Abstract

A graphene-assisted vertical multilayer structure is proposed for high performance surface-enhanced Raman scattering (SERS) and surface-enhanced infrared absorption (SEIRA) spectroscopies on a single substrate, employing simultaneous localized surface plasmon in the visible region and magnetic plasmon resonance in the mid-infrared region. Such multilayer structure consists of a monolayer graphene sandwiched between Ag nanoparticles (NPs) and a metal-insulator-metal (MIM) microstructure, which can be easily fabricated by a standard surface micromachining process. Benefiting from the large near field enhancement by the hybrid plasmons in both visible and mid-infrared regions, a high enhancement factor of up to 107 for SERS and 105 for SEIRA can be achieved. Additionally, the strong magnetic resonance of the MIM microstructure can be tuned in broadband to selectively enhance the desired vibration modes of molecules. The strong SERS and SEIRA enhancement together with easy fabrication provides new opportunities for developing integrated plasmonic devices for multispectral detection of molecules on the same substrate.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Surface enhanced infrared spectroscopy with gold strip gratings

Tao Wang, Vu Hoa Nguyen, Andreas Buchenauer, Uwe Schnakenberg, and Thomas Taubner
Opt. Express 21(7) 9005-9010 (2013)

Dual-band light absorption enhancement of monolayer graphene from surface plasmon polaritons and magnetic dipole resonances in metamaterials

Bo Liu, Chaojun Tang, Jing Chen, Qiugu Wang, Mingxu Pei, and Huang Tang
Opt. Express 25(10) 12061-12068 (2017)

Plasmonic coupling of silver nanoparticles covered by hydrogen-terminated graphene for surface-enhanced Raman spectroscopy

Chih-Yi Liu, Keng-Chih Liang, Waileong Chen, Chia-hao Tu, Chuan-Pu Liu, and Yonhua Tzeng
Opt. Express 19(18) 17092-17098 (2011)

References

  • View by:
  • |
  • |
  • |

  1. N. Zohar, L. Chuntonov, and G. Haran, “The simplest plasmonic molecules: Metal nanoparticle dimers and trimers,” J. Photochem. Photobiol. Chem. 21, 26–39 (2014).
    [Crossref]
  2. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
    [Crossref]
  3. D. V. Chulhai, Z. Hu, J. E. Moore, X. Chen, and L. Jensen, “Theory of Linear and Nonlinear Surface-Enhanced Vibrational Spectroscopies,” Annu. Rev. Phys. Chem. 67(1), 541–564 (2016).
    [Crossref] [PubMed]
  4. Z. Lam, K. V. Kong, M. Olivo, and W. K. Leong, “Vibrational spectroscopy of metal carbonyls for bio-imaging and -sensing,” Analyst (Lond.) 141(5), 1569–1586 (2016).
    [Crossref] [PubMed]
  5. D. Lis and F. Cecchet, “Localized surface plasmon resonances in nanostructures to enhance nonlinear vibrational spectroscopies: towards an astonishing molecular sensitivity,” Beilstein J. Nanotechnol. 5, 2275–2292 (2014).
    [Crossref] [PubMed]
  6. I. Alessandri and J. R. Lombardi, “Enhanced Raman Scattering with Dielectrics,” Chem. Rev. 116(24), 14921–14981 (2016).
    [Crossref] [PubMed]
  7. A. B. Zrimsek, N. Chiang, M. Mattei, S. Zaleski, M. O. McAnally, C. T. Chapman, A. I. Henry, G. C. Schatz, and R. P. Van Duyne, “Single-Molecule Chemistry with Surface- and Tip-Enhanced Raman Spectroscopy,” Chem. Rev. 117(11), 7583–7613 (2017).
    [Crossref] [PubMed]
  8. N. L. Gruenke, M. F. Cardinal, M. O. McAnally, R. R. Frontiera, G. C. Schatz, and R. P. Van Duyne, “Ultrafast and nonlinear surface-enhanced Raman spectroscopy,” Chem. Soc. Rev. 45(8), 2263–2290 (2016).
    [Crossref] [PubMed]
  9. S.-Y. Ding, J. Yi, J.-F. Li, B. Ren, D.-Y. Wu, R. Panneerselvam, and Z.-Q. Tian, “Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials,” Nature Rev. Mater. 1(6), 16021 (2016).
    [Crossref]
  10. Y. S. Yamamoto, Y. Ozaki, and T. Itoh, “Recent progress and frontiers in the electromagnetic mechanism of surface-enhanced Raman scattering,” J. Photochem. Photobiol. Chem. 21, 81–104 (2014).
    [Crossref]
  11. F. Neubrech, C. Huck, K. Weber, A. Pucci, and H. Giessen, “Surface-Enhanced Infrared Spectroscopy Using Resonant Nanoantennas,” Chem. Rev. 117(7), 5110–5145 (2017).
    [Crossref] [PubMed]
  12. K. Ataka, S. T. Stripp, and J. Heberle, “Surface-enhanced infrared absorption spectroscopy (SEIRAS) to probe monolayers of membrane proteins,” Biochim. Biophys. Acta 1828(10), 2283–2293 (2013).
    [Crossref] [PubMed]
  13. L.-X. Wang and X.-E. Jiang, “Bioanalytical Applications of Surface-enhanced Infrared Absorption Spectroscopy,” Chin. J. Anal. Chem. 40(7), 975–982 (2012).
    [Crossref]
  14. M. Xiong, X. Jin, and J. Ye, “Strong plasmon coupling in self-assembled superparamagnetic nanoshell chains,” Nanoscale 8(9), 4991–4999 (2016).
    [Crossref] [PubMed]
  15. F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic Nanoparticle Arrays: A Common Substrate for Both Surface-Enhanced Raman Scattering and Surface-Enhanced Infrared Absorption,” ACS Nano 2(4), 707–718 (2008).
    [Crossref] [PubMed]
  16. M. Baia, F. Toderas, L. Baia, D. Maniu, and S. Astilean, “Multilayer structures of self-assembled gold nanoparticles as a unique SERS and SEIRA substrate,” ChemPhysChem 10(7), 1106–1111 (2009).
    [Crossref] [PubMed]
  17. J. M. Delgado, J. M. Orts, J. M. Pérez, and A. Rodes, “Sputtered thin-film gold electrodes for in situ ATR-SEIRAS and SERS studies,” J. Electroanal. Chem. 617(2), 130–140 (2008).
    [Crossref]
  18. O. Bibikova, J. Haas, A. I. López-Lorente, A. Popov, M. Kinnunen, I. Meglinski, and B. Mizaikoff, “Towards enhanced optical sensor performance: SEIRA and SERS with plasmonic nanostars,” Analyst (Lond.) 142(6), 951–958 (2017).
    [Crossref] [PubMed]
  19. L. Dolgov, O. Fesenko, V. Kavelin, O. Budnyk, V. Estrela-Llopis, A. Chevychalova, T. Repän, V. I. Kondratiev, and S. Mamykin, “Gold micro- and nano-particles for surface enhanced vibrational spectroscopy of pyridostigmine bromide,” Vib. Spectrosc. 88, 71–76 (2017).
    [Crossref]
  20. V. Kavelin, O. Fesenko, H. Dubyna, C. Vidal, T. A. Klar, C. Hrelescu, and L. Dolgov, “Raman and Luminescent Spectra of Sulfonated Zn Phthalocyanine Enhanced by Gold Nanoparticles,” Nanoscale Res. Lett. 12(1), 197 (2017).
    [Crossref] [PubMed]
  21. X. Gao and T. J. Cui, “Spoof surface plasmon polaritons supported by ultrathin corrugated metal strip and their applications,” Nanotechnol. Rev. 4(3), 239–258 (2015).
    [Crossref]
  22. S. Law, V. Podolskiy, and D. Wasserman, “Towards nano-scale photonics with micro-scale photons: the opportunities and challenges of mid-infrared plasmonics,” Nanophotonics 2(2), 103 (2013).
    [Crossref]
  23. C. D’Andrea, J. Bochterle, A. Toma, C. Huck, F. Neubrech, E. Messina, B. Fazio, O. M. Maragò, E. Di Fabrizio, M. Lamy de La Chapelle, P. G. Gucciardi, and A. Pucci, “Optical Nanoantennas for Multiband surface-enhanced infrared and Raman spectroscopy,” ACS Nano 7(4), 3522–3531 (2013).
    [Crossref] [PubMed]
  24. H. Aouani, M. Rahmani, H. Šípová, V. Torres, K. Hegnerová, M. Beruete, J. Homola, M. Hong, M. Navarro-Cía, and S. A. Maier, “Plasmonic Nanoantennas for Multispectral Surface-Enhanced Spectroscopies,” J. Phys. Chem. C 117(36), 18620–18626 (2013).
    [Crossref]
  25. G. Q. Wallace, M. Tabatabaei, R. Hou, M. J. Coady, P. R. Norton, T. S. Simpson, S. M. Rosendahl, A. Merlen, and F. Lagugné-Labarthet, “Superimposed Arrays of Nanoprisms for Multispectral Molecular Plasmonics,” ACS Photonics 3(9), 1723–1732 (2016).
    [Crossref]
  26. H. Hu, X. Yang, F. Zhai, D. Hu, R. Liu, K. Liu, Z. Sun, and Q. Dai, “Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons,” Nat. Commun. 7, 12334 (2016).
    [Crossref] [PubMed]
  27. J. Nong, W. Wei, W. Wang, G. Lan, Z. Shang, J. Yi, and L. Tang, “Strong coherent coupling between graphene surface plasmons and anisotropic black phosphorus localized surface plasmons,” Opt. Express 26(2), 1633–1644 (2018).
    [Crossref] [PubMed]
  28. J. Zhang, Z. Zhu, W. Liu, X. Yuan, and S. Qin, “Towards photodetection with high efficiency and tunable spectral selectivity: graphene plasmonics for light trapping and absorption engineering,” Nanoscale 7(32), 13530–13536 (2015).
    [Crossref] [PubMed]
  29. H. Lu, X. Gan, D. Mao, B. Jia, and J. Zhao, “Flexibly tunable high-quality-factor induced transparency in plasmonic systems,” Sci. Rep. 8(1), 1558 (2018).
    [Crossref] [PubMed]
  30. R. Lu, A. Konzelmann, F. Xu, Y. Gong, J. Liu, Q. Liu, M. Xin, R. Hui, and J. Z. Wu, “High sensitivity surface enhanced Raman spectroscopy of R6G on in situ fabricated Au nanoparticle/graphene plasmonic substrates,” Carbon 86, 78–85 (2015).
    [Crossref]
  31. X. Li, Y. Liu, Z. Zeng, P. Wang, Y. Fang, and L. Zhang, “Investigation on tip enhanced Raman spectra of graphene,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 190, 378–382 (2018).
    [Crossref] [PubMed]
  32. Y. Q. Wang, S. Ma, Q. Q. Yang, and X. J. Li, “Size-dependent SERS detection of R6G by silver nanoparticles immersion-plated on silicon nanoporous pillar array,” Appl. Surf. Sci. 258(15), 5881–5885 (2012).
    [Crossref]
  33. X. Li, W. C. H. Choy, X. Ren, D. Zhang, and H. Lu, “Highly Intensified Surface Enhanced Raman Scattering by Using Monolayer Graphene as the Nanospacer of Metal Film-Metal Nanoparticle Coupling System,” Adv. Funct. Mater. 24(21), 3114–3122 (2014).
    [Crossref]
  34. U. S. Dinish, F. C. Yaw, A. Agarwal, and M. Olivo, “Development of highly reproducible nanogap SERS substrates: comparative performance analysis and its application for glucose sensing,” Biosens. Bioelectron. 26(5), 1987–1992 (2011).
    [Crossref] [PubMed]
  35. K. Chen, T. D. Dao, S. Ishii, M. Aono, and T. Nagao, “Infrared Aluminum Metamaterial Perfect Absorbers for Plasmon-Enhanced Infrared Spectroscopy,” Adv. Funct. Mater. 25(42), 6637–6643 (2015).
    [Crossref]
  36. J. Vogt, C. Huck, F. Neubrech, A. Toma, D. Gerbert, and A. Pucci, “Impact of the plasmonic near- and far-field resonance-energy shift on the enhancement of infrared vibrational signals,” Phys. Chem. Chem. Phys. 17(33), 21169–21175 (2015).
    [Crossref] [PubMed]
  37. P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  38. C. H. Gan, H. S. Chu, and E. P. Li, “Synthesis of highly confined surface plasmon modes with doped graphene sheets in the midinfrared and terahertz frequencies,” Phys. Rev. B 85(12), 125431 (2012).
    [Crossref]
  39. T. Wang, V. H. Nguyen, A. Buchenauer, U. Schnakenberg, and T. Taubner, “Surface enhanced infrared spectroscopy with gold strip gratings,” Opt. Express 21(7), 9005–9010 (2013).
    [Crossref] [PubMed]

2018 (3)

J. Nong, W. Wei, W. Wang, G. Lan, Z. Shang, J. Yi, and L. Tang, “Strong coherent coupling between graphene surface plasmons and anisotropic black phosphorus localized surface plasmons,” Opt. Express 26(2), 1633–1644 (2018).
[Crossref] [PubMed]

H. Lu, X. Gan, D. Mao, B. Jia, and J. Zhao, “Flexibly tunable high-quality-factor induced transparency in plasmonic systems,” Sci. Rep. 8(1), 1558 (2018).
[Crossref] [PubMed]

X. Li, Y. Liu, Z. Zeng, P. Wang, Y. Fang, and L. Zhang, “Investigation on tip enhanced Raman spectra of graphene,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 190, 378–382 (2018).
[Crossref] [PubMed]

2017 (5)

A. B. Zrimsek, N. Chiang, M. Mattei, S. Zaleski, M. O. McAnally, C. T. Chapman, A. I. Henry, G. C. Schatz, and R. P. Van Duyne, “Single-Molecule Chemistry with Surface- and Tip-Enhanced Raman Spectroscopy,” Chem. Rev. 117(11), 7583–7613 (2017).
[Crossref] [PubMed]

F. Neubrech, C. Huck, K. Weber, A. Pucci, and H. Giessen, “Surface-Enhanced Infrared Spectroscopy Using Resonant Nanoantennas,” Chem. Rev. 117(7), 5110–5145 (2017).
[Crossref] [PubMed]

O. Bibikova, J. Haas, A. I. López-Lorente, A. Popov, M. Kinnunen, I. Meglinski, and B. Mizaikoff, “Towards enhanced optical sensor performance: SEIRA and SERS with plasmonic nanostars,” Analyst (Lond.) 142(6), 951–958 (2017).
[Crossref] [PubMed]

L. Dolgov, O. Fesenko, V. Kavelin, O. Budnyk, V. Estrela-Llopis, A. Chevychalova, T. Repän, V. I. Kondratiev, and S. Mamykin, “Gold micro- and nano-particles for surface enhanced vibrational spectroscopy of pyridostigmine bromide,” Vib. Spectrosc. 88, 71–76 (2017).
[Crossref]

V. Kavelin, O. Fesenko, H. Dubyna, C. Vidal, T. A. Klar, C. Hrelescu, and L. Dolgov, “Raman and Luminescent Spectra of Sulfonated Zn Phthalocyanine Enhanced by Gold Nanoparticles,” Nanoscale Res. Lett. 12(1), 197 (2017).
[Crossref] [PubMed]

2016 (8)

M. Xiong, X. Jin, and J. Ye, “Strong plasmon coupling in self-assembled superparamagnetic nanoshell chains,” Nanoscale 8(9), 4991–4999 (2016).
[Crossref] [PubMed]

N. L. Gruenke, M. F. Cardinal, M. O. McAnally, R. R. Frontiera, G. C. Schatz, and R. P. Van Duyne, “Ultrafast and nonlinear surface-enhanced Raman spectroscopy,” Chem. Soc. Rev. 45(8), 2263–2290 (2016).
[Crossref] [PubMed]

S.-Y. Ding, J. Yi, J.-F. Li, B. Ren, D.-Y. Wu, R. Panneerselvam, and Z.-Q. Tian, “Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials,” Nature Rev. Mater. 1(6), 16021 (2016).
[Crossref]

D. V. Chulhai, Z. Hu, J. E. Moore, X. Chen, and L. Jensen, “Theory of Linear and Nonlinear Surface-Enhanced Vibrational Spectroscopies,” Annu. Rev. Phys. Chem. 67(1), 541–564 (2016).
[Crossref] [PubMed]

Z. Lam, K. V. Kong, M. Olivo, and W. K. Leong, “Vibrational spectroscopy of metal carbonyls for bio-imaging and -sensing,” Analyst (Lond.) 141(5), 1569–1586 (2016).
[Crossref] [PubMed]

I. Alessandri and J. R. Lombardi, “Enhanced Raman Scattering with Dielectrics,” Chem. Rev. 116(24), 14921–14981 (2016).
[Crossref] [PubMed]

G. Q. Wallace, M. Tabatabaei, R. Hou, M. J. Coady, P. R. Norton, T. S. Simpson, S. M. Rosendahl, A. Merlen, and F. Lagugné-Labarthet, “Superimposed Arrays of Nanoprisms for Multispectral Molecular Plasmonics,” ACS Photonics 3(9), 1723–1732 (2016).
[Crossref]

H. Hu, X. Yang, F. Zhai, D. Hu, R. Liu, K. Liu, Z. Sun, and Q. Dai, “Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons,” Nat. Commun. 7, 12334 (2016).
[Crossref] [PubMed]

2015 (5)

R. Lu, A. Konzelmann, F. Xu, Y. Gong, J. Liu, Q. Liu, M. Xin, R. Hui, and J. Z. Wu, “High sensitivity surface enhanced Raman spectroscopy of R6G on in situ fabricated Au nanoparticle/graphene plasmonic substrates,” Carbon 86, 78–85 (2015).
[Crossref]

J. Zhang, Z. Zhu, W. Liu, X. Yuan, and S. Qin, “Towards photodetection with high efficiency and tunable spectral selectivity: graphene plasmonics for light trapping and absorption engineering,” Nanoscale 7(32), 13530–13536 (2015).
[Crossref] [PubMed]

K. Chen, T. D. Dao, S. Ishii, M. Aono, and T. Nagao, “Infrared Aluminum Metamaterial Perfect Absorbers for Plasmon-Enhanced Infrared Spectroscopy,” Adv. Funct. Mater. 25(42), 6637–6643 (2015).
[Crossref]

J. Vogt, C. Huck, F. Neubrech, A. Toma, D. Gerbert, and A. Pucci, “Impact of the plasmonic near- and far-field resonance-energy shift on the enhancement of infrared vibrational signals,” Phys. Chem. Chem. Phys. 17(33), 21169–21175 (2015).
[Crossref] [PubMed]

X. Gao and T. J. Cui, “Spoof surface plasmon polaritons supported by ultrathin corrugated metal strip and their applications,” Nanotechnol. Rev. 4(3), 239–258 (2015).
[Crossref]

2014 (4)

D. Lis and F. Cecchet, “Localized surface plasmon resonances in nanostructures to enhance nonlinear vibrational spectroscopies: towards an astonishing molecular sensitivity,” Beilstein J. Nanotechnol. 5, 2275–2292 (2014).
[Crossref] [PubMed]

N. Zohar, L. Chuntonov, and G. Haran, “The simplest plasmonic molecules: Metal nanoparticle dimers and trimers,” J. Photochem. Photobiol. Chem. 21, 26–39 (2014).
[Crossref]

Y. S. Yamamoto, Y. Ozaki, and T. Itoh, “Recent progress and frontiers in the electromagnetic mechanism of surface-enhanced Raman scattering,” J. Photochem. Photobiol. Chem. 21, 81–104 (2014).
[Crossref]

X. Li, W. C. H. Choy, X. Ren, D. Zhang, and H. Lu, “Highly Intensified Surface Enhanced Raman Scattering by Using Monolayer Graphene as the Nanospacer of Metal Film-Metal Nanoparticle Coupling System,” Adv. Funct. Mater. 24(21), 3114–3122 (2014).
[Crossref]

2013 (5)

S. Law, V. Podolskiy, and D. Wasserman, “Towards nano-scale photonics with micro-scale photons: the opportunities and challenges of mid-infrared plasmonics,” Nanophotonics 2(2), 103 (2013).
[Crossref]

C. D’Andrea, J. Bochterle, A. Toma, C. Huck, F. Neubrech, E. Messina, B. Fazio, O. M. Maragò, E. Di Fabrizio, M. Lamy de La Chapelle, P. G. Gucciardi, and A. Pucci, “Optical Nanoantennas for Multiband surface-enhanced infrared and Raman spectroscopy,” ACS Nano 7(4), 3522–3531 (2013).
[Crossref] [PubMed]

H. Aouani, M. Rahmani, H. Šípová, V. Torres, K. Hegnerová, M. Beruete, J. Homola, M. Hong, M. Navarro-Cía, and S. A. Maier, “Plasmonic Nanoantennas for Multispectral Surface-Enhanced Spectroscopies,” J. Phys. Chem. C 117(36), 18620–18626 (2013).
[Crossref]

K. Ataka, S. T. Stripp, and J. Heberle, “Surface-enhanced infrared absorption spectroscopy (SEIRAS) to probe monolayers of membrane proteins,” Biochim. Biophys. Acta 1828(10), 2283–2293 (2013).
[Crossref] [PubMed]

T. Wang, V. H. Nguyen, A. Buchenauer, U. Schnakenberg, and T. Taubner, “Surface enhanced infrared spectroscopy with gold strip gratings,” Opt. Express 21(7), 9005–9010 (2013).
[Crossref] [PubMed]

2012 (3)

L.-X. Wang and X.-E. Jiang, “Bioanalytical Applications of Surface-enhanced Infrared Absorption Spectroscopy,” Chin. J. Anal. Chem. 40(7), 975–982 (2012).
[Crossref]

Y. Q. Wang, S. Ma, Q. Q. Yang, and X. J. Li, “Size-dependent SERS detection of R6G by silver nanoparticles immersion-plated on silicon nanoporous pillar array,” Appl. Surf. Sci. 258(15), 5881–5885 (2012).
[Crossref]

C. H. Gan, H. S. Chu, and E. P. Li, “Synthesis of highly confined surface plasmon modes with doped graphene sheets in the midinfrared and terahertz frequencies,” Phys. Rev. B 85(12), 125431 (2012).
[Crossref]

2011 (1)

U. S. Dinish, F. C. Yaw, A. Agarwal, and M. Olivo, “Development of highly reproducible nanogap SERS substrates: comparative performance analysis and its application for glucose sensing,” Biosens. Bioelectron. 26(5), 1987–1992 (2011).
[Crossref] [PubMed]

2010 (1)

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

2009 (1)

M. Baia, F. Toderas, L. Baia, D. Maniu, and S. Astilean, “Multilayer structures of self-assembled gold nanoparticles as a unique SERS and SEIRA substrate,” ChemPhysChem 10(7), 1106–1111 (2009).
[Crossref] [PubMed]

2008 (2)

J. M. Delgado, J. M. Orts, J. M. Pérez, and A. Rodes, “Sputtered thin-film gold electrodes for in situ ATR-SEIRAS and SERS studies,” J. Electroanal. Chem. 617(2), 130–140 (2008).
[Crossref]

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic Nanoparticle Arrays: A Common Substrate for Both Surface-Enhanced Raman Scattering and Surface-Enhanced Infrared Absorption,” ACS Nano 2(4), 707–718 (2008).
[Crossref] [PubMed]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Agarwal, A.

U. S. Dinish, F. C. Yaw, A. Agarwal, and M. Olivo, “Development of highly reproducible nanogap SERS substrates: comparative performance analysis and its application for glucose sensing,” Biosens. Bioelectron. 26(5), 1987–1992 (2011).
[Crossref] [PubMed]

Aizpurua, J.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic Nanoparticle Arrays: A Common Substrate for Both Surface-Enhanced Raman Scattering and Surface-Enhanced Infrared Absorption,” ACS Nano 2(4), 707–718 (2008).
[Crossref] [PubMed]

Alessandri, I.

I. Alessandri and J. R. Lombardi, “Enhanced Raman Scattering with Dielectrics,” Chem. Rev. 116(24), 14921–14981 (2016).
[Crossref] [PubMed]

Aono, M.

K. Chen, T. D. Dao, S. Ishii, M. Aono, and T. Nagao, “Infrared Aluminum Metamaterial Perfect Absorbers for Plasmon-Enhanced Infrared Spectroscopy,” Adv. Funct. Mater. 25(42), 6637–6643 (2015).
[Crossref]

Aouani, H.

H. Aouani, M. Rahmani, H. Šípová, V. Torres, K. Hegnerová, M. Beruete, J. Homola, M. Hong, M. Navarro-Cía, and S. A. Maier, “Plasmonic Nanoantennas for Multispectral Surface-Enhanced Spectroscopies,” J. Phys. Chem. C 117(36), 18620–18626 (2013).
[Crossref]

Astilean, S.

M. Baia, F. Toderas, L. Baia, D. Maniu, and S. Astilean, “Multilayer structures of self-assembled gold nanoparticles as a unique SERS and SEIRA substrate,” ChemPhysChem 10(7), 1106–1111 (2009).
[Crossref] [PubMed]

Ataka, K.

K. Ataka, S. T. Stripp, and J. Heberle, “Surface-enhanced infrared absorption spectroscopy (SEIRAS) to probe monolayers of membrane proteins,” Biochim. Biophys. Acta 1828(10), 2283–2293 (2013).
[Crossref] [PubMed]

Baia, L.

M. Baia, F. Toderas, L. Baia, D. Maniu, and S. Astilean, “Multilayer structures of self-assembled gold nanoparticles as a unique SERS and SEIRA substrate,” ChemPhysChem 10(7), 1106–1111 (2009).
[Crossref] [PubMed]

Baia, M.

M. Baia, F. Toderas, L. Baia, D. Maniu, and S. Astilean, “Multilayer structures of self-assembled gold nanoparticles as a unique SERS and SEIRA substrate,” ChemPhysChem 10(7), 1106–1111 (2009).
[Crossref] [PubMed]

Beruete, M.

H. Aouani, M. Rahmani, H. Šípová, V. Torres, K. Hegnerová, M. Beruete, J. Homola, M. Hong, M. Navarro-Cía, and S. A. Maier, “Plasmonic Nanoantennas for Multispectral Surface-Enhanced Spectroscopies,” J. Phys. Chem. C 117(36), 18620–18626 (2013).
[Crossref]

Bibikova, O.

O. Bibikova, J. Haas, A. I. López-Lorente, A. Popov, M. Kinnunen, I. Meglinski, and B. Mizaikoff, “Towards enhanced optical sensor performance: SEIRA and SERS with plasmonic nanostars,” Analyst (Lond.) 142(6), 951–958 (2017).
[Crossref] [PubMed]

Bochterle, J.

C. D’Andrea, J. Bochterle, A. Toma, C. Huck, F. Neubrech, E. Messina, B. Fazio, O. M. Maragò, E. Di Fabrizio, M. Lamy de La Chapelle, P. G. Gucciardi, and A. Pucci, “Optical Nanoantennas for Multiband surface-enhanced infrared and Raman spectroscopy,” ACS Nano 7(4), 3522–3531 (2013).
[Crossref] [PubMed]

Bozhevolnyi, S. I.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

Brandl, D. W.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic Nanoparticle Arrays: A Common Substrate for Both Surface-Enhanced Raman Scattering and Surface-Enhanced Infrared Absorption,” ACS Nano 2(4), 707–718 (2008).
[Crossref] [PubMed]

Buchenauer, A.

Budnyk, O.

L. Dolgov, O. Fesenko, V. Kavelin, O. Budnyk, V. Estrela-Llopis, A. Chevychalova, T. Repän, V. I. Kondratiev, and S. Mamykin, “Gold micro- and nano-particles for surface enhanced vibrational spectroscopy of pyridostigmine bromide,” Vib. Spectrosc. 88, 71–76 (2017).
[Crossref]

Cardinal, M. F.

N. L. Gruenke, M. F. Cardinal, M. O. McAnally, R. R. Frontiera, G. C. Schatz, and R. P. Van Duyne, “Ultrafast and nonlinear surface-enhanced Raman spectroscopy,” Chem. Soc. Rev. 45(8), 2263–2290 (2016).
[Crossref] [PubMed]

Cecchet, F.

D. Lis and F. Cecchet, “Localized surface plasmon resonances in nanostructures to enhance nonlinear vibrational spectroscopies: towards an astonishing molecular sensitivity,” Beilstein J. Nanotechnol. 5, 2275–2292 (2014).
[Crossref] [PubMed]

Chapman, C. T.

A. B. Zrimsek, N. Chiang, M. Mattei, S. Zaleski, M. O. McAnally, C. T. Chapman, A. I. Henry, G. C. Schatz, and R. P. Van Duyne, “Single-Molecule Chemistry with Surface- and Tip-Enhanced Raman Spectroscopy,” Chem. Rev. 117(11), 7583–7613 (2017).
[Crossref] [PubMed]

Chen, K.

K. Chen, T. D. Dao, S. Ishii, M. Aono, and T. Nagao, “Infrared Aluminum Metamaterial Perfect Absorbers for Plasmon-Enhanced Infrared Spectroscopy,” Adv. Funct. Mater. 25(42), 6637–6643 (2015).
[Crossref]

Chen, X.

D. V. Chulhai, Z. Hu, J. E. Moore, X. Chen, and L. Jensen, “Theory of Linear and Nonlinear Surface-Enhanced Vibrational Spectroscopies,” Annu. Rev. Phys. Chem. 67(1), 541–564 (2016).
[Crossref] [PubMed]

Chevychalova, A.

L. Dolgov, O. Fesenko, V. Kavelin, O. Budnyk, V. Estrela-Llopis, A. Chevychalova, T. Repän, V. I. Kondratiev, and S. Mamykin, “Gold micro- and nano-particles for surface enhanced vibrational spectroscopy of pyridostigmine bromide,” Vib. Spectrosc. 88, 71–76 (2017).
[Crossref]

Chiang, N.

A. B. Zrimsek, N. Chiang, M. Mattei, S. Zaleski, M. O. McAnally, C. T. Chapman, A. I. Henry, G. C. Schatz, and R. P. Van Duyne, “Single-Molecule Chemistry with Surface- and Tip-Enhanced Raman Spectroscopy,” Chem. Rev. 117(11), 7583–7613 (2017).
[Crossref] [PubMed]

Choy, W. C. H.

X. Li, W. C. H. Choy, X. Ren, D. Zhang, and H. Lu, “Highly Intensified Surface Enhanced Raman Scattering by Using Monolayer Graphene as the Nanospacer of Metal Film-Metal Nanoparticle Coupling System,” Adv. Funct. Mater. 24(21), 3114–3122 (2014).
[Crossref]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Chu, H. S.

C. H. Gan, H. S. Chu, and E. P. Li, “Synthesis of highly confined surface plasmon modes with doped graphene sheets in the midinfrared and terahertz frequencies,” Phys. Rev. B 85(12), 125431 (2012).
[Crossref]

Chulhai, D. V.

D. V. Chulhai, Z. Hu, J. E. Moore, X. Chen, and L. Jensen, “Theory of Linear and Nonlinear Surface-Enhanced Vibrational Spectroscopies,” Annu. Rev. Phys. Chem. 67(1), 541–564 (2016).
[Crossref] [PubMed]

Chuntonov, L.

N. Zohar, L. Chuntonov, and G. Haran, “The simplest plasmonic molecules: Metal nanoparticle dimers and trimers,” J. Photochem. Photobiol. Chem. 21, 26–39 (2014).
[Crossref]

Coady, M. J.

G. Q. Wallace, M. Tabatabaei, R. Hou, M. J. Coady, P. R. Norton, T. S. Simpson, S. M. Rosendahl, A. Merlen, and F. Lagugné-Labarthet, “Superimposed Arrays of Nanoprisms for Multispectral Molecular Plasmonics,” ACS Photonics 3(9), 1723–1732 (2016).
[Crossref]

Cui, T. J.

X. Gao and T. J. Cui, “Spoof surface plasmon polaritons supported by ultrathin corrugated metal strip and their applications,” Nanotechnol. Rev. 4(3), 239–258 (2015).
[Crossref]

D’Andrea, C.

C. D’Andrea, J. Bochterle, A. Toma, C. Huck, F. Neubrech, E. Messina, B. Fazio, O. M. Maragò, E. Di Fabrizio, M. Lamy de La Chapelle, P. G. Gucciardi, and A. Pucci, “Optical Nanoantennas for Multiband surface-enhanced infrared and Raman spectroscopy,” ACS Nano 7(4), 3522–3531 (2013).
[Crossref] [PubMed]

Dai, Q.

H. Hu, X. Yang, F. Zhai, D. Hu, R. Liu, K. Liu, Z. Sun, and Q. Dai, “Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons,” Nat. Commun. 7, 12334 (2016).
[Crossref] [PubMed]

Dao, T. D.

K. Chen, T. D. Dao, S. Ishii, M. Aono, and T. Nagao, “Infrared Aluminum Metamaterial Perfect Absorbers for Plasmon-Enhanced Infrared Spectroscopy,” Adv. Funct. Mater. 25(42), 6637–6643 (2015).
[Crossref]

Delgado, J. M.

J. M. Delgado, J. M. Orts, J. M. Pérez, and A. Rodes, “Sputtered thin-film gold electrodes for in situ ATR-SEIRAS and SERS studies,” J. Electroanal. Chem. 617(2), 130–140 (2008).
[Crossref]

Di Fabrizio, E.

C. D’Andrea, J. Bochterle, A. Toma, C. Huck, F. Neubrech, E. Messina, B. Fazio, O. M. Maragò, E. Di Fabrizio, M. Lamy de La Chapelle, P. G. Gucciardi, and A. Pucci, “Optical Nanoantennas for Multiband surface-enhanced infrared and Raman spectroscopy,” ACS Nano 7(4), 3522–3531 (2013).
[Crossref] [PubMed]

Ding, S.-Y.

S.-Y. Ding, J. Yi, J.-F. Li, B. Ren, D.-Y. Wu, R. Panneerselvam, and Z.-Q. Tian, “Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials,” Nature Rev. Mater. 1(6), 16021 (2016).
[Crossref]

Dinish, U. S.

U. S. Dinish, F. C. Yaw, A. Agarwal, and M. Olivo, “Development of highly reproducible nanogap SERS substrates: comparative performance analysis and its application for glucose sensing,” Biosens. Bioelectron. 26(5), 1987–1992 (2011).
[Crossref] [PubMed]

Dolgov, L.

V. Kavelin, O. Fesenko, H. Dubyna, C. Vidal, T. A. Klar, C. Hrelescu, and L. Dolgov, “Raman and Luminescent Spectra of Sulfonated Zn Phthalocyanine Enhanced by Gold Nanoparticles,” Nanoscale Res. Lett. 12(1), 197 (2017).
[Crossref] [PubMed]

L. Dolgov, O. Fesenko, V. Kavelin, O. Budnyk, V. Estrela-Llopis, A. Chevychalova, T. Repän, V. I. Kondratiev, and S. Mamykin, “Gold micro- and nano-particles for surface enhanced vibrational spectroscopy of pyridostigmine bromide,” Vib. Spectrosc. 88, 71–76 (2017).
[Crossref]

Dubyna, H.

V. Kavelin, O. Fesenko, H. Dubyna, C. Vidal, T. A. Klar, C. Hrelescu, and L. Dolgov, “Raman and Luminescent Spectra of Sulfonated Zn Phthalocyanine Enhanced by Gold Nanoparticles,” Nanoscale Res. Lett. 12(1), 197 (2017).
[Crossref] [PubMed]

Estrela-Llopis, V.

L. Dolgov, O. Fesenko, V. Kavelin, O. Budnyk, V. Estrela-Llopis, A. Chevychalova, T. Repän, V. I. Kondratiev, and S. Mamykin, “Gold micro- and nano-particles for surface enhanced vibrational spectroscopy of pyridostigmine bromide,” Vib. Spectrosc. 88, 71–76 (2017).
[Crossref]

Fang, Y.

X. Li, Y. Liu, Z. Zeng, P. Wang, Y. Fang, and L. Zhang, “Investigation on tip enhanced Raman spectra of graphene,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 190, 378–382 (2018).
[Crossref] [PubMed]

Fazio, B.

C. D’Andrea, J. Bochterle, A. Toma, C. Huck, F. Neubrech, E. Messina, B. Fazio, O. M. Maragò, E. Di Fabrizio, M. Lamy de La Chapelle, P. G. Gucciardi, and A. Pucci, “Optical Nanoantennas for Multiband surface-enhanced infrared and Raman spectroscopy,” ACS Nano 7(4), 3522–3531 (2013).
[Crossref] [PubMed]

Fesenko, O.

L. Dolgov, O. Fesenko, V. Kavelin, O. Budnyk, V. Estrela-Llopis, A. Chevychalova, T. Repän, V. I. Kondratiev, and S. Mamykin, “Gold micro- and nano-particles for surface enhanced vibrational spectroscopy of pyridostigmine bromide,” Vib. Spectrosc. 88, 71–76 (2017).
[Crossref]

V. Kavelin, O. Fesenko, H. Dubyna, C. Vidal, T. A. Klar, C. Hrelescu, and L. Dolgov, “Raman and Luminescent Spectra of Sulfonated Zn Phthalocyanine Enhanced by Gold Nanoparticles,” Nanoscale Res. Lett. 12(1), 197 (2017).
[Crossref] [PubMed]

Frontiera, R. R.

N. L. Gruenke, M. F. Cardinal, M. O. McAnally, R. R. Frontiera, G. C. Schatz, and R. P. Van Duyne, “Ultrafast and nonlinear surface-enhanced Raman spectroscopy,” Chem. Soc. Rev. 45(8), 2263–2290 (2016).
[Crossref] [PubMed]

Gan, C. H.

C. H. Gan, H. S. Chu, and E. P. Li, “Synthesis of highly confined surface plasmon modes with doped graphene sheets in the midinfrared and terahertz frequencies,” Phys. Rev. B 85(12), 125431 (2012).
[Crossref]

Gan, X.

H. Lu, X. Gan, D. Mao, B. Jia, and J. Zhao, “Flexibly tunable high-quality-factor induced transparency in plasmonic systems,” Sci. Rep. 8(1), 1558 (2018).
[Crossref] [PubMed]

Gao, X.

X. Gao and T. J. Cui, “Spoof surface plasmon polaritons supported by ultrathin corrugated metal strip and their applications,” Nanotechnol. Rev. 4(3), 239–258 (2015).
[Crossref]

Gerbert, D.

J. Vogt, C. Huck, F. Neubrech, A. Toma, D. Gerbert, and A. Pucci, “Impact of the plasmonic near- and far-field resonance-energy shift on the enhancement of infrared vibrational signals,” Phys. Chem. Chem. Phys. 17(33), 21169–21175 (2015).
[Crossref] [PubMed]

Giessen, H.

F. Neubrech, C. Huck, K. Weber, A. Pucci, and H. Giessen, “Surface-Enhanced Infrared Spectroscopy Using Resonant Nanoantennas,” Chem. Rev. 117(7), 5110–5145 (2017).
[Crossref] [PubMed]

Gong, Y.

R. Lu, A. Konzelmann, F. Xu, Y. Gong, J. Liu, Q. Liu, M. Xin, R. Hui, and J. Z. Wu, “High sensitivity surface enhanced Raman spectroscopy of R6G on in situ fabricated Au nanoparticle/graphene plasmonic substrates,” Carbon 86, 78–85 (2015).
[Crossref]

Gramotnev, D. K.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

Gruenke, N. L.

N. L. Gruenke, M. F. Cardinal, M. O. McAnally, R. R. Frontiera, G. C. Schatz, and R. P. Van Duyne, “Ultrafast and nonlinear surface-enhanced Raman spectroscopy,” Chem. Soc. Rev. 45(8), 2263–2290 (2016).
[Crossref] [PubMed]

Gucciardi, P. G.

C. D’Andrea, J. Bochterle, A. Toma, C. Huck, F. Neubrech, E. Messina, B. Fazio, O. M. Maragò, E. Di Fabrizio, M. Lamy de La Chapelle, P. G. Gucciardi, and A. Pucci, “Optical Nanoantennas for Multiband surface-enhanced infrared and Raman spectroscopy,” ACS Nano 7(4), 3522–3531 (2013).
[Crossref] [PubMed]

Haas, J.

O. Bibikova, J. Haas, A. I. López-Lorente, A. Popov, M. Kinnunen, I. Meglinski, and B. Mizaikoff, “Towards enhanced optical sensor performance: SEIRA and SERS with plasmonic nanostars,” Analyst (Lond.) 142(6), 951–958 (2017).
[Crossref] [PubMed]

Halas, N. J.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic Nanoparticle Arrays: A Common Substrate for Both Surface-Enhanced Raman Scattering and Surface-Enhanced Infrared Absorption,” ACS Nano 2(4), 707–718 (2008).
[Crossref] [PubMed]

Haran, G.

N. Zohar, L. Chuntonov, and G. Haran, “The simplest plasmonic molecules: Metal nanoparticle dimers and trimers,” J. Photochem. Photobiol. Chem. 21, 26–39 (2014).
[Crossref]

Heberle, J.

K. Ataka, S. T. Stripp, and J. Heberle, “Surface-enhanced infrared absorption spectroscopy (SEIRAS) to probe monolayers of membrane proteins,” Biochim. Biophys. Acta 1828(10), 2283–2293 (2013).
[Crossref] [PubMed]

Hegnerová, K.

H. Aouani, M. Rahmani, H. Šípová, V. Torres, K. Hegnerová, M. Beruete, J. Homola, M. Hong, M. Navarro-Cía, and S. A. Maier, “Plasmonic Nanoantennas for Multispectral Surface-Enhanced Spectroscopies,” J. Phys. Chem. C 117(36), 18620–18626 (2013).
[Crossref]

Henry, A. I.

A. B. Zrimsek, N. Chiang, M. Mattei, S. Zaleski, M. O. McAnally, C. T. Chapman, A. I. Henry, G. C. Schatz, and R. P. Van Duyne, “Single-Molecule Chemistry with Surface- and Tip-Enhanced Raman Spectroscopy,” Chem. Rev. 117(11), 7583–7613 (2017).
[Crossref] [PubMed]

Homola, J.

H. Aouani, M. Rahmani, H. Šípová, V. Torres, K. Hegnerová, M. Beruete, J. Homola, M. Hong, M. Navarro-Cía, and S. A. Maier, “Plasmonic Nanoantennas for Multispectral Surface-Enhanced Spectroscopies,” J. Phys. Chem. C 117(36), 18620–18626 (2013).
[Crossref]

Hong, M.

H. Aouani, M. Rahmani, H. Šípová, V. Torres, K. Hegnerová, M. Beruete, J. Homola, M. Hong, M. Navarro-Cía, and S. A. Maier, “Plasmonic Nanoantennas for Multispectral Surface-Enhanced Spectroscopies,” J. Phys. Chem. C 117(36), 18620–18626 (2013).
[Crossref]

Hou, R.

G. Q. Wallace, M. Tabatabaei, R. Hou, M. J. Coady, P. R. Norton, T. S. Simpson, S. M. Rosendahl, A. Merlen, and F. Lagugné-Labarthet, “Superimposed Arrays of Nanoprisms for Multispectral Molecular Plasmonics,” ACS Photonics 3(9), 1723–1732 (2016).
[Crossref]

Hrelescu, C.

V. Kavelin, O. Fesenko, H. Dubyna, C. Vidal, T. A. Klar, C. Hrelescu, and L. Dolgov, “Raman and Luminescent Spectra of Sulfonated Zn Phthalocyanine Enhanced by Gold Nanoparticles,” Nanoscale Res. Lett. 12(1), 197 (2017).
[Crossref] [PubMed]

Hu, D.

H. Hu, X. Yang, F. Zhai, D. Hu, R. Liu, K. Liu, Z. Sun, and Q. Dai, “Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons,” Nat. Commun. 7, 12334 (2016).
[Crossref] [PubMed]

Hu, H.

H. Hu, X. Yang, F. Zhai, D. Hu, R. Liu, K. Liu, Z. Sun, and Q. Dai, “Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons,” Nat. Commun. 7, 12334 (2016).
[Crossref] [PubMed]

Hu, Z.

D. V. Chulhai, Z. Hu, J. E. Moore, X. Chen, and L. Jensen, “Theory of Linear and Nonlinear Surface-Enhanced Vibrational Spectroscopies,” Annu. Rev. Phys. Chem. 67(1), 541–564 (2016).
[Crossref] [PubMed]

Huck, C.

F. Neubrech, C. Huck, K. Weber, A. Pucci, and H. Giessen, “Surface-Enhanced Infrared Spectroscopy Using Resonant Nanoantennas,” Chem. Rev. 117(7), 5110–5145 (2017).
[Crossref] [PubMed]

J. Vogt, C. Huck, F. Neubrech, A. Toma, D. Gerbert, and A. Pucci, “Impact of the plasmonic near- and far-field resonance-energy shift on the enhancement of infrared vibrational signals,” Phys. Chem. Chem. Phys. 17(33), 21169–21175 (2015).
[Crossref] [PubMed]

C. D’Andrea, J. Bochterle, A. Toma, C. Huck, F. Neubrech, E. Messina, B. Fazio, O. M. Maragò, E. Di Fabrizio, M. Lamy de La Chapelle, P. G. Gucciardi, and A. Pucci, “Optical Nanoantennas for Multiband surface-enhanced infrared and Raman spectroscopy,” ACS Nano 7(4), 3522–3531 (2013).
[Crossref] [PubMed]

Hui, R.

R. Lu, A. Konzelmann, F. Xu, Y. Gong, J. Liu, Q. Liu, M. Xin, R. Hui, and J. Z. Wu, “High sensitivity surface enhanced Raman spectroscopy of R6G on in situ fabricated Au nanoparticle/graphene plasmonic substrates,” Carbon 86, 78–85 (2015).
[Crossref]

Ishii, S.

K. Chen, T. D. Dao, S. Ishii, M. Aono, and T. Nagao, “Infrared Aluminum Metamaterial Perfect Absorbers for Plasmon-Enhanced Infrared Spectroscopy,” Adv. Funct. Mater. 25(42), 6637–6643 (2015).
[Crossref]

Itoh, T.

Y. S. Yamamoto, Y. Ozaki, and T. Itoh, “Recent progress and frontiers in the electromagnetic mechanism of surface-enhanced Raman scattering,” J. Photochem. Photobiol. Chem. 21, 81–104 (2014).
[Crossref]

Jensen, L.

D. V. Chulhai, Z. Hu, J. E. Moore, X. Chen, and L. Jensen, “Theory of Linear and Nonlinear Surface-Enhanced Vibrational Spectroscopies,” Annu. Rev. Phys. Chem. 67(1), 541–564 (2016).
[Crossref] [PubMed]

Jia, B.

H. Lu, X. Gan, D. Mao, B. Jia, and J. Zhao, “Flexibly tunable high-quality-factor induced transparency in plasmonic systems,” Sci. Rep. 8(1), 1558 (2018).
[Crossref] [PubMed]

Jiang, X.-E.

L.-X. Wang and X.-E. Jiang, “Bioanalytical Applications of Surface-enhanced Infrared Absorption Spectroscopy,” Chin. J. Anal. Chem. 40(7), 975–982 (2012).
[Crossref]

Jin, X.

M. Xiong, X. Jin, and J. Ye, “Strong plasmon coupling in self-assembled superparamagnetic nanoshell chains,” Nanoscale 8(9), 4991–4999 (2016).
[Crossref] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Kavelin, V.

V. Kavelin, O. Fesenko, H. Dubyna, C. Vidal, T. A. Klar, C. Hrelescu, and L. Dolgov, “Raman and Luminescent Spectra of Sulfonated Zn Phthalocyanine Enhanced by Gold Nanoparticles,” Nanoscale Res. Lett. 12(1), 197 (2017).
[Crossref] [PubMed]

L. Dolgov, O. Fesenko, V. Kavelin, O. Budnyk, V. Estrela-Llopis, A. Chevychalova, T. Repän, V. I. Kondratiev, and S. Mamykin, “Gold micro- and nano-particles for surface enhanced vibrational spectroscopy of pyridostigmine bromide,” Vib. Spectrosc. 88, 71–76 (2017).
[Crossref]

Kinnunen, M.

O. Bibikova, J. Haas, A. I. López-Lorente, A. Popov, M. Kinnunen, I. Meglinski, and B. Mizaikoff, “Towards enhanced optical sensor performance: SEIRA and SERS with plasmonic nanostars,” Analyst (Lond.) 142(6), 951–958 (2017).
[Crossref] [PubMed]

Klar, T. A.

V. Kavelin, O. Fesenko, H. Dubyna, C. Vidal, T. A. Klar, C. Hrelescu, and L. Dolgov, “Raman and Luminescent Spectra of Sulfonated Zn Phthalocyanine Enhanced by Gold Nanoparticles,” Nanoscale Res. Lett. 12(1), 197 (2017).
[Crossref] [PubMed]

Kondratiev, V. I.

L. Dolgov, O. Fesenko, V. Kavelin, O. Budnyk, V. Estrela-Llopis, A. Chevychalova, T. Repän, V. I. Kondratiev, and S. Mamykin, “Gold micro- and nano-particles for surface enhanced vibrational spectroscopy of pyridostigmine bromide,” Vib. Spectrosc. 88, 71–76 (2017).
[Crossref]

Kong, K. V.

Z. Lam, K. V. Kong, M. Olivo, and W. K. Leong, “Vibrational spectroscopy of metal carbonyls for bio-imaging and -sensing,” Analyst (Lond.) 141(5), 1569–1586 (2016).
[Crossref] [PubMed]

Konzelmann, A.

R. Lu, A. Konzelmann, F. Xu, Y. Gong, J. Liu, Q. Liu, M. Xin, R. Hui, and J. Z. Wu, “High sensitivity surface enhanced Raman spectroscopy of R6G on in situ fabricated Au nanoparticle/graphene plasmonic substrates,” Carbon 86, 78–85 (2015).
[Crossref]

Kundu, J.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic Nanoparticle Arrays: A Common Substrate for Both Surface-Enhanced Raman Scattering and Surface-Enhanced Infrared Absorption,” ACS Nano 2(4), 707–718 (2008).
[Crossref] [PubMed]

Lagugné-Labarthet, F.

G. Q. Wallace, M. Tabatabaei, R. Hou, M. J. Coady, P. R. Norton, T. S. Simpson, S. M. Rosendahl, A. Merlen, and F. Lagugné-Labarthet, “Superimposed Arrays of Nanoprisms for Multispectral Molecular Plasmonics,” ACS Photonics 3(9), 1723–1732 (2016).
[Crossref]

Lam, Z.

Z. Lam, K. V. Kong, M. Olivo, and W. K. Leong, “Vibrational spectroscopy of metal carbonyls for bio-imaging and -sensing,” Analyst (Lond.) 141(5), 1569–1586 (2016).
[Crossref] [PubMed]

Lamy de La Chapelle, M.

C. D’Andrea, J. Bochterle, A. Toma, C. Huck, F. Neubrech, E. Messina, B. Fazio, O. M. Maragò, E. Di Fabrizio, M. Lamy de La Chapelle, P. G. Gucciardi, and A. Pucci, “Optical Nanoantennas for Multiband surface-enhanced infrared and Raman spectroscopy,” ACS Nano 7(4), 3522–3531 (2013).
[Crossref] [PubMed]

Lan, G.

Law, S.

S. Law, V. Podolskiy, and D. Wasserman, “Towards nano-scale photonics with micro-scale photons: the opportunities and challenges of mid-infrared plasmonics,” Nanophotonics 2(2), 103 (2013).
[Crossref]

Le, F.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic Nanoparticle Arrays: A Common Substrate for Both Surface-Enhanced Raman Scattering and Surface-Enhanced Infrared Absorption,” ACS Nano 2(4), 707–718 (2008).
[Crossref] [PubMed]

Leong, W. K.

Z. Lam, K. V. Kong, M. Olivo, and W. K. Leong, “Vibrational spectroscopy of metal carbonyls for bio-imaging and -sensing,” Analyst (Lond.) 141(5), 1569–1586 (2016).
[Crossref] [PubMed]

Li, E. P.

C. H. Gan, H. S. Chu, and E. P. Li, “Synthesis of highly confined surface plasmon modes with doped graphene sheets in the midinfrared and terahertz frequencies,” Phys. Rev. B 85(12), 125431 (2012).
[Crossref]

Li, J.-F.

S.-Y. Ding, J. Yi, J.-F. Li, B. Ren, D.-Y. Wu, R. Panneerselvam, and Z.-Q. Tian, “Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials,” Nature Rev. Mater. 1(6), 16021 (2016).
[Crossref]

Li, X.

X. Li, Y. Liu, Z. Zeng, P. Wang, Y. Fang, and L. Zhang, “Investigation on tip enhanced Raman spectra of graphene,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 190, 378–382 (2018).
[Crossref] [PubMed]

X. Li, W. C. H. Choy, X. Ren, D. Zhang, and H. Lu, “Highly Intensified Surface Enhanced Raman Scattering by Using Monolayer Graphene as the Nanospacer of Metal Film-Metal Nanoparticle Coupling System,” Adv. Funct. Mater. 24(21), 3114–3122 (2014).
[Crossref]

Li, X. J.

Y. Q. Wang, S. Ma, Q. Q. Yang, and X. J. Li, “Size-dependent SERS detection of R6G by silver nanoparticles immersion-plated on silicon nanoporous pillar array,” Appl. Surf. Sci. 258(15), 5881–5885 (2012).
[Crossref]

Lis, D.

D. Lis and F. Cecchet, “Localized surface plasmon resonances in nanostructures to enhance nonlinear vibrational spectroscopies: towards an astonishing molecular sensitivity,” Beilstein J. Nanotechnol. 5, 2275–2292 (2014).
[Crossref] [PubMed]

Liu, J.

R. Lu, A. Konzelmann, F. Xu, Y. Gong, J. Liu, Q. Liu, M. Xin, R. Hui, and J. Z. Wu, “High sensitivity surface enhanced Raman spectroscopy of R6G on in situ fabricated Au nanoparticle/graphene plasmonic substrates,” Carbon 86, 78–85 (2015).
[Crossref]

Liu, K.

H. Hu, X. Yang, F. Zhai, D. Hu, R. Liu, K. Liu, Z. Sun, and Q. Dai, “Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons,” Nat. Commun. 7, 12334 (2016).
[Crossref] [PubMed]

Liu, Q.

R. Lu, A. Konzelmann, F. Xu, Y. Gong, J. Liu, Q. Liu, M. Xin, R. Hui, and J. Z. Wu, “High sensitivity surface enhanced Raman spectroscopy of R6G on in situ fabricated Au nanoparticle/graphene plasmonic substrates,” Carbon 86, 78–85 (2015).
[Crossref]

Liu, R.

H. Hu, X. Yang, F. Zhai, D. Hu, R. Liu, K. Liu, Z. Sun, and Q. Dai, “Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons,” Nat. Commun. 7, 12334 (2016).
[Crossref] [PubMed]

Liu, W.

J. Zhang, Z. Zhu, W. Liu, X. Yuan, and S. Qin, “Towards photodetection with high efficiency and tunable spectral selectivity: graphene plasmonics for light trapping and absorption engineering,” Nanoscale 7(32), 13530–13536 (2015).
[Crossref] [PubMed]

Liu, Y.

X. Li, Y. Liu, Z. Zeng, P. Wang, Y. Fang, and L. Zhang, “Investigation on tip enhanced Raman spectra of graphene,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 190, 378–382 (2018).
[Crossref] [PubMed]

Lombardi, J. R.

I. Alessandri and J. R. Lombardi, “Enhanced Raman Scattering with Dielectrics,” Chem. Rev. 116(24), 14921–14981 (2016).
[Crossref] [PubMed]

López-Lorente, A. I.

O. Bibikova, J. Haas, A. I. López-Lorente, A. Popov, M. Kinnunen, I. Meglinski, and B. Mizaikoff, “Towards enhanced optical sensor performance: SEIRA and SERS with plasmonic nanostars,” Analyst (Lond.) 142(6), 951–958 (2017).
[Crossref] [PubMed]

Lu, H.

H. Lu, X. Gan, D. Mao, B. Jia, and J. Zhao, “Flexibly tunable high-quality-factor induced transparency in plasmonic systems,” Sci. Rep. 8(1), 1558 (2018).
[Crossref] [PubMed]

X. Li, W. C. H. Choy, X. Ren, D. Zhang, and H. Lu, “Highly Intensified Surface Enhanced Raman Scattering by Using Monolayer Graphene as the Nanospacer of Metal Film-Metal Nanoparticle Coupling System,” Adv. Funct. Mater. 24(21), 3114–3122 (2014).
[Crossref]

Lu, R.

R. Lu, A. Konzelmann, F. Xu, Y. Gong, J. Liu, Q. Liu, M. Xin, R. Hui, and J. Z. Wu, “High sensitivity surface enhanced Raman spectroscopy of R6G on in situ fabricated Au nanoparticle/graphene plasmonic substrates,” Carbon 86, 78–85 (2015).
[Crossref]

Ma, S.

Y. Q. Wang, S. Ma, Q. Q. Yang, and X. J. Li, “Size-dependent SERS detection of R6G by silver nanoparticles immersion-plated on silicon nanoporous pillar array,” Appl. Surf. Sci. 258(15), 5881–5885 (2012).
[Crossref]

Maier, S. A.

H. Aouani, M. Rahmani, H. Šípová, V. Torres, K. Hegnerová, M. Beruete, J. Homola, M. Hong, M. Navarro-Cía, and S. A. Maier, “Plasmonic Nanoantennas for Multispectral Surface-Enhanced Spectroscopies,” J. Phys. Chem. C 117(36), 18620–18626 (2013).
[Crossref]

Mamykin, S.

L. Dolgov, O. Fesenko, V. Kavelin, O. Budnyk, V. Estrela-Llopis, A. Chevychalova, T. Repän, V. I. Kondratiev, and S. Mamykin, “Gold micro- and nano-particles for surface enhanced vibrational spectroscopy of pyridostigmine bromide,” Vib. Spectrosc. 88, 71–76 (2017).
[Crossref]

Maniu, D.

M. Baia, F. Toderas, L. Baia, D. Maniu, and S. Astilean, “Multilayer structures of self-assembled gold nanoparticles as a unique SERS and SEIRA substrate,” ChemPhysChem 10(7), 1106–1111 (2009).
[Crossref] [PubMed]

Mao, D.

H. Lu, X. Gan, D. Mao, B. Jia, and J. Zhao, “Flexibly tunable high-quality-factor induced transparency in plasmonic systems,” Sci. Rep. 8(1), 1558 (2018).
[Crossref] [PubMed]

Maragò, O. M.

C. D’Andrea, J. Bochterle, A. Toma, C. Huck, F. Neubrech, E. Messina, B. Fazio, O. M. Maragò, E. Di Fabrizio, M. Lamy de La Chapelle, P. G. Gucciardi, and A. Pucci, “Optical Nanoantennas for Multiband surface-enhanced infrared and Raman spectroscopy,” ACS Nano 7(4), 3522–3531 (2013).
[Crossref] [PubMed]

Mattei, M.

A. B. Zrimsek, N. Chiang, M. Mattei, S. Zaleski, M. O. McAnally, C. T. Chapman, A. I. Henry, G. C. Schatz, and R. P. Van Duyne, “Single-Molecule Chemistry with Surface- and Tip-Enhanced Raman Spectroscopy,” Chem. Rev. 117(11), 7583–7613 (2017).
[Crossref] [PubMed]

McAnally, M. O.

A. B. Zrimsek, N. Chiang, M. Mattei, S. Zaleski, M. O. McAnally, C. T. Chapman, A. I. Henry, G. C. Schatz, and R. P. Van Duyne, “Single-Molecule Chemistry with Surface- and Tip-Enhanced Raman Spectroscopy,” Chem. Rev. 117(11), 7583–7613 (2017).
[Crossref] [PubMed]

N. L. Gruenke, M. F. Cardinal, M. O. McAnally, R. R. Frontiera, G. C. Schatz, and R. P. Van Duyne, “Ultrafast and nonlinear surface-enhanced Raman spectroscopy,” Chem. Soc. Rev. 45(8), 2263–2290 (2016).
[Crossref] [PubMed]

Meglinski, I.

O. Bibikova, J. Haas, A. I. López-Lorente, A. Popov, M. Kinnunen, I. Meglinski, and B. Mizaikoff, “Towards enhanced optical sensor performance: SEIRA and SERS with plasmonic nanostars,” Analyst (Lond.) 142(6), 951–958 (2017).
[Crossref] [PubMed]

Merlen, A.

G. Q. Wallace, M. Tabatabaei, R. Hou, M. J. Coady, P. R. Norton, T. S. Simpson, S. M. Rosendahl, A. Merlen, and F. Lagugné-Labarthet, “Superimposed Arrays of Nanoprisms for Multispectral Molecular Plasmonics,” ACS Photonics 3(9), 1723–1732 (2016).
[Crossref]

Messina, E.

C. D’Andrea, J. Bochterle, A. Toma, C. Huck, F. Neubrech, E. Messina, B. Fazio, O. M. Maragò, E. Di Fabrizio, M. Lamy de La Chapelle, P. G. Gucciardi, and A. Pucci, “Optical Nanoantennas for Multiband surface-enhanced infrared and Raman spectroscopy,” ACS Nano 7(4), 3522–3531 (2013).
[Crossref] [PubMed]

Mizaikoff, B.

O. Bibikova, J. Haas, A. I. López-Lorente, A. Popov, M. Kinnunen, I. Meglinski, and B. Mizaikoff, “Towards enhanced optical sensor performance: SEIRA and SERS with plasmonic nanostars,” Analyst (Lond.) 142(6), 951–958 (2017).
[Crossref] [PubMed]

Moore, J. E.

D. V. Chulhai, Z. Hu, J. E. Moore, X. Chen, and L. Jensen, “Theory of Linear and Nonlinear Surface-Enhanced Vibrational Spectroscopies,” Annu. Rev. Phys. Chem. 67(1), 541–564 (2016).
[Crossref] [PubMed]

Nagao, T.

K. Chen, T. D. Dao, S. Ishii, M. Aono, and T. Nagao, “Infrared Aluminum Metamaterial Perfect Absorbers for Plasmon-Enhanced Infrared Spectroscopy,” Adv. Funct. Mater. 25(42), 6637–6643 (2015).
[Crossref]

Navarro-Cía, M.

H. Aouani, M. Rahmani, H. Šípová, V. Torres, K. Hegnerová, M. Beruete, J. Homola, M. Hong, M. Navarro-Cía, and S. A. Maier, “Plasmonic Nanoantennas for Multispectral Surface-Enhanced Spectroscopies,” J. Phys. Chem. C 117(36), 18620–18626 (2013).
[Crossref]

Neubrech, F.

F. Neubrech, C. Huck, K. Weber, A. Pucci, and H. Giessen, “Surface-Enhanced Infrared Spectroscopy Using Resonant Nanoantennas,” Chem. Rev. 117(7), 5110–5145 (2017).
[Crossref] [PubMed]

J. Vogt, C. Huck, F. Neubrech, A. Toma, D. Gerbert, and A. Pucci, “Impact of the plasmonic near- and far-field resonance-energy shift on the enhancement of infrared vibrational signals,” Phys. Chem. Chem. Phys. 17(33), 21169–21175 (2015).
[Crossref] [PubMed]

C. D’Andrea, J. Bochterle, A. Toma, C. Huck, F. Neubrech, E. Messina, B. Fazio, O. M. Maragò, E. Di Fabrizio, M. Lamy de La Chapelle, P. G. Gucciardi, and A. Pucci, “Optical Nanoantennas for Multiband surface-enhanced infrared and Raman spectroscopy,” ACS Nano 7(4), 3522–3531 (2013).
[Crossref] [PubMed]

Nguyen, V. H.

Nong, J.

Nordlander, P.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic Nanoparticle Arrays: A Common Substrate for Both Surface-Enhanced Raman Scattering and Surface-Enhanced Infrared Absorption,” ACS Nano 2(4), 707–718 (2008).
[Crossref] [PubMed]

Norton, P. R.

G. Q. Wallace, M. Tabatabaei, R. Hou, M. J. Coady, P. R. Norton, T. S. Simpson, S. M. Rosendahl, A. Merlen, and F. Lagugné-Labarthet, “Superimposed Arrays of Nanoprisms for Multispectral Molecular Plasmonics,” ACS Photonics 3(9), 1723–1732 (2016).
[Crossref]

Olivo, M.

Z. Lam, K. V. Kong, M. Olivo, and W. K. Leong, “Vibrational spectroscopy of metal carbonyls for bio-imaging and -sensing,” Analyst (Lond.) 141(5), 1569–1586 (2016).
[Crossref] [PubMed]

U. S. Dinish, F. C. Yaw, A. Agarwal, and M. Olivo, “Development of highly reproducible nanogap SERS substrates: comparative performance analysis and its application for glucose sensing,” Biosens. Bioelectron. 26(5), 1987–1992 (2011).
[Crossref] [PubMed]

Orts, J. M.

J. M. Delgado, J. M. Orts, J. M. Pérez, and A. Rodes, “Sputtered thin-film gold electrodes for in situ ATR-SEIRAS and SERS studies,” J. Electroanal. Chem. 617(2), 130–140 (2008).
[Crossref]

Ozaki, Y.

Y. S. Yamamoto, Y. Ozaki, and T. Itoh, “Recent progress and frontiers in the electromagnetic mechanism of surface-enhanced Raman scattering,” J. Photochem. Photobiol. Chem. 21, 81–104 (2014).
[Crossref]

Panneerselvam, R.

S.-Y. Ding, J. Yi, J.-F. Li, B. Ren, D.-Y. Wu, R. Panneerselvam, and Z.-Q. Tian, “Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials,” Nature Rev. Mater. 1(6), 16021 (2016).
[Crossref]

Pérez, J. M.

J. M. Delgado, J. M. Orts, J. M. Pérez, and A. Rodes, “Sputtered thin-film gold electrodes for in situ ATR-SEIRAS and SERS studies,” J. Electroanal. Chem. 617(2), 130–140 (2008).
[Crossref]

Podolskiy, V.

S. Law, V. Podolskiy, and D. Wasserman, “Towards nano-scale photonics with micro-scale photons: the opportunities and challenges of mid-infrared plasmonics,” Nanophotonics 2(2), 103 (2013).
[Crossref]

Popov, A.

O. Bibikova, J. Haas, A. I. López-Lorente, A. Popov, M. Kinnunen, I. Meglinski, and B. Mizaikoff, “Towards enhanced optical sensor performance: SEIRA and SERS with plasmonic nanostars,” Analyst (Lond.) 142(6), 951–958 (2017).
[Crossref] [PubMed]

Pucci, A.

F. Neubrech, C. Huck, K. Weber, A. Pucci, and H. Giessen, “Surface-Enhanced Infrared Spectroscopy Using Resonant Nanoantennas,” Chem. Rev. 117(7), 5110–5145 (2017).
[Crossref] [PubMed]

J. Vogt, C. Huck, F. Neubrech, A. Toma, D. Gerbert, and A. Pucci, “Impact of the plasmonic near- and far-field resonance-energy shift on the enhancement of infrared vibrational signals,” Phys. Chem. Chem. Phys. 17(33), 21169–21175 (2015).
[Crossref] [PubMed]

C. D’Andrea, J. Bochterle, A. Toma, C. Huck, F. Neubrech, E. Messina, B. Fazio, O. M. Maragò, E. Di Fabrizio, M. Lamy de La Chapelle, P. G. Gucciardi, and A. Pucci, “Optical Nanoantennas for Multiband surface-enhanced infrared and Raman spectroscopy,” ACS Nano 7(4), 3522–3531 (2013).
[Crossref] [PubMed]

Qin, S.

J. Zhang, Z. Zhu, W. Liu, X. Yuan, and S. Qin, “Towards photodetection with high efficiency and tunable spectral selectivity: graphene plasmonics for light trapping and absorption engineering,” Nanoscale 7(32), 13530–13536 (2015).
[Crossref] [PubMed]

Rahmani, M.

H. Aouani, M. Rahmani, H. Šípová, V. Torres, K. Hegnerová, M. Beruete, J. Homola, M. Hong, M. Navarro-Cía, and S. A. Maier, “Plasmonic Nanoantennas for Multispectral Surface-Enhanced Spectroscopies,” J. Phys. Chem. C 117(36), 18620–18626 (2013).
[Crossref]

Ren, B.

S.-Y. Ding, J. Yi, J.-F. Li, B. Ren, D.-Y. Wu, R. Panneerselvam, and Z.-Q. Tian, “Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials,” Nature Rev. Mater. 1(6), 16021 (2016).
[Crossref]

Ren, X.

X. Li, W. C. H. Choy, X. Ren, D. Zhang, and H. Lu, “Highly Intensified Surface Enhanced Raman Scattering by Using Monolayer Graphene as the Nanospacer of Metal Film-Metal Nanoparticle Coupling System,” Adv. Funct. Mater. 24(21), 3114–3122 (2014).
[Crossref]

Repän, T.

L. Dolgov, O. Fesenko, V. Kavelin, O. Budnyk, V. Estrela-Llopis, A. Chevychalova, T. Repän, V. I. Kondratiev, and S. Mamykin, “Gold micro- and nano-particles for surface enhanced vibrational spectroscopy of pyridostigmine bromide,” Vib. Spectrosc. 88, 71–76 (2017).
[Crossref]

Rodes, A.

J. M. Delgado, J. M. Orts, J. M. Pérez, and A. Rodes, “Sputtered thin-film gold electrodes for in situ ATR-SEIRAS and SERS studies,” J. Electroanal. Chem. 617(2), 130–140 (2008).
[Crossref]

Rosendahl, S. M.

G. Q. Wallace, M. Tabatabaei, R. Hou, M. J. Coady, P. R. Norton, T. S. Simpson, S. M. Rosendahl, A. Merlen, and F. Lagugné-Labarthet, “Superimposed Arrays of Nanoprisms for Multispectral Molecular Plasmonics,” ACS Photonics 3(9), 1723–1732 (2016).
[Crossref]

Schatz, G. C.

A. B. Zrimsek, N. Chiang, M. Mattei, S. Zaleski, M. O. McAnally, C. T. Chapman, A. I. Henry, G. C. Schatz, and R. P. Van Duyne, “Single-Molecule Chemistry with Surface- and Tip-Enhanced Raman Spectroscopy,” Chem. Rev. 117(11), 7583–7613 (2017).
[Crossref] [PubMed]

N. L. Gruenke, M. F. Cardinal, M. O. McAnally, R. R. Frontiera, G. C. Schatz, and R. P. Van Duyne, “Ultrafast and nonlinear surface-enhanced Raman spectroscopy,” Chem. Soc. Rev. 45(8), 2263–2290 (2016).
[Crossref] [PubMed]

Schnakenberg, U.

Shang, Z.

Simpson, T. S.

G. Q. Wallace, M. Tabatabaei, R. Hou, M. J. Coady, P. R. Norton, T. S. Simpson, S. M. Rosendahl, A. Merlen, and F. Lagugné-Labarthet, “Superimposed Arrays of Nanoprisms for Multispectral Molecular Plasmonics,” ACS Photonics 3(9), 1723–1732 (2016).
[Crossref]

Šípová, H.

H. Aouani, M. Rahmani, H. Šípová, V. Torres, K. Hegnerová, M. Beruete, J. Homola, M. Hong, M. Navarro-Cía, and S. A. Maier, “Plasmonic Nanoantennas for Multispectral Surface-Enhanced Spectroscopies,” J. Phys. Chem. C 117(36), 18620–18626 (2013).
[Crossref]

Stripp, S. T.

K. Ataka, S. T. Stripp, and J. Heberle, “Surface-enhanced infrared absorption spectroscopy (SEIRAS) to probe monolayers of membrane proteins,” Biochim. Biophys. Acta 1828(10), 2283–2293 (2013).
[Crossref] [PubMed]

Sun, Z.

H. Hu, X. Yang, F. Zhai, D. Hu, R. Liu, K. Liu, Z. Sun, and Q. Dai, “Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons,” Nat. Commun. 7, 12334 (2016).
[Crossref] [PubMed]

Tabatabaei, M.

G. Q. Wallace, M. Tabatabaei, R. Hou, M. J. Coady, P. R. Norton, T. S. Simpson, S. M. Rosendahl, A. Merlen, and F. Lagugné-Labarthet, “Superimposed Arrays of Nanoprisms for Multispectral Molecular Plasmonics,” ACS Photonics 3(9), 1723–1732 (2016).
[Crossref]

Tang, L.

Taubner, T.

Tian, Z.-Q.

S.-Y. Ding, J. Yi, J.-F. Li, B. Ren, D.-Y. Wu, R. Panneerselvam, and Z.-Q. Tian, “Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials,” Nature Rev. Mater. 1(6), 16021 (2016).
[Crossref]

Toderas, F.

M. Baia, F. Toderas, L. Baia, D. Maniu, and S. Astilean, “Multilayer structures of self-assembled gold nanoparticles as a unique SERS and SEIRA substrate,” ChemPhysChem 10(7), 1106–1111 (2009).
[Crossref] [PubMed]

Toma, A.

J. Vogt, C. Huck, F. Neubrech, A. Toma, D. Gerbert, and A. Pucci, “Impact of the plasmonic near- and far-field resonance-energy shift on the enhancement of infrared vibrational signals,” Phys. Chem. Chem. Phys. 17(33), 21169–21175 (2015).
[Crossref] [PubMed]

C. D’Andrea, J. Bochterle, A. Toma, C. Huck, F. Neubrech, E. Messina, B. Fazio, O. M. Maragò, E. Di Fabrizio, M. Lamy de La Chapelle, P. G. Gucciardi, and A. Pucci, “Optical Nanoantennas for Multiband surface-enhanced infrared and Raman spectroscopy,” ACS Nano 7(4), 3522–3531 (2013).
[Crossref] [PubMed]

Torres, V.

H. Aouani, M. Rahmani, H. Šípová, V. Torres, K. Hegnerová, M. Beruete, J. Homola, M. Hong, M. Navarro-Cía, and S. A. Maier, “Plasmonic Nanoantennas for Multispectral Surface-Enhanced Spectroscopies,” J. Phys. Chem. C 117(36), 18620–18626 (2013).
[Crossref]

Urzhumov, Y. A.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic Nanoparticle Arrays: A Common Substrate for Both Surface-Enhanced Raman Scattering and Surface-Enhanced Infrared Absorption,” ACS Nano 2(4), 707–718 (2008).
[Crossref] [PubMed]

Van Duyne, R. P.

A. B. Zrimsek, N. Chiang, M. Mattei, S. Zaleski, M. O. McAnally, C. T. Chapman, A. I. Henry, G. C. Schatz, and R. P. Van Duyne, “Single-Molecule Chemistry with Surface- and Tip-Enhanced Raman Spectroscopy,” Chem. Rev. 117(11), 7583–7613 (2017).
[Crossref] [PubMed]

N. L. Gruenke, M. F. Cardinal, M. O. McAnally, R. R. Frontiera, G. C. Schatz, and R. P. Van Duyne, “Ultrafast and nonlinear surface-enhanced Raman spectroscopy,” Chem. Soc. Rev. 45(8), 2263–2290 (2016).
[Crossref] [PubMed]

Vidal, C.

V. Kavelin, O. Fesenko, H. Dubyna, C. Vidal, T. A. Klar, C. Hrelescu, and L. Dolgov, “Raman and Luminescent Spectra of Sulfonated Zn Phthalocyanine Enhanced by Gold Nanoparticles,” Nanoscale Res. Lett. 12(1), 197 (2017).
[Crossref] [PubMed]

Vogt, J.

J. Vogt, C. Huck, F. Neubrech, A. Toma, D. Gerbert, and A. Pucci, “Impact of the plasmonic near- and far-field resonance-energy shift on the enhancement of infrared vibrational signals,” Phys. Chem. Chem. Phys. 17(33), 21169–21175 (2015).
[Crossref] [PubMed]

Wallace, G. Q.

G. Q. Wallace, M. Tabatabaei, R. Hou, M. J. Coady, P. R. Norton, T. S. Simpson, S. M. Rosendahl, A. Merlen, and F. Lagugné-Labarthet, “Superimposed Arrays of Nanoprisms for Multispectral Molecular Plasmonics,” ACS Photonics 3(9), 1723–1732 (2016).
[Crossref]

Wang, H.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic Nanoparticle Arrays: A Common Substrate for Both Surface-Enhanced Raman Scattering and Surface-Enhanced Infrared Absorption,” ACS Nano 2(4), 707–718 (2008).
[Crossref] [PubMed]

Wang, L.-X.

L.-X. Wang and X.-E. Jiang, “Bioanalytical Applications of Surface-enhanced Infrared Absorption Spectroscopy,” Chin. J. Anal. Chem. 40(7), 975–982 (2012).
[Crossref]

Wang, P.

X. Li, Y. Liu, Z. Zeng, P. Wang, Y. Fang, and L. Zhang, “Investigation on tip enhanced Raman spectra of graphene,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 190, 378–382 (2018).
[Crossref] [PubMed]

Wang, T.

Wang, W.

Wang, Y. Q.

Y. Q. Wang, S. Ma, Q. Q. Yang, and X. J. Li, “Size-dependent SERS detection of R6G by silver nanoparticles immersion-plated on silicon nanoporous pillar array,” Appl. Surf. Sci. 258(15), 5881–5885 (2012).
[Crossref]

Wasserman, D.

S. Law, V. Podolskiy, and D. Wasserman, “Towards nano-scale photonics with micro-scale photons: the opportunities and challenges of mid-infrared plasmonics,” Nanophotonics 2(2), 103 (2013).
[Crossref]

Weber, K.

F. Neubrech, C. Huck, K. Weber, A. Pucci, and H. Giessen, “Surface-Enhanced Infrared Spectroscopy Using Resonant Nanoantennas,” Chem. Rev. 117(7), 5110–5145 (2017).
[Crossref] [PubMed]

Wei, W.

Wu, D.-Y.

S.-Y. Ding, J. Yi, J.-F. Li, B. Ren, D.-Y. Wu, R. Panneerselvam, and Z.-Q. Tian, “Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials,” Nature Rev. Mater. 1(6), 16021 (2016).
[Crossref]

Wu, J. Z.

R. Lu, A. Konzelmann, F. Xu, Y. Gong, J. Liu, Q. Liu, M. Xin, R. Hui, and J. Z. Wu, “High sensitivity surface enhanced Raman spectroscopy of R6G on in situ fabricated Au nanoparticle/graphene plasmonic substrates,” Carbon 86, 78–85 (2015).
[Crossref]

Xin, M.

R. Lu, A. Konzelmann, F. Xu, Y. Gong, J. Liu, Q. Liu, M. Xin, R. Hui, and J. Z. Wu, “High sensitivity surface enhanced Raman spectroscopy of R6G on in situ fabricated Au nanoparticle/graphene plasmonic substrates,” Carbon 86, 78–85 (2015).
[Crossref]

Xiong, M.

M. Xiong, X. Jin, and J. Ye, “Strong plasmon coupling in self-assembled superparamagnetic nanoshell chains,” Nanoscale 8(9), 4991–4999 (2016).
[Crossref] [PubMed]

Xu, F.

R. Lu, A. Konzelmann, F. Xu, Y. Gong, J. Liu, Q. Liu, M. Xin, R. Hui, and J. Z. Wu, “High sensitivity surface enhanced Raman spectroscopy of R6G on in situ fabricated Au nanoparticle/graphene plasmonic substrates,” Carbon 86, 78–85 (2015).
[Crossref]

Yamamoto, Y. S.

Y. S. Yamamoto, Y. Ozaki, and T. Itoh, “Recent progress and frontiers in the electromagnetic mechanism of surface-enhanced Raman scattering,” J. Photochem. Photobiol. Chem. 21, 81–104 (2014).
[Crossref]

Yang, Q. Q.

Y. Q. Wang, S. Ma, Q. Q. Yang, and X. J. Li, “Size-dependent SERS detection of R6G by silver nanoparticles immersion-plated on silicon nanoporous pillar array,” Appl. Surf. Sci. 258(15), 5881–5885 (2012).
[Crossref]

Yang, X.

H. Hu, X. Yang, F. Zhai, D. Hu, R. Liu, K. Liu, Z. Sun, and Q. Dai, “Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons,” Nat. Commun. 7, 12334 (2016).
[Crossref] [PubMed]

Yaw, F. C.

U. S. Dinish, F. C. Yaw, A. Agarwal, and M. Olivo, “Development of highly reproducible nanogap SERS substrates: comparative performance analysis and its application for glucose sensing,” Biosens. Bioelectron. 26(5), 1987–1992 (2011).
[Crossref] [PubMed]

Ye, J.

M. Xiong, X. Jin, and J. Ye, “Strong plasmon coupling in self-assembled superparamagnetic nanoshell chains,” Nanoscale 8(9), 4991–4999 (2016).
[Crossref] [PubMed]

Yi, J.

J. Nong, W. Wei, W. Wang, G. Lan, Z. Shang, J. Yi, and L. Tang, “Strong coherent coupling between graphene surface plasmons and anisotropic black phosphorus localized surface plasmons,” Opt. Express 26(2), 1633–1644 (2018).
[Crossref] [PubMed]

S.-Y. Ding, J. Yi, J.-F. Li, B. Ren, D.-Y. Wu, R. Panneerselvam, and Z.-Q. Tian, “Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials,” Nature Rev. Mater. 1(6), 16021 (2016).
[Crossref]

Yuan, X.

J. Zhang, Z. Zhu, W. Liu, X. Yuan, and S. Qin, “Towards photodetection with high efficiency and tunable spectral selectivity: graphene plasmonics for light trapping and absorption engineering,” Nanoscale 7(32), 13530–13536 (2015).
[Crossref] [PubMed]

Zaleski, S.

A. B. Zrimsek, N. Chiang, M. Mattei, S. Zaleski, M. O. McAnally, C. T. Chapman, A. I. Henry, G. C. Schatz, and R. P. Van Duyne, “Single-Molecule Chemistry with Surface- and Tip-Enhanced Raman Spectroscopy,” Chem. Rev. 117(11), 7583–7613 (2017).
[Crossref] [PubMed]

Zeng, Z.

X. Li, Y. Liu, Z. Zeng, P. Wang, Y. Fang, and L. Zhang, “Investigation on tip enhanced Raman spectra of graphene,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 190, 378–382 (2018).
[Crossref] [PubMed]

Zhai, F.

H. Hu, X. Yang, F. Zhai, D. Hu, R. Liu, K. Liu, Z. Sun, and Q. Dai, “Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons,” Nat. Commun. 7, 12334 (2016).
[Crossref] [PubMed]

Zhang, D.

X. Li, W. C. H. Choy, X. Ren, D. Zhang, and H. Lu, “Highly Intensified Surface Enhanced Raman Scattering by Using Monolayer Graphene as the Nanospacer of Metal Film-Metal Nanoparticle Coupling System,” Adv. Funct. Mater. 24(21), 3114–3122 (2014).
[Crossref]

Zhang, J.

J. Zhang, Z. Zhu, W. Liu, X. Yuan, and S. Qin, “Towards photodetection with high efficiency and tunable spectral selectivity: graphene plasmonics for light trapping and absorption engineering,” Nanoscale 7(32), 13530–13536 (2015).
[Crossref] [PubMed]

Zhang, L.

X. Li, Y. Liu, Z. Zeng, P. Wang, Y. Fang, and L. Zhang, “Investigation on tip enhanced Raman spectra of graphene,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 190, 378–382 (2018).
[Crossref] [PubMed]

Zhao, J.

H. Lu, X. Gan, D. Mao, B. Jia, and J. Zhao, “Flexibly tunable high-quality-factor induced transparency in plasmonic systems,” Sci. Rep. 8(1), 1558 (2018).
[Crossref] [PubMed]

Zhu, Z.

J. Zhang, Z. Zhu, W. Liu, X. Yuan, and S. Qin, “Towards photodetection with high efficiency and tunable spectral selectivity: graphene plasmonics for light trapping and absorption engineering,” Nanoscale 7(32), 13530–13536 (2015).
[Crossref] [PubMed]

Zohar, N.

N. Zohar, L. Chuntonov, and G. Haran, “The simplest plasmonic molecules: Metal nanoparticle dimers and trimers,” J. Photochem. Photobiol. Chem. 21, 26–39 (2014).
[Crossref]

Zrimsek, A. B.

A. B. Zrimsek, N. Chiang, M. Mattei, S. Zaleski, M. O. McAnally, C. T. Chapman, A. I. Henry, G. C. Schatz, and R. P. Van Duyne, “Single-Molecule Chemistry with Surface- and Tip-Enhanced Raman Spectroscopy,” Chem. Rev. 117(11), 7583–7613 (2017).
[Crossref] [PubMed]

ACS Nano (2)

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic Nanoparticle Arrays: A Common Substrate for Both Surface-Enhanced Raman Scattering and Surface-Enhanced Infrared Absorption,” ACS Nano 2(4), 707–718 (2008).
[Crossref] [PubMed]

C. D’Andrea, J. Bochterle, A. Toma, C. Huck, F. Neubrech, E. Messina, B. Fazio, O. M. Maragò, E. Di Fabrizio, M. Lamy de La Chapelle, P. G. Gucciardi, and A. Pucci, “Optical Nanoantennas for Multiband surface-enhanced infrared and Raman spectroscopy,” ACS Nano 7(4), 3522–3531 (2013).
[Crossref] [PubMed]

ACS Photonics (1)

G. Q. Wallace, M. Tabatabaei, R. Hou, M. J. Coady, P. R. Norton, T. S. Simpson, S. M. Rosendahl, A. Merlen, and F. Lagugné-Labarthet, “Superimposed Arrays of Nanoprisms for Multispectral Molecular Plasmonics,” ACS Photonics 3(9), 1723–1732 (2016).
[Crossref]

Adv. Funct. Mater. (2)

X. Li, W. C. H. Choy, X. Ren, D. Zhang, and H. Lu, “Highly Intensified Surface Enhanced Raman Scattering by Using Monolayer Graphene as the Nanospacer of Metal Film-Metal Nanoparticle Coupling System,” Adv. Funct. Mater. 24(21), 3114–3122 (2014).
[Crossref]

K. Chen, T. D. Dao, S. Ishii, M. Aono, and T. Nagao, “Infrared Aluminum Metamaterial Perfect Absorbers for Plasmon-Enhanced Infrared Spectroscopy,” Adv. Funct. Mater. 25(42), 6637–6643 (2015).
[Crossref]

Analyst (Lond.) (2)

O. Bibikova, J. Haas, A. I. López-Lorente, A. Popov, M. Kinnunen, I. Meglinski, and B. Mizaikoff, “Towards enhanced optical sensor performance: SEIRA and SERS with plasmonic nanostars,” Analyst (Lond.) 142(6), 951–958 (2017).
[Crossref] [PubMed]

Z. Lam, K. V. Kong, M. Olivo, and W. K. Leong, “Vibrational spectroscopy of metal carbonyls for bio-imaging and -sensing,” Analyst (Lond.) 141(5), 1569–1586 (2016).
[Crossref] [PubMed]

Annu. Rev. Phys. Chem. (1)

D. V. Chulhai, Z. Hu, J. E. Moore, X. Chen, and L. Jensen, “Theory of Linear and Nonlinear Surface-Enhanced Vibrational Spectroscopies,” Annu. Rev. Phys. Chem. 67(1), 541–564 (2016).
[Crossref] [PubMed]

Appl. Surf. Sci. (1)

Y. Q. Wang, S. Ma, Q. Q. Yang, and X. J. Li, “Size-dependent SERS detection of R6G by silver nanoparticles immersion-plated on silicon nanoporous pillar array,” Appl. Surf. Sci. 258(15), 5881–5885 (2012).
[Crossref]

Beilstein J. Nanotechnol. (1)

D. Lis and F. Cecchet, “Localized surface plasmon resonances in nanostructures to enhance nonlinear vibrational spectroscopies: towards an astonishing molecular sensitivity,” Beilstein J. Nanotechnol. 5, 2275–2292 (2014).
[Crossref] [PubMed]

Biochim. Biophys. Acta (1)

K. Ataka, S. T. Stripp, and J. Heberle, “Surface-enhanced infrared absorption spectroscopy (SEIRAS) to probe monolayers of membrane proteins,” Biochim. Biophys. Acta 1828(10), 2283–2293 (2013).
[Crossref] [PubMed]

Biosens. Bioelectron. (1)

U. S. Dinish, F. C. Yaw, A. Agarwal, and M. Olivo, “Development of highly reproducible nanogap SERS substrates: comparative performance analysis and its application for glucose sensing,” Biosens. Bioelectron. 26(5), 1987–1992 (2011).
[Crossref] [PubMed]

Carbon (1)

R. Lu, A. Konzelmann, F. Xu, Y. Gong, J. Liu, Q. Liu, M. Xin, R. Hui, and J. Z. Wu, “High sensitivity surface enhanced Raman spectroscopy of R6G on in situ fabricated Au nanoparticle/graphene plasmonic substrates,” Carbon 86, 78–85 (2015).
[Crossref]

Chem. Rev. (3)

F. Neubrech, C. Huck, K. Weber, A. Pucci, and H. Giessen, “Surface-Enhanced Infrared Spectroscopy Using Resonant Nanoantennas,” Chem. Rev. 117(7), 5110–5145 (2017).
[Crossref] [PubMed]

I. Alessandri and J. R. Lombardi, “Enhanced Raman Scattering with Dielectrics,” Chem. Rev. 116(24), 14921–14981 (2016).
[Crossref] [PubMed]

A. B. Zrimsek, N. Chiang, M. Mattei, S. Zaleski, M. O. McAnally, C. T. Chapman, A. I. Henry, G. C. Schatz, and R. P. Van Duyne, “Single-Molecule Chemistry with Surface- and Tip-Enhanced Raman Spectroscopy,” Chem. Rev. 117(11), 7583–7613 (2017).
[Crossref] [PubMed]

Chem. Soc. Rev. (1)

N. L. Gruenke, M. F. Cardinal, M. O. McAnally, R. R. Frontiera, G. C. Schatz, and R. P. Van Duyne, “Ultrafast and nonlinear surface-enhanced Raman spectroscopy,” Chem. Soc. Rev. 45(8), 2263–2290 (2016).
[Crossref] [PubMed]

ChemPhysChem (1)

M. Baia, F. Toderas, L. Baia, D. Maniu, and S. Astilean, “Multilayer structures of self-assembled gold nanoparticles as a unique SERS and SEIRA substrate,” ChemPhysChem 10(7), 1106–1111 (2009).
[Crossref] [PubMed]

Chin. J. Anal. Chem. (1)

L.-X. Wang and X.-E. Jiang, “Bioanalytical Applications of Surface-enhanced Infrared Absorption Spectroscopy,” Chin. J. Anal. Chem. 40(7), 975–982 (2012).
[Crossref]

J. Electroanal. Chem. (1)

J. M. Delgado, J. M. Orts, J. M. Pérez, and A. Rodes, “Sputtered thin-film gold electrodes for in situ ATR-SEIRAS and SERS studies,” J. Electroanal. Chem. 617(2), 130–140 (2008).
[Crossref]

J. Photochem. Photobiol. Chem. (2)

Y. S. Yamamoto, Y. Ozaki, and T. Itoh, “Recent progress and frontiers in the electromagnetic mechanism of surface-enhanced Raman scattering,” J. Photochem. Photobiol. Chem. 21, 81–104 (2014).
[Crossref]

N. Zohar, L. Chuntonov, and G. Haran, “The simplest plasmonic molecules: Metal nanoparticle dimers and trimers,” J. Photochem. Photobiol. Chem. 21, 26–39 (2014).
[Crossref]

J. Phys. Chem. C (1)

H. Aouani, M. Rahmani, H. Šípová, V. Torres, K. Hegnerová, M. Beruete, J. Homola, M. Hong, M. Navarro-Cía, and S. A. Maier, “Plasmonic Nanoantennas for Multispectral Surface-Enhanced Spectroscopies,” J. Phys. Chem. C 117(36), 18620–18626 (2013).
[Crossref]

Nanophotonics (1)

S. Law, V. Podolskiy, and D. Wasserman, “Towards nano-scale photonics with micro-scale photons: the opportunities and challenges of mid-infrared plasmonics,” Nanophotonics 2(2), 103 (2013).
[Crossref]

Nanoscale (2)

J. Zhang, Z. Zhu, W. Liu, X. Yuan, and S. Qin, “Towards photodetection with high efficiency and tunable spectral selectivity: graphene plasmonics for light trapping and absorption engineering,” Nanoscale 7(32), 13530–13536 (2015).
[Crossref] [PubMed]

M. Xiong, X. Jin, and J. Ye, “Strong plasmon coupling in self-assembled superparamagnetic nanoshell chains,” Nanoscale 8(9), 4991–4999 (2016).
[Crossref] [PubMed]

Nanoscale Res. Lett. (1)

V. Kavelin, O. Fesenko, H. Dubyna, C. Vidal, T. A. Klar, C. Hrelescu, and L. Dolgov, “Raman and Luminescent Spectra of Sulfonated Zn Phthalocyanine Enhanced by Gold Nanoparticles,” Nanoscale Res. Lett. 12(1), 197 (2017).
[Crossref] [PubMed]

Nanotechnol. Rev. (1)

X. Gao and T. J. Cui, “Spoof surface plasmon polaritons supported by ultrathin corrugated metal strip and their applications,” Nanotechnol. Rev. 4(3), 239–258 (2015).
[Crossref]

Nat. Commun. (1)

H. Hu, X. Yang, F. Zhai, D. Hu, R. Liu, K. Liu, Z. Sun, and Q. Dai, “Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons,” Nat. Commun. 7, 12334 (2016).
[Crossref] [PubMed]

Nat. Photonics (1)

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

Nature Rev. Mater. (1)

S.-Y. Ding, J. Yi, J.-F. Li, B. Ren, D.-Y. Wu, R. Panneerselvam, and Z.-Q. Tian, “Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials,” Nature Rev. Mater. 1(6), 16021 (2016).
[Crossref]

Opt. Express (2)

Phys. Chem. Chem. Phys. (1)

J. Vogt, C. Huck, F. Neubrech, A. Toma, D. Gerbert, and A. Pucci, “Impact of the plasmonic near- and far-field resonance-energy shift on the enhancement of infrared vibrational signals,” Phys. Chem. Chem. Phys. 17(33), 21169–21175 (2015).
[Crossref] [PubMed]

Phys. Rev. B (2)

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

C. H. Gan, H. S. Chu, and E. P. Li, “Synthesis of highly confined surface plasmon modes with doped graphene sheets in the midinfrared and terahertz frequencies,” Phys. Rev. B 85(12), 125431 (2012).
[Crossref]

Sci. Rep. (1)

H. Lu, X. Gan, D. Mao, B. Jia, and J. Zhao, “Flexibly tunable high-quality-factor induced transparency in plasmonic systems,” Sci. Rep. 8(1), 1558 (2018).
[Crossref] [PubMed]

Spectrochim. Acta A Mol. Biomol. Spectrosc. (1)

X. Li, Y. Liu, Z. Zeng, P. Wang, Y. Fang, and L. Zhang, “Investigation on tip enhanced Raman spectra of graphene,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 190, 378–382 (2018).
[Crossref] [PubMed]

Vib. Spectrosc. (1)

L. Dolgov, O. Fesenko, V. Kavelin, O. Budnyk, V. Estrela-Llopis, A. Chevychalova, T. Repän, V. I. Kondratiev, and S. Mamykin, “Gold micro- and nano-particles for surface enhanced vibrational spectroscopy of pyridostigmine bromide,” Vib. Spectrosc. 88, 71–76 (2017).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Three-dimensional schematic of the shared substrate. (b) Schematic illustrations of the fabrication process for the shared substrate.
Fig. 2
Fig. 2 SEM images of (a) MIM grating, (b) MIM grating covered with monolayer graphene, and (c) MIM grating covered with monolayer graphene and Ag NPs. The insets show the low-magnification SEM images of grating lines. (d) Size-distribution histogram of Ag NPs on a shared substrate. The inset is the high-magnification SEM image.
Fig. 3
Fig. 3 (a) Optical absorption spectra of Ag NPs with (solid) and without (dashed) graphene. (b) Optical absorption spectra of Ag NPs with various diameters on graphene. (c) Raman spectra of shared substrates with different Ag NPs diameters. (d) Raman spectra of 10−5 M R6G on the shared substrates with different Ag NPs diameters. Raman spectra curves have been shifted without changing the magnitudes, and baselines are removed for the comparison.
Fig. 4
Fig. 4 (a) The black curve is normal Raman spectrum of 10−2 M R6G on Si and the other curve are Raman spectra of 10−5 M R6G on Ag NPs/G/MIM, Ag NPs/G/Al2O3 and Ag NPs/Al2O3, respectively. (b) Raman spectra of R6G with different concentrations on the shared substrate. (c) Raman intensity of 10−5 M R6G collected on 10 randomly selected regions on the shared substrate. (d) Raman spectra of 10−5 M R6G on five as-prepared shared substrates. Raman spectra curves have been shifted without changing the magnitudes, and baselines are removed for the comparison.
Fig. 5
Fig. 5 Reflection spectra of the substrates with the linewidth w = 3.2 µm and period P = 6.5 μm. (a) Reflection spectra of three different structures under polarized light incident. (b) Reflection spectra of the PEO covered substrates. (c) The top panel shows the reference spectrum of 15 nm PEO on Au film. The middle panel displays an overlay of measured data from share substrate and the baseline. The bottom panel shows the baseline corrected vibrational signals.
Fig. 6
Fig. 6 (a) Reflection spectra of the shared substrates. The linewidth w increases from 2.0 μm to 3.6 μm in steps of 0.4 μm. (b) Reflection spectra of the shared substrates after PEO spin-coating. (c) Baseline corrected vibrational signals of PEO. In the figure, asterisk “*” marks the center frequency of each magnetic resonance peak corresponding to the linewidth. (d) Enhancement factors for typical vibrational modes of PEO as a function of the frequency difference ΔV between the vibrational mode and magnetic resonance peak.
Fig. 7
Fig. 7 (a) Three-dimensional simulation model of Ag NPs/G/Au film. Normalized electric field intensity distributions of (b) Ag NPs/G/Au film and (c) Ag NPs/G/Al2O3 under 532 nm. The top and bottom panels are at xz and xy plane, respectively. (d) The corresponding electric field intensity distributions along the white line in the xy plane for Ag NPs/G/Au film and Ag NPs/G/Al2O3. (e) Reflection spectra for MIM structures associated with the corresponding linewidths. Normalized (f) magnetic and (g) electric field intensity distributions for MIM structures associated with the corresponding linewidths, respectively.

Tables (1)

Tables Icon

Table 1 Relative intensities and enhancement factors of the characterized Raman peaks of R6G

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E F S E R S = I S E R S I N R S × N N R S N S E R S ,
E F S E I R A = I S E I R A I r e f × A 0 A P E O ,

Metrics