Abstract

A phase-stable dual-comb interferometer measures materials’ broadband optical response functions, including amplitude, frequency, and phase, making it a powerful tool for optical metrology. Normally, the phase-stable dual-comb interferometer is realized via tight phase-locking methods. This paper presents a post-correction algorithm that can compensate for carrier wave phase noise and interferogram timing jitter. The compensating signal is a beat between two combs using a free-running continuous wave laser as an optical intermediary. In our experiment, sub-hertz relative linewidth, ~1 ns relative timing jitter, and 0.2 rad precision in the carrier phase is demonstrated.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Digital error correction of dual-comb interferometer without external optical referencing information

Haoyang Yu, Kai Ni, Qian Zhou, Xinghui Li, Xiaohao Wang, and Guanhao Wu
Opt. Express 27(20) 29425-29438 (2019)

Simplified phase-stable dual-comb interferometer for short dynamic range distance measurement

Siyu Zhou, Shilin Xiong, Zebin Zhu, and Guanhao Wu
Opt. Express 27(16) 22868-22876 (2019)

Multi-pulse sampling dual-comb ranging method

Siyu Zhou, Chen Lin, Yuetang Yang, and Guanhao Wu
Opt. Express 28(3) 4058-4066 (2020)

References

  • View by:
  • |
  • |
  • |

  1. T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
    [Crossref] [PubMed]
  2. N. R. Newbury, “Searching for applications with a fine-tooth comb,” Nat. Photonics 5(4), 186–188 (2011).
    [Crossref]
  3. F. Keilmann, C. Gohle, and R. Holzwarth, “Time-domain mid-infrared frequency-comb spectrometer,” Opt. Lett. 29(13), 1542–1544 (2004).
    [Crossref] [PubMed]
  4. I. Coddington, N. Newbury, and W. Swann, “Dual-comb spectroscopy,” Optica 3(4), 414–426 (2016).
    [Crossref]
  5. I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent dual-comb spectroscopy at high signal-to-noise ratio,” Phys. Rev. A 82(4), 3535–3537 (2010).
    [Crossref]
  6. I. Coddington, W. C. Swann, and N. R. Newbury, “Time-domain spectroscopy of molecular free-induction decay in the infrared,” Opt. Lett. 35(9), 1395–1397 (2010).
    [Crossref] [PubMed]
  7. K. C. Cossel, E. M. Waxman, F. R. Giorgetta, M. Cermak, I. R. Coddington, D. Hesselius, S. Ruben, W. C. Swann, G.-W. Truong, G. B. Rieker, and N. R. Newbury, “Open-path dual comb spectroscopy to an airborne retroreflector,” Optica 4(7), 724–728 (2017).
    [Crossref] [PubMed]
  8. S. M. Link, D. J. H. C. Maas, D. Waldburger, and U. Keller, “Dual-comb spectroscopy of water vapor with a free-running semiconductor disk laser,” Science 356(6343), 1164–1168 (2017).
    [Crossref] [PubMed]
  9. E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, “Spectroscopy of the methane nu(3) band with an accurate midinfrared coherent dual-comb spectrometer,” Phys. Rev. A 84(6), 14717–14719 (2011).
    [Crossref]
  10. I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
    [Crossref] [PubMed]
  11. A. Nishiyama, S. Yoshida, Y. Nakajima, H. Sasada, K. Nakagawa, A. Onae, and K. Minoshima, “Doppler-free dual-comb spectroscopy of Rb using optical-optical double resonance technique,” Opt. Express 24(22), 25894–25904 (2016).
    [Crossref] [PubMed]
  12. S. A. Meek, A. Hipke, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Doppler-free Fourier transform spectroscopy,” Opt. Lett. 43(1), 162–165 (2018).
    [Crossref] [PubMed]
  13. S. Coburn, C. B. Alden, R. Wright, K. Cossel, E. Baumann, G.-W. Truong, F. Giorgetta, C. Sweeney, N. R. Newbury, K. Prasad, I. Coddington, and G. B. Rieker, “Regional trace-gas source attribution using a field-deployed dual frequency comb spectrometer,” Optica 5(4), 320–327 (2018).
    [Crossref]
  14. I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
    [Crossref]
  15. G. Wu, Q. Zhou, L. Shen, K. Ni, X. Zeng, and Y. Li, “Experimental optimization of the repetition rate difference in dual-comb ranging system,” Appl. Phys. Express 7(10), 106602 (2014).
    [Crossref]
  16. I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent linear optical sampling at 15 bits of resolution,” Opt. Lett. 34(14), 2153–2155 (2009).
    [Crossref] [PubMed]
  17. Z. Zhu, G. Xu, K. Ni, Q. Zhou, and G. Wu, “Synthetic-wavelength-based dual-comb interferometry for fast and precise absolute distance measurement,” Opt. Express 26(5), 5747–5757 (2018).
    [Crossref] [PubMed]
  18. T. Minamikawa, Y.-D. Hsieh, K. Shibuya, E. Hase, Y. Kaneoka, S. Okubo, H. Inaba, Y. Mizutani, H. Yamamoto, T. Iwata, and T. Yasui, “Dual-comb spectroscopic ellipsometry,” Nat. Commun. 8(1), 610–617 (2017).
    [Crossref] [PubMed]
  19. A. Asahara, A. Nishiyama, S. Yoshida, K. I. Kondo, Y. Nakajima, and K. Minoshima, “Dual-comb spectroscopy for rapid characterization of complex optical properties of solids,” Opt. Lett. 41(21), 4971–4974 (2016).
    [Crossref] [PubMed]
  20. S. Boudreau, S. Levasseur, C. Perilla, S. Roy, and J. Genest, “Chemical detection with hyperspectral lidar using dual frequency combs,” Opt. Express 21(6), 7411–7418 (2013).
    [Crossref] [PubMed]
  21. K. Shibuya, T. Minamikawa, Y. Mizutani, H. Yamamoto, K. Minoshima, T. Yasui, and T. Iwata, “Scan-less hyperspectral dual-comb single-pixel-imaging in both amplitude and phase,” Opt. Express 25(18), 21947–21957 (2017).
    [Crossref] [PubMed]
  22. E. L. Teleanu, V. Durán, and V. Torres-Company, “Electro-optic dual-comb interferometer for high-speed vibrometry,” Opt. Express 25(14), 16427–16436 (2017).
    [Crossref] [PubMed]
  23. N. Kuse, A. Ozawa, and Y. Kobayashi, “Static FBG strain sensor with high resolution and large dynamic range by dual-comb spectroscopy,” Opt. Express 21(9), 11141–11149 (2013).
    [Crossref] [PubMed]
  24. Z. Zhu, G. Xu, K. Ni, Q. Zhou, and G. Wu, “Improving the accuracy of a dual-comb interferometer by suppressing the relative linewidth,” Meas. Sci. Technol. 29(4), 045007 (2018).
    [Crossref]
  25. Z. Chen, M. Yan, T. W. Hänsch, and N. Picqué, “A phase-stable dual-comb interferometer,” arXiv:1705.04214 (2017).
  26. T. Ideguchi, A. Poisson, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Adaptive real-time dual-comb spectroscopy,” Nat. Commun. 5(1), 3375–3382 (2014).
    [Crossref] [PubMed]
  27. T. Ideguchi, A. Poisson, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Adaptive dual-comb spectroscopy in the green region,” Opt. Lett. 37(23), 4847–4849 (2012).
    [Crossref] [PubMed]
  28. J.-D. Deschênes, P. Giaccarri, and J. Genest, “Optical referencing technique with CW lasers as intermediate oscillators for continuous full delay range frequency comb interferometry,” Opt. Express 18(22), 23358–23370 (2010).
    [Crossref] [PubMed]
  29. J. Roy, J.-D. Deschênes, S. Potvin, and J. Genest, “Continuous real-time correction and averaging for frequency comb interferometry,” Opt. Express 20(20), 21932–21939 (2012).
    [Crossref] [PubMed]
  30. G. Ycas, F. R. Giorgetta, E. Baumann, I. Coddington, D. Herman, S. A. Diddams, and N. R. Newbury, “High-coherence mid-infrared dual-comb spectroscopy spanning 2.6 to 5.2 μm,” Nat. Photonics 12(4), 202–208 (2018).
    [Crossref]
  31. D. Burghoff, Y. Yang, and Q. Hu, “Computational multiheterodyne spectroscopy,” Sci. Adv. 2(11), e1601227 (2016).
    [Crossref] [PubMed]
  32. N. B. Hébert, J. Genest, J.-D. Deschênes, H. Bergeron, G. Y. Chen, C. Khurmi, and D. G. Lancaster, “Self-corrected chip-based dual-comb spectrometer,” Opt. Express 25(7), 8168–8179 (2017).
    [Crossref] [PubMed]
  33. G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Haensch, and N. Picque, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10(1), 27–37 (2016).
    [Crossref]
  34. V. Durán, P. A. Andrekson, and V. Torres-Company, “Electro-optic dual-comb interferometry over 40 nm bandwidth,” Opt. Lett. 41(18), 4190–4193 (2016).
    [Crossref] [PubMed]
  35. I. Znakovskaya, E. Fill, N. Forget, P. Tournois, M. Seidel, O. Pronin, F. Krausz, and A. Apolonski, “Dual frequency comb spectroscopy with a single laser,” Opt. Lett. 39(19), 5471–5474 (2014).
    [Crossref] [PubMed]
  36. T. Ideguchi, T. Nakamura, Y. Kobayashi, and K. Goda, “Kerr-lens mode-locked bidirectional dual-comb ring laser for broadband dual-comb spectroscopy,” Optica 3(7), 748–753 (2016).
    [Crossref]
  37. X. Zhao, G. Hu, B. Zhao, C. Li, Y. Pan, Y. Liu, T. Yasui, and Z. Zheng, “Picometer-resolution dual-comb spectroscopy with a free-running fiber laser,” Opt. Express 24(19), 21833–21845 (2016).
    [Crossref] [PubMed]
  38. N. Von Bandel, M. Myara, M. Sellahi, T. Souici, R. Dardaillon, and P. Signoret, “Time-dependent laser linewidth: beat-note digital acquisition and numerical analysis,” Opt. Express 24(24), 27961–27978 (2016).
    [Crossref] [PubMed]
  39. M. Cassinerio, A. Gambetta, N. Coluccelli, P. Laporta, and G. Galzerano, “Absolute dual-comb spectroscopy at 1.55 μm by free-running Er:fiber lasers,” Appl. Phys. Lett. 104(23), 233–262 (2014).
    [Crossref]

2018 (5)

2017 (6)

2016 (9)

I. Coddington, N. Newbury, and W. Swann, “Dual-comb spectroscopy,” Optica 3(4), 414–426 (2016).
[Crossref]

A. Asahara, A. Nishiyama, S. Yoshida, K. I. Kondo, Y. Nakajima, and K. Minoshima, “Dual-comb spectroscopy for rapid characterization of complex optical properties of solids,” Opt. Lett. 41(21), 4971–4974 (2016).
[Crossref] [PubMed]

A. Nishiyama, S. Yoshida, Y. Nakajima, H. Sasada, K. Nakagawa, A. Onae, and K. Minoshima, “Doppler-free dual-comb spectroscopy of Rb using optical-optical double resonance technique,” Opt. Express 24(22), 25894–25904 (2016).
[Crossref] [PubMed]

G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Haensch, and N. Picque, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10(1), 27–37 (2016).
[Crossref]

V. Durán, P. A. Andrekson, and V. Torres-Company, “Electro-optic dual-comb interferometry over 40 nm bandwidth,” Opt. Lett. 41(18), 4190–4193 (2016).
[Crossref] [PubMed]

T. Ideguchi, T. Nakamura, Y. Kobayashi, and K. Goda, “Kerr-lens mode-locked bidirectional dual-comb ring laser for broadband dual-comb spectroscopy,” Optica 3(7), 748–753 (2016).
[Crossref]

X. Zhao, G. Hu, B. Zhao, C. Li, Y. Pan, Y. Liu, T. Yasui, and Z. Zheng, “Picometer-resolution dual-comb spectroscopy with a free-running fiber laser,” Opt. Express 24(19), 21833–21845 (2016).
[Crossref] [PubMed]

N. Von Bandel, M. Myara, M. Sellahi, T. Souici, R. Dardaillon, and P. Signoret, “Time-dependent laser linewidth: beat-note digital acquisition and numerical analysis,” Opt. Express 24(24), 27961–27978 (2016).
[Crossref] [PubMed]

D. Burghoff, Y. Yang, and Q. Hu, “Computational multiheterodyne spectroscopy,” Sci. Adv. 2(11), e1601227 (2016).
[Crossref] [PubMed]

2014 (4)

M. Cassinerio, A. Gambetta, N. Coluccelli, P. Laporta, and G. Galzerano, “Absolute dual-comb spectroscopy at 1.55 μm by free-running Er:fiber lasers,” Appl. Phys. Lett. 104(23), 233–262 (2014).
[Crossref]

I. Znakovskaya, E. Fill, N. Forget, P. Tournois, M. Seidel, O. Pronin, F. Krausz, and A. Apolonski, “Dual frequency comb spectroscopy with a single laser,” Opt. Lett. 39(19), 5471–5474 (2014).
[Crossref] [PubMed]

G. Wu, Q. Zhou, L. Shen, K. Ni, X. Zeng, and Y. Li, “Experimental optimization of the repetition rate difference in dual-comb ranging system,” Appl. Phys. Express 7(10), 106602 (2014).
[Crossref]

T. Ideguchi, A. Poisson, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Adaptive real-time dual-comb spectroscopy,” Nat. Commun. 5(1), 3375–3382 (2014).
[Crossref] [PubMed]

2013 (2)

2012 (2)

2011 (2)

N. R. Newbury, “Searching for applications with a fine-tooth comb,” Nat. Photonics 5(4), 186–188 (2011).
[Crossref]

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, “Spectroscopy of the methane nu(3) band with an accurate midinfrared coherent dual-comb spectrometer,” Phys. Rev. A 84(6), 14717–14719 (2011).
[Crossref]

2010 (3)

2009 (2)

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent linear optical sampling at 15 bits of resolution,” Opt. Lett. 34(14), 2153–2155 (2009).
[Crossref] [PubMed]

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

2008 (1)

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[Crossref] [PubMed]

2004 (1)

2002 (1)

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[Crossref] [PubMed]

Alden, C. B.

Andrekson, P. A.

Apolonski, A.

Asahara, A.

Baumann, E.

S. Coburn, C. B. Alden, R. Wright, K. Cossel, E. Baumann, G.-W. Truong, F. Giorgetta, C. Sweeney, N. R. Newbury, K. Prasad, I. Coddington, and G. B. Rieker, “Regional trace-gas source attribution using a field-deployed dual frequency comb spectrometer,” Optica 5(4), 320–327 (2018).
[Crossref]

G. Ycas, F. R. Giorgetta, E. Baumann, I. Coddington, D. Herman, S. A. Diddams, and N. R. Newbury, “High-coherence mid-infrared dual-comb spectroscopy spanning 2.6 to 5.2 μm,” Nat. Photonics 12(4), 202–208 (2018).
[Crossref]

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, “Spectroscopy of the methane nu(3) band with an accurate midinfrared coherent dual-comb spectrometer,” Phys. Rev. A 84(6), 14717–14719 (2011).
[Crossref]

Bendahmane, A.

G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Haensch, and N. Picque, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10(1), 27–37 (2016).
[Crossref]

Bergeron, H.

Boudreau, S.

Burghoff, D.

D. Burghoff, Y. Yang, and Q. Hu, “Computational multiheterodyne spectroscopy,” Sci. Adv. 2(11), e1601227 (2016).
[Crossref] [PubMed]

Cassinerio, M.

M. Cassinerio, A. Gambetta, N. Coluccelli, P. Laporta, and G. Galzerano, “Absolute dual-comb spectroscopy at 1.55 μm by free-running Er:fiber lasers,” Appl. Phys. Lett. 104(23), 233–262 (2014).
[Crossref]

Cermak, M.

Chen, G. Y.

Coburn, S.

Coddington, I.

S. Coburn, C. B. Alden, R. Wright, K. Cossel, E. Baumann, G.-W. Truong, F. Giorgetta, C. Sweeney, N. R. Newbury, K. Prasad, I. Coddington, and G. B. Rieker, “Regional trace-gas source attribution using a field-deployed dual frequency comb spectrometer,” Optica 5(4), 320–327 (2018).
[Crossref]

G. Ycas, F. R. Giorgetta, E. Baumann, I. Coddington, D. Herman, S. A. Diddams, and N. R. Newbury, “High-coherence mid-infrared dual-comb spectroscopy spanning 2.6 to 5.2 μm,” Nat. Photonics 12(4), 202–208 (2018).
[Crossref]

I. Coddington, N. Newbury, and W. Swann, “Dual-comb spectroscopy,” Optica 3(4), 414–426 (2016).
[Crossref]

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, “Spectroscopy of the methane nu(3) band with an accurate midinfrared coherent dual-comb spectrometer,” Phys. Rev. A 84(6), 14717–14719 (2011).
[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent dual-comb spectroscopy at high signal-to-noise ratio,” Phys. Rev. A 82(4), 3535–3537 (2010).
[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, “Time-domain spectroscopy of molecular free-induction decay in the infrared,” Opt. Lett. 35(9), 1395–1397 (2010).
[Crossref] [PubMed]

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent linear optical sampling at 15 bits of resolution,” Opt. Lett. 34(14), 2153–2155 (2009).
[Crossref] [PubMed]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[Crossref] [PubMed]

Coddington, I. R.

Coluccelli, N.

M. Cassinerio, A. Gambetta, N. Coluccelli, P. Laporta, and G. Galzerano, “Absolute dual-comb spectroscopy at 1.55 μm by free-running Er:fiber lasers,” Appl. Phys. Lett. 104(23), 233–262 (2014).
[Crossref]

Cossel, K.

Cossel, K. C.

Dardaillon, R.

Deschênes, J.-D.

Diddams, S. A.

G. Ycas, F. R. Giorgetta, E. Baumann, I. Coddington, D. Herman, S. A. Diddams, and N. R. Newbury, “High-coherence mid-infrared dual-comb spectroscopy spanning 2.6 to 5.2 μm,” Nat. Photonics 12(4), 202–208 (2018).
[Crossref]

Durán, V.

Fill, E.

Forget, N.

Galzerano, G.

M. Cassinerio, A. Gambetta, N. Coluccelli, P. Laporta, and G. Galzerano, “Absolute dual-comb spectroscopy at 1.55 μm by free-running Er:fiber lasers,” Appl. Phys. Lett. 104(23), 233–262 (2014).
[Crossref]

Gambetta, A.

M. Cassinerio, A. Gambetta, N. Coluccelli, P. Laporta, and G. Galzerano, “Absolute dual-comb spectroscopy at 1.55 μm by free-running Er:fiber lasers,” Appl. Phys. Lett. 104(23), 233–262 (2014).
[Crossref]

Genest, J.

Giaccarri, P.

Giorgetta, F.

Giorgetta, F. R.

G. Ycas, F. R. Giorgetta, E. Baumann, I. Coddington, D. Herman, S. A. Diddams, and N. R. Newbury, “High-coherence mid-infrared dual-comb spectroscopy spanning 2.6 to 5.2 μm,” Nat. Photonics 12(4), 202–208 (2018).
[Crossref]

K. C. Cossel, E. M. Waxman, F. R. Giorgetta, M. Cermak, I. R. Coddington, D. Hesselius, S. Ruben, W. C. Swann, G.-W. Truong, G. B. Rieker, and N. R. Newbury, “Open-path dual comb spectroscopy to an airborne retroreflector,” Optica 4(7), 724–728 (2017).
[Crossref] [PubMed]

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, “Spectroscopy of the methane nu(3) band with an accurate midinfrared coherent dual-comb spectrometer,” Phys. Rev. A 84(6), 14717–14719 (2011).
[Crossref]

Goda, K.

Gohle, C.

Guelachvili, G.

Haensch, T. W.

G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Haensch, and N. Picque, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10(1), 27–37 (2016).
[Crossref]

Hänsch, T. W.

S. A. Meek, A. Hipke, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Doppler-free Fourier transform spectroscopy,” Opt. Lett. 43(1), 162–165 (2018).
[Crossref] [PubMed]

T. Ideguchi, A. Poisson, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Adaptive real-time dual-comb spectroscopy,” Nat. Commun. 5(1), 3375–3382 (2014).
[Crossref] [PubMed]

T. Ideguchi, A. Poisson, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Adaptive dual-comb spectroscopy in the green region,” Opt. Lett. 37(23), 4847–4849 (2012).
[Crossref] [PubMed]

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[Crossref] [PubMed]

Hase, E.

T. Minamikawa, Y.-D. Hsieh, K. Shibuya, E. Hase, Y. Kaneoka, S. Okubo, H. Inaba, Y. Mizutani, H. Yamamoto, T. Iwata, and T. Yasui, “Dual-comb spectroscopic ellipsometry,” Nat. Commun. 8(1), 610–617 (2017).
[Crossref] [PubMed]

Hébert, N. B.

Herman, D.

G. Ycas, F. R. Giorgetta, E. Baumann, I. Coddington, D. Herman, S. A. Diddams, and N. R. Newbury, “High-coherence mid-infrared dual-comb spectroscopy spanning 2.6 to 5.2 μm,” Nat. Photonics 12(4), 202–208 (2018).
[Crossref]

Hesselius, D.

Hipke, A.

Holzwarth, R.

Hovhannisyan, T.

G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Haensch, and N. Picque, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10(1), 27–37 (2016).
[Crossref]

Hsieh, Y.-D.

T. Minamikawa, Y.-D. Hsieh, K. Shibuya, E. Hase, Y. Kaneoka, S. Okubo, H. Inaba, Y. Mizutani, H. Yamamoto, T. Iwata, and T. Yasui, “Dual-comb spectroscopic ellipsometry,” Nat. Commun. 8(1), 610–617 (2017).
[Crossref] [PubMed]

Hu, G.

Hu, Q.

D. Burghoff, Y. Yang, and Q. Hu, “Computational multiheterodyne spectroscopy,” Sci. Adv. 2(11), e1601227 (2016).
[Crossref] [PubMed]

Ideguchi, T.

Inaba, H.

T. Minamikawa, Y.-D. Hsieh, K. Shibuya, E. Hase, Y. Kaneoka, S. Okubo, H. Inaba, Y. Mizutani, H. Yamamoto, T. Iwata, and T. Yasui, “Dual-comb spectroscopic ellipsometry,” Nat. Commun. 8(1), 610–617 (2017).
[Crossref] [PubMed]

Iwata, T.

T. Minamikawa, Y.-D. Hsieh, K. Shibuya, E. Hase, Y. Kaneoka, S. Okubo, H. Inaba, Y. Mizutani, H. Yamamoto, T. Iwata, and T. Yasui, “Dual-comb spectroscopic ellipsometry,” Nat. Commun. 8(1), 610–617 (2017).
[Crossref] [PubMed]

K. Shibuya, T. Minamikawa, Y. Mizutani, H. Yamamoto, K. Minoshima, T. Yasui, and T. Iwata, “Scan-less hyperspectral dual-comb single-pixel-imaging in both amplitude and phase,” Opt. Express 25(18), 21947–21957 (2017).
[Crossref] [PubMed]

Kaneoka, Y.

T. Minamikawa, Y.-D. Hsieh, K. Shibuya, E. Hase, Y. Kaneoka, S. Okubo, H. Inaba, Y. Mizutani, H. Yamamoto, T. Iwata, and T. Yasui, “Dual-comb spectroscopic ellipsometry,” Nat. Commun. 8(1), 610–617 (2017).
[Crossref] [PubMed]

Keilmann, F.

Keller, U.

S. M. Link, D. J. H. C. Maas, D. Waldburger, and U. Keller, “Dual-comb spectroscopy of water vapor with a free-running semiconductor disk laser,” Science 356(6343), 1164–1168 (2017).
[Crossref] [PubMed]

Khurmi, C.

Kobayashi, Y.

Kondo, K. I.

Krausz, F.

Kuse, N.

Lancaster, D. G.

Laporta, P.

M. Cassinerio, A. Gambetta, N. Coluccelli, P. Laporta, and G. Galzerano, “Absolute dual-comb spectroscopy at 1.55 μm by free-running Er:fiber lasers,” Appl. Phys. Lett. 104(23), 233–262 (2014).
[Crossref]

Levasseur, S.

Li, C.

Li, Y.

G. Wu, Q. Zhou, L. Shen, K. Ni, X. Zeng, and Y. Li, “Experimental optimization of the repetition rate difference in dual-comb ranging system,” Appl. Phys. Express 7(10), 106602 (2014).
[Crossref]

Link, S. M.

S. M. Link, D. J. H. C. Maas, D. Waldburger, and U. Keller, “Dual-comb spectroscopy of water vapor with a free-running semiconductor disk laser,” Science 356(6343), 1164–1168 (2017).
[Crossref] [PubMed]

Liu, Y.

Maas, D. J. H. C.

S. M. Link, D. J. H. C. Maas, D. Waldburger, and U. Keller, “Dual-comb spectroscopy of water vapor with a free-running semiconductor disk laser,” Science 356(6343), 1164–1168 (2017).
[Crossref] [PubMed]

Meek, S. A.

Millot, G.

G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Haensch, and N. Picque, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10(1), 27–37 (2016).
[Crossref]

Minamikawa, T.

T. Minamikawa, Y.-D. Hsieh, K. Shibuya, E. Hase, Y. Kaneoka, S. Okubo, H. Inaba, Y. Mizutani, H. Yamamoto, T. Iwata, and T. Yasui, “Dual-comb spectroscopic ellipsometry,” Nat. Commun. 8(1), 610–617 (2017).
[Crossref] [PubMed]

K. Shibuya, T. Minamikawa, Y. Mizutani, H. Yamamoto, K. Minoshima, T. Yasui, and T. Iwata, “Scan-less hyperspectral dual-comb single-pixel-imaging in both amplitude and phase,” Opt. Express 25(18), 21947–21957 (2017).
[Crossref] [PubMed]

Minoshima, K.

Mizutani, Y.

T. Minamikawa, Y.-D. Hsieh, K. Shibuya, E. Hase, Y. Kaneoka, S. Okubo, H. Inaba, Y. Mizutani, H. Yamamoto, T. Iwata, and T. Yasui, “Dual-comb spectroscopic ellipsometry,” Nat. Commun. 8(1), 610–617 (2017).
[Crossref] [PubMed]

K. Shibuya, T. Minamikawa, Y. Mizutani, H. Yamamoto, K. Minoshima, T. Yasui, and T. Iwata, “Scan-less hyperspectral dual-comb single-pixel-imaging in both amplitude and phase,” Opt. Express 25(18), 21947–21957 (2017).
[Crossref] [PubMed]

Myara, M.

Nakagawa, K.

Nakajima, Y.

Nakamura, T.

Nenadovic, L.

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

Newbury, N.

Newbury, N. R.

S. Coburn, C. B. Alden, R. Wright, K. Cossel, E. Baumann, G.-W. Truong, F. Giorgetta, C. Sweeney, N. R. Newbury, K. Prasad, I. Coddington, and G. B. Rieker, “Regional trace-gas source attribution using a field-deployed dual frequency comb spectrometer,” Optica 5(4), 320–327 (2018).
[Crossref]

G. Ycas, F. R. Giorgetta, E. Baumann, I. Coddington, D. Herman, S. A. Diddams, and N. R. Newbury, “High-coherence mid-infrared dual-comb spectroscopy spanning 2.6 to 5.2 μm,” Nat. Photonics 12(4), 202–208 (2018).
[Crossref]

K. C. Cossel, E. M. Waxman, F. R. Giorgetta, M. Cermak, I. R. Coddington, D. Hesselius, S. Ruben, W. C. Swann, G.-W. Truong, G. B. Rieker, and N. R. Newbury, “Open-path dual comb spectroscopy to an airborne retroreflector,” Optica 4(7), 724–728 (2017).
[Crossref] [PubMed]

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, “Spectroscopy of the methane nu(3) band with an accurate midinfrared coherent dual-comb spectrometer,” Phys. Rev. A 84(6), 14717–14719 (2011).
[Crossref]

N. R. Newbury, “Searching for applications with a fine-tooth comb,” Nat. Photonics 5(4), 186–188 (2011).
[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent dual-comb spectroscopy at high signal-to-noise ratio,” Phys. Rev. A 82(4), 3535–3537 (2010).
[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, “Time-domain spectroscopy of molecular free-induction decay in the infrared,” Opt. Lett. 35(9), 1395–1397 (2010).
[Crossref] [PubMed]

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent linear optical sampling at 15 bits of resolution,” Opt. Lett. 34(14), 2153–2155 (2009).
[Crossref] [PubMed]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[Crossref] [PubMed]

Ni, K.

Z. Zhu, G. Xu, K. Ni, Q. Zhou, and G. Wu, “Synthetic-wavelength-based dual-comb interferometry for fast and precise absolute distance measurement,” Opt. Express 26(5), 5747–5757 (2018).
[Crossref] [PubMed]

Z. Zhu, G. Xu, K. Ni, Q. Zhou, and G. Wu, “Improving the accuracy of a dual-comb interferometer by suppressing the relative linewidth,” Meas. Sci. Technol. 29(4), 045007 (2018).
[Crossref]

G. Wu, Q. Zhou, L. Shen, K. Ni, X. Zeng, and Y. Li, “Experimental optimization of the repetition rate difference in dual-comb ranging system,” Appl. Phys. Express 7(10), 106602 (2014).
[Crossref]

Nishiyama, A.

Okubo, S.

T. Minamikawa, Y.-D. Hsieh, K. Shibuya, E. Hase, Y. Kaneoka, S. Okubo, H. Inaba, Y. Mizutani, H. Yamamoto, T. Iwata, and T. Yasui, “Dual-comb spectroscopic ellipsometry,” Nat. Commun. 8(1), 610–617 (2017).
[Crossref] [PubMed]

Onae, A.

Ozawa, A.

Pan, Y.

Perilla, C.

Picque, N.

G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Haensch, and N. Picque, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10(1), 27–37 (2016).
[Crossref]

Picqué, N.

Pitois, S.

G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Haensch, and N. Picque, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10(1), 27–37 (2016).
[Crossref]

Poisson, A.

T. Ideguchi, A. Poisson, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Adaptive real-time dual-comb spectroscopy,” Nat. Commun. 5(1), 3375–3382 (2014).
[Crossref] [PubMed]

T. Ideguchi, A. Poisson, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Adaptive dual-comb spectroscopy in the green region,” Opt. Lett. 37(23), 4847–4849 (2012).
[Crossref] [PubMed]

Potvin, S.

Prasad, K.

Pronin, O.

Rieker, G. B.

Roy, J.

Roy, S.

Ruben, S.

Sasada, H.

Seidel, M.

Sellahi, M.

Shen, L.

G. Wu, Q. Zhou, L. Shen, K. Ni, X. Zeng, and Y. Li, “Experimental optimization of the repetition rate difference in dual-comb ranging system,” Appl. Phys. Express 7(10), 106602 (2014).
[Crossref]

Shibuya, K.

T. Minamikawa, Y.-D. Hsieh, K. Shibuya, E. Hase, Y. Kaneoka, S. Okubo, H. Inaba, Y. Mizutani, H. Yamamoto, T. Iwata, and T. Yasui, “Dual-comb spectroscopic ellipsometry,” Nat. Commun. 8(1), 610–617 (2017).
[Crossref] [PubMed]

K. Shibuya, T. Minamikawa, Y. Mizutani, H. Yamamoto, K. Minoshima, T. Yasui, and T. Iwata, “Scan-less hyperspectral dual-comb single-pixel-imaging in both amplitude and phase,” Opt. Express 25(18), 21947–21957 (2017).
[Crossref] [PubMed]

Signoret, P.

Souici, T.

Swann, W.

Swann, W. C.

K. C. Cossel, E. M. Waxman, F. R. Giorgetta, M. Cermak, I. R. Coddington, D. Hesselius, S. Ruben, W. C. Swann, G.-W. Truong, G. B. Rieker, and N. R. Newbury, “Open-path dual comb spectroscopy to an airborne retroreflector,” Optica 4(7), 724–728 (2017).
[Crossref] [PubMed]

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, “Spectroscopy of the methane nu(3) band with an accurate midinfrared coherent dual-comb spectrometer,” Phys. Rev. A 84(6), 14717–14719 (2011).
[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent dual-comb spectroscopy at high signal-to-noise ratio,” Phys. Rev. A 82(4), 3535–3537 (2010).
[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, “Time-domain spectroscopy of molecular free-induction decay in the infrared,” Opt. Lett. 35(9), 1395–1397 (2010).
[Crossref] [PubMed]

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent linear optical sampling at 15 bits of resolution,” Opt. Lett. 34(14), 2153–2155 (2009).
[Crossref] [PubMed]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[Crossref] [PubMed]

Sweeney, C.

Teleanu, E. L.

Torres-Company, V.

Tournois, P.

Truong, G.-W.

Udem, T.

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[Crossref] [PubMed]

Von Bandel, N.

Waldburger, D.

S. M. Link, D. J. H. C. Maas, D. Waldburger, and U. Keller, “Dual-comb spectroscopy of water vapor with a free-running semiconductor disk laser,” Science 356(6343), 1164–1168 (2017).
[Crossref] [PubMed]

Waxman, E. M.

Wright, R.

Wu, G.

Z. Zhu, G. Xu, K. Ni, Q. Zhou, and G. Wu, “Improving the accuracy of a dual-comb interferometer by suppressing the relative linewidth,” Meas. Sci. Technol. 29(4), 045007 (2018).
[Crossref]

Z. Zhu, G. Xu, K. Ni, Q. Zhou, and G. Wu, “Synthetic-wavelength-based dual-comb interferometry for fast and precise absolute distance measurement,” Opt. Express 26(5), 5747–5757 (2018).
[Crossref] [PubMed]

G. Wu, Q. Zhou, L. Shen, K. Ni, X. Zeng, and Y. Li, “Experimental optimization of the repetition rate difference in dual-comb ranging system,” Appl. Phys. Express 7(10), 106602 (2014).
[Crossref]

Xu, G.

Z. Zhu, G. Xu, K. Ni, Q. Zhou, and G. Wu, “Synthetic-wavelength-based dual-comb interferometry for fast and precise absolute distance measurement,” Opt. Express 26(5), 5747–5757 (2018).
[Crossref] [PubMed]

Z. Zhu, G. Xu, K. Ni, Q. Zhou, and G. Wu, “Improving the accuracy of a dual-comb interferometer by suppressing the relative linewidth,” Meas. Sci. Technol. 29(4), 045007 (2018).
[Crossref]

Yamamoto, H.

K. Shibuya, T. Minamikawa, Y. Mizutani, H. Yamamoto, K. Minoshima, T. Yasui, and T. Iwata, “Scan-less hyperspectral dual-comb single-pixel-imaging in both amplitude and phase,” Opt. Express 25(18), 21947–21957 (2017).
[Crossref] [PubMed]

T. Minamikawa, Y.-D. Hsieh, K. Shibuya, E. Hase, Y. Kaneoka, S. Okubo, H. Inaba, Y. Mizutani, H. Yamamoto, T. Iwata, and T. Yasui, “Dual-comb spectroscopic ellipsometry,” Nat. Commun. 8(1), 610–617 (2017).
[Crossref] [PubMed]

Yan, M.

G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Haensch, and N. Picque, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10(1), 27–37 (2016).
[Crossref]

Yang, Y.

D. Burghoff, Y. Yang, and Q. Hu, “Computational multiheterodyne spectroscopy,” Sci. Adv. 2(11), e1601227 (2016).
[Crossref] [PubMed]

Yasui, T.

Ycas, G.

G. Ycas, F. R. Giorgetta, E. Baumann, I. Coddington, D. Herman, S. A. Diddams, and N. R. Newbury, “High-coherence mid-infrared dual-comb spectroscopy spanning 2.6 to 5.2 μm,” Nat. Photonics 12(4), 202–208 (2018).
[Crossref]

Yoshida, S.

Zeng, X.

G. Wu, Q. Zhou, L. Shen, K. Ni, X. Zeng, and Y. Li, “Experimental optimization of the repetition rate difference in dual-comb ranging system,” Appl. Phys. Express 7(10), 106602 (2014).
[Crossref]

Zhao, B.

Zhao, X.

Zheng, Z.

Zhou, Q.

Z. Zhu, G. Xu, K. Ni, Q. Zhou, and G. Wu, “Synthetic-wavelength-based dual-comb interferometry for fast and precise absolute distance measurement,” Opt. Express 26(5), 5747–5757 (2018).
[Crossref] [PubMed]

Z. Zhu, G. Xu, K. Ni, Q. Zhou, and G. Wu, “Improving the accuracy of a dual-comb interferometer by suppressing the relative linewidth,” Meas. Sci. Technol. 29(4), 045007 (2018).
[Crossref]

G. Wu, Q. Zhou, L. Shen, K. Ni, X. Zeng, and Y. Li, “Experimental optimization of the repetition rate difference in dual-comb ranging system,” Appl. Phys. Express 7(10), 106602 (2014).
[Crossref]

Zhu, Z.

Z. Zhu, G. Xu, K. Ni, Q. Zhou, and G. Wu, “Improving the accuracy of a dual-comb interferometer by suppressing the relative linewidth,” Meas. Sci. Technol. 29(4), 045007 (2018).
[Crossref]

Z. Zhu, G. Xu, K. Ni, Q. Zhou, and G. Wu, “Synthetic-wavelength-based dual-comb interferometry for fast and precise absolute distance measurement,” Opt. Express 26(5), 5747–5757 (2018).
[Crossref] [PubMed]

Znakovskaya, I.

Zolot, A. M.

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, “Spectroscopy of the methane nu(3) band with an accurate midinfrared coherent dual-comb spectrometer,” Phys. Rev. A 84(6), 14717–14719 (2011).
[Crossref]

Appl. Phys. Express (1)

G. Wu, Q. Zhou, L. Shen, K. Ni, X. Zeng, and Y. Li, “Experimental optimization of the repetition rate difference in dual-comb ranging system,” Appl. Phys. Express 7(10), 106602 (2014).
[Crossref]

Appl. Phys. Lett. (1)

M. Cassinerio, A. Gambetta, N. Coluccelli, P. Laporta, and G. Galzerano, “Absolute dual-comb spectroscopy at 1.55 μm by free-running Er:fiber lasers,” Appl. Phys. Lett. 104(23), 233–262 (2014).
[Crossref]

Meas. Sci. Technol. (1)

Z. Zhu, G. Xu, K. Ni, Q. Zhou, and G. Wu, “Improving the accuracy of a dual-comb interferometer by suppressing the relative linewidth,” Meas. Sci. Technol. 29(4), 045007 (2018).
[Crossref]

Nat. Commun. (2)

T. Ideguchi, A. Poisson, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Adaptive real-time dual-comb spectroscopy,” Nat. Commun. 5(1), 3375–3382 (2014).
[Crossref] [PubMed]

T. Minamikawa, Y.-D. Hsieh, K. Shibuya, E. Hase, Y. Kaneoka, S. Okubo, H. Inaba, Y. Mizutani, H. Yamamoto, T. Iwata, and T. Yasui, “Dual-comb spectroscopic ellipsometry,” Nat. Commun. 8(1), 610–617 (2017).
[Crossref] [PubMed]

Nat. Photonics (4)

G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Haensch, and N. Picque, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10(1), 27–37 (2016).
[Crossref]

G. Ycas, F. R. Giorgetta, E. Baumann, I. Coddington, D. Herman, S. A. Diddams, and N. R. Newbury, “High-coherence mid-infrared dual-comb spectroscopy spanning 2.6 to 5.2 μm,” Nat. Photonics 12(4), 202–208 (2018).
[Crossref]

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

N. R. Newbury, “Searching for applications with a fine-tooth comb,” Nat. Photonics 5(4), 186–188 (2011).
[Crossref]

Nature (1)

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[Crossref] [PubMed]

Opt. Express (11)

J.-D. Deschênes, P. Giaccarri, and J. Genest, “Optical referencing technique with CW lasers as intermediate oscillators for continuous full delay range frequency comb interferometry,” Opt. Express 18(22), 23358–23370 (2010).
[Crossref] [PubMed]

J. Roy, J.-D. Deschênes, S. Potvin, and J. Genest, “Continuous real-time correction and averaging for frequency comb interferometry,” Opt. Express 20(20), 21932–21939 (2012).
[Crossref] [PubMed]

S. Boudreau, S. Levasseur, C. Perilla, S. Roy, and J. Genest, “Chemical detection with hyperspectral lidar using dual frequency combs,” Opt. Express 21(6), 7411–7418 (2013).
[Crossref] [PubMed]

N. Kuse, A. Ozawa, and Y. Kobayashi, “Static FBG strain sensor with high resolution and large dynamic range by dual-comb spectroscopy,” Opt. Express 21(9), 11141–11149 (2013).
[Crossref] [PubMed]

A. Nishiyama, S. Yoshida, Y. Nakajima, H. Sasada, K. Nakagawa, A. Onae, and K. Minoshima, “Doppler-free dual-comb spectroscopy of Rb using optical-optical double resonance technique,” Opt. Express 24(22), 25894–25904 (2016).
[Crossref] [PubMed]

N. Von Bandel, M. Myara, M. Sellahi, T. Souici, R. Dardaillon, and P. Signoret, “Time-dependent laser linewidth: beat-note digital acquisition and numerical analysis,” Opt. Express 24(24), 27961–27978 (2016).
[Crossref] [PubMed]

N. B. Hébert, J. Genest, J.-D. Deschênes, H. Bergeron, G. Y. Chen, C. Khurmi, and D. G. Lancaster, “Self-corrected chip-based dual-comb spectrometer,” Opt. Express 25(7), 8168–8179 (2017).
[Crossref] [PubMed]

X. Zhao, G. Hu, B. Zhao, C. Li, Y. Pan, Y. Liu, T. Yasui, and Z. Zheng, “Picometer-resolution dual-comb spectroscopy with a free-running fiber laser,” Opt. Express 24(19), 21833–21845 (2016).
[Crossref] [PubMed]

E. L. Teleanu, V. Durán, and V. Torres-Company, “Electro-optic dual-comb interferometer for high-speed vibrometry,” Opt. Express 25(14), 16427–16436 (2017).
[Crossref] [PubMed]

K. Shibuya, T. Minamikawa, Y. Mizutani, H. Yamamoto, K. Minoshima, T. Yasui, and T. Iwata, “Scan-less hyperspectral dual-comb single-pixel-imaging in both amplitude and phase,” Opt. Express 25(18), 21947–21957 (2017).
[Crossref] [PubMed]

Z. Zhu, G. Xu, K. Ni, Q. Zhou, and G. Wu, “Synthetic-wavelength-based dual-comb interferometry for fast and precise absolute distance measurement,” Opt. Express 26(5), 5747–5757 (2018).
[Crossref] [PubMed]

Opt. Lett. (8)

V. Durán, P. A. Andrekson, and V. Torres-Company, “Electro-optic dual-comb interferometry over 40 nm bandwidth,” Opt. Lett. 41(18), 4190–4193 (2016).
[Crossref] [PubMed]

S. A. Meek, A. Hipke, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Doppler-free Fourier transform spectroscopy,” Opt. Lett. 43(1), 162–165 (2018).
[Crossref] [PubMed]

A. Asahara, A. Nishiyama, S. Yoshida, K. I. Kondo, Y. Nakajima, and K. Minoshima, “Dual-comb spectroscopy for rapid characterization of complex optical properties of solids,” Opt. Lett. 41(21), 4971–4974 (2016).
[Crossref] [PubMed]

I. Znakovskaya, E. Fill, N. Forget, P. Tournois, M. Seidel, O. Pronin, F. Krausz, and A. Apolonski, “Dual frequency comb spectroscopy with a single laser,” Opt. Lett. 39(19), 5471–5474 (2014).
[Crossref] [PubMed]

T. Ideguchi, A. Poisson, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Adaptive dual-comb spectroscopy in the green region,” Opt. Lett. 37(23), 4847–4849 (2012).
[Crossref] [PubMed]

F. Keilmann, C. Gohle, and R. Holzwarth, “Time-domain mid-infrared frequency-comb spectrometer,” Opt. Lett. 29(13), 1542–1544 (2004).
[Crossref] [PubMed]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent linear optical sampling at 15 bits of resolution,” Opt. Lett. 34(14), 2153–2155 (2009).
[Crossref] [PubMed]

I. Coddington, W. C. Swann, and N. R. Newbury, “Time-domain spectroscopy of molecular free-induction decay in the infrared,” Opt. Lett. 35(9), 1395–1397 (2010).
[Crossref] [PubMed]

Optica (4)

Phys. Rev. A (2)

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent dual-comb spectroscopy at high signal-to-noise ratio,” Phys. Rev. A 82(4), 3535–3537 (2010).
[Crossref]

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, “Spectroscopy of the methane nu(3) band with an accurate midinfrared coherent dual-comb spectrometer,” Phys. Rev. A 84(6), 14717–14719 (2011).
[Crossref]

Phys. Rev. Lett. (1)

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[Crossref] [PubMed]

Sci. Adv. (1)

D. Burghoff, Y. Yang, and Q. Hu, “Computational multiheterodyne spectroscopy,” Sci. Adv. 2(11), e1601227 (2016).
[Crossref] [PubMed]

Science (1)

S. M. Link, D. J. H. C. Maas, D. Waldburger, and U. Keller, “Dual-comb spectroscopy of water vapor with a free-running semiconductor disk laser,” Science 356(6343), 1164–1168 (2017).
[Crossref] [PubMed]

Other (1)

Z. Chen, M. Yan, T. W. Hänsch, and N. Picqué, “A phase-stable dual-comb interferometer,” arXiv:1705.04214 (2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) The experimental setup, an optical filter with 1550 nm center wavelength and 3 nm bandwidth. Two erbium-doped fiber combs (Comb 1 and Comb 2) were fully stabilized to RF standards; fceo1 = fceo2 = 10.56MHz, frep1 = 56.090 MHz, frep2 = 56.092 MHz. The clock rate of ADC is equal to frep2 (b) The generation principle of two relative beat signals. Two CW lasers own ~kHz linewidth with respective frequencies of fCW1 = 191.5003543THz and fCW2 = 193.3419708THz measured by a wavemeter. The beat signal frequency between the two combs and two CW lasers are fCW1_1 = fCW1f1, fCW1_3 = fCW1f3, fCW2_2 = fCW2f2, and fCW2_4 = fCW2f4. The frequency of the relative beat signals between the two combs are fb1 = fCW1_1fCW1_3, and fb2 = fCW2_2fCW2_4. (c) The frequency-domain principle of the dual-comb system in the multiheterodyne version. (d) IGMs are described as the periodic envelopes multiplied by the carrier wave cos(2πfct) in the time domain.
Fig. 2
Fig. 2 Phase fluctuations. Curve ‘i’ is the phase noise of Beat 1 δφb1(t); curve ‘ii’ is computed from the phase noise of Beat 2 δφb2(t) multiplied by factor fCW1 /fCW2. Figures 2(a)-2(d) show the phase fluctuations at different time scales and regions. About 0.2s-length data are shown in Fig. 2(a); only 20µs-length data are shown in Figs. 2(b)-2(d).
Fig. 3
Fig. 3 (a) The spectrum of Beat 1 with ~0.4MHz linewidth. (b) The spectrum of compensated Beat 1 with compensating phase is exp[-i δφb2(t)]. (c) The spectrum of compensated Beat 1 with compensating phase is exp[-i δφb2(t) fCW1 /fCW2]. RBW: resolution bandwidth.
Fig. 4
Fig. 4 (a) Curve ‘i’: the timing jitter of IGMs calculated through the phase-frequency slope of spectrum by Fourier transform. Curve ‘ii’: the timing jitter calculated from the phase noise of Δfrep. (b) The gray curve is the difference between curve ‘i’ and curve ‘ii.’
Fig. 5
Fig. 5 Characterizations of IGMs in time and frequency domains. The data length of both IGMs and Beat 1 signal is 1s. Only 20 IGMs are shown in the time domain, and part of each spectrum is shown. (a) Raw IGMs. (b) Phase-timing corrected IGMs. The timing jitter is not the integer multiple of sampling interval 1/fs; thus, the IGMs are resampled by a 100fs sampling rate before timing jitter correction. (c) Phase-aligned IGMs. Fig. (d)-(f) are the normalized spectra between 14.63796MHz and 14.63904MHz of (a)-(c), respectively. The gray lines in Fig. (e) represent the spectrum of phase-corrected IGMs. (g) The comparison of the spectra between raw IGMs and corrected IGMs. The spectrum of raw IGMs is shown on the negative vertical axis.
Fig. 6
Fig. 6 Precision of carrier phase and timing jitter versus the averaging time (data length = 4 s). The timing jitter was σjitter ≈1(Tupdate /T)1/2ns, and the phase precision was σphase ≈0.2(Tupdate /T)1/2rad, where T is the averaging time.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

δ φ c (t)=δ φ b1 (t)+ δ φ b2 (t)δ φ b1 (t) f CW2 f CW1 [ f( n c1 ) f CW1 ],
T jitter (t)= 1 2πΔ f rep δ φ b2 (t)δ φ b1 (t) n 2 n 1 .
δ φ b1 (t)=2π 0 t δ f b1 (τ) dτ.
δ φ c (t)=δ φ b1 (t) f( n c1 ) f CW1 ,
T jitter (t)= 1 Δ f rep δ φ b1 (t) n 1 .
I 1 (t)= I 0 (t)exp[ iδ φ c (t) ],
I 2 (t)= I 1 [ t T jitter (t) ]exp[ i2π f c T jitter (t) ],

Metrics