Abstract

We propose a feasible strategy for firstly constructing diffraction-limited light-induced magnetization spot arrays capable of dynamically controlling transverse polarization orientation of each spot. To achieve this goal, we subtly design a tailored incident light comprised of two sorts of beams and sufficiently demonstrate tit’s production through phase modulation of a radially polarized beam. Via tightly focusing counter-propagating composite illuminating beams in a 4π optical microscopic configuration, two orthogonally polarized focal fields with π/2 phase difference between them are formed, inducing a three-dimensional (3D) super-resolved transverse magnetization spot in the magnetic-optical (MO) film. Exploiting the ideal of the multi-zone plate (MZP) filter, we further achieve versatile magnetization spot arrays with controllable in-plane polarization direction in each spot. Such well-defined magnetization behavior is attributed to not merely the coherent interference of vectorial optical waves, but also non-overlapping superposition of localized focal fields. Our achievable outcomes pave the way for practical applications in spintronics and multi-value MO parallelized storage.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Multifocal array with controllable polarization in each focal spot

Linwei Zhu, Meiyu Sun, Dawei Zhang, Junjie Yu, Jing Wen, and Jiannong Chen
Opt. Express 23(19) 24688-24698 (2015)

Magnetization shaping generated by tight focusing of azimuthally polarized vortex multi-Gaussian beam

Weichao Yan, Zhongquan Nie, Xueru Zhang, Yuxiao Wang, and Yinglin Song
Appl. Opt. 56(7) 1940-1946 (2017)

Generation and manipulation of super-resolution spherical magnetization chains

Liping Gong, Lu Wang, Zhuqing Zhu, Xiaolei Wang, Hua Zhao, and Bing Gu
Appl. Opt. 55(21) 5783-5789 (2016)

References

  • View by:
  • |
  • |
  • |

  1. M. N. Baibich, J. M. Broto, A. Fert, F. N. Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, and J. Chazelas, “Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices,” Phys. Rev. Lett. 61(21), 2472–2475 (1998).
    [Crossref]
  2. S. Iwasaki, “Perpendicular magnetic recording–evolution and future,” IEEE Trans. Magn. 20(5), 657–662 (1984).
    [Crossref]
  3. K. Huang, H. Ye, J. Teng, S. P. Yeo, B. Luk’yanchuk, and C.-W. Qiu, “Optimization-free superoscillatory lens using phase and amplitude masks,” Laser Photon. Rev. 8(1), 152–157 (2014).
    [Crossref]
  4. H. Ye, C.-W. Qiu, K. Huang, J. Teng, B. Luk’yanchuk, and S. P. Yeo, “Creation of a longitudinally polarized subwavelength hotspot with an ultra-thin planar lens: vectorial Rayleigh–Sommerfeld method,” Laser Phys. Lett. 10(6), 065004 (2013).
    [Crossref]
  5. J. P. van der Ziel, P. S. Pershan, and L. D. Malmstrom, “Optically-induced magnetization resulting from the inverse Faraday effect,” Phys. Rev. Lett. 15(5), 190–193 (1965).
    [Crossref]
  6. C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and T. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99(4), 047601 (2007).
    [Crossref] [PubMed]
  7. A. R. Khorsand, M. Savoini, A. Kirilyuk, A. V. Kimel, A. Tsukamoto, A. Itoh, and T. Rasing, “Role of magnetic circular dichroism in all-optical magnetic recording,” Phys. Rev. Lett. 108(12), 127205 (2012).
    [Crossref] [PubMed]
  8. C.-H. Lambert, S. Mangin, B. S. D. C. S. Varaprasad, Y. K. Takahashi, M. Hehn, M. Cinchetti, G. Malinowski, K. Hono, Y. Fainman, M. Aeschlimann, and E. E. Fullerton, “All-optical control of ferromagnetic thin films and nanostructures,” Science 345, 1337 (2014).
    [Crossref] [PubMed]
  9. Y. Zhang, Y. Okuno, and X. Xu, “All-optical magnetic superresolution with binary pupil filters,” J. Opt. Soc. Am. B 26(7), 1379–1383 (2009).
    [Crossref]
  10. Y. Zhang and J. Bai, “Theoretical study on all-optical magnetic recording using a solid immersion lens,” J. Opt. Soc. Am. B 26(1), 176–182 (2009).
    [Crossref]
  11. L. E. Helseth, “Light-induced magnetic vortices,” Opt. Lett. 36(6), 987–989 (2011).
    [Crossref] [PubMed]
  12. S. Wang, X. Li, J. Zhou, and M. Gu, “Ultralong pure longitudinal magnetization needle induced by annular vortex binary optics,” Opt. Lett. 39(17), 5022–5025 (2014).
    [Crossref] [PubMed]
  13. W. Ma, D. Zhang, L. Zhu, and J. Chen, “Super-long longitudinal magnetization needle generated by focusing an azimuthally polarized and phase–modulated beam,” Chin. Opt. Lett. 13(5), 052101 (2015).
    [Crossref]
  14. W. Yan, Z. Nie, X. Zhang, Y. Wang, and Y. Song, “Theoretical guideline for generation of an ultralong magnetization needle and a super-long conveyed spherical magnetization chain,” Opt. Express 25(19), 22268–22279 (2017).
    [Crossref] [PubMed]
  15. Z. Nie, W. Ding, D. Li, X. Zhang, Y. Wang, and Y. Song, “Spherical and sub-wavelength longitudinal magnetization generated by 4π tightly focusing radially polarized vortex beams,” Opt. Express 23(2), 690–701 (2015).
    [Crossref] [PubMed]
  16. Z. Nie, W. Ding, G. Shi, D. Li, X. Zhang, Y. Wang, and Y. Song, “Achievement and steering of light-induced sub-wavelength longitudinal magnetization chain,” Opt. Express 23(16), 21296–21305 (2015).
    [Crossref] [PubMed]
  17. L. Gong, L. Wang, Z. Zhu, X. Wang, H. Zhao, and B. Gu, “Generation and manipulation of super-resolution spherical magnetization chains,” Appl. Opt. 55(21), 5783–5789 (2016).
    [Crossref] [PubMed]
  18. M. Udhayakumar, K. Prabakaran, K.B. Rajesh, Z. Jaroszewicz, and A. Belafhal, “Generating sub wavelength pure longitudinal magnetization probe and chain using complex phase plate,” Opt. Commun. 407, 275–279 (2018).
    [Crossref]
  19. Z. Nie, H. Lin, X. Liu, A. Zhai, Y. Tian, W. Wang, D. Li, W. Ding, X. Zhang, Y. Song, and B. Jia, “Three-dimensional super-resolution longitudinal magnetization spot arrays,” Light Sci. Appl. 6, e17032 (2017).
    [Crossref]
  20. C. Hao, Z. Nie, H. Ye, H. Li, Y. Luo, R. Feng, X. Yu, F. Wen, Y. Zhang, C. Yu, J. Teng, B. Luk’yanchuk, and C. Qiu, “Three-dimensional supercritical resolved light-induced magnetic holography,” Sci. Adv. 3e1701398 (2017).
    [Crossref] [PubMed]
  21. S. Wang, Y. Cao, and X. Li, “Generation of uniformly oriented in-plane magnetization with near-unity purity in 4π microscopy,” Opt. Lett. 42(23), 5050–5053 (2017).
    [Crossref] [PubMed]
  22. P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459, 410 (2009).
    [Crossref] [PubMed]
  23. M. Gu, X. Li, and Y. Cao, “Optical storage arrays: a perspective for future big data storage,” Light Sci. Appl. 3, e177 (2014).
    [Crossref]
  24. L. Zhu, M. Sun, D. Zhang, J. Yu, J. Wen, and J. Chen, “Multifocal array with controllable polarization in each focal spot,” Opt. Express 23(19), 24688–24698 (2015).
    [Crossref] [PubMed]
  25. L. Zhu, R. Yang, D. Zhang, J. Yu, and J. Chen, “Dynamic three-dimensional multifocal spots in high numerical-aperture objectives,” Opt. Express 25(20), 24756–24766 (2017).
    [Crossref] [PubMed]
  26. H. Ren, X. Li, and M. Gu, “Polarization-multiplexed multifocal arrays by a π–phase–step–modulated azimuthally polarized beam,” Opt. Lett. 39(24), 6771–6774 (2014).
    [Crossref] [PubMed]
  27. Y. Jiang, X. Li, and M. Gu, “Generation of sub-diffraction-limited pure longitudinal magnetization by the inverse Faraday effect by tightly focusing an azimuthally polarized vortex beam,” Opt. Lett. 38(16), 2957–2960 (2013).
    [Crossref] [PubMed]
  28. G. Y. Chen, F. Song, and H. T. Wang, “Sharper focal spot generated by 4π tight focusing of higher–order Laguerre–Gaussian radially polarized beam,” Opt. Lett. 38(19), 3937–3940 (2013).
    [Crossref] [PubMed]
  29. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 358 (1959).
    [Crossref]
  30. K. S. Youngworth and T. G. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7(2), 77–87(2000).
    [Crossref] [PubMed]
  31. C-H. Lambert, S. Mangin, B. S. D. Ch. S. Varaprasad, Y. K. Takahashi, M. Hehn, M. Cinchetti, G. Malinowski, K. Hono, Y. Fainman, M. Aeschlimann, and E. E. Fullerton, “All-optical control of ferromagnetic thin films and nanostructures,” Science 345(6202), 1337–1340(2014).
    [Crossref] [PubMed]
  32. S. Mangin, M. Gottwald, C-H. Lambert, D. Steil, V. Uhlíř, L. Pang, M. Hehn, S. Alebrand, M. Cinchetti, G. Malinowski, Y. Fainman, M. Aeschlimann, and E. E. Fullerton, “Engineered materials for all-optical helicity-dependent magnetic switching,” Nature Mater. 13(3), 286(2014).
    [Crossref]
  33. L. Le Guyader, M. Savoini, S. El Moussaoui, M. Buzzi, A. Tsukamoto, A. Itoh, A. Kirilyuk, T. Rasing, A.V. Kimel, and F. Nolting, “Nanoscale sub-100 picosecond all-optical magnetization switching in GdFeCo microstructures,” Nature Commun. 6, 5839(2015).
    [Crossref]
  34. S. Wang, X. Li, J. Zhou, and M. Gu, “All-optically configuring the inverse Faraday effect for nanoscale perpendicular magnetic recording,” Opt. Express 23(10), 13530–13536 (2015).
    [Crossref] [PubMed]
  35. P. D. Majors, K. R. Minard, E. J. Ackerman, G. R. Holtom, D. F. Hopkins, C. I. Parkinson, T. J. Weber, and R. A. Wind, “A combined confocal and magnetic resonance microscope for biological studies,” Rev. Sci. Instrum. 73, 4329 (2002).
    [Crossref]
  36. M. Grinolds, M. Warner, K. De Greve, Y. Dovzhenko, L. Thiel, R. L. Walsworth, S. Hong, P. Maletinsky, and A. Yacoby, “Subnanometre resolution in three-dimensional magnetic resonance imaging of individual dark spins,” Nat. Nanotechnol. 73, 279–284 (2014).
    [Crossref]
  37. X. L. Wang, J. Ding, W. J. Ni, C. S. Guo, and H.-T. Wang, “Generation of arbitrary vector beams with a spatial light modulator and a common path interferometric arrangement,” Opt. Lett. 32(24), 3549–3551 (2007).
    [Crossref] [PubMed]

2018 (1)

M. Udhayakumar, K. Prabakaran, K.B. Rajesh, Z. Jaroszewicz, and A. Belafhal, “Generating sub wavelength pure longitudinal magnetization probe and chain using complex phase plate,” Opt. Commun. 407, 275–279 (2018).
[Crossref]

2017 (5)

Z. Nie, H. Lin, X. Liu, A. Zhai, Y. Tian, W. Wang, D. Li, W. Ding, X. Zhang, Y. Song, and B. Jia, “Three-dimensional super-resolution longitudinal magnetization spot arrays,” Light Sci. Appl. 6, e17032 (2017).
[Crossref]

C. Hao, Z. Nie, H. Ye, H. Li, Y. Luo, R. Feng, X. Yu, F. Wen, Y. Zhang, C. Yu, J. Teng, B. Luk’yanchuk, and C. Qiu, “Three-dimensional supercritical resolved light-induced magnetic holography,” Sci. Adv. 3e1701398 (2017).
[Crossref] [PubMed]

S. Wang, Y. Cao, and X. Li, “Generation of uniformly oriented in-plane magnetization with near-unity purity in 4π microscopy,” Opt. Lett. 42(23), 5050–5053 (2017).
[Crossref] [PubMed]

W. Yan, Z. Nie, X. Zhang, Y. Wang, and Y. Song, “Theoretical guideline for generation of an ultralong magnetization needle and a super-long conveyed spherical magnetization chain,” Opt. Express 25(19), 22268–22279 (2017).
[Crossref] [PubMed]

L. Zhu, R. Yang, D. Zhang, J. Yu, and J. Chen, “Dynamic three-dimensional multifocal spots in high numerical-aperture objectives,” Opt. Express 25(20), 24756–24766 (2017).
[Crossref] [PubMed]

2016 (1)

2015 (6)

2014 (8)

S. Wang, X. Li, J. Zhou, and M. Gu, “Ultralong pure longitudinal magnetization needle induced by annular vortex binary optics,” Opt. Lett. 39(17), 5022–5025 (2014).
[Crossref] [PubMed]

K. Huang, H. Ye, J. Teng, S. P. Yeo, B. Luk’yanchuk, and C.-W. Qiu, “Optimization-free superoscillatory lens using phase and amplitude masks,” Laser Photon. Rev. 8(1), 152–157 (2014).
[Crossref]

C.-H. Lambert, S. Mangin, B. S. D. C. S. Varaprasad, Y. K. Takahashi, M. Hehn, M. Cinchetti, G. Malinowski, K. Hono, Y. Fainman, M. Aeschlimann, and E. E. Fullerton, “All-optical control of ferromagnetic thin films and nanostructures,” Science 345, 1337 (2014).
[Crossref] [PubMed]

C-H. Lambert, S. Mangin, B. S. D. Ch. S. Varaprasad, Y. K. Takahashi, M. Hehn, M. Cinchetti, G. Malinowski, K. Hono, Y. Fainman, M. Aeschlimann, and E. E. Fullerton, “All-optical control of ferromagnetic thin films and nanostructures,” Science 345(6202), 1337–1340(2014).
[Crossref] [PubMed]

S. Mangin, M. Gottwald, C-H. Lambert, D. Steil, V. Uhlíř, L. Pang, M. Hehn, S. Alebrand, M. Cinchetti, G. Malinowski, Y. Fainman, M. Aeschlimann, and E. E. Fullerton, “Engineered materials for all-optical helicity-dependent magnetic switching,” Nature Mater. 13(3), 286(2014).
[Crossref]

M. Grinolds, M. Warner, K. De Greve, Y. Dovzhenko, L. Thiel, R. L. Walsworth, S. Hong, P. Maletinsky, and A. Yacoby, “Subnanometre resolution in three-dimensional magnetic resonance imaging of individual dark spins,” Nat. Nanotechnol. 73, 279–284 (2014).
[Crossref]

M. Gu, X. Li, and Y. Cao, “Optical storage arrays: a perspective for future big data storage,” Light Sci. Appl. 3, e177 (2014).
[Crossref]

H. Ren, X. Li, and M. Gu, “Polarization-multiplexed multifocal arrays by a π–phase–step–modulated azimuthally polarized beam,” Opt. Lett. 39(24), 6771–6774 (2014).
[Crossref] [PubMed]

2013 (3)

2012 (1)

A. R. Khorsand, M. Savoini, A. Kirilyuk, A. V. Kimel, A. Tsukamoto, A. Itoh, and T. Rasing, “Role of magnetic circular dichroism in all-optical magnetic recording,” Phys. Rev. Lett. 108(12), 127205 (2012).
[Crossref] [PubMed]

2011 (1)

2009 (3)

2007 (2)

C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and T. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99(4), 047601 (2007).
[Crossref] [PubMed]

X. L. Wang, J. Ding, W. J. Ni, C. S. Guo, and H.-T. Wang, “Generation of arbitrary vector beams with a spatial light modulator and a common path interferometric arrangement,” Opt. Lett. 32(24), 3549–3551 (2007).
[Crossref] [PubMed]

2002 (1)

P. D. Majors, K. R. Minard, E. J. Ackerman, G. R. Holtom, D. F. Hopkins, C. I. Parkinson, T. J. Weber, and R. A. Wind, “A combined confocal and magnetic resonance microscope for biological studies,” Rev. Sci. Instrum. 73, 4329 (2002).
[Crossref]

2000 (1)

1998 (1)

M. N. Baibich, J. M. Broto, A. Fert, F. N. Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, and J. Chazelas, “Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices,” Phys. Rev. Lett. 61(21), 2472–2475 (1998).
[Crossref]

1984 (1)

S. Iwasaki, “Perpendicular magnetic recording–evolution and future,” IEEE Trans. Magn. 20(5), 657–662 (1984).
[Crossref]

1965 (1)

J. P. van der Ziel, P. S. Pershan, and L. D. Malmstrom, “Optically-induced magnetization resulting from the inverse Faraday effect,” Phys. Rev. Lett. 15(5), 190–193 (1965).
[Crossref]

1959 (1)

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 358 (1959).
[Crossref]

Ackerman, E. J.

P. D. Majors, K. R. Minard, E. J. Ackerman, G. R. Holtom, D. F. Hopkins, C. I. Parkinson, T. J. Weber, and R. A. Wind, “A combined confocal and magnetic resonance microscope for biological studies,” Rev. Sci. Instrum. 73, 4329 (2002).
[Crossref]

Aeschlimann, M.

C-H. Lambert, S. Mangin, B. S. D. Ch. S. Varaprasad, Y. K. Takahashi, M. Hehn, M. Cinchetti, G. Malinowski, K. Hono, Y. Fainman, M. Aeschlimann, and E. E. Fullerton, “All-optical control of ferromagnetic thin films and nanostructures,” Science 345(6202), 1337–1340(2014).
[Crossref] [PubMed]

S. Mangin, M. Gottwald, C-H. Lambert, D. Steil, V. Uhlíř, L. Pang, M. Hehn, S. Alebrand, M. Cinchetti, G. Malinowski, Y. Fainman, M. Aeschlimann, and E. E. Fullerton, “Engineered materials for all-optical helicity-dependent magnetic switching,” Nature Mater. 13(3), 286(2014).
[Crossref]

C.-H. Lambert, S. Mangin, B. S. D. C. S. Varaprasad, Y. K. Takahashi, M. Hehn, M. Cinchetti, G. Malinowski, K. Hono, Y. Fainman, M. Aeschlimann, and E. E. Fullerton, “All-optical control of ferromagnetic thin films and nanostructures,” Science 345, 1337 (2014).
[Crossref] [PubMed]

Alebrand, S.

S. Mangin, M. Gottwald, C-H. Lambert, D. Steil, V. Uhlíř, L. Pang, M. Hehn, S. Alebrand, M. Cinchetti, G. Malinowski, Y. Fainman, M. Aeschlimann, and E. E. Fullerton, “Engineered materials for all-optical helicity-dependent magnetic switching,” Nature Mater. 13(3), 286(2014).
[Crossref]

Bai, J.

Baibich, M. N.

M. N. Baibich, J. M. Broto, A. Fert, F. N. Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, and J. Chazelas, “Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices,” Phys. Rev. Lett. 61(21), 2472–2475 (1998).
[Crossref]

Belafhal, A.

M. Udhayakumar, K. Prabakaran, K.B. Rajesh, Z. Jaroszewicz, and A. Belafhal, “Generating sub wavelength pure longitudinal magnetization probe and chain using complex phase plate,” Opt. Commun. 407, 275–279 (2018).
[Crossref]

Broto, J. M.

M. N. Baibich, J. M. Broto, A. Fert, F. N. Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, and J. Chazelas, “Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices,” Phys. Rev. Lett. 61(21), 2472–2475 (1998).
[Crossref]

Brown, T. G.

Buzzi, M.

L. Le Guyader, M. Savoini, S. El Moussaoui, M. Buzzi, A. Tsukamoto, A. Itoh, A. Kirilyuk, T. Rasing, A.V. Kimel, and F. Nolting, “Nanoscale sub-100 picosecond all-optical magnetization switching in GdFeCo microstructures,” Nature Commun. 6, 5839(2015).
[Crossref]

Cao, Y.

S. Wang, Y. Cao, and X. Li, “Generation of uniformly oriented in-plane magnetization with near-unity purity in 4π microscopy,” Opt. Lett. 42(23), 5050–5053 (2017).
[Crossref] [PubMed]

M. Gu, X. Li, and Y. Cao, “Optical storage arrays: a perspective for future big data storage,” Light Sci. Appl. 3, e177 (2014).
[Crossref]

Chazelas, J.

M. N. Baibich, J. M. Broto, A. Fert, F. N. Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, and J. Chazelas, “Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices,” Phys. Rev. Lett. 61(21), 2472–2475 (1998).
[Crossref]

Chen, G. Y.

Chen, J.

Chon, J. W. M.

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459, 410 (2009).
[Crossref] [PubMed]

Cinchetti, M.

C.-H. Lambert, S. Mangin, B. S. D. C. S. Varaprasad, Y. K. Takahashi, M. Hehn, M. Cinchetti, G. Malinowski, K. Hono, Y. Fainman, M. Aeschlimann, and E. E. Fullerton, “All-optical control of ferromagnetic thin films and nanostructures,” Science 345, 1337 (2014).
[Crossref] [PubMed]

C-H. Lambert, S. Mangin, B. S. D. Ch. S. Varaprasad, Y. K. Takahashi, M. Hehn, M. Cinchetti, G. Malinowski, K. Hono, Y. Fainman, M. Aeschlimann, and E. E. Fullerton, “All-optical control of ferromagnetic thin films and nanostructures,” Science 345(6202), 1337–1340(2014).
[Crossref] [PubMed]

S. Mangin, M. Gottwald, C-H. Lambert, D. Steil, V. Uhlíř, L. Pang, M. Hehn, S. Alebrand, M. Cinchetti, G. Malinowski, Y. Fainman, M. Aeschlimann, and E. E. Fullerton, “Engineered materials for all-optical helicity-dependent magnetic switching,” Nature Mater. 13(3), 286(2014).
[Crossref]

Creuzet, G.

M. N. Baibich, J. M. Broto, A. Fert, F. N. Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, and J. Chazelas, “Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices,” Phys. Rev. Lett. 61(21), 2472–2475 (1998).
[Crossref]

De Greve, K.

M. Grinolds, M. Warner, K. De Greve, Y. Dovzhenko, L. Thiel, R. L. Walsworth, S. Hong, P. Maletinsky, and A. Yacoby, “Subnanometre resolution in three-dimensional magnetic resonance imaging of individual dark spins,” Nat. Nanotechnol. 73, 279–284 (2014).
[Crossref]

Ding, J.

Ding, W.

Dovzhenko, Y.

M. Grinolds, M. Warner, K. De Greve, Y. Dovzhenko, L. Thiel, R. L. Walsworth, S. Hong, P. Maletinsky, and A. Yacoby, “Subnanometre resolution in three-dimensional magnetic resonance imaging of individual dark spins,” Nat. Nanotechnol. 73, 279–284 (2014).
[Crossref]

Etienne, P.

M. N. Baibich, J. M. Broto, A. Fert, F. N. Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, and J. Chazelas, “Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices,” Phys. Rev. Lett. 61(21), 2472–2475 (1998).
[Crossref]

Fainman, Y.

C.-H. Lambert, S. Mangin, B. S. D. C. S. Varaprasad, Y. K. Takahashi, M. Hehn, M. Cinchetti, G. Malinowski, K. Hono, Y. Fainman, M. Aeschlimann, and E. E. Fullerton, “All-optical control of ferromagnetic thin films and nanostructures,” Science 345, 1337 (2014).
[Crossref] [PubMed]

S. Mangin, M. Gottwald, C-H. Lambert, D. Steil, V. Uhlíř, L. Pang, M. Hehn, S. Alebrand, M. Cinchetti, G. Malinowski, Y. Fainman, M. Aeschlimann, and E. E. Fullerton, “Engineered materials for all-optical helicity-dependent magnetic switching,” Nature Mater. 13(3), 286(2014).
[Crossref]

C-H. Lambert, S. Mangin, B. S. D. Ch. S. Varaprasad, Y. K. Takahashi, M. Hehn, M. Cinchetti, G. Malinowski, K. Hono, Y. Fainman, M. Aeschlimann, and E. E. Fullerton, “All-optical control of ferromagnetic thin films and nanostructures,” Science 345(6202), 1337–1340(2014).
[Crossref] [PubMed]

Feng, R.

C. Hao, Z. Nie, H. Ye, H. Li, Y. Luo, R. Feng, X. Yu, F. Wen, Y. Zhang, C. Yu, J. Teng, B. Luk’yanchuk, and C. Qiu, “Three-dimensional supercritical resolved light-induced magnetic holography,” Sci. Adv. 3e1701398 (2017).
[Crossref] [PubMed]

Fert, A.

M. N. Baibich, J. M. Broto, A. Fert, F. N. Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, and J. Chazelas, “Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices,” Phys. Rev. Lett. 61(21), 2472–2475 (1998).
[Crossref]

Friederich, A.

M. N. Baibich, J. M. Broto, A. Fert, F. N. Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, and J. Chazelas, “Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices,” Phys. Rev. Lett. 61(21), 2472–2475 (1998).
[Crossref]

Fullerton, E. E.

C.-H. Lambert, S. Mangin, B. S. D. C. S. Varaprasad, Y. K. Takahashi, M. Hehn, M. Cinchetti, G. Malinowski, K. Hono, Y. Fainman, M. Aeschlimann, and E. E. Fullerton, “All-optical control of ferromagnetic thin films and nanostructures,” Science 345, 1337 (2014).
[Crossref] [PubMed]

C-H. Lambert, S. Mangin, B. S. D. Ch. S. Varaprasad, Y. K. Takahashi, M. Hehn, M. Cinchetti, G. Malinowski, K. Hono, Y. Fainman, M. Aeschlimann, and E. E. Fullerton, “All-optical control of ferromagnetic thin films and nanostructures,” Science 345(6202), 1337–1340(2014).
[Crossref] [PubMed]

S. Mangin, M. Gottwald, C-H. Lambert, D. Steil, V. Uhlíř, L. Pang, M. Hehn, S. Alebrand, M. Cinchetti, G. Malinowski, Y. Fainman, M. Aeschlimann, and E. E. Fullerton, “Engineered materials for all-optical helicity-dependent magnetic switching,” Nature Mater. 13(3), 286(2014).
[Crossref]

Gong, L.

Gottwald, M.

S. Mangin, M. Gottwald, C-H. Lambert, D. Steil, V. Uhlíř, L. Pang, M. Hehn, S. Alebrand, M. Cinchetti, G. Malinowski, Y. Fainman, M. Aeschlimann, and E. E. Fullerton, “Engineered materials for all-optical helicity-dependent magnetic switching,” Nature Mater. 13(3), 286(2014).
[Crossref]

Grinolds, M.

M. Grinolds, M. Warner, K. De Greve, Y. Dovzhenko, L. Thiel, R. L. Walsworth, S. Hong, P. Maletinsky, and A. Yacoby, “Subnanometre resolution in three-dimensional magnetic resonance imaging of individual dark spins,” Nat. Nanotechnol. 73, 279–284 (2014).
[Crossref]

Gu, B.

Gu, M.

Guo, C. S.

Guyader, L. Le

L. Le Guyader, M. Savoini, S. El Moussaoui, M. Buzzi, A. Tsukamoto, A. Itoh, A. Kirilyuk, T. Rasing, A.V. Kimel, and F. Nolting, “Nanoscale sub-100 picosecond all-optical magnetization switching in GdFeCo microstructures,” Nature Commun. 6, 5839(2015).
[Crossref]

Hansteen, F.

C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and T. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99(4), 047601 (2007).
[Crossref] [PubMed]

Hao, C.

C. Hao, Z. Nie, H. Ye, H. Li, Y. Luo, R. Feng, X. Yu, F. Wen, Y. Zhang, C. Yu, J. Teng, B. Luk’yanchuk, and C. Qiu, “Three-dimensional supercritical resolved light-induced magnetic holography,” Sci. Adv. 3e1701398 (2017).
[Crossref] [PubMed]

Hehn, M.

C.-H. Lambert, S. Mangin, B. S. D. C. S. Varaprasad, Y. K. Takahashi, M. Hehn, M. Cinchetti, G. Malinowski, K. Hono, Y. Fainman, M. Aeschlimann, and E. E. Fullerton, “All-optical control of ferromagnetic thin films and nanostructures,” Science 345, 1337 (2014).
[Crossref] [PubMed]

S. Mangin, M. Gottwald, C-H. Lambert, D. Steil, V. Uhlíř, L. Pang, M. Hehn, S. Alebrand, M. Cinchetti, G. Malinowski, Y. Fainman, M. Aeschlimann, and E. E. Fullerton, “Engineered materials for all-optical helicity-dependent magnetic switching,” Nature Mater. 13(3), 286(2014).
[Crossref]

C-H. Lambert, S. Mangin, B. S. D. Ch. S. Varaprasad, Y. K. Takahashi, M. Hehn, M. Cinchetti, G. Malinowski, K. Hono, Y. Fainman, M. Aeschlimann, and E. E. Fullerton, “All-optical control of ferromagnetic thin films and nanostructures,” Science 345(6202), 1337–1340(2014).
[Crossref] [PubMed]

Helseth, L. E.

Holtom, G. R.

P. D. Majors, K. R. Minard, E. J. Ackerman, G. R. Holtom, D. F. Hopkins, C. I. Parkinson, T. J. Weber, and R. A. Wind, “A combined confocal and magnetic resonance microscope for biological studies,” Rev. Sci. Instrum. 73, 4329 (2002).
[Crossref]

Hong, S.

M. Grinolds, M. Warner, K. De Greve, Y. Dovzhenko, L. Thiel, R. L. Walsworth, S. Hong, P. Maletinsky, and A. Yacoby, “Subnanometre resolution in three-dimensional magnetic resonance imaging of individual dark spins,” Nat. Nanotechnol. 73, 279–284 (2014).
[Crossref]

Hono, K.

C-H. Lambert, S. Mangin, B. S. D. Ch. S. Varaprasad, Y. K. Takahashi, M. Hehn, M. Cinchetti, G. Malinowski, K. Hono, Y. Fainman, M. Aeschlimann, and E. E. Fullerton, “All-optical control of ferromagnetic thin films and nanostructures,” Science 345(6202), 1337–1340(2014).
[Crossref] [PubMed]

C.-H. Lambert, S. Mangin, B. S. D. C. S. Varaprasad, Y. K. Takahashi, M. Hehn, M. Cinchetti, G. Malinowski, K. Hono, Y. Fainman, M. Aeschlimann, and E. E. Fullerton, “All-optical control of ferromagnetic thin films and nanostructures,” Science 345, 1337 (2014).
[Crossref] [PubMed]

Hopkins, D. F.

P. D. Majors, K. R. Minard, E. J. Ackerman, G. R. Holtom, D. F. Hopkins, C. I. Parkinson, T. J. Weber, and R. A. Wind, “A combined confocal and magnetic resonance microscope for biological studies,” Rev. Sci. Instrum. 73, 4329 (2002).
[Crossref]

Huang, K.

K. Huang, H. Ye, J. Teng, S. P. Yeo, B. Luk’yanchuk, and C.-W. Qiu, “Optimization-free superoscillatory lens using phase and amplitude masks,” Laser Photon. Rev. 8(1), 152–157 (2014).
[Crossref]

H. Ye, C.-W. Qiu, K. Huang, J. Teng, B. Luk’yanchuk, and S. P. Yeo, “Creation of a longitudinally polarized subwavelength hotspot with an ultra-thin planar lens: vectorial Rayleigh–Sommerfeld method,” Laser Phys. Lett. 10(6), 065004 (2013).
[Crossref]

Itoh, A.

L. Le Guyader, M. Savoini, S. El Moussaoui, M. Buzzi, A. Tsukamoto, A. Itoh, A. Kirilyuk, T. Rasing, A.V. Kimel, and F. Nolting, “Nanoscale sub-100 picosecond all-optical magnetization switching in GdFeCo microstructures,” Nature Commun. 6, 5839(2015).
[Crossref]

A. R. Khorsand, M. Savoini, A. Kirilyuk, A. V. Kimel, A. Tsukamoto, A. Itoh, and T. Rasing, “Role of magnetic circular dichroism in all-optical magnetic recording,” Phys. Rev. Lett. 108(12), 127205 (2012).
[Crossref] [PubMed]

C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and T. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99(4), 047601 (2007).
[Crossref] [PubMed]

Iwasaki, S.

S. Iwasaki, “Perpendicular magnetic recording–evolution and future,” IEEE Trans. Magn. 20(5), 657–662 (1984).
[Crossref]

Jaroszewicz, Z.

M. Udhayakumar, K. Prabakaran, K.B. Rajesh, Z. Jaroszewicz, and A. Belafhal, “Generating sub wavelength pure longitudinal magnetization probe and chain using complex phase plate,” Opt. Commun. 407, 275–279 (2018).
[Crossref]

Jia, B.

Z. Nie, H. Lin, X. Liu, A. Zhai, Y. Tian, W. Wang, D. Li, W. Ding, X. Zhang, Y. Song, and B. Jia, “Three-dimensional super-resolution longitudinal magnetization spot arrays,” Light Sci. Appl. 6, e17032 (2017).
[Crossref]

Jiang, Y.

Khorsand, A. R.

A. R. Khorsand, M. Savoini, A. Kirilyuk, A. V. Kimel, A. Tsukamoto, A. Itoh, and T. Rasing, “Role of magnetic circular dichroism in all-optical magnetic recording,” Phys. Rev. Lett. 108(12), 127205 (2012).
[Crossref] [PubMed]

Kimel, A. V.

A. R. Khorsand, M. Savoini, A. Kirilyuk, A. V. Kimel, A. Tsukamoto, A. Itoh, and T. Rasing, “Role of magnetic circular dichroism in all-optical magnetic recording,” Phys. Rev. Lett. 108(12), 127205 (2012).
[Crossref] [PubMed]

C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and T. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99(4), 047601 (2007).
[Crossref] [PubMed]

Kimel, A.V.

L. Le Guyader, M. Savoini, S. El Moussaoui, M. Buzzi, A. Tsukamoto, A. Itoh, A. Kirilyuk, T. Rasing, A.V. Kimel, and F. Nolting, “Nanoscale sub-100 picosecond all-optical magnetization switching in GdFeCo microstructures,” Nature Commun. 6, 5839(2015).
[Crossref]

Kirilyuk, A.

L. Le Guyader, M. Savoini, S. El Moussaoui, M. Buzzi, A. Tsukamoto, A. Itoh, A. Kirilyuk, T. Rasing, A.V. Kimel, and F. Nolting, “Nanoscale sub-100 picosecond all-optical magnetization switching in GdFeCo microstructures,” Nature Commun. 6, 5839(2015).
[Crossref]

A. R. Khorsand, M. Savoini, A. Kirilyuk, A. V. Kimel, A. Tsukamoto, A. Itoh, and T. Rasing, “Role of magnetic circular dichroism in all-optical magnetic recording,” Phys. Rev. Lett. 108(12), 127205 (2012).
[Crossref] [PubMed]

C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and T. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99(4), 047601 (2007).
[Crossref] [PubMed]

Lambert, C.-H.

C.-H. Lambert, S. Mangin, B. S. D. C. S. Varaprasad, Y. K. Takahashi, M. Hehn, M. Cinchetti, G. Malinowski, K. Hono, Y. Fainman, M. Aeschlimann, and E. E. Fullerton, “All-optical control of ferromagnetic thin films and nanostructures,” Science 345, 1337 (2014).
[Crossref] [PubMed]

Lambert, C-H.

C-H. Lambert, S. Mangin, B. S. D. Ch. S. Varaprasad, Y. K. Takahashi, M. Hehn, M. Cinchetti, G. Malinowski, K. Hono, Y. Fainman, M. Aeschlimann, and E. E. Fullerton, “All-optical control of ferromagnetic thin films and nanostructures,” Science 345(6202), 1337–1340(2014).
[Crossref] [PubMed]

S. Mangin, M. Gottwald, C-H. Lambert, D. Steil, V. Uhlíř, L. Pang, M. Hehn, S. Alebrand, M. Cinchetti, G. Malinowski, Y. Fainman, M. Aeschlimann, and E. E. Fullerton, “Engineered materials for all-optical helicity-dependent magnetic switching,” Nature Mater. 13(3), 286(2014).
[Crossref]

Li, D.

Li, H.

C. Hao, Z. Nie, H. Ye, H. Li, Y. Luo, R. Feng, X. Yu, F. Wen, Y. Zhang, C. Yu, J. Teng, B. Luk’yanchuk, and C. Qiu, “Three-dimensional supercritical resolved light-induced magnetic holography,” Sci. Adv. 3e1701398 (2017).
[Crossref] [PubMed]

Li, X.

Lin, H.

Z. Nie, H. Lin, X. Liu, A. Zhai, Y. Tian, W. Wang, D. Li, W. Ding, X. Zhang, Y. Song, and B. Jia, “Three-dimensional super-resolution longitudinal magnetization spot arrays,” Light Sci. Appl. 6, e17032 (2017).
[Crossref]

Liu, X.

Z. Nie, H. Lin, X. Liu, A. Zhai, Y. Tian, W. Wang, D. Li, W. Ding, X. Zhang, Y. Song, and B. Jia, “Three-dimensional super-resolution longitudinal magnetization spot arrays,” Light Sci. Appl. 6, e17032 (2017).
[Crossref]

Luk’yanchuk, B.

C. Hao, Z. Nie, H. Ye, H. Li, Y. Luo, R. Feng, X. Yu, F. Wen, Y. Zhang, C. Yu, J. Teng, B. Luk’yanchuk, and C. Qiu, “Three-dimensional supercritical resolved light-induced magnetic holography,” Sci. Adv. 3e1701398 (2017).
[Crossref] [PubMed]

K. Huang, H. Ye, J. Teng, S. P. Yeo, B. Luk’yanchuk, and C.-W. Qiu, “Optimization-free superoscillatory lens using phase and amplitude masks,” Laser Photon. Rev. 8(1), 152–157 (2014).
[Crossref]

H. Ye, C.-W. Qiu, K. Huang, J. Teng, B. Luk’yanchuk, and S. P. Yeo, “Creation of a longitudinally polarized subwavelength hotspot with an ultra-thin planar lens: vectorial Rayleigh–Sommerfeld method,” Laser Phys. Lett. 10(6), 065004 (2013).
[Crossref]

Luo, Y.

C. Hao, Z. Nie, H. Ye, H. Li, Y. Luo, R. Feng, X. Yu, F. Wen, Y. Zhang, C. Yu, J. Teng, B. Luk’yanchuk, and C. Qiu, “Three-dimensional supercritical resolved light-induced magnetic holography,” Sci. Adv. 3e1701398 (2017).
[Crossref] [PubMed]

Ma, W.

Majors, P. D.

P. D. Majors, K. R. Minard, E. J. Ackerman, G. R. Holtom, D. F. Hopkins, C. I. Parkinson, T. J. Weber, and R. A. Wind, “A combined confocal and magnetic resonance microscope for biological studies,” Rev. Sci. Instrum. 73, 4329 (2002).
[Crossref]

Maletinsky, P.

M. Grinolds, M. Warner, K. De Greve, Y. Dovzhenko, L. Thiel, R. L. Walsworth, S. Hong, P. Maletinsky, and A. Yacoby, “Subnanometre resolution in three-dimensional magnetic resonance imaging of individual dark spins,” Nat. Nanotechnol. 73, 279–284 (2014).
[Crossref]

Malinowski, G.

C-H. Lambert, S. Mangin, B. S. D. Ch. S. Varaprasad, Y. K. Takahashi, M. Hehn, M. Cinchetti, G. Malinowski, K. Hono, Y. Fainman, M. Aeschlimann, and E. E. Fullerton, “All-optical control of ferromagnetic thin films and nanostructures,” Science 345(6202), 1337–1340(2014).
[Crossref] [PubMed]

S. Mangin, M. Gottwald, C-H. Lambert, D. Steil, V. Uhlíř, L. Pang, M. Hehn, S. Alebrand, M. Cinchetti, G. Malinowski, Y. Fainman, M. Aeschlimann, and E. E. Fullerton, “Engineered materials for all-optical helicity-dependent magnetic switching,” Nature Mater. 13(3), 286(2014).
[Crossref]

C.-H. Lambert, S. Mangin, B. S. D. C. S. Varaprasad, Y. K. Takahashi, M. Hehn, M. Cinchetti, G. Malinowski, K. Hono, Y. Fainman, M. Aeschlimann, and E. E. Fullerton, “All-optical control of ferromagnetic thin films and nanostructures,” Science 345, 1337 (2014).
[Crossref] [PubMed]

Malmstrom, L. D.

J. P. van der Ziel, P. S. Pershan, and L. D. Malmstrom, “Optically-induced magnetization resulting from the inverse Faraday effect,” Phys. Rev. Lett. 15(5), 190–193 (1965).
[Crossref]

Mangin, S.

C.-H. Lambert, S. Mangin, B. S. D. C. S. Varaprasad, Y. K. Takahashi, M. Hehn, M. Cinchetti, G. Malinowski, K. Hono, Y. Fainman, M. Aeschlimann, and E. E. Fullerton, “All-optical control of ferromagnetic thin films and nanostructures,” Science 345, 1337 (2014).
[Crossref] [PubMed]

S. Mangin, M. Gottwald, C-H. Lambert, D. Steil, V. Uhlíř, L. Pang, M. Hehn, S. Alebrand, M. Cinchetti, G. Malinowski, Y. Fainman, M. Aeschlimann, and E. E. Fullerton, “Engineered materials for all-optical helicity-dependent magnetic switching,” Nature Mater. 13(3), 286(2014).
[Crossref]

C-H. Lambert, S. Mangin, B. S. D. Ch. S. Varaprasad, Y. K. Takahashi, M. Hehn, M. Cinchetti, G. Malinowski, K. Hono, Y. Fainman, M. Aeschlimann, and E. E. Fullerton, “All-optical control of ferromagnetic thin films and nanostructures,” Science 345(6202), 1337–1340(2014).
[Crossref] [PubMed]

Minard, K. R.

P. D. Majors, K. R. Minard, E. J. Ackerman, G. R. Holtom, D. F. Hopkins, C. I. Parkinson, T. J. Weber, and R. A. Wind, “A combined confocal and magnetic resonance microscope for biological studies,” Rev. Sci. Instrum. 73, 4329 (2002).
[Crossref]

Moussaoui, S. El

L. Le Guyader, M. Savoini, S. El Moussaoui, M. Buzzi, A. Tsukamoto, A. Itoh, A. Kirilyuk, T. Rasing, A.V. Kimel, and F. Nolting, “Nanoscale sub-100 picosecond all-optical magnetization switching in GdFeCo microstructures,” Nature Commun. 6, 5839(2015).
[Crossref]

Ni, W. J.

Nie, Z.

Nolting, F.

L. Le Guyader, M. Savoini, S. El Moussaoui, M. Buzzi, A. Tsukamoto, A. Itoh, A. Kirilyuk, T. Rasing, A.V. Kimel, and F. Nolting, “Nanoscale sub-100 picosecond all-optical magnetization switching in GdFeCo microstructures,” Nature Commun. 6, 5839(2015).
[Crossref]

Okuno, Y.

Pang, L.

S. Mangin, M. Gottwald, C-H. Lambert, D. Steil, V. Uhlíř, L. Pang, M. Hehn, S. Alebrand, M. Cinchetti, G. Malinowski, Y. Fainman, M. Aeschlimann, and E. E. Fullerton, “Engineered materials for all-optical helicity-dependent magnetic switching,” Nature Mater. 13(3), 286(2014).
[Crossref]

Parkinson, C. I.

P. D. Majors, K. R. Minard, E. J. Ackerman, G. R. Holtom, D. F. Hopkins, C. I. Parkinson, T. J. Weber, and R. A. Wind, “A combined confocal and magnetic resonance microscope for biological studies,” Rev. Sci. Instrum. 73, 4329 (2002).
[Crossref]

Pershan, P. S.

J. P. van der Ziel, P. S. Pershan, and L. D. Malmstrom, “Optically-induced magnetization resulting from the inverse Faraday effect,” Phys. Rev. Lett. 15(5), 190–193 (1965).
[Crossref]

Petroff, F.

M. N. Baibich, J. M. Broto, A. Fert, F. N. Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, and J. Chazelas, “Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices,” Phys. Rev. Lett. 61(21), 2472–2475 (1998).
[Crossref]

Prabakaran, K.

M. Udhayakumar, K. Prabakaran, K.B. Rajesh, Z. Jaroszewicz, and A. Belafhal, “Generating sub wavelength pure longitudinal magnetization probe and chain using complex phase plate,” Opt. Commun. 407, 275–279 (2018).
[Crossref]

Qiu, C.

C. Hao, Z. Nie, H. Ye, H. Li, Y. Luo, R. Feng, X. Yu, F. Wen, Y. Zhang, C. Yu, J. Teng, B. Luk’yanchuk, and C. Qiu, “Three-dimensional supercritical resolved light-induced magnetic holography,” Sci. Adv. 3e1701398 (2017).
[Crossref] [PubMed]

Qiu, C.-W.

K. Huang, H. Ye, J. Teng, S. P. Yeo, B. Luk’yanchuk, and C.-W. Qiu, “Optimization-free superoscillatory lens using phase and amplitude masks,” Laser Photon. Rev. 8(1), 152–157 (2014).
[Crossref]

H. Ye, C.-W. Qiu, K. Huang, J. Teng, B. Luk’yanchuk, and S. P. Yeo, “Creation of a longitudinally polarized subwavelength hotspot with an ultra-thin planar lens: vectorial Rayleigh–Sommerfeld method,” Laser Phys. Lett. 10(6), 065004 (2013).
[Crossref]

Rajesh, K.B.

M. Udhayakumar, K. Prabakaran, K.B. Rajesh, Z. Jaroszewicz, and A. Belafhal, “Generating sub wavelength pure longitudinal magnetization probe and chain using complex phase plate,” Opt. Commun. 407, 275–279 (2018).
[Crossref]

Rasing, T.

L. Le Guyader, M. Savoini, S. El Moussaoui, M. Buzzi, A. Tsukamoto, A. Itoh, A. Kirilyuk, T. Rasing, A.V. Kimel, and F. Nolting, “Nanoscale sub-100 picosecond all-optical magnetization switching in GdFeCo microstructures,” Nature Commun. 6, 5839(2015).
[Crossref]

A. R. Khorsand, M. Savoini, A. Kirilyuk, A. V. Kimel, A. Tsukamoto, A. Itoh, and T. Rasing, “Role of magnetic circular dichroism in all-optical magnetic recording,” Phys. Rev. Lett. 108(12), 127205 (2012).
[Crossref] [PubMed]

C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and T. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99(4), 047601 (2007).
[Crossref] [PubMed]

Ren, H.

Richards, B.

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 358 (1959).
[Crossref]

Savoini, M.

L. Le Guyader, M. Savoini, S. El Moussaoui, M. Buzzi, A. Tsukamoto, A. Itoh, A. Kirilyuk, T. Rasing, A.V. Kimel, and F. Nolting, “Nanoscale sub-100 picosecond all-optical magnetization switching in GdFeCo microstructures,” Nature Commun. 6, 5839(2015).
[Crossref]

A. R. Khorsand, M. Savoini, A. Kirilyuk, A. V. Kimel, A. Tsukamoto, A. Itoh, and T. Rasing, “Role of magnetic circular dichroism in all-optical magnetic recording,” Phys. Rev. Lett. 108(12), 127205 (2012).
[Crossref] [PubMed]

Shi, G.

Song, F.

Song, Y.

Stanciu, C. D.

C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and T. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99(4), 047601 (2007).
[Crossref] [PubMed]

Steil, D.

S. Mangin, M. Gottwald, C-H. Lambert, D. Steil, V. Uhlíř, L. Pang, M. Hehn, S. Alebrand, M. Cinchetti, G. Malinowski, Y. Fainman, M. Aeschlimann, and E. E. Fullerton, “Engineered materials for all-optical helicity-dependent magnetic switching,” Nature Mater. 13(3), 286(2014).
[Crossref]

Sun, M.

Takahashi, Y. K.

C.-H. Lambert, S. Mangin, B. S. D. C. S. Varaprasad, Y. K. Takahashi, M. Hehn, M. Cinchetti, G. Malinowski, K. Hono, Y. Fainman, M. Aeschlimann, and E. E. Fullerton, “All-optical control of ferromagnetic thin films and nanostructures,” Science 345, 1337 (2014).
[Crossref] [PubMed]

C-H. Lambert, S. Mangin, B. S. D. Ch. S. Varaprasad, Y. K. Takahashi, M. Hehn, M. Cinchetti, G. Malinowski, K. Hono, Y. Fainman, M. Aeschlimann, and E. E. Fullerton, “All-optical control of ferromagnetic thin films and nanostructures,” Science 345(6202), 1337–1340(2014).
[Crossref] [PubMed]

Teng, J.

C. Hao, Z. Nie, H. Ye, H. Li, Y. Luo, R. Feng, X. Yu, F. Wen, Y. Zhang, C. Yu, J. Teng, B. Luk’yanchuk, and C. Qiu, “Three-dimensional supercritical resolved light-induced magnetic holography,” Sci. Adv. 3e1701398 (2017).
[Crossref] [PubMed]

K. Huang, H. Ye, J. Teng, S. P. Yeo, B. Luk’yanchuk, and C.-W. Qiu, “Optimization-free superoscillatory lens using phase and amplitude masks,” Laser Photon. Rev. 8(1), 152–157 (2014).
[Crossref]

H. Ye, C.-W. Qiu, K. Huang, J. Teng, B. Luk’yanchuk, and S. P. Yeo, “Creation of a longitudinally polarized subwavelength hotspot with an ultra-thin planar lens: vectorial Rayleigh–Sommerfeld method,” Laser Phys. Lett. 10(6), 065004 (2013).
[Crossref]

Thiel, L.

M. Grinolds, M. Warner, K. De Greve, Y. Dovzhenko, L. Thiel, R. L. Walsworth, S. Hong, P. Maletinsky, and A. Yacoby, “Subnanometre resolution in three-dimensional magnetic resonance imaging of individual dark spins,” Nat. Nanotechnol. 73, 279–284 (2014).
[Crossref]

Tian, Y.

Z. Nie, H. Lin, X. Liu, A. Zhai, Y. Tian, W. Wang, D. Li, W. Ding, X. Zhang, Y. Song, and B. Jia, “Three-dimensional super-resolution longitudinal magnetization spot arrays,” Light Sci. Appl. 6, e17032 (2017).
[Crossref]

Tsukamoto, A.

L. Le Guyader, M. Savoini, S. El Moussaoui, M. Buzzi, A. Tsukamoto, A. Itoh, A. Kirilyuk, T. Rasing, A.V. Kimel, and F. Nolting, “Nanoscale sub-100 picosecond all-optical magnetization switching in GdFeCo microstructures,” Nature Commun. 6, 5839(2015).
[Crossref]

A. R. Khorsand, M. Savoini, A. Kirilyuk, A. V. Kimel, A. Tsukamoto, A. Itoh, and T. Rasing, “Role of magnetic circular dichroism in all-optical magnetic recording,” Phys. Rev. Lett. 108(12), 127205 (2012).
[Crossref] [PubMed]

C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and T. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99(4), 047601 (2007).
[Crossref] [PubMed]

Udhayakumar, M.

M. Udhayakumar, K. Prabakaran, K.B. Rajesh, Z. Jaroszewicz, and A. Belafhal, “Generating sub wavelength pure longitudinal magnetization probe and chain using complex phase plate,” Opt. Commun. 407, 275–279 (2018).
[Crossref]

Uhlír, V.

S. Mangin, M. Gottwald, C-H. Lambert, D. Steil, V. Uhlíř, L. Pang, M. Hehn, S. Alebrand, M. Cinchetti, G. Malinowski, Y. Fainman, M. Aeschlimann, and E. E. Fullerton, “Engineered materials for all-optical helicity-dependent magnetic switching,” Nature Mater. 13(3), 286(2014).
[Crossref]

Van Dau, F. N.

M. N. Baibich, J. M. Broto, A. Fert, F. N. Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, and J. Chazelas, “Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices,” Phys. Rev. Lett. 61(21), 2472–2475 (1998).
[Crossref]

van der Ziel, J. P.

J. P. van der Ziel, P. S. Pershan, and L. D. Malmstrom, “Optically-induced magnetization resulting from the inverse Faraday effect,” Phys. Rev. Lett. 15(5), 190–193 (1965).
[Crossref]

Varaprasad, B. S. D. C. S.

C.-H. Lambert, S. Mangin, B. S. D. C. S. Varaprasad, Y. K. Takahashi, M. Hehn, M. Cinchetti, G. Malinowski, K. Hono, Y. Fainman, M. Aeschlimann, and E. E. Fullerton, “All-optical control of ferromagnetic thin films and nanostructures,” Science 345, 1337 (2014).
[Crossref] [PubMed]

Varaprasad, B. S. D. Ch. S.

C-H. Lambert, S. Mangin, B. S. D. Ch. S. Varaprasad, Y. K. Takahashi, M. Hehn, M. Cinchetti, G. Malinowski, K. Hono, Y. Fainman, M. Aeschlimann, and E. E. Fullerton, “All-optical control of ferromagnetic thin films and nanostructures,” Science 345(6202), 1337–1340(2014).
[Crossref] [PubMed]

Walsworth, R. L.

M. Grinolds, M. Warner, K. De Greve, Y. Dovzhenko, L. Thiel, R. L. Walsworth, S. Hong, P. Maletinsky, and A. Yacoby, “Subnanometre resolution in three-dimensional magnetic resonance imaging of individual dark spins,” Nat. Nanotechnol. 73, 279–284 (2014).
[Crossref]

Wang, H. T.

Wang, H.-T.

Wang, L.

Wang, S.

Wang, W.

Z. Nie, H. Lin, X. Liu, A. Zhai, Y. Tian, W. Wang, D. Li, W. Ding, X. Zhang, Y. Song, and B. Jia, “Three-dimensional super-resolution longitudinal magnetization spot arrays,” Light Sci. Appl. 6, e17032 (2017).
[Crossref]

Wang, X.

Wang, X. L.

Wang, Y.

Warner, M.

M. Grinolds, M. Warner, K. De Greve, Y. Dovzhenko, L. Thiel, R. L. Walsworth, S. Hong, P. Maletinsky, and A. Yacoby, “Subnanometre resolution in three-dimensional magnetic resonance imaging of individual dark spins,” Nat. Nanotechnol. 73, 279–284 (2014).
[Crossref]

Weber, T. J.

P. D. Majors, K. R. Minard, E. J. Ackerman, G. R. Holtom, D. F. Hopkins, C. I. Parkinson, T. J. Weber, and R. A. Wind, “A combined confocal and magnetic resonance microscope for biological studies,” Rev. Sci. Instrum. 73, 4329 (2002).
[Crossref]

Wen, F.

C. Hao, Z. Nie, H. Ye, H. Li, Y. Luo, R. Feng, X. Yu, F. Wen, Y. Zhang, C. Yu, J. Teng, B. Luk’yanchuk, and C. Qiu, “Three-dimensional supercritical resolved light-induced magnetic holography,” Sci. Adv. 3e1701398 (2017).
[Crossref] [PubMed]

Wen, J.

Wind, R. A.

P. D. Majors, K. R. Minard, E. J. Ackerman, G. R. Holtom, D. F. Hopkins, C. I. Parkinson, T. J. Weber, and R. A. Wind, “A combined confocal and magnetic resonance microscope for biological studies,” Rev. Sci. Instrum. 73, 4329 (2002).
[Crossref]

Wolf, E.

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 358 (1959).
[Crossref]

Xu, X.

Yacoby, A.

M. Grinolds, M. Warner, K. De Greve, Y. Dovzhenko, L. Thiel, R. L. Walsworth, S. Hong, P. Maletinsky, and A. Yacoby, “Subnanometre resolution in three-dimensional magnetic resonance imaging of individual dark spins,” Nat. Nanotechnol. 73, 279–284 (2014).
[Crossref]

Yan, W.

Yang, R.

Ye, H.

C. Hao, Z. Nie, H. Ye, H. Li, Y. Luo, R. Feng, X. Yu, F. Wen, Y. Zhang, C. Yu, J. Teng, B. Luk’yanchuk, and C. Qiu, “Three-dimensional supercritical resolved light-induced magnetic holography,” Sci. Adv. 3e1701398 (2017).
[Crossref] [PubMed]

K. Huang, H. Ye, J. Teng, S. P. Yeo, B. Luk’yanchuk, and C.-W. Qiu, “Optimization-free superoscillatory lens using phase and amplitude masks,” Laser Photon. Rev. 8(1), 152–157 (2014).
[Crossref]

H. Ye, C.-W. Qiu, K. Huang, J. Teng, B. Luk’yanchuk, and S. P. Yeo, “Creation of a longitudinally polarized subwavelength hotspot with an ultra-thin planar lens: vectorial Rayleigh–Sommerfeld method,” Laser Phys. Lett. 10(6), 065004 (2013).
[Crossref]

Yeo, S. P.

K. Huang, H. Ye, J. Teng, S. P. Yeo, B. Luk’yanchuk, and C.-W. Qiu, “Optimization-free superoscillatory lens using phase and amplitude masks,” Laser Photon. Rev. 8(1), 152–157 (2014).
[Crossref]

H. Ye, C.-W. Qiu, K. Huang, J. Teng, B. Luk’yanchuk, and S. P. Yeo, “Creation of a longitudinally polarized subwavelength hotspot with an ultra-thin planar lens: vectorial Rayleigh–Sommerfeld method,” Laser Phys. Lett. 10(6), 065004 (2013).
[Crossref]

Youngworth, K. S.

Yu, C.

C. Hao, Z. Nie, H. Ye, H. Li, Y. Luo, R. Feng, X. Yu, F. Wen, Y. Zhang, C. Yu, J. Teng, B. Luk’yanchuk, and C. Qiu, “Three-dimensional supercritical resolved light-induced magnetic holography,” Sci. Adv. 3e1701398 (2017).
[Crossref] [PubMed]

Yu, J.

Yu, X.

C. Hao, Z. Nie, H. Ye, H. Li, Y. Luo, R. Feng, X. Yu, F. Wen, Y. Zhang, C. Yu, J. Teng, B. Luk’yanchuk, and C. Qiu, “Three-dimensional supercritical resolved light-induced magnetic holography,” Sci. Adv. 3e1701398 (2017).
[Crossref] [PubMed]

Zhai, A.

Z. Nie, H. Lin, X. Liu, A. Zhai, Y. Tian, W. Wang, D. Li, W. Ding, X. Zhang, Y. Song, and B. Jia, “Three-dimensional super-resolution longitudinal magnetization spot arrays,” Light Sci. Appl. 6, e17032 (2017).
[Crossref]

Zhang, D.

Zhang, X.

Zhang, Y.

C. Hao, Z. Nie, H. Ye, H. Li, Y. Luo, R. Feng, X. Yu, F. Wen, Y. Zhang, C. Yu, J. Teng, B. Luk’yanchuk, and C. Qiu, “Three-dimensional supercritical resolved light-induced magnetic holography,” Sci. Adv. 3e1701398 (2017).
[Crossref] [PubMed]

Y. Zhang and J. Bai, “Theoretical study on all-optical magnetic recording using a solid immersion lens,” J. Opt. Soc. Am. B 26(1), 176–182 (2009).
[Crossref]

Y. Zhang, Y. Okuno, and X. Xu, “All-optical magnetic superresolution with binary pupil filters,” J. Opt. Soc. Am. B 26(7), 1379–1383 (2009).
[Crossref]

Zhao, H.

Zhou, J.

Zhu, L.

Zhu, Z.

Zijlstra, P.

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459, 410 (2009).
[Crossref] [PubMed]

Appl. Opt. (1)

Chin. Opt. Lett. (1)

IEEE Trans. Magn. (1)

S. Iwasaki, “Perpendicular magnetic recording–evolution and future,” IEEE Trans. Magn. 20(5), 657–662 (1984).
[Crossref]

J. Opt. Soc. Am. B (2)

Laser Photon. Rev. (1)

K. Huang, H. Ye, J. Teng, S. P. Yeo, B. Luk’yanchuk, and C.-W. Qiu, “Optimization-free superoscillatory lens using phase and amplitude masks,” Laser Photon. Rev. 8(1), 152–157 (2014).
[Crossref]

Laser Phys. Lett. (1)

H. Ye, C.-W. Qiu, K. Huang, J. Teng, B. Luk’yanchuk, and S. P. Yeo, “Creation of a longitudinally polarized subwavelength hotspot with an ultra-thin planar lens: vectorial Rayleigh–Sommerfeld method,” Laser Phys. Lett. 10(6), 065004 (2013).
[Crossref]

Light Sci. Appl. (2)

Z. Nie, H. Lin, X. Liu, A. Zhai, Y. Tian, W. Wang, D. Li, W. Ding, X. Zhang, Y. Song, and B. Jia, “Three-dimensional super-resolution longitudinal magnetization spot arrays,” Light Sci. Appl. 6, e17032 (2017).
[Crossref]

M. Gu, X. Li, and Y. Cao, “Optical storage arrays: a perspective for future big data storage,” Light Sci. Appl. 3, e177 (2014).
[Crossref]

Nat. Nanotechnol. (1)

M. Grinolds, M. Warner, K. De Greve, Y. Dovzhenko, L. Thiel, R. L. Walsworth, S. Hong, P. Maletinsky, and A. Yacoby, “Subnanometre resolution in three-dimensional magnetic resonance imaging of individual dark spins,” Nat. Nanotechnol. 73, 279–284 (2014).
[Crossref]

Nature (1)

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459, 410 (2009).
[Crossref] [PubMed]

Nature Commun. (1)

L. Le Guyader, M. Savoini, S. El Moussaoui, M. Buzzi, A. Tsukamoto, A. Itoh, A. Kirilyuk, T. Rasing, A.V. Kimel, and F. Nolting, “Nanoscale sub-100 picosecond all-optical magnetization switching in GdFeCo microstructures,” Nature Commun. 6, 5839(2015).
[Crossref]

Nature Mater. (1)

S. Mangin, M. Gottwald, C-H. Lambert, D. Steil, V. Uhlíř, L. Pang, M. Hehn, S. Alebrand, M. Cinchetti, G. Malinowski, Y. Fainman, M. Aeschlimann, and E. E. Fullerton, “Engineered materials for all-optical helicity-dependent magnetic switching,” Nature Mater. 13(3), 286(2014).
[Crossref]

Opt. Commun. (1)

M. Udhayakumar, K. Prabakaran, K.B. Rajesh, Z. Jaroszewicz, and A. Belafhal, “Generating sub wavelength pure longitudinal magnetization probe and chain using complex phase plate,” Opt. Commun. 407, 275–279 (2018).
[Crossref]

Opt. Express (7)

Opt. Lett. (7)

Phys. Rev. Lett. (4)

J. P. van der Ziel, P. S. Pershan, and L. D. Malmstrom, “Optically-induced magnetization resulting from the inverse Faraday effect,” Phys. Rev. Lett. 15(5), 190–193 (1965).
[Crossref]

C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and T. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99(4), 047601 (2007).
[Crossref] [PubMed]

A. R. Khorsand, M. Savoini, A. Kirilyuk, A. V. Kimel, A. Tsukamoto, A. Itoh, and T. Rasing, “Role of magnetic circular dichroism in all-optical magnetic recording,” Phys. Rev. Lett. 108(12), 127205 (2012).
[Crossref] [PubMed]

M. N. Baibich, J. M. Broto, A. Fert, F. N. Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, and J. Chazelas, “Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices,” Phys. Rev. Lett. 61(21), 2472–2475 (1998).
[Crossref]

Proc. R. Soc. Lond. A Math. Phys. Sci. (1)

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 358 (1959).
[Crossref]

Rev. Sci. Instrum. (1)

P. D. Majors, K. R. Minard, E. J. Ackerman, G. R. Holtom, D. F. Hopkins, C. I. Parkinson, T. J. Weber, and R. A. Wind, “A combined confocal and magnetic resonance microscope for biological studies,” Rev. Sci. Instrum. 73, 4329 (2002).
[Crossref]

Sci. Adv. (1)

C. Hao, Z. Nie, H. Ye, H. Li, Y. Luo, R. Feng, X. Yu, F. Wen, Y. Zhang, C. Yu, J. Teng, B. Luk’yanchuk, and C. Qiu, “Three-dimensional supercritical resolved light-induced magnetic holography,” Sci. Adv. 3e1701398 (2017).
[Crossref] [PubMed]

Science (2)

C.-H. Lambert, S. Mangin, B. S. D. C. S. Varaprasad, Y. K. Takahashi, M. Hehn, M. Cinchetti, G. Malinowski, K. Hono, Y. Fainman, M. Aeschlimann, and E. E. Fullerton, “All-optical control of ferromagnetic thin films and nanostructures,” Science 345, 1337 (2014).
[Crossref] [PubMed]

C-H. Lambert, S. Mangin, B. S. D. Ch. S. Varaprasad, Y. K. Takahashi, M. Hehn, M. Cinchetti, G. Malinowski, K. Hono, Y. Fainman, M. Aeschlimann, and E. E. Fullerton, “All-optical control of ferromagnetic thin films and nanostructures,” Science 345(6202), 1337–1340(2014).
[Crossref] [PubMed]

Supplementary Material (2)

NameDescription
» Visualization 1       The polarization orientation of the magnetization spot is transverse direction. When the two phase filters revolve, the magnetization spot rotates correspondingly.
» Visualization 2       The four magnetization spots have different polarization orientations. Moreover, the polarization direction of each magnetization spot can be varied in the horizontal plane.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Raytracing models for tightly focusing radially polarized beams (a1) and radially polarized beams imposed with π-phase-step filters along the y axis (a2), respectively. (b) Schematic diagram of the typical 4π focusing configuration to produce light-induced magnetization. A MO film locates at the confocal plane of the system, which is illuminated by two counter-propagating radially polarized beams modulated by PF1 and PF2. Here, PF1 and PF2 denote the left and right phase filters, respectively.
Fig. 2
Fig. 2 Electric intensity components |Ei|2 and corresponding phase angles ϕi for tightly focusing the first part of the incident beam in the z – y plane, normalized to the maximal value of the total electric intensity. Throughout our simulation, the black circle denotes the boundary between near the focus and outside the focus.
Fig. 3
Fig. 3 Electric intensity component |Ex|2 and the corresponding phase angle for tightly focusing the second part of the incident light in the zy plane, normalized to the maximum value of the total electric intensity.
Fig. 4
Fig. 4 Normalized magnetization component My in the focus vs the amplitude factor γ.
Fig. 5
Fig. 5 (a1)–(a3) Distributions of Mx in the xy plane, the z – x plane and the z – y plane, respectively. (b1)–(b3) Distributions of My in the xy plane, the z – x plane and the z – y plane, respectively. (c1)–(c3) Distributions of Mz in the xy plane,−the z – x plane and the zy plane, respectively. All the values are normalized to the maximal value of magnetization intensity Mt. The dimensional unit of each image is λ.
Fig. 6
Fig. 6 Distributions of the dominated magnetization field My along the x axis, the y axis and the z axis.
Fig. 7
Fig. 7 (a), (b) Phase distributions for the PF1 and PF2. Here, R indicates the maximal radius of the incident pupil. (c) Normalized magnetization intensity (color map) as well as the polarization orientation (blue arrows) for a magnetization spot. (For the movie of the magnetization spot with variable polarization orientation, see Visualization 1.)
Fig. 8
Fig. 8 Normalized intensities (color map) as well as the polarization orientations (blue arrows) for magnetization spot arrays. (For the movie of the magnetization spot arrays with variable polarization orientation in each spot, see Visualization 2.)

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

exp ( j φ + ) = γ + j δ × sgn ( cos φ ) , exp ( j φ ) = γ + j δ × sgn ( cos φ ) .
E L ( R ) ( ρ , ϕ , z ) = [ e x e y e z ] = A 0 0 α 0 2 π cos θ l ( θ ) exp ( j φ ± ) [ cos θ cos φ cos θ sin φ ± sin θ ] × exp [ ± j k z cos θ + j k ρ sin θ cos ( φ ϕ ) ] sin θ d θ d φ .
E ( ρ , ϕ , z ) = E L ( ρ , ϕ , z ) + E R ( ρ , ϕ , z ) .
M ( ρ , ϕ , z ) = j η E ( ρ , ϕ , z ) × E * ( ρ , ϕ , z ) ,

Metrics