Abstract

We demonstrate a 10 Gsymbol/s, 1024 quadrature amplitude modulation (QAM) 160 km coherent transmission with an injection locking technique. Our newly developed, pilot-assisted adaptive equalizer has greatly improved the precision of waveform distortion compensation, and this has enabled us to increase the symbol rate to 10 Gsymbol/s in a 1024 QAM transmission. Thus, we could realize a 200 Gbit/s, 1024 QAM transmission over 160 km with a potential spectral efficiency of 12.6 bit/s/Hz.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
320 Gbit/s, 20 Gsymbol/s 256 QAM coherent transmission over 160 km by using injection-locked local oscillator

Yixin Wang, Keisuke Kasai, Masato Yoshida, and Masataka Nakazawa
Opt. Express 24(19) 22088-22096 (2016)

1024 QAM (60 Gbit/s) single-carrier coherent optical transmission over 150 km

Yuki Koizumi, Kazushi Toyoda, Masato Yoshida, and Masataka Nakazawa
Opt. Express 20(11) 12508-12514 (2012)

80 Gbit/s, 256 QAM coherent transmission over 150 km with an injection-locked homodyne receiver

Keisuke Kasai, Yixin Wang, Shohei Beppu, Masato Yoshida, and Masataka Nakazawa
Opt. Express 23(22) 29174-29183 (2015)

References

  • View by:
  • |
  • |
  • |

  1. S. Adhikari, S. Sygletos, A. D. Ellis, B. Inan, S. L. Jansen, and W. Rosenkranz, “Enhanced self-coherent OFDM by the use of injection locked laser,” in Proceedings of Optical Fiber Communication Conference (Optical Society of America, 2012), paper JW2A.
  2. Z. Liu, J. Y. Kim, D. S. Wu, D. J. Richardson, and R. Slavík, “Homodyne OFDM with optical injection locking for carrier recovery,” J. Lightwave Technol. 33(1), 34–41 (2015).
    [Crossref]
  3. A. C. Bordonalli, C. Walton, and A. J. Seeds, “High-performance phase locking of wide linewidth semiconductor lasers by combined use of optical injection locking and optical phase-lock loop,” J. Lightwave Technol. 17(2), 328–342 (1999).
    [Crossref]
  4. Y. Wang, K. Kasai, M. Yoshida, and M. Nakazawa, “Single-carrier 216 Gbit/s, 12 Gsymbol/s 512 QAM coherent transmission over 160 km with injection-locked homodyne detection,” in Proceedings of Optical Fiber Communication Conference (Optical Society of America, 2017), paper Tu2E.1.
  5. Y. Wang, K. Kasai, M. Yoshida, and M. Nakazawa, “120 Gbit/s injection-locked homodyne coherent transmission of polarization-multiplexed 64 QAM signals over 150 km,” Opt. Express 22(25), 31310–31316 (2014).
    [Crossref] [PubMed]
  6. K. Kasai, M. Yoshida, and M. Nakazawa, “552 Gbit/s, 46 Gbaud, 64 QAM coherent transmission over 160 km with simple LD-based injection-locked homodyne detection,” in Proceedings of European Conference on Optical Communication (Optical Society of America, 2016), paper W.4.P1.SC5.51.
  7. Y. Wang, K. Kasai, M. Yoshida, and M. Nakazawa, “320 Gbit/s, 20 Gsymbol/s 256 QAM coherent transmission over 160 km by using injection-locked local oscillator,” Opt. Express 24(19), 22088–22096 (2016).
    [Crossref] [PubMed]
  8. S. U. H. Qureshi, “Adaptive equalization,” Proc. IEEE 73(9), 1349–1387 (1985).
    [Crossref]
  9. M. P. Yankov, E. P. da Silva, F. Da Ros, and D. Zibar, “Experimental analysis of pilot-based equalization for probabilistically shaped WDM systems with 256QAM/1024QAM,” in Proceedings of Optical Fiber Communication Conference (Optical Society of America, 2017), paper W2A.48.
  10. Y. Koizumi, K. Toyoda, M. Yoshida, and M. Nakazawa, “1024 QAM (60 Gbit/s) single-carrier coherent optical transmission over 150 km,” Opt. Express 20(11), 12508–12514 (2012).
    [Crossref] [PubMed]
  11. K. Kasai, M. Nakazawa, Y. Tomomatsu, and T. Endo, “1.5μm, mode-hop-free full C-band wavelength tunable laser diode with a linewidth of 8 kHz and a RIN of -130 dB/Hz and its extension to the L-band,” Opt. Express 25(18), 22113–22124 (2017).
    [Crossref] [PubMed]
  12. H. Ishii, K. Kasaya, and H. Oohashi, “Spectral linewidth reduction in widely wavelength tunable DFB laser array,” IEEE J. Sel. Top. Quantum Electron. 15(3), 514–520 (2009).
    [Crossref]
  13. T. Kan, K. Kasai, M. Yoshida, and M. Nakazawa, “42.3 Tbit/s, 18 Gbaud 64 QAM WDM coherent transmission over 160 km in the C-band using an injection-locked homodyne receiver with a spectral efficiency of 9 bit/s/Hz,” Opt. Express 25(19), 22726–22737 (2017).
    [Crossref] [PubMed]
  14. B. Szafraniec, B. Nebendahl, and T. Marshall, “Polarization demultiplexing in Stokes space,” Opt. Express 18(17), 17928–17939 (2010).
    [Crossref] [PubMed]
  15. K. Ishihara, T. Kobayashi, R. Kudo, Y. Takatori, A. Sano, E. Yamada, H. Masuda, and Y. Miyamoto, “Coherent optical transmission with frequency-domain equalization,” in Proceedings of the European Conference on Optical Communications (Optical Society of America, 2008), Paper We2E3.
    [Crossref]
  16. C. Paré, A. Villeneuve, P. A. Bélanger, and N. J. Doran, “Compensating for dispersion and the nonlinear Kerr effect without phase conjugation,” Opt. Lett. 21(7), 459–461 (1996).
    [Crossref] [PubMed]
  17. K. Kikuchi, “Digital coherent optical communication systems: fundamentals and future prospects,” IEICE Electron. Express 8(20), 1642–1662 (2011).
    [Crossref]
  18. K. Sugihara, Y. Miyata, T. Sugihara, K. Kubo, H. Yoshida, W. Matsumoto, and T. Mizuochi, “A spatially coupled type LDPC code with an NCG of 12dB for optical transmission beyond 100 Gb/s,” in Proceedings of Optical Fiber Communication Conference (Optical Society of America, 2013), paper OM2B.4.

2017 (2)

2016 (1)

2015 (1)

2014 (1)

2012 (1)

2011 (1)

K. Kikuchi, “Digital coherent optical communication systems: fundamentals and future prospects,” IEICE Electron. Express 8(20), 1642–1662 (2011).
[Crossref]

2010 (1)

2009 (1)

H. Ishii, K. Kasaya, and H. Oohashi, “Spectral linewidth reduction in widely wavelength tunable DFB laser array,” IEEE J. Sel. Top. Quantum Electron. 15(3), 514–520 (2009).
[Crossref]

1999 (1)

1996 (1)

1985 (1)

S. U. H. Qureshi, “Adaptive equalization,” Proc. IEEE 73(9), 1349–1387 (1985).
[Crossref]

Bélanger, P. A.

Bordonalli, A. C.

Doran, N. J.

Endo, T.

Ishii, H.

H. Ishii, K. Kasaya, and H. Oohashi, “Spectral linewidth reduction in widely wavelength tunable DFB laser array,” IEEE J. Sel. Top. Quantum Electron. 15(3), 514–520 (2009).
[Crossref]

Kan, T.

Kasai, K.

Kasaya, K.

H. Ishii, K. Kasaya, and H. Oohashi, “Spectral linewidth reduction in widely wavelength tunable DFB laser array,” IEEE J. Sel. Top. Quantum Electron. 15(3), 514–520 (2009).
[Crossref]

Kikuchi, K.

K. Kikuchi, “Digital coherent optical communication systems: fundamentals and future prospects,” IEICE Electron. Express 8(20), 1642–1662 (2011).
[Crossref]

Kim, J. Y.

Koizumi, Y.

Liu, Z.

Marshall, T.

Nakazawa, M.

Nebendahl, B.

Oohashi, H.

H. Ishii, K. Kasaya, and H. Oohashi, “Spectral linewidth reduction in widely wavelength tunable DFB laser array,” IEEE J. Sel. Top. Quantum Electron. 15(3), 514–520 (2009).
[Crossref]

Paré, C.

Qureshi, S. U. H.

S. U. H. Qureshi, “Adaptive equalization,” Proc. IEEE 73(9), 1349–1387 (1985).
[Crossref]

Richardson, D. J.

Seeds, A. J.

Slavík, R.

Szafraniec, B.

Tomomatsu, Y.

Toyoda, K.

Villeneuve, A.

Walton, C.

Wang, Y.

Wu, D. S.

Yoshida, M.

IEEE J. Sel. Top. Quantum Electron. (1)

H. Ishii, K. Kasaya, and H. Oohashi, “Spectral linewidth reduction in widely wavelength tunable DFB laser array,” IEEE J. Sel. Top. Quantum Electron. 15(3), 514–520 (2009).
[Crossref]

IEICE Electron. Express (1)

K. Kikuchi, “Digital coherent optical communication systems: fundamentals and future prospects,” IEICE Electron. Express 8(20), 1642–1662 (2011).
[Crossref]

J. Lightwave Technol. (2)

Opt. Express (6)

Opt. Lett. (1)

Proc. IEEE (1)

S. U. H. Qureshi, “Adaptive equalization,” Proc. IEEE 73(9), 1349–1387 (1985).
[Crossref]

Other (6)

M. P. Yankov, E. P. da Silva, F. Da Ros, and D. Zibar, “Experimental analysis of pilot-based equalization for probabilistically shaped WDM systems with 256QAM/1024QAM,” in Proceedings of Optical Fiber Communication Conference (Optical Society of America, 2017), paper W2A.48.

K. Kasai, M. Yoshida, and M. Nakazawa, “552 Gbit/s, 46 Gbaud, 64 QAM coherent transmission over 160 km with simple LD-based injection-locked homodyne detection,” in Proceedings of European Conference on Optical Communication (Optical Society of America, 2016), paper W.4.P1.SC5.51.

S. Adhikari, S. Sygletos, A. D. Ellis, B. Inan, S. L. Jansen, and W. Rosenkranz, “Enhanced self-coherent OFDM by the use of injection locked laser,” in Proceedings of Optical Fiber Communication Conference (Optical Society of America, 2012), paper JW2A.

Y. Wang, K. Kasai, M. Yoshida, and M. Nakazawa, “Single-carrier 216 Gbit/s, 12 Gsymbol/s 512 QAM coherent transmission over 160 km with injection-locked homodyne detection,” in Proceedings of Optical Fiber Communication Conference (Optical Society of America, 2017), paper Tu2E.1.

K. Sugihara, Y. Miyata, T. Sugihara, K. Kubo, H. Yoshida, W. Matsumoto, and T. Mizuochi, “A spatially coupled type LDPC code with an NCG of 12dB for optical transmission beyond 100 Gb/s,” in Proceedings of Optical Fiber Communication Conference (Optical Society of America, 2013), paper OM2B.4.

K. Ishihara, T. Kobayashi, R. Kudo, Y. Takatori, A. Sano, E. Yamada, H. Masuda, and Y. Miyamoto, “Coherent optical transmission with frequency-domain equalization,” in Proceedings of the European Conference on Optical Communications (Optical Society of America, 2008), Paper We2E3.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Experimental setup for 10 Gsymbol/s, 1024 QAM coherent transmission.
Fig. 2
Fig. 2 Electrical spectrum of homodyne-detected 10 Gsymbol/s, 1024 QAM data and PT under a back-to back condition.
Fig. 3
Fig. 3 Configuration of conventional FIR filter (a). Updating process of FIR tap coefficients in DD-LMS method (b) and pilot-assisted method (c).
Fig. 4
Fig. 4 (a) BER characteristics of a 1024 QAM signal as a function of the symbol rate before and after a 160 km transmission, (b) theoretical BER curves of a 1024 QAM signal as a function of OSNR for a different symbol rate.
Fig. 5
Fig. 5 Optimization of launch power for 200 Gbit/s, 10 Gsymbol/s, 1024 QAM 160 km transmission.
Fig. 6
Fig. 6 Optical spectra of 200 Gbit/s, 1024 QAM signal before and after 160 km transmission (0.1 nm resolution bandwidth).
Fig. 7
Fig. 7 Optimization of pilot symbol number for adaptive equalization.
Fig. 8
Fig. 8 Comparison of convergence characteristics of FIR filter based on DD-LMS algorithm and the present pilot-assisted FIR filter.
Fig. 9
Fig. 9 Constellations of 10 Gsymbol/s, 1024 QAM signal after transmission with an OSNR of 38 dB obtained by employing (a) a conventional equalizer without pilot symbols, (b) a pilot-assisted equalizer.
Fig. 10
Fig. 10 BER characteristics of 10 Gsymbol/s, 1024 QAM-160 km transmission.
Fig. 11
Fig. 11 Constellations for 10 Gsymbol/s, 1024 QAM signal for (a) back-to-back and (b) 160 km transmission.

Metrics