Abstract

A quadrichromatic light-emitting diode (QLED) based visible light communication for mobile phone camera is proposed to improve data rate and enhance illumination effect at the same time. Different from color intensity modulation (CIM), we propose and use color ratio modulation (CRM) in CMOS image sensor based visible light communication to improve data rate. According to the spectral power distribution (SPD) of the QLED and the spectral response of the complementary-metal-oxide-semiconductor (CMOS) image sensor, color multiple-input multiple-output (CMIMO) channel model is set up first to obtain optimal 16-CRM constellation design. Taking full consideration of the high quality of color rendering index (CRI), tunable color temperature (CT), we design a specific data packet structure to realize illumination requirements. A decoding strategy is also addressed for demapping at the receiver. The experimental results demonstrate that the proposed scheme can realize a downlink data rate of 13.2kbit/s, meanwhile, the optical signal source is illumination compatible.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
RGB visible light communication using mobile-phone camera and multi-input multi-output

Kevin Liang, Chi-Wai Chow, and Yang Liu
Opt. Express 24(9) 9383-9388 (2016)

Visible light communication using dual camera on one smartphone

Y. Q. Xu, J. Hua, Z. Gong, W. Zhao, Z. Q. Zhang, C. Y. Xie, Z. T. Chen, and J. F. Chen
Opt. Express 26(26) 34609-34621 (2018)

Visible light communication using mobile-phone camera with data rate higher than frame rate

Chi-Wai Chow, Chung-Yen Chen, and Shih-Hao Chen
Opt. Express 23(20) 26080-26085 (2015)

References

  • View by:
  • |
  • |
  • |

  1. S. Rajagopal, R. D. Roberts, and S. K. Lim, “IEEE 802.15.7 visible light communication: modulation schemes and dimming support,” IEEE Commun. Mag. 50(3), 72–82 (2012).
    [Crossref]
  2. A. Jovicic, J. Li, and T. Richardson, “Visible light communication: opportunities, challenges and the path to market,” IEEE Commun. Mag. 51(12), 26–32 (2013).
    [Crossref]
  3. Y. Pei, S. Zhu, H. Yang, L. Zhao, X. Yi, J. Wang, and J. Li, “LED Modulation Characteristics in a Visible-Light Communication System,” Opt. Photonics J. 3(2), 139–142 (2017).
    [Crossref]
  4. J. H. Li, X. X. Huang, X. M. Ji, N. Chi, and J.-Y. Shi, “An integrated PIN-array receiver for visible light communication,” J. Opt. 17(10), 105805 (2015).
    [Crossref]
  5. S. Ray, M. M. Hella, M. M. Hossain, P. Zarkesh-Ha, and M. M. Hayat, “Speed optimized large area avalanche photodetector in standard CMOS technology for visible light communication,” in Proceeding of IEEE Sensors (IEEE, 2014), pp. 2147– 2150.
  6. K. Liang, C. W. Chow, Y. Liu, and C. H. Yeh, “Thresholding schemes for visible light communications with CMOS camera using entropy-based algorithms,” Opt. Express 24(22), 25641–25646 (2016).
    [Crossref] [PubMed]
  7. T. H. Do and M. Yoo, “Performance Analysis of Visible Light Communication Using CMOS Sensors,” Sensors (Basel) 16(3), 309 (2016).
    [Crossref] [PubMed]
  8. M. S. Rahman, M. M. Haque, and K. D. Kim, “Indoor Positioning by LED Visible Light Communication and Image Sensors,” Iran. J. Electr. Comput. Eng. 1(2), 420–431 (2011).
  9. T. H. Do and M. Yoo, “Visible light communication based vehicle positioning using LED street light and rolling shutter CMOS sensors,” Opt. Commun. 407, 112–126 (2018).
    [Crossref]
  10. P. Huynh, T. H. Do, and M. Yoo, “A Probability-Based Algorithm Using Image Sensors to Track the LED in a Vehicle Visible Light Communication System,” Sensors (Basel) 17(2), 347 (2017).
    [Crossref] [PubMed]
  11. M. G. Moon and S. I. Choi, “Indoor position estimation using image sensor based on VLC,” in proceeding of International Conference on Advanced Technologies for Communications. (IEEE, 2015), pp. 11–14.
  12. V. P. Rachim, Y. Jiang, H. S. Lee, and W. Y. Chung, “Demonstration of long-distance hazard-free wearable EEG monitoring system using mobile phone visible light communication,” Opt. Express 25(2), 713–719 (2017).
    [Crossref] [PubMed]
  13. J. Shi, J. He, J. He, R. Deng, Y. Wei, F. Long, Y. Cheng, and L. Chen, “Multilevel modulation scheme using the overlapping of two light sources for visible light communication with mobile phone camera,” Opt. Express 25(14), 15905–15912 (2017).
    [Crossref] [PubMed]
  14. K. Liang, C. W. Chow, and Y. Liu, “RGB visible light communication using mobile-phone camera and multi-input multi-output,” Opt. Express 24(9), 9383–9388 (2016).
    [Crossref] [PubMed]
  15. C. W. Chow, C. Y. Chen, and S. H. Chen, “Visible light communication using mobile-phone camera with data rate higher than frame rate,” Opt. Express 23(20), 26080–26085 (2015).
    [Crossref] [PubMed]
  16. X. Liang, M. Yuan, J. Wang, Z. Ding, M. Jiang, and C. M. Zhao, “Constellation Design Enhancement for Color-Shift Keying Modulation of Quadrichromatic LEDs in Visible Light Communications,” J. Lightwave Technol. 35(17), 3650–3663 (2017).
    [Crossref]
  17. E. Monteiro and S. Hranilovic, “Design and Implementation of Color-Shift Keying for Visible Light Communications,” J. Lightwave Technol. 32(10), 2053–2060 (2014).
    [Crossref]
  18. C. G. Lee, D. K. Son, E. B. Cho, I. K. Moon, and Y. S. Park, “Development of an Illumination Measurement Device for Color Distribution Based on, a CIE 1931 XYZ Sensor,” J. Opt. Soc. Korea 15(1), 44–51 (2011).
    [Crossref]
  19. G. He and L. Zheng, “Color temperature tunable white-light light-emitting diode clusters with high color rendering index,” Appl. Opt. 49(24), 4670–4676 (2010).
    [Crossref] [PubMed]
  20. A. Molada-Tebar and J. L. Lerma, “Camera characterization for improving color archaeological documentation,” Color Res. Appl. 43(14), 47-57 (2017).
  21. Y. Gao, L. Yun, and J. Shi, “Enhancement MSRCR algorithm of color fog image based on the adaptive scale,” Proc. SPIE 9159(3), 91591B (2014).
  22. Y. Ohno, “Color Quality of White LEDs,” Top. Appl. Phys. 126, 349–371 (2013).
    [Crossref]

2018 (1)

T. H. Do and M. Yoo, “Visible light communication based vehicle positioning using LED street light and rolling shutter CMOS sensors,” Opt. Commun. 407, 112–126 (2018).
[Crossref]

2017 (6)

P. Huynh, T. H. Do, and M. Yoo, “A Probability-Based Algorithm Using Image Sensors to Track the LED in a Vehicle Visible Light Communication System,” Sensors (Basel) 17(2), 347 (2017).
[Crossref] [PubMed]

V. P. Rachim, Y. Jiang, H. S. Lee, and W. Y. Chung, “Demonstration of long-distance hazard-free wearable EEG monitoring system using mobile phone visible light communication,” Opt. Express 25(2), 713–719 (2017).
[Crossref] [PubMed]

J. Shi, J. He, J. He, R. Deng, Y. Wei, F. Long, Y. Cheng, and L. Chen, “Multilevel modulation scheme using the overlapping of two light sources for visible light communication with mobile phone camera,” Opt. Express 25(14), 15905–15912 (2017).
[Crossref] [PubMed]

Y. Pei, S. Zhu, H. Yang, L. Zhao, X. Yi, J. Wang, and J. Li, “LED Modulation Characteristics in a Visible-Light Communication System,” Opt. Photonics J. 3(2), 139–142 (2017).
[Crossref]

X. Liang, M. Yuan, J. Wang, Z. Ding, M. Jiang, and C. M. Zhao, “Constellation Design Enhancement for Color-Shift Keying Modulation of Quadrichromatic LEDs in Visible Light Communications,” J. Lightwave Technol. 35(17), 3650–3663 (2017).
[Crossref]

A. Molada-Tebar and J. L. Lerma, “Camera characterization for improving color archaeological documentation,” Color Res. Appl. 43(14), 47-57 (2017).

2016 (3)

2015 (2)

C. W. Chow, C. Y. Chen, and S. H. Chen, “Visible light communication using mobile-phone camera with data rate higher than frame rate,” Opt. Express 23(20), 26080–26085 (2015).
[Crossref] [PubMed]

J. H. Li, X. X. Huang, X. M. Ji, N. Chi, and J.-Y. Shi, “An integrated PIN-array receiver for visible light communication,” J. Opt. 17(10), 105805 (2015).
[Crossref]

2014 (2)

Y. Gao, L. Yun, and J. Shi, “Enhancement MSRCR algorithm of color fog image based on the adaptive scale,” Proc. SPIE 9159(3), 91591B (2014).

E. Monteiro and S. Hranilovic, “Design and Implementation of Color-Shift Keying for Visible Light Communications,” J. Lightwave Technol. 32(10), 2053–2060 (2014).
[Crossref]

2013 (2)

Y. Ohno, “Color Quality of White LEDs,” Top. Appl. Phys. 126, 349–371 (2013).
[Crossref]

A. Jovicic, J. Li, and T. Richardson, “Visible light communication: opportunities, challenges and the path to market,” IEEE Commun. Mag. 51(12), 26–32 (2013).
[Crossref]

2012 (1)

S. Rajagopal, R. D. Roberts, and S. K. Lim, “IEEE 802.15.7 visible light communication: modulation schemes and dimming support,” IEEE Commun. Mag. 50(3), 72–82 (2012).
[Crossref]

2011 (2)

M. S. Rahman, M. M. Haque, and K. D. Kim, “Indoor Positioning by LED Visible Light Communication and Image Sensors,” Iran. J. Electr. Comput. Eng. 1(2), 420–431 (2011).

C. G. Lee, D. K. Son, E. B. Cho, I. K. Moon, and Y. S. Park, “Development of an Illumination Measurement Device for Color Distribution Based on, a CIE 1931 XYZ Sensor,” J. Opt. Soc. Korea 15(1), 44–51 (2011).
[Crossref]

2010 (1)

Chen, C. Y.

Chen, L.

Chen, S. H.

Cheng, Y.

Chi, N.

J. H. Li, X. X. Huang, X. M. Ji, N. Chi, and J.-Y. Shi, “An integrated PIN-array receiver for visible light communication,” J. Opt. 17(10), 105805 (2015).
[Crossref]

Cho, E. B.

Choi, S. I.

M. G. Moon and S. I. Choi, “Indoor position estimation using image sensor based on VLC,” in proceeding of International Conference on Advanced Technologies for Communications. (IEEE, 2015), pp. 11–14.

Chow, C. W.

Chung, W. Y.

Deng, R.

Ding, Z.

Do, T. H.

T. H. Do and M. Yoo, “Visible light communication based vehicle positioning using LED street light and rolling shutter CMOS sensors,” Opt. Commun. 407, 112–126 (2018).
[Crossref]

P. Huynh, T. H. Do, and M. Yoo, “A Probability-Based Algorithm Using Image Sensors to Track the LED in a Vehicle Visible Light Communication System,” Sensors (Basel) 17(2), 347 (2017).
[Crossref] [PubMed]

T. H. Do and M. Yoo, “Performance Analysis of Visible Light Communication Using CMOS Sensors,” Sensors (Basel) 16(3), 309 (2016).
[Crossref] [PubMed]

Gao, Y.

Y. Gao, L. Yun, and J. Shi, “Enhancement MSRCR algorithm of color fog image based on the adaptive scale,” Proc. SPIE 9159(3), 91591B (2014).

Haque, M. M.

M. S. Rahman, M. M. Haque, and K. D. Kim, “Indoor Positioning by LED Visible Light Communication and Image Sensors,” Iran. J. Electr. Comput. Eng. 1(2), 420–431 (2011).

Hayat, M. M.

S. Ray, M. M. Hella, M. M. Hossain, P. Zarkesh-Ha, and M. M. Hayat, “Speed optimized large area avalanche photodetector in standard CMOS technology for visible light communication,” in Proceeding of IEEE Sensors (IEEE, 2014), pp. 2147– 2150.

He, G.

He, J.

Hella, M. M.

S. Ray, M. M. Hella, M. M. Hossain, P. Zarkesh-Ha, and M. M. Hayat, “Speed optimized large area avalanche photodetector in standard CMOS technology for visible light communication,” in Proceeding of IEEE Sensors (IEEE, 2014), pp. 2147– 2150.

Hossain, M. M.

S. Ray, M. M. Hella, M. M. Hossain, P. Zarkesh-Ha, and M. M. Hayat, “Speed optimized large area avalanche photodetector in standard CMOS technology for visible light communication,” in Proceeding of IEEE Sensors (IEEE, 2014), pp. 2147– 2150.

Hranilovic, S.

Huang, X. X.

J. H. Li, X. X. Huang, X. M. Ji, N. Chi, and J.-Y. Shi, “An integrated PIN-array receiver for visible light communication,” J. Opt. 17(10), 105805 (2015).
[Crossref]

Huynh, P.

P. Huynh, T. H. Do, and M. Yoo, “A Probability-Based Algorithm Using Image Sensors to Track the LED in a Vehicle Visible Light Communication System,” Sensors (Basel) 17(2), 347 (2017).
[Crossref] [PubMed]

Ji, X. M.

J. H. Li, X. X. Huang, X. M. Ji, N. Chi, and J.-Y. Shi, “An integrated PIN-array receiver for visible light communication,” J. Opt. 17(10), 105805 (2015).
[Crossref]

Jiang, M.

Jiang, Y.

Jovicic, A.

A. Jovicic, J. Li, and T. Richardson, “Visible light communication: opportunities, challenges and the path to market,” IEEE Commun. Mag. 51(12), 26–32 (2013).
[Crossref]

Kim, K. D.

M. S. Rahman, M. M. Haque, and K. D. Kim, “Indoor Positioning by LED Visible Light Communication and Image Sensors,” Iran. J. Electr. Comput. Eng. 1(2), 420–431 (2011).

Lee, C. G.

Lee, H. S.

Lerma, J. L.

A. Molada-Tebar and J. L. Lerma, “Camera characterization for improving color archaeological documentation,” Color Res. Appl. 43(14), 47-57 (2017).

Li, J.

Y. Pei, S. Zhu, H. Yang, L. Zhao, X. Yi, J. Wang, and J. Li, “LED Modulation Characteristics in a Visible-Light Communication System,” Opt. Photonics J. 3(2), 139–142 (2017).
[Crossref]

A. Jovicic, J. Li, and T. Richardson, “Visible light communication: opportunities, challenges and the path to market,” IEEE Commun. Mag. 51(12), 26–32 (2013).
[Crossref]

Li, J. H.

J. H. Li, X. X. Huang, X. M. Ji, N. Chi, and J.-Y. Shi, “An integrated PIN-array receiver for visible light communication,” J. Opt. 17(10), 105805 (2015).
[Crossref]

Liang, K.

Liang, X.

Lim, S. K.

S. Rajagopal, R. D. Roberts, and S. K. Lim, “IEEE 802.15.7 visible light communication: modulation schemes and dimming support,” IEEE Commun. Mag. 50(3), 72–82 (2012).
[Crossref]

Liu, Y.

Long, F.

Molada-Tebar, A.

A. Molada-Tebar and J. L. Lerma, “Camera characterization for improving color archaeological documentation,” Color Res. Appl. 43(14), 47-57 (2017).

Monteiro, E.

Moon, I. K.

Moon, M. G.

M. G. Moon and S. I. Choi, “Indoor position estimation using image sensor based on VLC,” in proceeding of International Conference on Advanced Technologies for Communications. (IEEE, 2015), pp. 11–14.

Ohno, Y.

Y. Ohno, “Color Quality of White LEDs,” Top. Appl. Phys. 126, 349–371 (2013).
[Crossref]

Park, Y. S.

Pei, Y.

Y. Pei, S. Zhu, H. Yang, L. Zhao, X. Yi, J. Wang, and J. Li, “LED Modulation Characteristics in a Visible-Light Communication System,” Opt. Photonics J. 3(2), 139–142 (2017).
[Crossref]

Rachim, V. P.

Rahman, M. S.

M. S. Rahman, M. M. Haque, and K. D. Kim, “Indoor Positioning by LED Visible Light Communication and Image Sensors,” Iran. J. Electr. Comput. Eng. 1(2), 420–431 (2011).

Rajagopal, S.

S. Rajagopal, R. D. Roberts, and S. K. Lim, “IEEE 802.15.7 visible light communication: modulation schemes and dimming support,” IEEE Commun. Mag. 50(3), 72–82 (2012).
[Crossref]

Ray, S.

S. Ray, M. M. Hella, M. M. Hossain, P. Zarkesh-Ha, and M. M. Hayat, “Speed optimized large area avalanche photodetector in standard CMOS technology for visible light communication,” in Proceeding of IEEE Sensors (IEEE, 2014), pp. 2147– 2150.

Richardson, T.

A. Jovicic, J. Li, and T. Richardson, “Visible light communication: opportunities, challenges and the path to market,” IEEE Commun. Mag. 51(12), 26–32 (2013).
[Crossref]

Roberts, R. D.

S. Rajagopal, R. D. Roberts, and S. K. Lim, “IEEE 802.15.7 visible light communication: modulation schemes and dimming support,” IEEE Commun. Mag. 50(3), 72–82 (2012).
[Crossref]

Shi, J.

Shi, J.-Y.

J. H. Li, X. X. Huang, X. M. Ji, N. Chi, and J.-Y. Shi, “An integrated PIN-array receiver for visible light communication,” J. Opt. 17(10), 105805 (2015).
[Crossref]

Son, D. K.

Wang, J.

Y. Pei, S. Zhu, H. Yang, L. Zhao, X. Yi, J. Wang, and J. Li, “LED Modulation Characteristics in a Visible-Light Communication System,” Opt. Photonics J. 3(2), 139–142 (2017).
[Crossref]

X. Liang, M. Yuan, J. Wang, Z. Ding, M. Jiang, and C. M. Zhao, “Constellation Design Enhancement for Color-Shift Keying Modulation of Quadrichromatic LEDs in Visible Light Communications,” J. Lightwave Technol. 35(17), 3650–3663 (2017).
[Crossref]

Wei, Y.

Yang, H.

Y. Pei, S. Zhu, H. Yang, L. Zhao, X. Yi, J. Wang, and J. Li, “LED Modulation Characteristics in a Visible-Light Communication System,” Opt. Photonics J. 3(2), 139–142 (2017).
[Crossref]

Yeh, C. H.

Yi, X.

Y. Pei, S. Zhu, H. Yang, L. Zhao, X. Yi, J. Wang, and J. Li, “LED Modulation Characteristics in a Visible-Light Communication System,” Opt. Photonics J. 3(2), 139–142 (2017).
[Crossref]

Yoo, M.

T. H. Do and M. Yoo, “Visible light communication based vehicle positioning using LED street light and rolling shutter CMOS sensors,” Opt. Commun. 407, 112–126 (2018).
[Crossref]

P. Huynh, T. H. Do, and M. Yoo, “A Probability-Based Algorithm Using Image Sensors to Track the LED in a Vehicle Visible Light Communication System,” Sensors (Basel) 17(2), 347 (2017).
[Crossref] [PubMed]

T. H. Do and M. Yoo, “Performance Analysis of Visible Light Communication Using CMOS Sensors,” Sensors (Basel) 16(3), 309 (2016).
[Crossref] [PubMed]

Yuan, M.

Yun, L.

Y. Gao, L. Yun, and J. Shi, “Enhancement MSRCR algorithm of color fog image based on the adaptive scale,” Proc. SPIE 9159(3), 91591B (2014).

Zarkesh-Ha, P.

S. Ray, M. M. Hella, M. M. Hossain, P. Zarkesh-Ha, and M. M. Hayat, “Speed optimized large area avalanche photodetector in standard CMOS technology for visible light communication,” in Proceeding of IEEE Sensors (IEEE, 2014), pp. 2147– 2150.

Zhao, C. M.

Zhao, L.

Y. Pei, S. Zhu, H. Yang, L. Zhao, X. Yi, J. Wang, and J. Li, “LED Modulation Characteristics in a Visible-Light Communication System,” Opt. Photonics J. 3(2), 139–142 (2017).
[Crossref]

Zheng, L.

Zhu, S.

Y. Pei, S. Zhu, H. Yang, L. Zhao, X. Yi, J. Wang, and J. Li, “LED Modulation Characteristics in a Visible-Light Communication System,” Opt. Photonics J. 3(2), 139–142 (2017).
[Crossref]

Appl. Opt. (1)

Color Res. Appl. (1)

A. Molada-Tebar and J. L. Lerma, “Camera characterization for improving color archaeological documentation,” Color Res. Appl. 43(14), 47-57 (2017).

IEEE Commun. Mag. (2)

S. Rajagopal, R. D. Roberts, and S. K. Lim, “IEEE 802.15.7 visible light communication: modulation schemes and dimming support,” IEEE Commun. Mag. 50(3), 72–82 (2012).
[Crossref]

A. Jovicic, J. Li, and T. Richardson, “Visible light communication: opportunities, challenges and the path to market,” IEEE Commun. Mag. 51(12), 26–32 (2013).
[Crossref]

Iran. J. Electr. Comput. Eng. (1)

M. S. Rahman, M. M. Haque, and K. D. Kim, “Indoor Positioning by LED Visible Light Communication and Image Sensors,” Iran. J. Electr. Comput. Eng. 1(2), 420–431 (2011).

J. Lightwave Technol. (2)

J. Opt. (1)

J. H. Li, X. X. Huang, X. M. Ji, N. Chi, and J.-Y. Shi, “An integrated PIN-array receiver for visible light communication,” J. Opt. 17(10), 105805 (2015).
[Crossref]

J. Opt. Soc. Korea (1)

Opt. Commun. (1)

T. H. Do and M. Yoo, “Visible light communication based vehicle positioning using LED street light and rolling shutter CMOS sensors,” Opt. Commun. 407, 112–126 (2018).
[Crossref]

Opt. Express (5)

Opt. Photonics J. (1)

Y. Pei, S. Zhu, H. Yang, L. Zhao, X. Yi, J. Wang, and J. Li, “LED Modulation Characteristics in a Visible-Light Communication System,” Opt. Photonics J. 3(2), 139–142 (2017).
[Crossref]

Proc. SPIE (1)

Y. Gao, L. Yun, and J. Shi, “Enhancement MSRCR algorithm of color fog image based on the adaptive scale,” Proc. SPIE 9159(3), 91591B (2014).

Sensors (Basel) (2)

P. Huynh, T. H. Do, and M. Yoo, “A Probability-Based Algorithm Using Image Sensors to Track the LED in a Vehicle Visible Light Communication System,” Sensors (Basel) 17(2), 347 (2017).
[Crossref] [PubMed]

T. H. Do and M. Yoo, “Performance Analysis of Visible Light Communication Using CMOS Sensors,” Sensors (Basel) 16(3), 309 (2016).
[Crossref] [PubMed]

Top. Appl. Phys. (1)

Y. Ohno, “Color Quality of White LEDs,” Top. Appl. Phys. 126, 349–371 (2013).
[Crossref]

Other (2)

M. G. Moon and S. I. Choi, “Indoor position estimation using image sensor based on VLC,” in proceeding of International Conference on Advanced Technologies for Communications. (IEEE, 2015), pp. 11–14.

S. Ray, M. M. Hella, M. M. Hossain, P. Zarkesh-Ha, and M. M. Hayat, “Speed optimized large area avalanche photodetector in standard CMOS technology for visible light communication,” in Proceeding of IEEE Sensors (IEEE, 2014), pp. 2147– 2150.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) CMOS image sensor based VLC using OOK modulation with white light LED . (b) CMOS image sensor based VLC using CSK modulation with quadrichromatic LED..
Fig. 2
Fig. 2 (a) CMIMO model of CMOS image sensor based visible light communication using a quadrichromatic LED. (b) SPD of quadrichromatic LED and the spectral response of the CMOS image sensor. (c) Optimal 16-CRM constellation design for the CMOS image sensor in signal space.
Fig. 3
Fig. 3 (a) Hardware configuration. (b) Data frame structure.
Fig. 4
Fig. 4 (a) 16-CRM constellation points in CIE 1931 space. (b) Schematic diagram of the principle for color mixing.
Fig. 5
Fig. 5 (a) Decoding algorithm diagram for the color rolling shutter pattern. (b) Center region of the color rolling shutter pattern after applying MSRCR algorithm. (c) Gray value in red, green and blue channel of the processed color rolling shutter pattern.
Fig. 6
Fig. 6 Experiment platform for testing both illumination parameters and data rate.
Fig. 7
Fig. 7 (a) Color temperature of the quadrichromatic LED during the 2-minute test. (b) CRI of the quadrichromatic LED during the 2-minute test. (c) An overall view of the LED during data transmission.
Fig. 8
Fig. 8 (a) BER curve under different exposure time conditions. (b) “Overflow” phenomenon when exposure time is too long.

Tables (3)

Tables Icon

Table 1 Optimization results of 16-CRM constellation design

Tables Icon

Table 2 16-CRM constellations in CIE 1931 xyY color space

Tables Icon

Table 3 Comparison of system schemes for CMOS image sensor based VLC

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

k = ( k R k G k B k A ) , S = ( R ( λ ) G ( λ ) B ( λ ) A ( λ ) ) , R = ( r ( λ ) g ( λ ) b ( λ ) ) .
( r , g , b ) T = 400 1000 S T k R .
C = 1 r + g + b ( r , g , b ) .
max k ( n ) 1 n 16 min { d 12 , d 13 , ... d i j } ( 1 i < j 16 ) s . t . d i j = C i C j 2 . 0 C ( n ) 1
{ X i = x ¯ ( λ ) S i ( λ ) d λ Y i = y ¯ ( λ ) S i ( λ ) d λ Z i = z ¯ ( λ ) S i ( λ ) d λ , { x i = X i X i + Y i + Z i y i = Y i X i + Y i + Z i , ( i = R , G , B , A ) .
f = L R + L G + L B + L A + i = 1 5 k ( i ) = ( L R + L C R M i = 1 5 k R ( i ) L G + L C R M i = 1 5 k G ( i ) L B + L C R M i = 1 5 k B ( i ) L A + L C R M i = 1 5 k A ( i ) ) .
Luminous flux : f 1 = ϕ . Chromaticity coordinates : ( x R x G x B x A y R y G y B y A ) · f f 1 = ( x t y t ) CRI : R a α
R a w D a t a = k 1 R + k 2 G + k 3 B + k 4 R 2 + k 5 G 2 + k 6 B 2 + k 7 R G + k 8 R B + k 9 G B + k 10 R 3 . + k 11 G 3 + k 12 B 3 + k 13 R 2 G + k 14 R 2 B + k 15 G 2 R + k 16 G 2 B + k 17 B 2 R + k 18 B 2 G + k 19

Metrics