Abstract

A newly designed all-solid step-index Yb-doped aluminosilicate large mode area fiber for achieving high peak power at near diffraction limited beam quality with local adiabatic tapering is presented. The 45µm diameter fiber core and pump cladding consist of active/passively doped aluminosilicate glass produced by powder sinter technology (REPUSIL). A deliberate combination of innovative cladding and core materials was aspired to achieve low processing temperature reducing dopant diffusion during fiber fabrication, tapering and splicing. By developing a short adiabatic taper, robust seed coupling is achieved by using this Yb-doped LMA fiber as final stage of a nanosecond fiber Master Oscillator Power Amplifier (MOPA) system while maintaining near diffraction limited beam quality by preferential excitation of the fundamental mode. After application of a fiber-based endcap, the peak power could be scaled up to 375 kW with high beam quality and a measured M2 value of 1.3~1.7.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Ultra-large core birefringent Yb-doped tapered double clad fiber for high power amplifiers

Andrey Fedotov, Teppo Noronen, Regina Gumenyuk, Vasiliy Ustimchik, Yuri Chamorovskii, Konstantin Golant, Maxim Odnoblyudov, Joona Rissanen, Tapio Niemi, and Valery Filippov
Opt. Express 26(6) 6581-6592 (2018)

Yb3+-doped silica glass rod with high optical quality and low optical attenuation prepared by modified sol-gel technology for large mode area fiber

Shikai Wang, Wenbin Xu, Fan Wang, Fengguang Lou, Lei Zhang, Qinling Zhou, Danping Chen, Suya Feng, Meng Wang, Chunlei Yu, and Lili Hu
Opt. Mater. Express 7(6) 2012-2022 (2017)

Sub-MW peak power diffraction-limited chirped-pulse monolithic Yb-doped tapered fiber amplifier

Konstantin Bobkov, Alexey Andrianov, Maxim Koptev, Sergey Muravyev, Andrei Levchenko, Vladimir Velmiskin, Svetlana Aleshkina, Sergey Semjonov, Denis Lipatov, Alexey Guryanov, Arkady Kim, and Mikhail Likhachev
Opt. Express 25(22) 26958-26972 (2017)

References

  • View by:
  • |
  • |
  • |

  1. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives [Invited],” J. Opt. Soc. Am. B 27(11), B63–B92 (2010).
    [Crossref]
  2. F. J. Duarte, Tunable Laser Applications (CRC, 2008).
  3. G. P. Agrawal, Nonlinear Fiber Optics (Elsevier, 2013).
  4. C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
    [Crossref]
  5. R. M. Wood, Laser-Induced Damage of Optical Materials (Institute of Physics Publishing, 2003).
  6. D. Jain, Y. Jung, J. Kim, and J. K. Sahu, “Robust single-mode all-solid multi-trench fiber with large effective mode area,” Opt. Lett. 39(17), 5200–5203 (2014).
    [Crossref] [PubMed]
  7. P. Wang, L. J. Cooper, J. K. Sahu, and W. A. Clarkson, “Efficient single-mode operation of a cladding-pumped ytterbium-doped helical-core fiber laser,” Opt. Lett. 31(2), 226–228 (2006).
    [Crossref] [PubMed]
  8. C. Liu, G. Chang, N. Litchinitser, A. Galvanauskas, D. Guertin, N. Jabobson, and K. Tankala, “Effectively Single-Mode Chirally-Coupled Core Fiber,” in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper ME2.
    [Crossref]
  9. T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22(13), 961–963 (1997).
    [Crossref] [PubMed]
  10. L. Dong, X. Peng, and J. Li, “Leakage channel optical fibers with large effective area,” J. Opt. Soc. Am. B 24(8), 1689–1697 (2007).
    [Crossref]
  11. J. Limpert, F. Stutzki, F. Jansen, H. J. Otto, T. Eidam, C. Jauregui, and A. Tünnermann, “Yb-doped large-pitch fibres: effective single-mode operation based on higher-order mode delocalization,” Light Sci. Appl. 1(4), e8 (2012).
    [Crossref]
  12. R. Dauliat, A. Benoît, D. Darwich, R. Jamier, J. Kobelke, S. Grimm, K. Schuster, and P. Roy, “Demonstration of a homogeneous Yb-doped core fully aperiodic large-pitch fiber laser,” Appl. Opt. 55(23), 6229–6235 (2016).
    [Crossref] [PubMed]
  13. C. D. Brooks and F. Di Teodoro, “Multimegawatt peak-power, single-transverse-mode operation of a 100μm core diameter, Yb-doped rodlike photonic crystal fiber amplifier,” Appl. Phys. Lett. 89(11), 111119 (2006).
    [Crossref]
  14. C. Gaida, F. Stutzki, F. Jansen, H.-J. Otto, T. Eidam, C. Jauregui, O. de Vries, J. Limpert, and A. Tünnermann, “Triple-clad large-pitch fibers for compact high-power pulsed fiber laser systems,” Opt. Lett. 39(2), 209–211 (2014).
    [Crossref] [PubMed]
  15. M. Y. Cheng, Y. C. Chang, A. Galvanauskas, P. Mamidipudi, R. Changkakoti, and P. Gatchell, “High-energy and high-peak-power nanosecond pulse generation with beam quality control in 200-microm core highly multimode Yb-doped fiber amplifiers,” Opt. Lett. 30(4), 358–360 (2005).
    [Crossref] [PubMed]
  16. C. Ye, S. Honkanen, J. Montiel i Ponsoda, A. Tervonen, T. Kokki, and J. Koponen, “Near-diffraction-limited output from confined-doped ytterbium fibre with 41 µm core diameter,” Electron. Lett. 47(14), 819–821 (2011).
    [Crossref]
  17. V. Filippov, Y. Chamorovskii, J. Kerttula, K. Golant, M. Pessa, and O. G. Okhotnikov, “Double clad tapered fiber for high power applications,” Opt. Express 16(3), 1929–1944 (2008).
    [Crossref] [PubMed]
  18. K. Bobkov, A. Andrianov, M. Koptev, S. Muravyev, A. Levchenko, V. Velmiskin, S. Aleshkina, S. Semjonov, D. Lipatov, A. Guryanov, A. Kim, and M. Likhachev, “Sub-MW peak power diffraction-limited chirped-pulse monolithic Yb-doped tapered fiber amplifier,” Opt. Express 25(22), 26958–26972 (2017).
    [Crossref] [PubMed]
  19. V. Filippov, A. Vorotynskii, T. Noronen, R. Gumenyuk, Y. Chamorovskii, and K. Golant, “Picosecond MOPA with ytterbium doped tapered double clad fiber,” Proc. SPIE 10083, 100831H (2017).
  20. A. Fedotov, T. Noronen, R. Gumenyuk, V. Ustimchik, Y. Chamorovskii, K. Golant, M. Odnoblyudov, J. Rissanen, T. Niemi, and V. Filippov, “Ultra-large core birefringent Yb-doped tapered double clad fiber for high power amplifiers,” Opt. Express 26(6), 6581–6592 (2018).
    [Crossref] [PubMed]
  21. Y. Zhu, T. Eschrich, M. Leich, S. Grimm, J. Kobelke, M. Lorenz, H. Bartelt, and M. Jäger, “Yb3+-doped rod-type amplifiers with local adiabatic tapers for peak power scaling and beam quality improvement,” Laser Phys. 27(10), 105103 (2017).
    [Crossref]
  22. D. Marcuse, “Loss analysis of single-mode fiber splices,” Bell Syst. Tech. J. 56(5), 703–718 (1977).
    [Crossref]
  23. R. P. Photonics Encyclopedia, “V Number”, https://www.rp-photonics.com/v_number.html .
  24. J. Kirchhof, S. Unger, and J. Dellith are preparing a manuscript to be called “The viscosity of fluorine-doped silica glasses.”
  25. S. Jetschke, S. Unger, M. Leich, and J. Kirchhof, “Photodarkening kinetics as a function of Yb concentration and the role of Al codoping,” Appl. Opt. 51(32), 7758–7764 (2012).
    [Crossref] [PubMed]
  26. S. Jetschke, S. Unger, A. Schwuchow, M. Leich, and M. Jäger, “Role of Ce in Yb/Al laser fibers: prevention of photodarkening and thermal effects,” Opt. Express 24(12), 13009–13022 (2016).
    [Crossref] [PubMed]
  27. K. Schuster, S. Unger, C. Aichele, F. Lindner, S. Grimm, D. Litzkendorf, J. Kobelke, J. Bierlich, K. Wondraczek, and H. Bartelt, “Material and technology trends in fiber optics,” Adv. Opt. Technol. 3(4), 447–468 (2014).
  28. M. Leich, F. Just, A. Langner, M. Such, G. Schötz, T. Eschrich, and S. Grimm, “Highly efficient Yb-doped silica fibers prepared by powder sinter technology,” Opt. Lett. 36(9), 1557–1559 (2011).
    [Crossref] [PubMed]
  29. M. Leich, U. Röpke, S. Jetschke, S. Unger, V. Reichel, and J. Kirchhof, “Non-isothermal bleaching of photodarkened Yb-doped fibers,” Opt. Express 17(15), 12588–12593 (2009).
    [Crossref] [PubMed]
  30. J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices,” in Proceedings of IEEE J138, 343–354 (1991).
  31. A. Wetter, M. Faucher, B. Sévigny, and N. Vachon, “High core and cladding isolation termination for high-power lasers and amplifiers,” Proc. SPIE 7195, 719521 (2009).
  32. J. Limpert, S. Höfer, A. Liem, H. Zellmer, A. Tünnermann, S. Knoke, and H. Voelckel, “100-W average-power, high-energy nanosecond fiber amplifier,” Appl. Phys. B 75(4-5), 477–479 (2002).
    [Crossref]

2018 (1)

2017 (3)

K. Bobkov, A. Andrianov, M. Koptev, S. Muravyev, A. Levchenko, V. Velmiskin, S. Aleshkina, S. Semjonov, D. Lipatov, A. Guryanov, A. Kim, and M. Likhachev, “Sub-MW peak power diffraction-limited chirped-pulse monolithic Yb-doped tapered fiber amplifier,” Opt. Express 25(22), 26958–26972 (2017).
[Crossref] [PubMed]

Y. Zhu, T. Eschrich, M. Leich, S. Grimm, J. Kobelke, M. Lorenz, H. Bartelt, and M. Jäger, “Yb3+-doped rod-type amplifiers with local adiabatic tapers for peak power scaling and beam quality improvement,” Laser Phys. 27(10), 105103 (2017).
[Crossref]

V. Filippov, A. Vorotynskii, T. Noronen, R. Gumenyuk, Y. Chamorovskii, and K. Golant, “Picosecond MOPA with ytterbium doped tapered double clad fiber,” Proc. SPIE 10083, 100831H (2017).

2016 (2)

2014 (3)

2013 (1)

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
[Crossref]

2012 (2)

J. Limpert, F. Stutzki, F. Jansen, H. J. Otto, T. Eidam, C. Jauregui, and A. Tünnermann, “Yb-doped large-pitch fibres: effective single-mode operation based on higher-order mode delocalization,” Light Sci. Appl. 1(4), e8 (2012).
[Crossref]

S. Jetschke, S. Unger, M. Leich, and J. Kirchhof, “Photodarkening kinetics as a function of Yb concentration and the role of Al codoping,” Appl. Opt. 51(32), 7758–7764 (2012).
[Crossref] [PubMed]

2011 (2)

C. Ye, S. Honkanen, J. Montiel i Ponsoda, A. Tervonen, T. Kokki, and J. Koponen, “Near-diffraction-limited output from confined-doped ytterbium fibre with 41 µm core diameter,” Electron. Lett. 47(14), 819–821 (2011).
[Crossref]

M. Leich, F. Just, A. Langner, M. Such, G. Schötz, T. Eschrich, and S. Grimm, “Highly efficient Yb-doped silica fibers prepared by powder sinter technology,” Opt. Lett. 36(9), 1557–1559 (2011).
[Crossref] [PubMed]

2010 (1)

2009 (2)

M. Leich, U. Röpke, S. Jetschke, S. Unger, V. Reichel, and J. Kirchhof, “Non-isothermal bleaching of photodarkened Yb-doped fibers,” Opt. Express 17(15), 12588–12593 (2009).
[Crossref] [PubMed]

A. Wetter, M. Faucher, B. Sévigny, and N. Vachon, “High core and cladding isolation termination for high-power lasers and amplifiers,” Proc. SPIE 7195, 719521 (2009).

2008 (1)

2007 (1)

2006 (2)

P. Wang, L. J. Cooper, J. K. Sahu, and W. A. Clarkson, “Efficient single-mode operation of a cladding-pumped ytterbium-doped helical-core fiber laser,” Opt. Lett. 31(2), 226–228 (2006).
[Crossref] [PubMed]

C. D. Brooks and F. Di Teodoro, “Multimegawatt peak-power, single-transverse-mode operation of a 100μm core diameter, Yb-doped rodlike photonic crystal fiber amplifier,” Appl. Phys. Lett. 89(11), 111119 (2006).
[Crossref]

2005 (1)

2002 (1)

J. Limpert, S. Höfer, A. Liem, H. Zellmer, A. Tünnermann, S. Knoke, and H. Voelckel, “100-W average-power, high-energy nanosecond fiber amplifier,” Appl. Phys. B 75(4-5), 477–479 (2002).
[Crossref]

1997 (1)

1977 (1)

D. Marcuse, “Loss analysis of single-mode fiber splices,” Bell Syst. Tech. J. 56(5), 703–718 (1977).
[Crossref]

Aichele, C.

K. Schuster, S. Unger, C. Aichele, F. Lindner, S. Grimm, D. Litzkendorf, J. Kobelke, J. Bierlich, K. Wondraczek, and H. Bartelt, “Material and technology trends in fiber optics,” Adv. Opt. Technol. 3(4), 447–468 (2014).

Aleshkina, S.

Andrianov, A.

Bartelt, H.

Y. Zhu, T. Eschrich, M. Leich, S. Grimm, J. Kobelke, M. Lorenz, H. Bartelt, and M. Jäger, “Yb3+-doped rod-type amplifiers with local adiabatic tapers for peak power scaling and beam quality improvement,” Laser Phys. 27(10), 105103 (2017).
[Crossref]

K. Schuster, S. Unger, C. Aichele, F. Lindner, S. Grimm, D. Litzkendorf, J. Kobelke, J. Bierlich, K. Wondraczek, and H. Bartelt, “Material and technology trends in fiber optics,” Adv. Opt. Technol. 3(4), 447–468 (2014).

Benoît, A.

Bierlich, J.

K. Schuster, S. Unger, C. Aichele, F. Lindner, S. Grimm, D. Litzkendorf, J. Kobelke, J. Bierlich, K. Wondraczek, and H. Bartelt, “Material and technology trends in fiber optics,” Adv. Opt. Technol. 3(4), 447–468 (2014).

Birks, T. A.

Black, R. J.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices,” in Proceedings of IEEE J138, 343–354 (1991).

Bobkov, K.

Brooks, C. D.

C. D. Brooks and F. Di Teodoro, “Multimegawatt peak-power, single-transverse-mode operation of a 100μm core diameter, Yb-doped rodlike photonic crystal fiber amplifier,” Appl. Phys. Lett. 89(11), 111119 (2006).
[Crossref]

Chamorovskii, Y.

Chang, Y. C.

Changkakoti, R.

Cheng, M. Y.

Clarkson, W. A.

Cooper, L. J.

Darwich, D.

Dauliat, R.

de Vries, O.

Di Teodoro, F.

C. D. Brooks and F. Di Teodoro, “Multimegawatt peak-power, single-transverse-mode operation of a 100μm core diameter, Yb-doped rodlike photonic crystal fiber amplifier,” Appl. Phys. Lett. 89(11), 111119 (2006).
[Crossref]

Dong, L.

Eidam, T.

C. Gaida, F. Stutzki, F. Jansen, H.-J. Otto, T. Eidam, C. Jauregui, O. de Vries, J. Limpert, and A. Tünnermann, “Triple-clad large-pitch fibers for compact high-power pulsed fiber laser systems,” Opt. Lett. 39(2), 209–211 (2014).
[Crossref] [PubMed]

J. Limpert, F. Stutzki, F. Jansen, H. J. Otto, T. Eidam, C. Jauregui, and A. Tünnermann, “Yb-doped large-pitch fibres: effective single-mode operation based on higher-order mode delocalization,” Light Sci. Appl. 1(4), e8 (2012).
[Crossref]

Eschrich, T.

Y. Zhu, T. Eschrich, M. Leich, S. Grimm, J. Kobelke, M. Lorenz, H. Bartelt, and M. Jäger, “Yb3+-doped rod-type amplifiers with local adiabatic tapers for peak power scaling and beam quality improvement,” Laser Phys. 27(10), 105103 (2017).
[Crossref]

M. Leich, F. Just, A. Langner, M. Such, G. Schötz, T. Eschrich, and S. Grimm, “Highly efficient Yb-doped silica fibers prepared by powder sinter technology,” Opt. Lett. 36(9), 1557–1559 (2011).
[Crossref] [PubMed]

Faucher, M.

A. Wetter, M. Faucher, B. Sévigny, and N. Vachon, “High core and cladding isolation termination for high-power lasers and amplifiers,” Proc. SPIE 7195, 719521 (2009).

Fedotov, A.

Filippov, V.

Gaida, C.

Galvanauskas, A.

Gatchell, P.

Golant, K.

Gonthier, F.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices,” in Proceedings of IEEE J138, 343–354 (1991).

Grimm, S.

Y. Zhu, T. Eschrich, M. Leich, S. Grimm, J. Kobelke, M. Lorenz, H. Bartelt, and M. Jäger, “Yb3+-doped rod-type amplifiers with local adiabatic tapers for peak power scaling and beam quality improvement,” Laser Phys. 27(10), 105103 (2017).
[Crossref]

R. Dauliat, A. Benoît, D. Darwich, R. Jamier, J. Kobelke, S. Grimm, K. Schuster, and P. Roy, “Demonstration of a homogeneous Yb-doped core fully aperiodic large-pitch fiber laser,” Appl. Opt. 55(23), 6229–6235 (2016).
[Crossref] [PubMed]

K. Schuster, S. Unger, C. Aichele, F. Lindner, S. Grimm, D. Litzkendorf, J. Kobelke, J. Bierlich, K. Wondraczek, and H. Bartelt, “Material and technology trends in fiber optics,” Adv. Opt. Technol. 3(4), 447–468 (2014).

M. Leich, F. Just, A. Langner, M. Such, G. Schötz, T. Eschrich, and S. Grimm, “Highly efficient Yb-doped silica fibers prepared by powder sinter technology,” Opt. Lett. 36(9), 1557–1559 (2011).
[Crossref] [PubMed]

Gumenyuk, R.

Guryanov, A.

Henry, W. M.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices,” in Proceedings of IEEE J138, 343–354 (1991).

Höfer, S.

J. Limpert, S. Höfer, A. Liem, H. Zellmer, A. Tünnermann, S. Knoke, and H. Voelckel, “100-W average-power, high-energy nanosecond fiber amplifier,” Appl. Phys. B 75(4-5), 477–479 (2002).
[Crossref]

Honkanen, S.

C. Ye, S. Honkanen, J. Montiel i Ponsoda, A. Tervonen, T. Kokki, and J. Koponen, “Near-diffraction-limited output from confined-doped ytterbium fibre with 41 µm core diameter,” Electron. Lett. 47(14), 819–821 (2011).
[Crossref]

Jäger, M.

Y. Zhu, T. Eschrich, M. Leich, S. Grimm, J. Kobelke, M. Lorenz, H. Bartelt, and M. Jäger, “Yb3+-doped rod-type amplifiers with local adiabatic tapers for peak power scaling and beam quality improvement,” Laser Phys. 27(10), 105103 (2017).
[Crossref]

S. Jetschke, S. Unger, A. Schwuchow, M. Leich, and M. Jäger, “Role of Ce in Yb/Al laser fibers: prevention of photodarkening and thermal effects,” Opt. Express 24(12), 13009–13022 (2016).
[Crossref] [PubMed]

Jain, D.

Jamier, R.

Jansen, F.

C. Gaida, F. Stutzki, F. Jansen, H.-J. Otto, T. Eidam, C. Jauregui, O. de Vries, J. Limpert, and A. Tünnermann, “Triple-clad large-pitch fibers for compact high-power pulsed fiber laser systems,” Opt. Lett. 39(2), 209–211 (2014).
[Crossref] [PubMed]

J. Limpert, F. Stutzki, F. Jansen, H. J. Otto, T. Eidam, C. Jauregui, and A. Tünnermann, “Yb-doped large-pitch fibres: effective single-mode operation based on higher-order mode delocalization,” Light Sci. Appl. 1(4), e8 (2012).
[Crossref]

Jauregui, C.

C. Gaida, F. Stutzki, F. Jansen, H.-J. Otto, T. Eidam, C. Jauregui, O. de Vries, J. Limpert, and A. Tünnermann, “Triple-clad large-pitch fibers for compact high-power pulsed fiber laser systems,” Opt. Lett. 39(2), 209–211 (2014).
[Crossref] [PubMed]

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
[Crossref]

J. Limpert, F. Stutzki, F. Jansen, H. J. Otto, T. Eidam, C. Jauregui, and A. Tünnermann, “Yb-doped large-pitch fibres: effective single-mode operation based on higher-order mode delocalization,” Light Sci. Appl. 1(4), e8 (2012).
[Crossref]

Jetschke, S.

Jung, Y.

Just, F.

Kerttula, J.

Kim, A.

Kim, J.

Kirchhof, J.

Knight, J. C.

Knoke, S.

J. Limpert, S. Höfer, A. Liem, H. Zellmer, A. Tünnermann, S. Knoke, and H. Voelckel, “100-W average-power, high-energy nanosecond fiber amplifier,” Appl. Phys. B 75(4-5), 477–479 (2002).
[Crossref]

Kobelke, J.

Y. Zhu, T. Eschrich, M. Leich, S. Grimm, J. Kobelke, M. Lorenz, H. Bartelt, and M. Jäger, “Yb3+-doped rod-type amplifiers with local adiabatic tapers for peak power scaling and beam quality improvement,” Laser Phys. 27(10), 105103 (2017).
[Crossref]

R. Dauliat, A. Benoît, D. Darwich, R. Jamier, J. Kobelke, S. Grimm, K. Schuster, and P. Roy, “Demonstration of a homogeneous Yb-doped core fully aperiodic large-pitch fiber laser,” Appl. Opt. 55(23), 6229–6235 (2016).
[Crossref] [PubMed]

K. Schuster, S. Unger, C. Aichele, F. Lindner, S. Grimm, D. Litzkendorf, J. Kobelke, J. Bierlich, K. Wondraczek, and H. Bartelt, “Material and technology trends in fiber optics,” Adv. Opt. Technol. 3(4), 447–468 (2014).

Kokki, T.

C. Ye, S. Honkanen, J. Montiel i Ponsoda, A. Tervonen, T. Kokki, and J. Koponen, “Near-diffraction-limited output from confined-doped ytterbium fibre with 41 µm core diameter,” Electron. Lett. 47(14), 819–821 (2011).
[Crossref]

Koponen, J.

C. Ye, S. Honkanen, J. Montiel i Ponsoda, A. Tervonen, T. Kokki, and J. Koponen, “Near-diffraction-limited output from confined-doped ytterbium fibre with 41 µm core diameter,” Electron. Lett. 47(14), 819–821 (2011).
[Crossref]

Koptev, M.

Lacroix, S.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices,” in Proceedings of IEEE J138, 343–354 (1991).

Langner, A.

Leich, M.

Levchenko, A.

Li, J.

Liem, A.

J. Limpert, S. Höfer, A. Liem, H. Zellmer, A. Tünnermann, S. Knoke, and H. Voelckel, “100-W average-power, high-energy nanosecond fiber amplifier,” Appl. Phys. B 75(4-5), 477–479 (2002).
[Crossref]

Likhachev, M.

Limpert, J.

C. Gaida, F. Stutzki, F. Jansen, H.-J. Otto, T. Eidam, C. Jauregui, O. de Vries, J. Limpert, and A. Tünnermann, “Triple-clad large-pitch fibers for compact high-power pulsed fiber laser systems,” Opt. Lett. 39(2), 209–211 (2014).
[Crossref] [PubMed]

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
[Crossref]

J. Limpert, F. Stutzki, F. Jansen, H. J. Otto, T. Eidam, C. Jauregui, and A. Tünnermann, “Yb-doped large-pitch fibres: effective single-mode operation based on higher-order mode delocalization,” Light Sci. Appl. 1(4), e8 (2012).
[Crossref]

J. Limpert, S. Höfer, A. Liem, H. Zellmer, A. Tünnermann, S. Knoke, and H. Voelckel, “100-W average-power, high-energy nanosecond fiber amplifier,” Appl. Phys. B 75(4-5), 477–479 (2002).
[Crossref]

Lindner, F.

K. Schuster, S. Unger, C. Aichele, F. Lindner, S. Grimm, D. Litzkendorf, J. Kobelke, J. Bierlich, K. Wondraczek, and H. Bartelt, “Material and technology trends in fiber optics,” Adv. Opt. Technol. 3(4), 447–468 (2014).

Lipatov, D.

Litzkendorf, D.

K. Schuster, S. Unger, C. Aichele, F. Lindner, S. Grimm, D. Litzkendorf, J. Kobelke, J. Bierlich, K. Wondraczek, and H. Bartelt, “Material and technology trends in fiber optics,” Adv. Opt. Technol. 3(4), 447–468 (2014).

Lorenz, M.

Y. Zhu, T. Eschrich, M. Leich, S. Grimm, J. Kobelke, M. Lorenz, H. Bartelt, and M. Jäger, “Yb3+-doped rod-type amplifiers with local adiabatic tapers for peak power scaling and beam quality improvement,” Laser Phys. 27(10), 105103 (2017).
[Crossref]

Love, J. D.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices,” in Proceedings of IEEE J138, 343–354 (1991).

Mamidipudi, P.

Marcuse, D.

D. Marcuse, “Loss analysis of single-mode fiber splices,” Bell Syst. Tech. J. 56(5), 703–718 (1977).
[Crossref]

Montiel i Ponsoda, J.

C. Ye, S. Honkanen, J. Montiel i Ponsoda, A. Tervonen, T. Kokki, and J. Koponen, “Near-diffraction-limited output from confined-doped ytterbium fibre with 41 µm core diameter,” Electron. Lett. 47(14), 819–821 (2011).
[Crossref]

Muravyev, S.

Niemi, T.

Nilsson, J.

Noronen, T.

Odnoblyudov, M.

Okhotnikov, O. G.

Otto, H. J.

J. Limpert, F. Stutzki, F. Jansen, H. J. Otto, T. Eidam, C. Jauregui, and A. Tünnermann, “Yb-doped large-pitch fibres: effective single-mode operation based on higher-order mode delocalization,” Light Sci. Appl. 1(4), e8 (2012).
[Crossref]

Otto, H.-J.

Peng, X.

Pessa, M.

Reichel, V.

Richardson, D. J.

Rissanen, J.

Röpke, U.

Roy, P.

Russell, P. St. J.

Sahu, J. K.

Schötz, G.

Schuster, K.

R. Dauliat, A. Benoît, D. Darwich, R. Jamier, J. Kobelke, S. Grimm, K. Schuster, and P. Roy, “Demonstration of a homogeneous Yb-doped core fully aperiodic large-pitch fiber laser,” Appl. Opt. 55(23), 6229–6235 (2016).
[Crossref] [PubMed]

K. Schuster, S. Unger, C. Aichele, F. Lindner, S. Grimm, D. Litzkendorf, J. Kobelke, J. Bierlich, K. Wondraczek, and H. Bartelt, “Material and technology trends in fiber optics,” Adv. Opt. Technol. 3(4), 447–468 (2014).

Schwuchow, A.

Semjonov, S.

Sévigny, B.

A. Wetter, M. Faucher, B. Sévigny, and N. Vachon, “High core and cladding isolation termination for high-power lasers and amplifiers,” Proc. SPIE 7195, 719521 (2009).

Stewart, W. J.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices,” in Proceedings of IEEE J138, 343–354 (1991).

Stutzki, F.

C. Gaida, F. Stutzki, F. Jansen, H.-J. Otto, T. Eidam, C. Jauregui, O. de Vries, J. Limpert, and A. Tünnermann, “Triple-clad large-pitch fibers for compact high-power pulsed fiber laser systems,” Opt. Lett. 39(2), 209–211 (2014).
[Crossref] [PubMed]

J. Limpert, F. Stutzki, F. Jansen, H. J. Otto, T. Eidam, C. Jauregui, and A. Tünnermann, “Yb-doped large-pitch fibres: effective single-mode operation based on higher-order mode delocalization,” Light Sci. Appl. 1(4), e8 (2012).
[Crossref]

Such, M.

Tervonen, A.

C. Ye, S. Honkanen, J. Montiel i Ponsoda, A. Tervonen, T. Kokki, and J. Koponen, “Near-diffraction-limited output from confined-doped ytterbium fibre with 41 µm core diameter,” Electron. Lett. 47(14), 819–821 (2011).
[Crossref]

Tünnermann, A.

C. Gaida, F. Stutzki, F. Jansen, H.-J. Otto, T. Eidam, C. Jauregui, O. de Vries, J. Limpert, and A. Tünnermann, “Triple-clad large-pitch fibers for compact high-power pulsed fiber laser systems,” Opt. Lett. 39(2), 209–211 (2014).
[Crossref] [PubMed]

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
[Crossref]

J. Limpert, F. Stutzki, F. Jansen, H. J. Otto, T. Eidam, C. Jauregui, and A. Tünnermann, “Yb-doped large-pitch fibres: effective single-mode operation based on higher-order mode delocalization,” Light Sci. Appl. 1(4), e8 (2012).
[Crossref]

J. Limpert, S. Höfer, A. Liem, H. Zellmer, A. Tünnermann, S. Knoke, and H. Voelckel, “100-W average-power, high-energy nanosecond fiber amplifier,” Appl. Phys. B 75(4-5), 477–479 (2002).
[Crossref]

Unger, S.

Ustimchik, V.

Vachon, N.

A. Wetter, M. Faucher, B. Sévigny, and N. Vachon, “High core and cladding isolation termination for high-power lasers and amplifiers,” Proc. SPIE 7195, 719521 (2009).

Velmiskin, V.

Voelckel, H.

J. Limpert, S. Höfer, A. Liem, H. Zellmer, A. Tünnermann, S. Knoke, and H. Voelckel, “100-W average-power, high-energy nanosecond fiber amplifier,” Appl. Phys. B 75(4-5), 477–479 (2002).
[Crossref]

Vorotynskii, A.

V. Filippov, A. Vorotynskii, T. Noronen, R. Gumenyuk, Y. Chamorovskii, and K. Golant, “Picosecond MOPA with ytterbium doped tapered double clad fiber,” Proc. SPIE 10083, 100831H (2017).

Wang, P.

Wetter, A.

A. Wetter, M. Faucher, B. Sévigny, and N. Vachon, “High core and cladding isolation termination for high-power lasers and amplifiers,” Proc. SPIE 7195, 719521 (2009).

Wondraczek, K.

K. Schuster, S. Unger, C. Aichele, F. Lindner, S. Grimm, D. Litzkendorf, J. Kobelke, J. Bierlich, K. Wondraczek, and H. Bartelt, “Material and technology trends in fiber optics,” Adv. Opt. Technol. 3(4), 447–468 (2014).

Ye, C.

C. Ye, S. Honkanen, J. Montiel i Ponsoda, A. Tervonen, T. Kokki, and J. Koponen, “Near-diffraction-limited output from confined-doped ytterbium fibre with 41 µm core diameter,” Electron. Lett. 47(14), 819–821 (2011).
[Crossref]

Zellmer, H.

J. Limpert, S. Höfer, A. Liem, H. Zellmer, A. Tünnermann, S. Knoke, and H. Voelckel, “100-W average-power, high-energy nanosecond fiber amplifier,” Appl. Phys. B 75(4-5), 477–479 (2002).
[Crossref]

Zhu, Y.

Y. Zhu, T. Eschrich, M. Leich, S. Grimm, J. Kobelke, M. Lorenz, H. Bartelt, and M. Jäger, “Yb3+-doped rod-type amplifiers with local adiabatic tapers for peak power scaling and beam quality improvement,” Laser Phys. 27(10), 105103 (2017).
[Crossref]

Adv. Opt. Technol. (1)

K. Schuster, S. Unger, C. Aichele, F. Lindner, S. Grimm, D. Litzkendorf, J. Kobelke, J. Bierlich, K. Wondraczek, and H. Bartelt, “Material and technology trends in fiber optics,” Adv. Opt. Technol. 3(4), 447–468 (2014).

Appl. Opt. (2)

Appl. Phys. B (1)

J. Limpert, S. Höfer, A. Liem, H. Zellmer, A. Tünnermann, S. Knoke, and H. Voelckel, “100-W average-power, high-energy nanosecond fiber amplifier,” Appl. Phys. B 75(4-5), 477–479 (2002).
[Crossref]

Appl. Phys. Lett. (1)

C. D. Brooks and F. Di Teodoro, “Multimegawatt peak-power, single-transverse-mode operation of a 100μm core diameter, Yb-doped rodlike photonic crystal fiber amplifier,” Appl. Phys. Lett. 89(11), 111119 (2006).
[Crossref]

Bell Syst. Tech. J. (1)

D. Marcuse, “Loss analysis of single-mode fiber splices,” Bell Syst. Tech. J. 56(5), 703–718 (1977).
[Crossref]

Electron. Lett. (1)

C. Ye, S. Honkanen, J. Montiel i Ponsoda, A. Tervonen, T. Kokki, and J. Koponen, “Near-diffraction-limited output from confined-doped ytterbium fibre with 41 µm core diameter,” Electron. Lett. 47(14), 819–821 (2011).
[Crossref]

J. Opt. Soc. Am. B (2)

Laser Phys. (1)

Y. Zhu, T. Eschrich, M. Leich, S. Grimm, J. Kobelke, M. Lorenz, H. Bartelt, and M. Jäger, “Yb3+-doped rod-type amplifiers with local adiabatic tapers for peak power scaling and beam quality improvement,” Laser Phys. 27(10), 105103 (2017).
[Crossref]

Light Sci. Appl. (1)

J. Limpert, F. Stutzki, F. Jansen, H. J. Otto, T. Eidam, C. Jauregui, and A. Tünnermann, “Yb-doped large-pitch fibres: effective single-mode operation based on higher-order mode delocalization,” Light Sci. Appl. 1(4), e8 (2012).
[Crossref]

Nat. Photonics (1)

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
[Crossref]

Opt. Express (5)

Opt. Lett. (6)

Proc. SPIE (2)

V. Filippov, A. Vorotynskii, T. Noronen, R. Gumenyuk, Y. Chamorovskii, and K. Golant, “Picosecond MOPA with ytterbium doped tapered double clad fiber,” Proc. SPIE 10083, 100831H (2017).

A. Wetter, M. Faucher, B. Sévigny, and N. Vachon, “High core and cladding isolation termination for high-power lasers and amplifiers,” Proc. SPIE 7195, 719521 (2009).

Other (7)

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices,” in Proceedings of IEEE J138, 343–354 (1991).

R. P. Photonics Encyclopedia, “V Number”, https://www.rp-photonics.com/v_number.html .

J. Kirchhof, S. Unger, and J. Dellith are preparing a manuscript to be called “The viscosity of fluorine-doped silica glasses.”

C. Liu, G. Chang, N. Litchinitser, A. Galvanauskas, D. Guertin, N. Jabobson, and K. Tankala, “Effectively Single-Mode Chirally-Coupled Core Fiber,” in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper ME2.
[Crossref]

R. M. Wood, Laser-Induced Damage of Optical Materials (Institute of Physics Publishing, 2003).

F. J. Duarte, Tunable Laser Applications (CRC, 2008).

G. P. Agrawal, Nonlinear Fiber Optics (Elsevier, 2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Tapered fiber amplifier setup with double clad fibers structure
Fig. 2
Fig. 2 Critical power limits as a function of MFD.
Fig. 3
Fig. 3 Mode field diameter for different core diameters and core NA.
Fig. 4
Fig. 4 (a) Cross-section of LMA fiber (Yb/Al/Ce-doped core, Al-doped inner cladding and outer cladding with highly fluorine doped silica tube to lower glass transition temperature). (b) Refractive index profile of rod-type fiber and its down-taper with reduced diffusion.
Fig. 5
Fig. 5 Temporal photodarkening measurement at test fiber showing low photodarkening loss.
Fig. 6
Fig. 6 (a) Scanned taper length and outer diameter (b) Comparison of angular profiles between the experimentally realized fiber taper and the adiabatic thresholds.
Fig. 7
Fig. 7 Average output power versus the absorbed pump power.
Fig. 8
Fig. 8 Endcap of the tapered fiber amplifier: the left side is the fiber amplifier and the right side is the endcap material (F300 with 1mm outer diameter and 5.8 degrees cleave angle).
Fig. 9
Fig. 9 Normalized optical spectrum of seed and amplified light of the end-capped amplifier, indicating that the amplifier is running still far away from the SRS limit.
Fig. 10
Fig. 10 Measured beam quality for the non-tapered reference fiber amplifier, the tapered fiber amplifier and the tapered fiber amplifier with endcap; inset: far field intensity distribution of output beam for the tapered fiber.

Metrics