiber for terahertz wave guidance,” Appl. Opt. 56(12), 3477–3483 (2017).
[Crossref] [PubMed]

2016 (5)

R. Islam, M. S. Habib, G. K. M. Hasanuzzaman, S. Rana, and M. A. Sadath, “Novel porous fiber based on dual-asymmetry for low-loss polarization maintaining THz wave guidance,” Opt. Lett. 41(3), 440–443 (2016).
[Crossref] [PubMed]

A. Aming, M. Uthman, R. Chitaree, W. Mohammed, and B. M. A. Rahman, “Design and characterization of porous core polarization maintaining photonic crystal fiber for THz guidance,” J. Lightwave Technol. 34(23), 5583–5590 (2016).
[Crossref]

I. Liberal and N. Engheta, “Zero-index platforms: Where light defies geometry,” Opt. Photonics News 27(7), 26–33 (2016).
[Crossref]

G. K. M. Hasanuzzaman, S. Rana, and M. S. Habib, “A novel low loss, highly birefringent photonic crystal fiber in THz regime,” IEEE Photonics Technol. Lett. 28(8), 899–902 (2016).
[Crossref]

M. A. Schmidt, A. Argyros, and F. Sorin, “Hybrid optical fiber – an innovative platform for in-fiber photonic devices,” Adv. Optical Mater. 4(1), 13–36 (2016).
[Crossref]

2015 (4)

J. Yang, B. Yang, Z. Wang, and W. W. Liu, “Design of the low-loss wide bandwidth hollow-core terahertz inhibited coupling fibers,” Opt. Commun. 343, 150–156 (2015).
[Crossref]

M. Islam, M. S. Habib, G. K. M. Hasanuzzaman, R. Ahmad, S. Rana, and S. F. Kaijage, “Extremely high-birefringent asymmetric slotted-core photonic crystal fiber in THz regime,” IEEE Photonics Technol. Lett. 27(21), 2222–2225 (2015).
[Crossref]

T. Yang, E. Wang, H. Jiang, Z. Hu, and K. Xie, “High birefringence photonic crystal fiber with high nonlinearity and low confinement loss,” Opt. Express 23(7), 8329–8337 (2015).
[Crossref] [PubMed]

G. K. M. Hasanuzzaman, M. S. Habib, S. M. A. Razzak, M. A. Hossain, and Y. Namihira, “Low loss single-mode porous-core Kagome photonic crystal fiber for THz wave guidance,” J. Lightwave Technol. 33(19), 4027–4031 (2015).
[Crossref]

2014 (1)

J. Ballato and P. Dragic, “Materials development for next generation optical fiber,” Materials (Basel) 7(6), 4411–4430 (2014).
[Crossref] [PubMed]

2013 (6)

S. F. Kaijage, Z. B. Ouyang, and X. Jin, “Porous-core photonic crystal fiber for low loss terahertz wave guiding,” IEEE Photonics Technol. Lett. 25(15), 1454–1457 (2013).
[Crossref]

J. Ballato and P. Dragic, “Rethinking optical fiber: New demands, old glasses,” J. Am. Ceram. Soc. 96(9), 2675–2692 (2013).
[Crossref]

X. Lin, H.-J. Zheng, C.-Q. Wu, and S.-L. Liu, “A novel single-polarization single-mode photonic crystal fiber with circular and elliptical air-holes arrays,” Opt. Lett. 9(2), 0120–0123 (2013).
[Crossref]

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

D. O. Otuya, K. Kasai, M. Yoshida, T. Hirooka, and M. Nakazawa, “A single-channel 1.92 Tbit/s, 64 QAM coherent optical pulse transmission over 150 km using frequency-domain equalization,” Opt. Express 21(19), 22808–22816 (2013).
[Crossref] [PubMed]

M. Sharma, N. Borogohain, and S. Konar, “Index guiding photonic crystal fibers with large birefringence and walk-off,” J. Lightwave Technol. 31(21), 3339–3344 (2013).
[Crossref]

2012 (4)

A. Reyes-Coronado, M. F. Acosta, R. I. Merino, V. M. Orera, G. Kenanakis, N. Katsarakis, M. Kafesaki, Ch. Mavidis, J. García de Abajo, E. N. Economou, and C. M. Soukoulis, “Self-organization approach for THz polaritonic metamaterials,” Opt. Express 20(13), 14663–14682 (2012).
[Crossref] [PubMed]

H. Chen, H. Wang, H. Hou, and D. Chen, “A terahertz single-polarization single-mode photonic crystal fiber with a rectangular array of micro-holes in the core region,” Opt. Commun. 285(18), 3726–3729 (2012).
[Crossref]

N. F. Baril, R. He, T. D. Day, J. R. Sparks, B. Keshavarzi, M. Krishnamurthi, A. Borhan, V. Gopalan, A. C. Peacock, N. Healy, P. J. Sazio, and J. V. Badding, “Confined high-pressure chemical deposition of hydrogenated amorphous silicon,” J. Am. Chem. Soc. 134(1), 19–22 (2012).
[Crossref] [PubMed]

R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres,” Nat. Photonics 6(3), 174–179 (2012).
[Crossref]

2011 (3)

G. V. Naik and A. Boltasseva, “A comparative study of semiconductor-based plasmonic metamaterials,” Metamaterials (Amst.) 5(1), 1–7 (2011).
[Crossref]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2011).
[Crossref]

H. W. Lee, M. A. Schmidt, R. F. Russell, N. Y. Joly, H. K. Tyagi, P. Uebel, and P. St. J. Russell, “Pressure-assisted melt-filling and optical characterization of Au nano-wires in microstructured fibers,” Opt. Express 19(13), 12180–12189 (2011).
[Crossref] [PubMed]

2009 (1)

2008 (3)

2007 (1)

A. Amezcua-Correa, J. Yang, C. E. Finlayson, A. C. Peacock, J. R. Hayes, P. J. A. Sazio, J. J. Baumberg, and S. M. Howdle, “Surface-enhanced Raman scattering using microstructured optical fiber substrates,” Adv. Funct. Mater. 17(13), 2024–2030 (2007).
[Crossref]

2006 (2)

2004 (4)

J. Harrington, R. George, P. Pedersen, and E. Mueller, “Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation,” Opt. Express 12(21), 5263–5268 (2004).
[Crossref] [PubMed]

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432(7015), 376–379 (2004).
[Crossref] [PubMed]

J. Dai, J. Q. Zhang, W. L. Zhang, and D. Grischkowsky, “Terahertz time-domain spectroscopy characterization of the far-infrared absorption and index of refraction of high-resistivity, float-zone silicon,” Opt. Soc. Am. B 21(7), 1379–1386 (2004).
[Crossref]

R. W. Ziolkowski, “Propagation in and scattering from a matched metamaterial having a zero index of refraction,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(4), 046608 (2004).
[Crossref] [PubMed]

1965 (1)

Abbott, D.

Abdolvand, A.

C. Markos, J. C. Travers, A. Abdolvand, B. J. Eggleton, and O. Bang, “Hybrid photonic-crystal fiber,” Rev. Mod. Phys. 89(4), 045003 (2017).
[Crossref]

Acosta, M. F.

Afshar V, S.

Ahmad, R.

M. Islam, M. S. Habib, G. K. M. Hasanuzzaman, R. Ahmad, S. Rana, and S. F. Kaijage, “Extremely high-birefringent asymmetric slotted-core photonic crystal fiber in THz regime,” IEEE Photonics Technol. Lett. 27(21), 2222–2225 (2015).
[Crossref]

Ahmed, K.

Amezcua-Correa, A.

A. Amezcua-Correa, J. Yang, C. E. Finlayson, A. C. Peacock, J. R. Hayes, P. J. A. Sazio, J. J. Baumberg, and S. M. Howdle, “Surface-enhanced Raman scattering using microstructured optical fiber substrates,” Adv. Funct. Mater. 17(13), 2024–2030 (2007).
[Crossref]

Aming, A.

Argyros, A.

M. A. Schmidt, A. Argyros, and F. Sorin, “Hybrid optical fiber – an innovative platform for in-fiber photonic devices,” Adv. Optical Mater. 4(1), 13–36 (2016).
[Crossref]

Asaduzzaman, S.

Atakaramians, S.

Badding, J. V.

R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres,” Nat. Photonics 6(3), 174–179 (2012).
[Crossref]

N. F. Baril, R. He, T. D. Day, J. R. Sparks, B. Keshavarzi, M. Krishnamurthi, A. Borhan, V. Gopalan, A. C. Peacock, N. Healy, P. J. Sazio, and J. V. Badding, “Confined high-pressure chemical deposition of hydrogenated amorphous silicon,” J. Am. Chem. Soc. 134(1), 19–22 (2012).
[Crossref] [PubMed]

Ballato, J.

J. Ballato and P. Dragic, “Materials development for next generation optical fiber,” Materials (Basel) 7(6), 4411–4430 (2014).
[Crossref] [PubMed]

J. Ballato and P. Dragic, “Rethinking optical fiber: New demands, old glasses,” J. Am. Ceram. Soc. 96(9), 2675–2692 (2013).
[Crossref]

Bang, O.

C. Markos, J. C. Travers, A. Abdolvand, B. J. Eggleton, and O. Bang, “Hybrid photonic-crystal fiber,” Rev. Mod. Phys. 89(4), 045003 (2017).
[Crossref]

Baril, N. F.

N. F. Baril, R. He, T. D. Day, J. R. Sparks, B. Keshavarzi, M. Krishnamurthi, A. Borhan, V. Gopalan, A. C. Peacock, N. Healy, P. J. Sazio, and J. V. Badding, “Confined high-pressure chemical deposition of hydrogenated amorphous silicon,” J. Am. Chem. Soc. 134(1), 19–22 (2012).
[Crossref] [PubMed]

Baumberg, J. J.

A. Amezcua-Correa, J. Yang, C. E. Finlayson, A. C. Peacock, J. R. Hayes, P. J. A. Sazio, J. J. Baumberg, and S. M. Howdle, “Surface-enhanced Raman scattering using microstructured optical fiber substrates,” Adv. Funct. Mater. 17(13), 2024–2030 (2007).
[Crossref]

Beruete, M.

V. Pacheco-Pena, N. Engheta, S. Kuznetsov, A. Gentselev, and M. Beruete, “Experimental realization of an epsilon-near-zero graded-index metalens at terahertz frequencies,” Phys. Rev. Appl. 8(3), 034036 (2017).
[Crossref]

Bird, D.

Boltasseva, A.

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

G. V. Naik and A. Boltasseva, “A comparative study of semiconductor-based plasmonic metamaterials,” Metamaterials (Amst.) 5(1), 1–7 (2011).
[Crossref]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2011).
[Crossref]

Borhan, A.

N. F. Baril, R. He, T. D. Day, J. R. Sparks, B. Keshavarzi, M. Krishnamurthi, A. Borhan, V. Gopalan, A. C. Peacock, N. Healy, P. J. Sazio, and J. V. Badding, “Confined high-pressure chemical deposition of hydrogenated amorphous silicon,” J. Am. Chem. Soc. 134(1), 19–22 (2012).
[Crossref] [PubMed]

Borogohain, N.

Chen, D.

H. Chen, H. Wang, H. Hou, and D. Chen, “A terahertz single-polarization single-mode photonic crystal fiber with a rectangular array of micro-holes in the core region,” Opt. Commun. 285(18), 3726–3729 (2012).
[Crossref]

Chen, H.

H. Chen, H. Wang, H. Hou, and D. Chen, “A terahertz single-polarization single-mode photonic crystal fiber with a rectangular array of micro-holes in the core region,” Opt. Commun. 285(18), 3726–3729 (2012).
[Crossref]

Chitaree, R.

Chowdhury, S.

Dai, J.

J. Dai, J. Q. Zhang, W. L. Zhang, and D. Grischkowsky, “Terahertz time-domain spectroscopy characterization of the far-infrared absorption and index of refraction of high-resistivity, float-zone silicon,” Opt. Soc. Am. B 21(7), 1379–1386 (2004).
[Crossref]

Day, T. D.

N. F. Baril, R. He, T. D. Day, J. R. Sparks, B. Keshavarzi, M. Krishnamurthi, A. Borhan, V. Gopalan, A. C. Peacock, N. Healy, P. J. Sazio, and J. V. Badding, “Confined high-pressure chemical deposition of hydrogenated amorphous silicon,” J. Am. Chem. Soc. 134(1), 19–22 (2012).
[Crossref] [PubMed]

Demokan, M. S.

Ding, C.

T.-Y. Yang, C. Ding, R. W. Ziolkowski, and Y. J. Guo, “A scalable THz ultra-high birefringence and ultra-low loss partially-slotted photonic crystal fiber,” IEEE J. Lightwave Technol., in press (2018).

Dragic, P.

J. Ballato and P. Dragic, “Materials development for next generation optical fiber,” Materials (Basel) 7(6), 4411–4430 (2014).
[Crossref] [PubMed]

J. Ballato and P. Dragic, “Rethinking optical fiber: New demands, old glasses,” J. Am. Ceram. Soc. 96(9), 2675–2692 (2013).
[Crossref]

Dupuis, A.

Ebendorff-Heidepriem, H.

Economou, E. N.

Eggleton, B. J.

C. Markos, J. C. Travers, A. Abdolvand, B. J. Eggleton, and O. Bang, “Hybrid photonic-crystal fiber,” Rev. Mod. Phys. 89(4), 045003 (2017).
[Crossref]

Emani, N. K.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2011).
[Crossref]

Engheta, N.

V. Pacheco-Pena, N. Engheta, S. Kuznetsov, A. Gentselev, and M. Beruete, “Experimental realization of an epsilon-near-zero graded-index metalens at terahertz frequencies,” Phys. Rev. Appl. 8(3), 034036 (2017).
[Crossref]

I. Liberal and N. Engheta, “Near-zero refractive index photonics,” Nat. Photonics 11(3), 149–158 (2017).
[Crossref]

I. Liberal and N. Engheta, “Zero-index platforms: Where light defies geometry,” Opt. Photonics News 27(7), 26–33 (2016).
[Crossref]

Finlayson, C. E.

A. Amezcua-Correa, J. Yang, C. E. Finlayson, A. C. Peacock, J. R. Hayes, P. J. A. Sazio, J. J. Baumberg, and S. M. Howdle, “Surface-enhanced Raman scattering using microstructured optical fiber substrates,” Adv. Funct. Mater. 17(13), 2024–2030 (2007).
[Crossref]

Fischer, B. M.

García de Abajo, J.

Gentselev, A.

V. Pacheco-Pena, N. Engheta, S. Kuznetsov, A. Gentselev, and M. Beruete, “Experimental realization of an epsilon-near-zero graded-index metalens at terahertz frequencies,” Phys. Rev. Appl. 8(3), 034036 (2017).
[Crossref]

George, A.

George, R.

Gopalan, V.

R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres,” Nat. Photonics 6(3), 174–179 (2012).
[Crossref]

N. F. Baril, R. He, T. D. Day, J. R. Sparks, B. Keshavarzi, M. Krishnamurthi, A. Borhan, V. Gopalan, A. C. Peacock, N. Healy, P. J. Sazio, and J. V. Badding, “Confined high-pressure chemical deposition of hydrogenated amorphous silicon,” J. Am. Chem. Soc. 134(1), 19–22 (2012).
[Crossref] [PubMed]

Grischkowsky, D.

J. Dai, J. Q. Zhang, W. L. Zhang, and D. Grischkowsky, “Terahertz time-domain spectroscopy characterization of the far-infrared absorption and index of refraction of high-resistivity, float-zone silicon,” Opt. Soc. Am. B 21(7), 1379–1386 (2004).
[Crossref]

Guerboukha, H.

Guo, Y. J.

T.-Y. Yang, C. Ding, R. W. Ziolkowski, and Y. J. Guo, “A scalable THz ultra-high birefringence and ultra-low loss partially-slotted photonic crystal fiber,” IEEE J. Lightwave Technol., in press (2018).

Habib, M. S.

G. K. M. Hasanuzzaman, S. Rana, and M. S. Habib, “A novel low loss, highly birefringent photonic crystal fiber in THz regime,” IEEE Photonics Technol. Lett. 28(8), 899–902 (2016).
[Crossref]

R. Islam, M. S. Habib, G. K. M. Hasanuzzaman, S. Rana, and M. A. Sadath, “Novel porous fiber based on dual-asymmetry for low-loss polarization maintaining THz wave guidance,” Opt. Lett. 41(3), 440–443 (2016).
[Crossref] [PubMed]

G. K. M. Hasanuzzaman, M. S. Habib, S. M. A. Razzak, M. A. Hossain, and Y. Namihira, “Low loss single-mode porous-core Kagome photonic crystal fiber for THz wave guidance,” J. Lightwave Technol. 33(19), 4027–4031 (2015).
[Crossref]

M. Islam, M. S. Habib, G. K. M. Hasanuzzaman, R. Ahmad, S. Rana, and S. F. Kaijage, “Extremely high-birefringent asymmetric slotted-core photonic crystal fiber in THz regime,” IEEE Photonics Technol. Lett. 27(21), 2222–2225 (2015).
[Crossref]

Harrington, J.

Hasanuzzaman, G. K. M.

G. K. M. Hasanuzzaman, S. Rana, and M. S. Habib, “A novel low loss, highly birefringent photonic crystal fiber in THz regime,” IEEE Photonics Technol. Lett. 28(8), 899–902 (2016).
[Crossref]

R. Islam, M. S. Habib, G. K. M. Hasanuzzaman, S. Rana, and M. A. Sadath, “Novel porous fiber based on dual-asymmetry for low-loss polarization maintaining THz wave guidance,” Opt. Lett. 41(3), 440–443 (2016).
[Crossref] [PubMed]

G. K. M. Hasanuzzaman, M. S. Habib, S. M. A. Razzak, M. A. Hossain, and Y. Namihira, “Low loss single-mode porous-core Kagome photonic crystal fiber for THz wave guidance,” J. Lightwave Technol. 33(19), 4027–4031 (2015).
[Crossref]

M. Islam, M. S. Habib, G. K. M. Hasanuzzaman, R. Ahmad, S. Rana, and S. F. Kaijage, “Extremely high-birefringent asymmetric slotted-core photonic crystal fiber in THz regime,” IEEE Photonics Technol. Lett. 27(21), 2222–2225 (2015).
[Crossref]

Hassani, A.

Hayes, J. R.

A. Amezcua-Correa, J. Yang, C. E. Finlayson, A. C. Peacock, J. R. Hayes, P. J. A. Sazio, J. J. Baumberg, and S. M. Howdle, “Surface-enhanced Raman scattering using microstructured optical fiber substrates,” Adv. Funct. Mater. 17(13), 2024–2030 (2007).
[Crossref]

He, R.

R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres,” Nat. Photonics 6(3), 174–179 (2012).
[Crossref]

N. F. Baril, R. He, T. D. Day, J. R. Sparks, B. Keshavarzi, M. Krishnamurthi, A. Borhan, V. Gopalan, A. C. Peacock, N. Healy, P. J. Sazio, and J. V. Badding, “Confined high-pressure chemical deposition of hydrogenated amorphous silicon,” J. Am. Chem. Soc. 134(1), 19–22 (2012).
[Crossref] [PubMed]

Healy, N.

N. F. Baril, R. He, T. D. Day, J. R. Sparks, B. Keshavarzi, M. Krishnamurthi, A. Borhan, V. Gopalan, A. C. Peacock, N. Healy, P. J. Sazio, and J. V. Badding, “Confined high-pressure chemical deposition of hydrogenated amorphous silicon,” J. Am. Chem. Soc. 134(1), 19–22 (2012).
[Crossref] [PubMed]

R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres,” Nat. Photonics 6(3), 174–179 (2012).
[Crossref]

Hirooka, T.

Hossain, M. A.

Hou, H.

H. Chen, H. Wang, H. Hou, and D. Chen, “A terahertz single-polarization single-mode photonic crystal fiber with a rectangular array of micro-holes in the core region,” Opt. Commun. 285(18), 3726–3729 (2012).
[Crossref]

Hou, J.

Howdle, S. M.

A. Amezcua-Correa, J. Yang, C. E. Finlayson, A. C. Peacock, J. R. Hayes, P. J. A. Sazio, J. J. Baumberg, and S. M. Howdle, “Surface-enhanced Raman scattering using microstructured optical fiber substrates,” Adv. Funct. Mater. 17(13), 2024–2030 (2007).
[Crossref]

Hu, Z.

Ibadul Islam, M.

Ishii, S.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2011).
[Crossref]

Islam, M.

M. Islam, M. S. Habib, G. K. M. Hasanuzzaman, R. Ahmad, S. Rana, and S. F. Kaijage, “Extremely high-birefringent asymmetric slotted-core photonic crystal fiber in THz regime,” IEEE Photonics Technol. Lett. 27(21), 2222–2225 (2015).
[Crossref]

Islam, R.

Jiang, H.

Jin, W.

Jin, X.

S. F. Kaijage, Z. B. Ouyang, and X. Jin, “Porous-core photonic crystal fiber for low loss terahertz wave guiding,” IEEE Photonics Technol. Lett. 25(15), 1454–1457 (2013).
[Crossref]

Joly, N. Y.

Ju, J.

Kafesaki, M.

Kaijage, S. F.

M. Islam, M. S. Habib, G. K. M. Hasanuzzaman, R. Ahmad, S. Rana, and S. F. Kaijage, “Extremely high-birefringent asymmetric slotted-core photonic crystal fiber in THz regime,” IEEE Photonics Technol. Lett. 27(21), 2222–2225 (2015).
[Crossref]

S. F. Kaijage, Z. B. Ouyang, and X. Jin, “Porous-core photonic crystal fiber for low loss terahertz wave guiding,” IEEE Photonics Technol. Lett. 25(15), 1454–1457 (2013).
[Crossref]

Kasai, K.

Katsarakis, N.

Kenanakis, G.

Keshavarzi, B.

N. F. Baril, R. He, T. D. Day, J. R. Sparks, B. Keshavarzi, M. Krishnamurthi, A. Borhan, V. Gopalan, A. C. Peacock, N. Healy, P. J. Sazio, and J. V. Badding, “Confined high-pressure chemical deposition of hydrogenated amorphous silicon,” J. Am. Chem. Soc. 134(1), 19–22 (2012).
[Crossref] [PubMed]

Knight, J. C.

Konar, S.

Krishnamurthi, M.

R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres,” Nat. Photonics 6(3), 174–179 (2012).
[Crossref]

N. F. Baril, R. He, T. D. Day, J. R. Sparks, B. Keshavarzi, M. Krishnamurthi, A. Borhan, V. Gopalan, A. C. Peacock, N. Healy, P. J. Sazio, and J. V. Badding, “Confined high-pressure chemical deposition of hydrogenated amorphous silicon,” J. Am. Chem. Soc. 134(1), 19–22 (2012).
[Crossref] [PubMed]

Kuhlmey, B.

Kuznetsov, S.

V. Pacheco-Pena, N. Engheta, S. Kuznetsov, A. Gentselev, and M. Beruete, “Experimental realization of an epsilon-near-zero graded-index metalens at terahertz frequencies,” Phys. Rev. Appl. 8(3), 034036 (2017).
[Crossref]

Lee, H. W.

Li, J.

Liberal, I.

I. Liberal and N. Engheta, “Near-zero refractive index photonics,” Nat. Photonics 11(3), 149–158 (2017).
[Crossref]

I. Liberal and N. Engheta, “Zero-index platforms: Where light defies geometry,” Opt. Photonics News 27(7), 26–33 (2016).
[Crossref]

Lin, X.

X. Lin, H.-J. Zheng, C.-Q. Wu, and S.-L. Liu, “A novel single-polarization single-mode photonic crystal fiber with circular and elliptical air-holes arrays,” Opt. Lett. 9(2), 0120–0123 (2013).
[Crossref]

Liu, S.-L.

X. Lin, H.-J. Zheng, C.-Q. Wu, and S.-L. Liu, “A novel single-polarization single-mode photonic crystal fiber with circular and elliptical air-holes arrays,” Opt. Lett. 9(2), 0120–0123 (2013).
[Crossref]

Liu, W. W.

J. Yang, B. Yang, Z. Wang, and W. W. Liu, “Design of the low-loss wide bandwidth hollow-core terahertz inhibited coupling fibers,” Opt. Commun. 343, 150–156 (2015).
[Crossref]

Maier, S.

Malitson, I. H.

Markos, C.

C. Markos, J. C. Travers, A. Abdolvand, B. J. Eggleton, and O. Bang, “Hybrid photonic-crystal fiber,” Rev. Mod. Phys. 89(4), 045003 (2017).
[Crossref]

Mavidis, Ch.

Merino, R. I.

Mittleman, D. M.

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432(7015), 376–379 (2004).
[Crossref] [PubMed]

Mohammed, W.

Monro, T. M.

Mueller, E.

Nagel, M.

Naik, G. V.

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2011).
[Crossref]

G. V. Naik and A. Boltasseva, “A comparative study of semiconductor-based plasmonic metamaterials,” Metamaterials (Amst.) 5(1), 1–7 (2011).
[Crossref]

Nakazawa, M.

Nallappan, K.

Namihira, Y.

Orera, V. M.

Otuya, D. O.

Ouyang, Z. B.

S. F. Kaijage, Z. B. Ouyang, and X. Jin, “Porous-core photonic crystal fiber for low loss terahertz wave guiding,” IEEE Photonics Technol. Lett. 25(15), 1454–1457 (2013).
[Crossref]

Pacheco-Pena, V.

V. Pacheco-Pena, N. Engheta, S. Kuznetsov, A. Gentselev, and M. Beruete, “Experimental realization of an epsilon-near-zero graded-index metalens at terahertz frequencies,” Phys. Rev. Appl. 8(3), 034036 (2017).
[Crossref]

Paul, B. K.

Peacock, A. C.

N. F. Baril, R. He, T. D. Day, J. R. Sparks, B. Keshavarzi, M. Krishnamurthi, A. Borhan, V. Gopalan, A. C. Peacock, N. Healy, P. J. Sazio, and J. V. Badding, “Confined high-pressure chemical deposition of hydrogenated amorphous silicon,” J. Am. Chem. Soc. 134(1), 19–22 (2012).
[Crossref] [PubMed]

R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres,” Nat. Photonics 6(3), 174–179 (2012).
[Crossref]

A. Amezcua-Correa, J. Yang, C. E. Finlayson, A. C. Peacock, J. R. Hayes, P. J. A. Sazio, J. J. Baumberg, and S. M. Howdle, “Surface-enhanced Raman scattering using microstructured optical fiber substrates,” Adv. Funct. Mater. 17(13), 2024–2030 (2007).
[Crossref]

Pedersen, P.

Rahman, B. M. A.

Rana, S.

R. Islam, M. S. Habib, G. K. M. Hasanuzzaman, S. Rana, and M. A. Sadath, “Novel porous fiber based on dual-asymmetry for low-loss polarization maintaining THz wave guidance,” Opt. Lett. 41(3), 440–443 (2016).
[Crossref] [PubMed]

G. K. M. Hasanuzzaman, S. Rana, and M. S. Habib, “A novel low loss, highly birefringent photonic crystal fiber in THz regime,” IEEE Photonics Technol. Lett. 28(8), 899–902 (2016).
[Crossref]

M. Islam, M. S. Habib, G. K. M. Hasanuzzaman, R. Ahmad, S. Rana, and S. F. Kaijage, “Extremely high-birefringent asymmetric slotted-core photonic crystal fiber in THz regime,” IEEE Photonics Technol. Lett. 27(21), 2222–2225 (2015).
[Crossref]

Razzak, S. M. A.

Redo-Sanchez, A.

A. Redo-Sanchez and X.-C. Zhang, “Terahertz science and technology trends,” IEEE J. Sel. Top. Quantum Electron. 14(2), 260–269 (2008).
[Crossref]

Reyes-Coronado, A.

Russell, P. St. J.

Russell, R. F.

Sadath, M. A.

Sazio, P. J.

N. F. Baril, R. He, T. D. Day, J. R. Sparks, B. Keshavarzi, M. Krishnamurthi, A. Borhan, V. Gopalan, A. C. Peacock, N. Healy, P. J. Sazio, and J. V. Badding, “Confined high-pressure chemical deposition of hydrogenated amorphous silicon,” J. Am. Chem. Soc. 134(1), 19–22 (2012).
[Crossref] [PubMed]

Sazio, P. J. A.

R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres,” Nat. Photonics 6(3), 174–179 (2012).
[Crossref]

A. Amezcua-Correa, J. Yang, C. E. Finlayson, A. C. Peacock, J. R. Hayes, P. J. A. Sazio, J. J. Baumberg, and S. M. Howdle, “Surface-enhanced Raman scattering using microstructured optical fiber substrates,” Adv. Funct. Mater. 17(13), 2024–2030 (2007).
[Crossref]

Schmidt, M. A.

Sen, S.

Shadidul Islam, M.

Shalaev, V. M.

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2011).
[Crossref]

Sharma, M.

Skorobogatiy, M.

Sorin, F.

M. A. Schmidt, A. Argyros, and F. Sorin, “Hybrid optical fiber – an innovative platform for in-fiber photonic devices,” Adv. Optical Mater. 4(1), 13–36 (2016).
[Crossref]

Soukoulis, C. M.

Sparks, J. R.

R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres,” Nat. Photonics 6(3), 174–179 (2012).
[Crossref]

N. F. Baril, R. He, T. D. Day, J. R. Sparks, B. Keshavarzi, M. Krishnamurthi, A. Borhan, V. Gopalan, A. C. Peacock, N. Healy, P. J. Sazio, and J. V. Badding, “Confined high-pressure chemical deposition of hydrogenated amorphous silicon,” J. Am. Chem. Soc. 134(1), 19–22 (2012).
[Crossref] [PubMed]

Travers, J. C.

C. Markos, J. C. Travers, A. Abdolvand, B. J. Eggleton, and O. Bang, “Hybrid photonic-crystal fiber,” Rev. Mod. Phys. 89(4), 045003 (2017).
[Crossref]

Tyagi, H. K.

Uebel, P.

Uthman, M.

Wang, E.

Wang, H.

H. Chen, H. Wang, H. Hou, and D. Chen, “A terahertz single-polarization single-mode photonic crystal fiber with a rectangular array of micro-holes in the core region,” Opt. Commun. 285(18), 3726–3729 (2012).
[Crossref]

Wang, K.

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432(7015), 376–379 (2004).
[Crossref] [PubMed]

Wang, Z.

J. Yang, B. Yang, Z. Wang, and W. W. Liu, “Design of the low-loss wide bandwidth hollow-core terahertz inhibited coupling fibers,” Opt. Commun. 343, 150–156 (2015).
[Crossref]

West, P. R.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2011).
[Crossref]

Wu, C.-Q.

X. Lin, H.-J. Zheng, C.-Q. Wu, and S.-L. Liu, “A novel single-polarization single-mode photonic crystal fiber with circular and elliptical air-holes arrays,” Opt. Lett. 9(2), 0120–0123 (2013).
[Crossref]

Xie, K.

Yang, B.

J. Yang, B. Yang, Z. Wang, and W. W. Liu, “Design of the low-loss wide bandwidth hollow-core terahertz inhibited coupling fibers,” Opt. Commun. 343, 150–156 (2015).
[Crossref]

Yang, J.

J. Yang, B. Yang, Z. Wang, and W. W. Liu, “Design of the low-loss wide bandwidth hollow-core terahertz inhibited coupling fibers,” Opt. Commun. 343, 150–156 (2015).
[Crossref]

A. Amezcua-Correa, J. Yang, C. E. Finlayson, A. C. Peacock, J. R. Hayes, P. J. A. Sazio, J. J. Baumberg, and S. M. Howdle, “Surface-enhanced Raman scattering using microstructured optical fiber substrates,” Adv. Funct. Mater. 17(13), 2024–2030 (2007).
[Crossref]

Yang, T.

Yang, T.-Y.

T.-Y. Yang, C. Ding, R. W. Ziolkowski, and Y. J. Guo, “A scalable THz ultra-high birefringence and ultra-low loss partially-slotted photonic crystal fiber,” IEEE J. Lightwave Technol., in press (2018).

Yoshida, M.

Zhang, J. Q.

J. Dai, J. Q. Zhang, W. L. Zhang, and D. Grischkowsky, “Terahertz time-domain spectroscopy characterization of the far-infrared absorption and index of refraction of high-resistivity, float-zone silicon,” Opt. Soc. Am. B 21(7), 1379–1386 (2004).
[Crossref]

Zhang, W. L.

J. Dai, J. Q. Zhang, W. L. Zhang, and D. Grischkowsky, “Terahertz time-domain spectroscopy characterization of the far-infrared absorption and index of refraction of high-resistivity, float-zone silicon,” Opt. Soc. Am. B 21(7), 1379–1386 (2004).
[Crossref]

Zhang, X.-C.

A. Redo-Sanchez and X.-C. Zhang, “Terahertz science and technology trends,” IEEE J. Sel. Top. Quantum Electron. 14(2), 260–269 (2008).
[Crossref]

Zheng, H.-J.

X. Lin, H.-J. Zheng, C.-Q. Wu, and S.-L. Liu, “A novel single-polarization single-mode photonic crystal fiber with circular and elliptical air-holes arrays,” Opt. Lett. 9(2), 0120–0123 (2013).
[Crossref]

Ziolkowski, R. W.

R. W. Ziolkowski, “Propagation in and scattering from a matched metamaterial having a zero index of refraction,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(4), 046608 (2004).
[Crossref] [PubMed]

T.-Y. Yang, C. Ding, R. W. Ziolkowski, and Y. J. Guo, “A scalable THz ultra-high birefringence and ultra-low loss partially-slotted photonic crystal fiber,” IEEE J. Lightwave Technol., in press (2018).

Adv. Funct. Mater. (1)

A. Amezcua-Correa, J. Yang, C. E. Finlayson, A. C. Peacock, J. R. Hayes, P. J. A. Sazio, J. J. Baumberg, and S. M. Howdle, “Surface-enhanced Raman scattering using microstructured optical fiber substrates,” Adv. Funct. Mater. 17(13), 2024–2030 (2007).
[Crossref]

Adv. Mater. (1)

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

Adv. Optical Mater. (1)

M. A. Schmidt, A. Argyros, and F. Sorin, “Hybrid optical fiber – an innovative platform for in-fiber photonic devices,” Adv. Optical Mater. 4(1), 13–36 (2016).
[Crossref]

Appl. Opt. (1)

IEEE J. Sel. Top. Quantum Electron. (1)

A. Redo-Sanchez and X.-C. Zhang, “Terahertz science and technology trends,” IEEE J. Sel. Top. Quantum Electron. 14(2), 260–269 (2008).
[Crossref]

IEEE Photonics Technol. Lett. (3)

S. F. Kaijage, Z. B. Ouyang, and X. Jin, “Porous-core photonic crystal fiber for low loss terahertz wave guiding,” IEEE Photonics Technol. Lett. 25(15), 1454–1457 (2013).
[Crossref]

M. Islam, M. S. Habib, G. K. M. Hasanuzzaman, R. Ahmad, S. Rana, and S. F. Kaijage, “Extremely high-birefringent asymmetric slotted-core photonic crystal fiber in THz regime,” IEEE Photonics Technol. Lett. 27(21), 2222–2225 (2015).
[Crossref]

G. K. M. Hasanuzzaman, S. Rana, and M. S. Habib, “A novel low loss, highly birefringent photonic crystal fiber in THz regime,” IEEE Photonics Technol. Lett. 28(8), 899–902 (2016).
[Crossref]

J. Am. Ceram. Soc. (1)

J. Ballato and P. Dragic, “Rethinking optical fiber: New demands, old glasses,” J. Am. Ceram. Soc. 96(9), 2675–2692 (2013).
[Crossref]

J. Am. Chem. Soc. (1)

N. F. Baril, R. He, T. D. Day, J. R. Sparks, B. Keshavarzi, M. Krishnamurthi, A. Borhan, V. Gopalan, A. C. Peacock, N. Healy, P. J. Sazio, and J. V. Badding, “Confined high-pressure chemical deposition of hydrogenated amorphous silicon,” J. Am. Chem. Soc. 134(1), 19–22 (2012).
[Crossref] [PubMed]

J. Lightwave Technol. (5)

J. Opt. Soc. Am. (1)

Laser Photonics Rev. (1)

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2011).
[Crossref]

Materials (Basel) (1)

J. Ballato and P. Dragic, “Materials development for next generation optical fiber,” Materials (Basel) 7(6), 4411–4430 (2014).
[Crossref] [PubMed]

Metamaterials (Amst.) (1)

G. V. Naik and A. Boltasseva, “A comparative study of semiconductor-based plasmonic metamaterials,” Metamaterials (Amst.) 5(1), 1–7 (2011).
[Crossref]

Nat. Photonics (2)

R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres,” Nat. Photonics 6(3), 174–179 (2012).
[Crossref]

I. Liberal and N. Engheta, “Near-zero refractive index photonics,” Nat. Photonics 11(3), 149–158 (2017).
[Crossref]

Nature (1)

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432(7015), 376–379 (2004).
[Crossref] [PubMed]

Opt. Commun. (2)

J. Yang, B. Yang, Z. Wang, and W. W. Liu, “Design of the low-loss wide bandwidth hollow-core terahertz inhibited coupling fibers,” Opt. Commun. 343, 150–156 (2015).
[Crossref]

H. Chen, H. Wang, H. Hou, and D. Chen, “A terahertz single-polarization single-mode photonic crystal fiber with a rectangular array of micro-holes in the core region,” Opt. Commun. 285(18), 3726–3729 (2012).
[Crossref]

Opt. Express (9)

A. Reyes-Coronado, M. F. Acosta, R. I. Merino, V. M. Orera, G. Kenanakis, N. Katsarakis, M. Kafesaki, Ch. Mavidis, J. García de Abajo, E. N. Economou, and C. M. Soukoulis, “Self-organization approach for THz polaritonic metamaterials,” Opt. Express 20(13), 14663–14682 (2012).
[Crossref] [PubMed]

J. Hou, D. Bird, A. George, S. Maier, B. Kuhlmey, and J. C. Knight, “Metallic mode confinement in microstructured fibres,” Opt. Express 16(9), 5983–5990 (2008).
[Crossref] [PubMed]

H. W. Lee, M. A. Schmidt, R. F. Russell, N. Y. Joly, H. K. Tyagi, P. Uebel, and P. St. J. Russell, “Pressure-assisted melt-filling and optical characterization of Au nano-wires in microstructured fibers,” Opt. Express 19(13), 12180–12189 (2011).
[Crossref] [PubMed]

J. Harrington, R. George, P. Pedersen, and E. Mueller, “Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation,” Opt. Express 12(21), 5263–5268 (2004).
[Crossref] [PubMed]

J. Li, K. Nallappan, H. Guerboukha, and M. Skorobogatiy, “3D printed hollow core terahertz Bragg waveguides with defect layers for surface sensing applications,” Opt. Express 25(4), 4126–4144 (2017).
[Crossref] [PubMed]

D. O. Otuya, K. Kasai, M. Yoshida, T. Hirooka, and M. Nakazawa, “A single-channel 1.92 Tbit/s, 64 QAM coherent optical pulse transmission over 150 km using frequency-domain equalization,” Opt. Express 21(19), 22808–22816 (2013).
[Crossref] [PubMed]

A. Hassani, A. Dupuis, and M. Skorobogatiy, “Porous polymer fibers for low-loss Terahertz guiding,” Opt. Express 16(9), 6340–6351 (2008).
[Crossref] [PubMed]

S. Atakaramians, S. Afshar V, H. Ebendorff-Heidepriem, M. Nagel, B. M. Fischer, D. Abbott, and T. M. Monro, “THz porous fibers: design, fabrication and experimental characterization,” Opt. Express 17(16), 14053–15062 (2009).
[Crossref] [PubMed]

T. Yang, E. Wang, H. Jiang, Z. Hu, and K. Xie, “High birefringence photonic crystal fiber with high nonlinearity and low confinement loss,” Opt. Express 23(7), 8329–8337 (2015).
[Crossref] [PubMed]

Opt. Lett. (2)

R. Islam, M. S. Habib, G. K. M. Hasanuzzaman, S. Rana, and M. A. Sadath, “Novel porous fiber based on dual-asymmetry for low-loss polarization maintaining THz wave guidance,” Opt. Lett. 41(3), 440–443 (2016).
[Crossref] [PubMed]

X. Lin, H.-J. Zheng, C.-Q. Wu, and S.-L. Liu, “A novel single-polarization single-mode photonic crystal fiber with circular and elliptical air-holes arrays,” Opt. Lett. 9(2), 0120–0123 (2013).
[Crossref]

Opt. Photonics News (1)

I. Liberal and N. Engheta, “Zero-index platforms: Where light defies geometry,” Opt. Photonics News 27(7), 26–33 (2016).
[Crossref]

Opt. Soc. Am. B (1)

J. Dai, J. Q. Zhang, W. L. Zhang, and D. Grischkowsky, “Terahertz time-domain spectroscopy characterization of the far-infrared absorption and index of refraction of high-resistivity, float-zone silicon,” Opt. Soc. Am. B 21(7), 1379–1386 (2004).
[Crossref]

Phys. Rev. Appl. (1)

V. Pacheco-Pena, N. Engheta, S. Kuznetsov, A. Gentselev, and M. Beruete, “Experimental realization of an epsilon-near-zero graded-index metalens at terahertz frequencies,” Phys. Rev. Appl. 8(3), 034036 (2017).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

R. W. Ziolkowski, “Propagation in and scattering from a matched metamaterial having a zero index of refraction,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(4), 046608 (2004).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

C. Markos, J. C. Travers, A. Abdolvand, B. J. Eggleton, and O. Bang, “Hybrid photonic-crystal fiber,” Rev. Mod. Phys. 89(4), 045003 (2017).
[Crossref]

Other (4)

A. Boltasseva, School of Electrical and Computer Engineering and Birck Nanotechnology Center, Purdue University, 1205 West State Street, West Lafayette, IN 47907–2057, USA (most recently obtained AZO values, private communication, 2018).

T.-Y. Yang, C. Ding, R. W. Ziolkowski, and Y. J. Guo, “A scalable THz ultra-high birefringence and ultra-low loss partially-slotted photonic crystal fiber,” IEEE J. Lightwave Technol., in press (2018).

N. Engheta and R. W. Ziolkowski, Metamaterials: Physics and Engineering Explorations (Wiley, 2006).

COMSOL Multiphysics, COMSOL, Stockholm, Sweden. http://cn.comsol.com/rf-module .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Cross sectional view of the complementary PCFs. (a) Type 1. (b) Type 2.
Fig. 2
Fig. 2 Comparisons of the performance characteristics of the Type 1 and Type 2 PCFs. (a) Birefringence. (b) CL. (c) EML. (d) TL. (e) Dispersion.
Fig. 3
Fig. 3 Simulated PCF performance characteristics for different lattice constants and for both the X- and Y-polarized modes as functions of the source frequency. (a) Birefringence and TL values. (b) Dispersion values.
Fig. 4
Fig. 4 Simulated performance characteristics of the geometrically and material asymmetric PCF as functions of the source frequency for different d2 and for both the X- and Y-polarized modes. (a) Birefringence and TL values. (b) Dispersion values.
Fig. 5
Fig. 5 Optimized PCF. (a) Optimal configuration. Distributions of the magnitude of the electric field intensity distribution for the (b) X- and (c) Y-polarized modes. The white arrows designate the polarization direction. Blue represents low values; red represents high values.
Fig. 6
Fig. 6 Simulated performance characteristics of the optimized PCF as functions of the source frequency. (a) Birefringence and TL values. (b) Dispersion values.
Fig. 7
Fig. 7 Simulated optical PCF performance characteristics for both the X- and Y-polarized modes as functions of the source frequency. (a) Birefringence and TL values. (b) Dispersion values.
Fig. 8
Fig. 8 The real and imaginary parts of the relative permittivity of 99.5% pure KCl as functions of the source frequency.
Fig. 9
Fig. 9 Simulated properties of the THz PCF designed with KCl and Topas for different lattice periods Λ. (a) Birefringence. (b) TL. (c) Dispersion.
Fig. 10
Fig. 10 The relative permittivity of AZO and the birefringence values of the optical PCF designed with AZO in the C band.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

B=| n x n y |,
L c ( c m 1 )= 4πf c ×Im[ n eff ],
α eff ( c m 1 )= ( ε 0 μ 0 ) 1 2 mat n mat α mat | E | 2 dA 2 All S z dA ,
β 2 = 2 c d n eff dω + ω c d 2 n eff dω

Metrics