Abstract

The different dynamical regions of an optically-pumped SESAM mode-locked, long-cavity VECSEL system with a fundamental pulse repetition frequency of ~200 MHz are investigated. The output power, captured as 250 μs long time series using a sampling rate of 200 GSa/s, for each operating condition of the system, is analyzed to determine the dynamical state. A wavelength range of 985-995 nm and optical pump powers of 10 W-16.3 W is studied. The system produces high quality fundamental passive mode-locking (FML) over an extensive part of the parameter space, but the different dynamical regions outside of FML are the primary focus of this study. We report five types of output: CW emission, FML, mode-locking of a few modes, double pulsing, and, semi-stable 4th harmonic mode-locking. The high sampling rate of the oscilloscope, combined with the long duration of the time series analyzed, enables insight into how the structure and substructure of pulses vary systematically over thousands of round trips of the laser cavity. Higher average output power is obtained in regions characterized by semi-stable 4th harmonic mode-locking than observed for FML, raising whether such average powers might be achieved for FML. The observed dynamic transitions from fundamental mode-locking provide insights into instability challenges in developing a stable, widely tunable, low repetition rate, turn-key system; and to inform future modelling of the system.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Low repetition rate SESAM modelocked VECSEL using an extendable active multipass-cavity approach

C. A. Zaugg, M. Hoffmann, W. P. Pallmann, V. J. Wittwer, O. D. Sieber, M. Mangold, M. Golling, K. J. Weingarten, B. W. Tilma, T. Südmeyer, and U. Keller
Opt. Express 20(25) 27915-27921 (2012)

Colliding pulse mode locking of vertical-external-cavity surface-emitting laser

Alexandre Laurain, Declan Marah, Robert Rockmore, John McInerney, Jorg Hader, Antje Ruiz Perez, Wolfgang Stolz, and Jerome V. Moloney
Optica 3(7) 781-784 (2016)

Pulse interactions in a colliding pulse mode-locked vertical external cavity surface emitting laser

Alexandre Laurain, Robert Rockmore, Hsiu-Ting Chan, Jorg Hader, Stephan W. Koch, Antje Ruiz Perez, Wolfgang Stolz, and Jerome V. Moloney
J. Opt. Soc. Am. B 34(2) 329-337 (2017)

References

  • View by:
  • |
  • |
  • |

  1. C. R. Head, B. Bialkowski, J. Lin, W. Lubeigt, N. Hempler, G. T. Maker, and G. P. A. Malcolm, “Commercial Mode-Locked Vertical-External-Cavity Surface-Emitting Lasers,” in 2017 European Conference on Lasers and Electro-Optics and European Quantum Electronics Conference, (Optical Society of America, 2017), paper CB_8_2.
    [Crossref]
  2. W. Lubeigt, B. Bialkowski, J. Lin, C. Robin Head, N. Hempler, G. T. Maker, and G. P. A. Malcolm, “Commercial mode-locked vertical external cavity surface emitting lasers,” Proc. SPIE 10087, 100870D (2017).
    [Crossref]
  3. L. Kornaszewski, N. Hempler, C. J. Hamilton, G. T. Maker, and G. P. A. Malcolm, “Advances in mode-locked semiconductor disk lasers,” Proc. SPIE 8606, 86060N (2013).
    [Crossref]
  4. N. Hempler, W. Lubeigt, B. Bialkowski, C. J. Hamilton, G. T. Maker, and G. P. A. Malcolm, “Advances in commercial, mode-locked vertical external cavity surface emitting lasers,” Proc. SPIE 9734, 97340X (2016).
    [Crossref]
  5. N. Hempler, B. Bialkowski, C. J. Hamilton, G. T. Maker, and G. P. A. Malcolm, “Development and commercialization of mode-locked VECSELs,” Proc. SPIE 9349, 93490K (2015).
    [Crossref]
  6. R. Paschotta, R. Häring, A. Garnache, S. Hoogland, A. C. Tropper, and U. Keller, “Soliton-like pulse-shaping mechanism in passively mode-locked surface-emitting semiconductor lasers,” Appl. Phys. B 75(4–5), 445–451 (2002).
    [Crossref]
  7. C. G. E. Alfieri, D. Waldburger, S. M. Link, E. Gini, M. Golling, G. Eisenstein, and U. Keller, “Optical efficiency and gain dynamics of modelocked semiconductor disk lasers,” Opt. Express 25(6), 6402–6420 (2017).
    [Crossref] [PubMed]
  8. E. J. Saarinen, A. Härkönen, R. Herda, S. Suomalainen, L. Orsila, T. Hakulinen, M. Guina, and O. G. Okhotnikov, “Harmonically mode-locked VECSELs for multi-GHz pulse train generation,” Opt. Express 15(3), 955–964 (2007).
    [Crossref] [PubMed]
  9. J. E. Ehrlich, D. T. Neilson, A. C. Walker, G. T. Kennedy, R. S. Grant, W. Sibbett, and M. Hopkinson, “Carrier lifetimes in MBE and MOCVD InGaAs quantum wells,” Semicond. Sci. Technol. 8(2), 307–309 (1993).
    [Crossref]
  10. Y. C. Chen, P. Wang, J. J. Coleman, D. P. Bour, K. K. Lee, and R. G. Waters, “Carrier recombination rates in strained-layer InGaAs-GaAs quantum wells,” IEEE J. Quantum Electron. 27(6), 1451–1455 (1991).
    [Crossref]
  11. C. Baker, M. Scheller, S. W. Koch, A. R. Perez, W. Stolz, R. J. Jones, and J. V. Moloney, “In situ probing of mode-locked vertical-external-cavity-surface-emitting lasers,” Opt. Lett. 40(23), 5459–5462 (2015).
    [Crossref] [PubMed]
  12. J. Hader, M. Scheller, A. Laurain, I. Kilen, C. Baker, J. V. Moloney, and S. W. Koch, “Ultrafast non-equilibrium carrier dynamics in semiconductor laser mode-locking,” Semicond. Sci. Technol. 32(1), 013002 (2017).
    [Crossref]
  13. C. A. Zaugg, M. Hoffmann, W. P. Pallmann, V. J. Wittwer, O. D. Sieber, M. Mangold, M. Golling, K. J. Weingarten, B. W. Tilma, T. Südmeyer, and U. Keller, “Low repetition rate SESAM modelocked VECSEL using an extendable active multipass-cavity approach,” Opt. Express 20(25), 27915–27921 (2012).
    [Crossref] [PubMed]
  14. M. A. Gaafar, A. Rahimi-Iman, K. A. Fedorova, W. Stolz, E. U. Rafailov, and M. Koch, “Mode-locked semiconductor disk lasers,” Adv. Opt. Photonics 8(3), 370–400 (2016).
    [Crossref]
  15. B. W. Tilma, M. Mangold, C. A. Zaugg, S. M. Link, D. Waldburger, A. Klenner, A. S. Mayer, E. Gini, M. Golling, and U. Keller, “Recent advances in ultrafast semiconductor disk lasers,” Light Sci. Appl. 4(7), e310 (2015).
    [Crossref]
  16. U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424(6950), 831–838 (2003).
    [Crossref] [PubMed]
  17. M. Guina, A. Rantamäki, and A. Härkönen, “Optically pumped VECSELs: review of technology and progress,” J. Phys. D Appl. Phys. 50(38), 383001 (2017).
    [Crossref]
  18. F. F. Voigt, F. Emaury, P. Bethge, D. Waldburger, S. M. Link, S. Carta, A. van der Bourg, F. Helmchen, and U. Keller, “Multiphoton in vivo imaging with a femtosecond semiconductor disk laser,” Biomed. Opt. Express 8(7), 3213–3231 (2017).
    [Crossref] [PubMed]
  19. R. Aviles-Espinosa, G. Filippidis, C. Hamilton, G. Malcolm, K. J. Weingarten, T. Südmeyer, Y. Barbarin, U. Keller, S. I. C. O. Santos, D. Artigas, and P. Loza-Alvarez, “Compact ultrafast semiconductor disk laser: targeting GFP based nonlinear applications in living organisms,” Biomed. Opt. Express 2(4), 739–747 (2011).
    [Crossref] [PubMed]
  20. P. G. Antal and R. Szipőcs, “Tunable, low-repetition-rate, cost-efficient femtosecond Ti:sapphire laser for nonlinear microscopy,” Appl. Phys. B 107(1), 17–22 (2012).
    [Crossref]
  21. O. E. Martinez, “Grating and prism compressors in the case of finite beam size,” J. Opt. Soc. Am. B 3(7), 929–934 (1986).
    [Crossref]
  22. E. B. Treacy, “Compression of picosecond light pulses,” Phys. Lett. A 28(1), 34–35 (1968).
    [Crossref]
  23. E. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. 5(9), 454–458 (1969).
    [Crossref]
  24. S. Sugavanam, N. Tarasov, and D. V. Churkin, “Real-Time Intensity Domain Characterization of Fibre Lasers Using Spatio-Temporal Dynamics,” Appl. Sci. 6(3), 65 (2016).
    [Crossref]
  25. F. Gustave, N. Radwell, C. McIntyre, J. P. Toomey, D. M. Kane, S. Barland, W. J. Firth, G.-L. Oppo, and T. Ackemann, “Observation of Mode-Locked Spatial Laser Solitons,” Phys. Rev. Lett. 118(4), 044102 (2017).
    [Crossref] [PubMed]
  26. W.-W. Hsiang, C.-Y. Lin, N. Sooi, and Y. Lai, “Long-term stabilization of a 10 GHz 0.8 ps asynchronously mode-locked Er-fiber soliton laser by deviation-frequency locking,” Opt. Express 14(5), 1822–1828 (2006).
    [Crossref] [PubMed]
  27. A. Khadour, S. Bouchoule, G. Aubin, J. C. Harmand, J. Decobert, and J. L. Oudar, “Ultrashort pulse generation from 1.56 µm mode-locked VECSEL at room temperature,” Opt. Express 18(19), 19902–19913 (2010).
    [Crossref] [PubMed]
  28. S. Longhi, P. Laporta, S. Taccheo, and O. Svelto, “Third-order-harmonic mode locking of a bulk erbium:ytterbium:glass laser at a 2.5-GHz repetition rate,” Opt. Lett. 19(23), 1985–1987 (1994).
    [Crossref] [PubMed]
  29. I. Kilen, J. Hader, J. V. Moloney, and S. W. Koch, “Ultrafast nonequilibrium carrier dynamics in semiconductor laser mode locking,” Optica 1(4), 192–197 (2014).
    [Crossref]
  30. A. Mysyrowicz, D. Hulin, A. Antonetti, A. Migus, W. T. Masselink, and H. Morkoç, “Dressed Excitons’ in a Multiple-Quantum-Well Structure: Evidence for an Optical Stark Effect with Femtosecond Response Time,” Phys. Rev. Lett. 56(25), 2748–2751 (1986).
    [Crossref] [PubMed]
  31. A. Von Lehmen, D. S. Chemla, J. E. Zucker, and J. P. Heritage, “Optical Stark effect on excitons in GaAs quantum wells,” Opt. Lett. 11(10), 609–611 (1986).
    [Crossref] [PubMed]
  32. S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, and J. E. Cunningham, “Mode-locking ultrafast solid-state lasers with saturable Bragg reflectors,” IEEE J. Sel. Top. Quantum Electron. 2(3), 454–464 (1996).
    [Crossref]
  33. U. Keller and A. C. Tropper, “Passively modelocked surface-emitting semiconductor lasers,” Phys. Rep. 429(2), 67–120 (2006).
    [Crossref]
  34. O. Sieber, M. Hoffmann, V. Wittwer, M. Mangold, M. Golling, B. Tilma, T. Sudmeyer, and U. Keller, “Experimentally verified pulse formation model for high-power femtosecond VECSELs,” Appl. Phys. B 113(1), 133–145 (2013).
    [Crossref]
  35. M. Hoffmann, O. D. Sieber, D. J. H. C. Maas, V. J. Wittwer, M. Golling, T. Südmeyer, and U. Keller, “Experimental verification of soliton-like pulse-shaping mechanisms in passively mode-locked VECSELs,” Opt. Express 18(10), 10143–10153 (2010).
    [Crossref] [PubMed]

2017 (6)

W. Lubeigt, B. Bialkowski, J. Lin, C. Robin Head, N. Hempler, G. T. Maker, and G. P. A. Malcolm, “Commercial mode-locked vertical external cavity surface emitting lasers,” Proc. SPIE 10087, 100870D (2017).
[Crossref]

C. G. E. Alfieri, D. Waldburger, S. M. Link, E. Gini, M. Golling, G. Eisenstein, and U. Keller, “Optical efficiency and gain dynamics of modelocked semiconductor disk lasers,” Opt. Express 25(6), 6402–6420 (2017).
[Crossref] [PubMed]

J. Hader, M. Scheller, A. Laurain, I. Kilen, C. Baker, J. V. Moloney, and S. W. Koch, “Ultrafast non-equilibrium carrier dynamics in semiconductor laser mode-locking,” Semicond. Sci. Technol. 32(1), 013002 (2017).
[Crossref]

M. Guina, A. Rantamäki, and A. Härkönen, “Optically pumped VECSELs: review of technology and progress,” J. Phys. D Appl. Phys. 50(38), 383001 (2017).
[Crossref]

F. F. Voigt, F. Emaury, P. Bethge, D. Waldburger, S. M. Link, S. Carta, A. van der Bourg, F. Helmchen, and U. Keller, “Multiphoton in vivo imaging with a femtosecond semiconductor disk laser,” Biomed. Opt. Express 8(7), 3213–3231 (2017).
[Crossref] [PubMed]

F. Gustave, N. Radwell, C. McIntyre, J. P. Toomey, D. M. Kane, S. Barland, W. J. Firth, G.-L. Oppo, and T. Ackemann, “Observation of Mode-Locked Spatial Laser Solitons,” Phys. Rev. Lett. 118(4), 044102 (2017).
[Crossref] [PubMed]

2016 (3)

S. Sugavanam, N. Tarasov, and D. V. Churkin, “Real-Time Intensity Domain Characterization of Fibre Lasers Using Spatio-Temporal Dynamics,” Appl. Sci. 6(3), 65 (2016).
[Crossref]

M. A. Gaafar, A. Rahimi-Iman, K. A. Fedorova, W. Stolz, E. U. Rafailov, and M. Koch, “Mode-locked semiconductor disk lasers,” Adv. Opt. Photonics 8(3), 370–400 (2016).
[Crossref]

N. Hempler, W. Lubeigt, B. Bialkowski, C. J. Hamilton, G. T. Maker, and G. P. A. Malcolm, “Advances in commercial, mode-locked vertical external cavity surface emitting lasers,” Proc. SPIE 9734, 97340X (2016).
[Crossref]

2015 (3)

N. Hempler, B. Bialkowski, C. J. Hamilton, G. T. Maker, and G. P. A. Malcolm, “Development and commercialization of mode-locked VECSELs,” Proc. SPIE 9349, 93490K (2015).
[Crossref]

B. W. Tilma, M. Mangold, C. A. Zaugg, S. M. Link, D. Waldburger, A. Klenner, A. S. Mayer, E. Gini, M. Golling, and U. Keller, “Recent advances in ultrafast semiconductor disk lasers,” Light Sci. Appl. 4(7), e310 (2015).
[Crossref]

C. Baker, M. Scheller, S. W. Koch, A. R. Perez, W. Stolz, R. J. Jones, and J. V. Moloney, “In situ probing of mode-locked vertical-external-cavity-surface-emitting lasers,” Opt. Lett. 40(23), 5459–5462 (2015).
[Crossref] [PubMed]

2014 (1)

2013 (2)

O. Sieber, M. Hoffmann, V. Wittwer, M. Mangold, M. Golling, B. Tilma, T. Sudmeyer, and U. Keller, “Experimentally verified pulse formation model for high-power femtosecond VECSELs,” Appl. Phys. B 113(1), 133–145 (2013).
[Crossref]

L. Kornaszewski, N. Hempler, C. J. Hamilton, G. T. Maker, and G. P. A. Malcolm, “Advances in mode-locked semiconductor disk lasers,” Proc. SPIE 8606, 86060N (2013).
[Crossref]

2012 (2)

2011 (1)

2010 (2)

2007 (1)

2006 (2)

2003 (1)

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424(6950), 831–838 (2003).
[Crossref] [PubMed]

2002 (1)

R. Paschotta, R. Häring, A. Garnache, S. Hoogland, A. C. Tropper, and U. Keller, “Soliton-like pulse-shaping mechanism in passively mode-locked surface-emitting semiconductor lasers,” Appl. Phys. B 75(4–5), 445–451 (2002).
[Crossref]

1996 (1)

S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, and J. E. Cunningham, “Mode-locking ultrafast solid-state lasers with saturable Bragg reflectors,” IEEE J. Sel. Top. Quantum Electron. 2(3), 454–464 (1996).
[Crossref]

1994 (1)

1993 (1)

J. E. Ehrlich, D. T. Neilson, A. C. Walker, G. T. Kennedy, R. S. Grant, W. Sibbett, and M. Hopkinson, “Carrier lifetimes in MBE and MOCVD InGaAs quantum wells,” Semicond. Sci. Technol. 8(2), 307–309 (1993).
[Crossref]

1991 (1)

Y. C. Chen, P. Wang, J. J. Coleman, D. P. Bour, K. K. Lee, and R. G. Waters, “Carrier recombination rates in strained-layer InGaAs-GaAs quantum wells,” IEEE J. Quantum Electron. 27(6), 1451–1455 (1991).
[Crossref]

1986 (3)

O. E. Martinez, “Grating and prism compressors in the case of finite beam size,” J. Opt. Soc. Am. B 3(7), 929–934 (1986).
[Crossref]

A. Mysyrowicz, D. Hulin, A. Antonetti, A. Migus, W. T. Masselink, and H. Morkoç, “Dressed Excitons’ in a Multiple-Quantum-Well Structure: Evidence for an Optical Stark Effect with Femtosecond Response Time,” Phys. Rev. Lett. 56(25), 2748–2751 (1986).
[Crossref] [PubMed]

A. Von Lehmen, D. S. Chemla, J. E. Zucker, and J. P. Heritage, “Optical Stark effect on excitons in GaAs quantum wells,” Opt. Lett. 11(10), 609–611 (1986).
[Crossref] [PubMed]

1969 (1)

E. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. 5(9), 454–458 (1969).
[Crossref]

1968 (1)

E. B. Treacy, “Compression of picosecond light pulses,” Phys. Lett. A 28(1), 34–35 (1968).
[Crossref]

Ackemann, T.

F. Gustave, N. Radwell, C. McIntyre, J. P. Toomey, D. M. Kane, S. Barland, W. J. Firth, G.-L. Oppo, and T. Ackemann, “Observation of Mode-Locked Spatial Laser Solitons,” Phys. Rev. Lett. 118(4), 044102 (2017).
[Crossref] [PubMed]

Alfieri, C. G. E.

Antal, P. G.

P. G. Antal and R. Szipőcs, “Tunable, low-repetition-rate, cost-efficient femtosecond Ti:sapphire laser for nonlinear microscopy,” Appl. Phys. B 107(1), 17–22 (2012).
[Crossref]

Antonetti, A.

A. Mysyrowicz, D. Hulin, A. Antonetti, A. Migus, W. T. Masselink, and H. Morkoç, “Dressed Excitons’ in a Multiple-Quantum-Well Structure: Evidence for an Optical Stark Effect with Femtosecond Response Time,” Phys. Rev. Lett. 56(25), 2748–2751 (1986).
[Crossref] [PubMed]

Artigas, D.

Aubin, G.

Aviles-Espinosa, R.

Baker, C.

J. Hader, M. Scheller, A. Laurain, I. Kilen, C. Baker, J. V. Moloney, and S. W. Koch, “Ultrafast non-equilibrium carrier dynamics in semiconductor laser mode-locking,” Semicond. Sci. Technol. 32(1), 013002 (2017).
[Crossref]

C. Baker, M. Scheller, S. W. Koch, A. R. Perez, W. Stolz, R. J. Jones, and J. V. Moloney, “In situ probing of mode-locked vertical-external-cavity-surface-emitting lasers,” Opt. Lett. 40(23), 5459–5462 (2015).
[Crossref] [PubMed]

Barbarin, Y.

Barland, S.

F. Gustave, N. Radwell, C. McIntyre, J. P. Toomey, D. M. Kane, S. Barland, W. J. Firth, G.-L. Oppo, and T. Ackemann, “Observation of Mode-Locked Spatial Laser Solitons,” Phys. Rev. Lett. 118(4), 044102 (2017).
[Crossref] [PubMed]

Bethge, P.

Bialkowski, B.

W. Lubeigt, B. Bialkowski, J. Lin, C. Robin Head, N. Hempler, G. T. Maker, and G. P. A. Malcolm, “Commercial mode-locked vertical external cavity surface emitting lasers,” Proc. SPIE 10087, 100870D (2017).
[Crossref]

N. Hempler, W. Lubeigt, B. Bialkowski, C. J. Hamilton, G. T. Maker, and G. P. A. Malcolm, “Advances in commercial, mode-locked vertical external cavity surface emitting lasers,” Proc. SPIE 9734, 97340X (2016).
[Crossref]

N. Hempler, B. Bialkowski, C. J. Hamilton, G. T. Maker, and G. P. A. Malcolm, “Development and commercialization of mode-locked VECSELs,” Proc. SPIE 9349, 93490K (2015).
[Crossref]

Bouchoule, S.

Bour, D. P.

Y. C. Chen, P. Wang, J. J. Coleman, D. P. Bour, K. K. Lee, and R. G. Waters, “Carrier recombination rates in strained-layer InGaAs-GaAs quantum wells,” IEEE J. Quantum Electron. 27(6), 1451–1455 (1991).
[Crossref]

Carta, S.

Chemla, D. S.

Chen, Y. C.

Y. C. Chen, P. Wang, J. J. Coleman, D. P. Bour, K. K. Lee, and R. G. Waters, “Carrier recombination rates in strained-layer InGaAs-GaAs quantum wells,” IEEE J. Quantum Electron. 27(6), 1451–1455 (1991).
[Crossref]

Churkin, D. V.

S. Sugavanam, N. Tarasov, and D. V. Churkin, “Real-Time Intensity Domain Characterization of Fibre Lasers Using Spatio-Temporal Dynamics,” Appl. Sci. 6(3), 65 (2016).
[Crossref]

Coleman, J. J.

Y. C. Chen, P. Wang, J. J. Coleman, D. P. Bour, K. K. Lee, and R. G. Waters, “Carrier recombination rates in strained-layer InGaAs-GaAs quantum wells,” IEEE J. Quantum Electron. 27(6), 1451–1455 (1991).
[Crossref]

Cundiff, S. T.

S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, and J. E. Cunningham, “Mode-locking ultrafast solid-state lasers with saturable Bragg reflectors,” IEEE J. Sel. Top. Quantum Electron. 2(3), 454–464 (1996).
[Crossref]

Cunningham, J. E.

S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, and J. E. Cunningham, “Mode-locking ultrafast solid-state lasers with saturable Bragg reflectors,” IEEE J. Sel. Top. Quantum Electron. 2(3), 454–464 (1996).
[Crossref]

Decobert, J.

Ehrlich, J. E.

J. E. Ehrlich, D. T. Neilson, A. C. Walker, G. T. Kennedy, R. S. Grant, W. Sibbett, and M. Hopkinson, “Carrier lifetimes in MBE and MOCVD InGaAs quantum wells,” Semicond. Sci. Technol. 8(2), 307–309 (1993).
[Crossref]

Eisenstein, G.

Emaury, F.

Fedorova, K. A.

M. A. Gaafar, A. Rahimi-Iman, K. A. Fedorova, W. Stolz, E. U. Rafailov, and M. Koch, “Mode-locked semiconductor disk lasers,” Adv. Opt. Photonics 8(3), 370–400 (2016).
[Crossref]

Filippidis, G.

Firth, W. J.

F. Gustave, N. Radwell, C. McIntyre, J. P. Toomey, D. M. Kane, S. Barland, W. J. Firth, G.-L. Oppo, and T. Ackemann, “Observation of Mode-Locked Spatial Laser Solitons,” Phys. Rev. Lett. 118(4), 044102 (2017).
[Crossref] [PubMed]

Gaafar, M. A.

M. A. Gaafar, A. Rahimi-Iman, K. A. Fedorova, W. Stolz, E. U. Rafailov, and M. Koch, “Mode-locked semiconductor disk lasers,” Adv. Opt. Photonics 8(3), 370–400 (2016).
[Crossref]

Garnache, A.

R. Paschotta, R. Häring, A. Garnache, S. Hoogland, A. C. Tropper, and U. Keller, “Soliton-like pulse-shaping mechanism in passively mode-locked surface-emitting semiconductor lasers,” Appl. Phys. B 75(4–5), 445–451 (2002).
[Crossref]

Gini, E.

C. G. E. Alfieri, D. Waldburger, S. M. Link, E. Gini, M. Golling, G. Eisenstein, and U. Keller, “Optical efficiency and gain dynamics of modelocked semiconductor disk lasers,” Opt. Express 25(6), 6402–6420 (2017).
[Crossref] [PubMed]

B. W. Tilma, M. Mangold, C. A. Zaugg, S. M. Link, D. Waldburger, A. Klenner, A. S. Mayer, E. Gini, M. Golling, and U. Keller, “Recent advances in ultrafast semiconductor disk lasers,” Light Sci. Appl. 4(7), e310 (2015).
[Crossref]

Golling, M.

Grant, R. S.

J. E. Ehrlich, D. T. Neilson, A. C. Walker, G. T. Kennedy, R. S. Grant, W. Sibbett, and M. Hopkinson, “Carrier lifetimes in MBE and MOCVD InGaAs quantum wells,” Semicond. Sci. Technol. 8(2), 307–309 (1993).
[Crossref]

Guina, M.

Gustave, F.

F. Gustave, N. Radwell, C. McIntyre, J. P. Toomey, D. M. Kane, S. Barland, W. J. Firth, G.-L. Oppo, and T. Ackemann, “Observation of Mode-Locked Spatial Laser Solitons,” Phys. Rev. Lett. 118(4), 044102 (2017).
[Crossref] [PubMed]

Hader, J.

J. Hader, M. Scheller, A. Laurain, I. Kilen, C. Baker, J. V. Moloney, and S. W. Koch, “Ultrafast non-equilibrium carrier dynamics in semiconductor laser mode-locking,” Semicond. Sci. Technol. 32(1), 013002 (2017).
[Crossref]

I. Kilen, J. Hader, J. V. Moloney, and S. W. Koch, “Ultrafast nonequilibrium carrier dynamics in semiconductor laser mode locking,” Optica 1(4), 192–197 (2014).
[Crossref]

Hakulinen, T.

Hamilton, C.

Hamilton, C. J.

N. Hempler, W. Lubeigt, B. Bialkowski, C. J. Hamilton, G. T. Maker, and G. P. A. Malcolm, “Advances in commercial, mode-locked vertical external cavity surface emitting lasers,” Proc. SPIE 9734, 97340X (2016).
[Crossref]

N. Hempler, B. Bialkowski, C. J. Hamilton, G. T. Maker, and G. P. A. Malcolm, “Development and commercialization of mode-locked VECSELs,” Proc. SPIE 9349, 93490K (2015).
[Crossref]

L. Kornaszewski, N. Hempler, C. J. Hamilton, G. T. Maker, and G. P. A. Malcolm, “Advances in mode-locked semiconductor disk lasers,” Proc. SPIE 8606, 86060N (2013).
[Crossref]

Häring, R.

R. Paschotta, R. Häring, A. Garnache, S. Hoogland, A. C. Tropper, and U. Keller, “Soliton-like pulse-shaping mechanism in passively mode-locked surface-emitting semiconductor lasers,” Appl. Phys. B 75(4–5), 445–451 (2002).
[Crossref]

Härkönen, A.

Harmand, J. C.

Helmchen, F.

Hempler, N.

W. Lubeigt, B. Bialkowski, J. Lin, C. Robin Head, N. Hempler, G. T. Maker, and G. P. A. Malcolm, “Commercial mode-locked vertical external cavity surface emitting lasers,” Proc. SPIE 10087, 100870D (2017).
[Crossref]

N. Hempler, W. Lubeigt, B. Bialkowski, C. J. Hamilton, G. T. Maker, and G. P. A. Malcolm, “Advances in commercial, mode-locked vertical external cavity surface emitting lasers,” Proc. SPIE 9734, 97340X (2016).
[Crossref]

N. Hempler, B. Bialkowski, C. J. Hamilton, G. T. Maker, and G. P. A. Malcolm, “Development and commercialization of mode-locked VECSELs,” Proc. SPIE 9349, 93490K (2015).
[Crossref]

L. Kornaszewski, N. Hempler, C. J. Hamilton, G. T. Maker, and G. P. A. Malcolm, “Advances in mode-locked semiconductor disk lasers,” Proc. SPIE 8606, 86060N (2013).
[Crossref]

Herda, R.

Heritage, J. P.

Hoffmann, M.

Hoogland, S.

R. Paschotta, R. Häring, A. Garnache, S. Hoogland, A. C. Tropper, and U. Keller, “Soliton-like pulse-shaping mechanism in passively mode-locked surface-emitting semiconductor lasers,” Appl. Phys. B 75(4–5), 445–451 (2002).
[Crossref]

Hopkinson, M.

J. E. Ehrlich, D. T. Neilson, A. C. Walker, G. T. Kennedy, R. S. Grant, W. Sibbett, and M. Hopkinson, “Carrier lifetimes in MBE and MOCVD InGaAs quantum wells,” Semicond. Sci. Technol. 8(2), 307–309 (1993).
[Crossref]

Hsiang, W.-W.

Hulin, D.

A. Mysyrowicz, D. Hulin, A. Antonetti, A. Migus, W. T. Masselink, and H. Morkoç, “Dressed Excitons’ in a Multiple-Quantum-Well Structure: Evidence for an Optical Stark Effect with Femtosecond Response Time,” Phys. Rev. Lett. 56(25), 2748–2751 (1986).
[Crossref] [PubMed]

Jan, W. Y.

S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, and J. E. Cunningham, “Mode-locking ultrafast solid-state lasers with saturable Bragg reflectors,” IEEE J. Sel. Top. Quantum Electron. 2(3), 454–464 (1996).
[Crossref]

Jones, R. J.

Kane, D. M.

F. Gustave, N. Radwell, C. McIntyre, J. P. Toomey, D. M. Kane, S. Barland, W. J. Firth, G.-L. Oppo, and T. Ackemann, “Observation of Mode-Locked Spatial Laser Solitons,” Phys. Rev. Lett. 118(4), 044102 (2017).
[Crossref] [PubMed]

Keller, U.

F. F. Voigt, F. Emaury, P. Bethge, D. Waldburger, S. M. Link, S. Carta, A. van der Bourg, F. Helmchen, and U. Keller, “Multiphoton in vivo imaging with a femtosecond semiconductor disk laser,” Biomed. Opt. Express 8(7), 3213–3231 (2017).
[Crossref] [PubMed]

C. G. E. Alfieri, D. Waldburger, S. M. Link, E. Gini, M. Golling, G. Eisenstein, and U. Keller, “Optical efficiency and gain dynamics of modelocked semiconductor disk lasers,” Opt. Express 25(6), 6402–6420 (2017).
[Crossref] [PubMed]

B. W. Tilma, M. Mangold, C. A. Zaugg, S. M. Link, D. Waldburger, A. Klenner, A. S. Mayer, E. Gini, M. Golling, and U. Keller, “Recent advances in ultrafast semiconductor disk lasers,” Light Sci. Appl. 4(7), e310 (2015).
[Crossref]

O. Sieber, M. Hoffmann, V. Wittwer, M. Mangold, M. Golling, B. Tilma, T. Sudmeyer, and U. Keller, “Experimentally verified pulse formation model for high-power femtosecond VECSELs,” Appl. Phys. B 113(1), 133–145 (2013).
[Crossref]

C. A. Zaugg, M. Hoffmann, W. P. Pallmann, V. J. Wittwer, O. D. Sieber, M. Mangold, M. Golling, K. J. Weingarten, B. W. Tilma, T. Südmeyer, and U. Keller, “Low repetition rate SESAM modelocked VECSEL using an extendable active multipass-cavity approach,” Opt. Express 20(25), 27915–27921 (2012).
[Crossref] [PubMed]

R. Aviles-Espinosa, G. Filippidis, C. Hamilton, G. Malcolm, K. J. Weingarten, T. Südmeyer, Y. Barbarin, U. Keller, S. I. C. O. Santos, D. Artigas, and P. Loza-Alvarez, “Compact ultrafast semiconductor disk laser: targeting GFP based nonlinear applications in living organisms,” Biomed. Opt. Express 2(4), 739–747 (2011).
[Crossref] [PubMed]

M. Hoffmann, O. D. Sieber, D. J. H. C. Maas, V. J. Wittwer, M. Golling, T. Südmeyer, and U. Keller, “Experimental verification of soliton-like pulse-shaping mechanisms in passively mode-locked VECSELs,” Opt. Express 18(10), 10143–10153 (2010).
[Crossref] [PubMed]

U. Keller and A. C. Tropper, “Passively modelocked surface-emitting semiconductor lasers,” Phys. Rep. 429(2), 67–120 (2006).
[Crossref]

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424(6950), 831–838 (2003).
[Crossref] [PubMed]

R. Paschotta, R. Häring, A. Garnache, S. Hoogland, A. C. Tropper, and U. Keller, “Soliton-like pulse-shaping mechanism in passively mode-locked surface-emitting semiconductor lasers,” Appl. Phys. B 75(4–5), 445–451 (2002).
[Crossref]

Kennedy, G. T.

J. E. Ehrlich, D. T. Neilson, A. C. Walker, G. T. Kennedy, R. S. Grant, W. Sibbett, and M. Hopkinson, “Carrier lifetimes in MBE and MOCVD InGaAs quantum wells,” Semicond. Sci. Technol. 8(2), 307–309 (1993).
[Crossref]

Khadour, A.

Kilen, I.

J. Hader, M. Scheller, A. Laurain, I. Kilen, C. Baker, J. V. Moloney, and S. W. Koch, “Ultrafast non-equilibrium carrier dynamics in semiconductor laser mode-locking,” Semicond. Sci. Technol. 32(1), 013002 (2017).
[Crossref]

I. Kilen, J. Hader, J. V. Moloney, and S. W. Koch, “Ultrafast nonequilibrium carrier dynamics in semiconductor laser mode locking,” Optica 1(4), 192–197 (2014).
[Crossref]

Klenner, A.

B. W. Tilma, M. Mangold, C. A. Zaugg, S. M. Link, D. Waldburger, A. Klenner, A. S. Mayer, E. Gini, M. Golling, and U. Keller, “Recent advances in ultrafast semiconductor disk lasers,” Light Sci. Appl. 4(7), e310 (2015).
[Crossref]

Knox, W. H.

S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, and J. E. Cunningham, “Mode-locking ultrafast solid-state lasers with saturable Bragg reflectors,” IEEE J. Sel. Top. Quantum Electron. 2(3), 454–464 (1996).
[Crossref]

Koch, M.

M. A. Gaafar, A. Rahimi-Iman, K. A. Fedorova, W. Stolz, E. U. Rafailov, and M. Koch, “Mode-locked semiconductor disk lasers,” Adv. Opt. Photonics 8(3), 370–400 (2016).
[Crossref]

Koch, S. W.

Kornaszewski, L.

L. Kornaszewski, N. Hempler, C. J. Hamilton, G. T. Maker, and G. P. A. Malcolm, “Advances in mode-locked semiconductor disk lasers,” Proc. SPIE 8606, 86060N (2013).
[Crossref]

Lai, Y.

Laporta, P.

Laurain, A.

J. Hader, M. Scheller, A. Laurain, I. Kilen, C. Baker, J. V. Moloney, and S. W. Koch, “Ultrafast non-equilibrium carrier dynamics in semiconductor laser mode-locking,” Semicond. Sci. Technol. 32(1), 013002 (2017).
[Crossref]

Lee, K. K.

Y. C. Chen, P. Wang, J. J. Coleman, D. P. Bour, K. K. Lee, and R. G. Waters, “Carrier recombination rates in strained-layer InGaAs-GaAs quantum wells,” IEEE J. Quantum Electron. 27(6), 1451–1455 (1991).
[Crossref]

Lin, C.-Y.

Lin, J.

W. Lubeigt, B. Bialkowski, J. Lin, C. Robin Head, N. Hempler, G. T. Maker, and G. P. A. Malcolm, “Commercial mode-locked vertical external cavity surface emitting lasers,” Proc. SPIE 10087, 100870D (2017).
[Crossref]

Link, S. M.

Longhi, S.

Loza-Alvarez, P.

Lubeigt, W.

W. Lubeigt, B. Bialkowski, J. Lin, C. Robin Head, N. Hempler, G. T. Maker, and G. P. A. Malcolm, “Commercial mode-locked vertical external cavity surface emitting lasers,” Proc. SPIE 10087, 100870D (2017).
[Crossref]

N. Hempler, W. Lubeigt, B. Bialkowski, C. J. Hamilton, G. T. Maker, and G. P. A. Malcolm, “Advances in commercial, mode-locked vertical external cavity surface emitting lasers,” Proc. SPIE 9734, 97340X (2016).
[Crossref]

Maas, D. J. H. C.

Maker, G. T.

W. Lubeigt, B. Bialkowski, J. Lin, C. Robin Head, N. Hempler, G. T. Maker, and G. P. A. Malcolm, “Commercial mode-locked vertical external cavity surface emitting lasers,” Proc. SPIE 10087, 100870D (2017).
[Crossref]

N. Hempler, W. Lubeigt, B. Bialkowski, C. J. Hamilton, G. T. Maker, and G. P. A. Malcolm, “Advances in commercial, mode-locked vertical external cavity surface emitting lasers,” Proc. SPIE 9734, 97340X (2016).
[Crossref]

N. Hempler, B. Bialkowski, C. J. Hamilton, G. T. Maker, and G. P. A. Malcolm, “Development and commercialization of mode-locked VECSELs,” Proc. SPIE 9349, 93490K (2015).
[Crossref]

L. Kornaszewski, N. Hempler, C. J. Hamilton, G. T. Maker, and G. P. A. Malcolm, “Advances in mode-locked semiconductor disk lasers,” Proc. SPIE 8606, 86060N (2013).
[Crossref]

Malcolm, G.

Malcolm, G. P. A.

W. Lubeigt, B. Bialkowski, J. Lin, C. Robin Head, N. Hempler, G. T. Maker, and G. P. A. Malcolm, “Commercial mode-locked vertical external cavity surface emitting lasers,” Proc. SPIE 10087, 100870D (2017).
[Crossref]

N. Hempler, W. Lubeigt, B. Bialkowski, C. J. Hamilton, G. T. Maker, and G. P. A. Malcolm, “Advances in commercial, mode-locked vertical external cavity surface emitting lasers,” Proc. SPIE 9734, 97340X (2016).
[Crossref]

N. Hempler, B. Bialkowski, C. J. Hamilton, G. T. Maker, and G. P. A. Malcolm, “Development and commercialization of mode-locked VECSELs,” Proc. SPIE 9349, 93490K (2015).
[Crossref]

L. Kornaszewski, N. Hempler, C. J. Hamilton, G. T. Maker, and G. P. A. Malcolm, “Advances in mode-locked semiconductor disk lasers,” Proc. SPIE 8606, 86060N (2013).
[Crossref]

Mangold, M.

B. W. Tilma, M. Mangold, C. A. Zaugg, S. M. Link, D. Waldburger, A. Klenner, A. S. Mayer, E. Gini, M. Golling, and U. Keller, “Recent advances in ultrafast semiconductor disk lasers,” Light Sci. Appl. 4(7), e310 (2015).
[Crossref]

O. Sieber, M. Hoffmann, V. Wittwer, M. Mangold, M. Golling, B. Tilma, T. Sudmeyer, and U. Keller, “Experimentally verified pulse formation model for high-power femtosecond VECSELs,” Appl. Phys. B 113(1), 133–145 (2013).
[Crossref]

C. A. Zaugg, M. Hoffmann, W. P. Pallmann, V. J. Wittwer, O. D. Sieber, M. Mangold, M. Golling, K. J. Weingarten, B. W. Tilma, T. Südmeyer, and U. Keller, “Low repetition rate SESAM modelocked VECSEL using an extendable active multipass-cavity approach,” Opt. Express 20(25), 27915–27921 (2012).
[Crossref] [PubMed]

Martinez, O. E.

Masselink, W. T.

A. Mysyrowicz, D. Hulin, A. Antonetti, A. Migus, W. T. Masselink, and H. Morkoç, “Dressed Excitons’ in a Multiple-Quantum-Well Structure: Evidence for an Optical Stark Effect with Femtosecond Response Time,” Phys. Rev. Lett. 56(25), 2748–2751 (1986).
[Crossref] [PubMed]

Mayer, A. S.

B. W. Tilma, M. Mangold, C. A. Zaugg, S. M. Link, D. Waldburger, A. Klenner, A. S. Mayer, E. Gini, M. Golling, and U. Keller, “Recent advances in ultrafast semiconductor disk lasers,” Light Sci. Appl. 4(7), e310 (2015).
[Crossref]

McIntyre, C.

F. Gustave, N. Radwell, C. McIntyre, J. P. Toomey, D. M. Kane, S. Barland, W. J. Firth, G.-L. Oppo, and T. Ackemann, “Observation of Mode-Locked Spatial Laser Solitons,” Phys. Rev. Lett. 118(4), 044102 (2017).
[Crossref] [PubMed]

Migus, A.

A. Mysyrowicz, D. Hulin, A. Antonetti, A. Migus, W. T. Masselink, and H. Morkoç, “Dressed Excitons’ in a Multiple-Quantum-Well Structure: Evidence for an Optical Stark Effect with Femtosecond Response Time,” Phys. Rev. Lett. 56(25), 2748–2751 (1986).
[Crossref] [PubMed]

Moloney, J. V.

Morkoç, H.

A. Mysyrowicz, D. Hulin, A. Antonetti, A. Migus, W. T. Masselink, and H. Morkoç, “Dressed Excitons’ in a Multiple-Quantum-Well Structure: Evidence for an Optical Stark Effect with Femtosecond Response Time,” Phys. Rev. Lett. 56(25), 2748–2751 (1986).
[Crossref] [PubMed]

Mysyrowicz, A.

A. Mysyrowicz, D. Hulin, A. Antonetti, A. Migus, W. T. Masselink, and H. Morkoç, “Dressed Excitons’ in a Multiple-Quantum-Well Structure: Evidence for an Optical Stark Effect with Femtosecond Response Time,” Phys. Rev. Lett. 56(25), 2748–2751 (1986).
[Crossref] [PubMed]

Neilson, D. T.

J. E. Ehrlich, D. T. Neilson, A. C. Walker, G. T. Kennedy, R. S. Grant, W. Sibbett, and M. Hopkinson, “Carrier lifetimes in MBE and MOCVD InGaAs quantum wells,” Semicond. Sci. Technol. 8(2), 307–309 (1993).
[Crossref]

Okhotnikov, O. G.

Oppo, G.-L.

F. Gustave, N. Radwell, C. McIntyre, J. P. Toomey, D. M. Kane, S. Barland, W. J. Firth, G.-L. Oppo, and T. Ackemann, “Observation of Mode-Locked Spatial Laser Solitons,” Phys. Rev. Lett. 118(4), 044102 (2017).
[Crossref] [PubMed]

Orsila, L.

Oudar, J. L.

Pallmann, W. P.

Paschotta, R.

R. Paschotta, R. Häring, A. Garnache, S. Hoogland, A. C. Tropper, and U. Keller, “Soliton-like pulse-shaping mechanism in passively mode-locked surface-emitting semiconductor lasers,” Appl. Phys. B 75(4–5), 445–451 (2002).
[Crossref]

Perez, A. R.

Radwell, N.

F. Gustave, N. Radwell, C. McIntyre, J. P. Toomey, D. M. Kane, S. Barland, W. J. Firth, G.-L. Oppo, and T. Ackemann, “Observation of Mode-Locked Spatial Laser Solitons,” Phys. Rev. Lett. 118(4), 044102 (2017).
[Crossref] [PubMed]

Rafailov, E. U.

M. A. Gaafar, A. Rahimi-Iman, K. A. Fedorova, W. Stolz, E. U. Rafailov, and M. Koch, “Mode-locked semiconductor disk lasers,” Adv. Opt. Photonics 8(3), 370–400 (2016).
[Crossref]

Rahimi-Iman, A.

M. A. Gaafar, A. Rahimi-Iman, K. A. Fedorova, W. Stolz, E. U. Rafailov, and M. Koch, “Mode-locked semiconductor disk lasers,” Adv. Opt. Photonics 8(3), 370–400 (2016).
[Crossref]

Rantamäki, A.

M. Guina, A. Rantamäki, and A. Härkönen, “Optically pumped VECSELs: review of technology and progress,” J. Phys. D Appl. Phys. 50(38), 383001 (2017).
[Crossref]

Robin Head, C.

W. Lubeigt, B. Bialkowski, J. Lin, C. Robin Head, N. Hempler, G. T. Maker, and G. P. A. Malcolm, “Commercial mode-locked vertical external cavity surface emitting lasers,” Proc. SPIE 10087, 100870D (2017).
[Crossref]

Saarinen, E. J.

Santos, S. I. C. O.

Scheller, M.

J. Hader, M. Scheller, A. Laurain, I. Kilen, C. Baker, J. V. Moloney, and S. W. Koch, “Ultrafast non-equilibrium carrier dynamics in semiconductor laser mode-locking,” Semicond. Sci. Technol. 32(1), 013002 (2017).
[Crossref]

C. Baker, M. Scheller, S. W. Koch, A. R. Perez, W. Stolz, R. J. Jones, and J. V. Moloney, “In situ probing of mode-locked vertical-external-cavity-surface-emitting lasers,” Opt. Lett. 40(23), 5459–5462 (2015).
[Crossref] [PubMed]

Sibbett, W.

J. E. Ehrlich, D. T. Neilson, A. C. Walker, G. T. Kennedy, R. S. Grant, W. Sibbett, and M. Hopkinson, “Carrier lifetimes in MBE and MOCVD InGaAs quantum wells,” Semicond. Sci. Technol. 8(2), 307–309 (1993).
[Crossref]

Sieber, O.

O. Sieber, M. Hoffmann, V. Wittwer, M. Mangold, M. Golling, B. Tilma, T. Sudmeyer, and U. Keller, “Experimentally verified pulse formation model for high-power femtosecond VECSELs,” Appl. Phys. B 113(1), 133–145 (2013).
[Crossref]

Sieber, O. D.

Sooi, N.

Stolz, W.

M. A. Gaafar, A. Rahimi-Iman, K. A. Fedorova, W. Stolz, E. U. Rafailov, and M. Koch, “Mode-locked semiconductor disk lasers,” Adv. Opt. Photonics 8(3), 370–400 (2016).
[Crossref]

C. Baker, M. Scheller, S. W. Koch, A. R. Perez, W. Stolz, R. J. Jones, and J. V. Moloney, “In situ probing of mode-locked vertical-external-cavity-surface-emitting lasers,” Opt. Lett. 40(23), 5459–5462 (2015).
[Crossref] [PubMed]

Sudmeyer, T.

O. Sieber, M. Hoffmann, V. Wittwer, M. Mangold, M. Golling, B. Tilma, T. Sudmeyer, and U. Keller, “Experimentally verified pulse formation model for high-power femtosecond VECSELs,” Appl. Phys. B 113(1), 133–145 (2013).
[Crossref]

Südmeyer, T.

Sugavanam, S.

S. Sugavanam, N. Tarasov, and D. V. Churkin, “Real-Time Intensity Domain Characterization of Fibre Lasers Using Spatio-Temporal Dynamics,” Appl. Sci. 6(3), 65 (2016).
[Crossref]

Suomalainen, S.

Svelto, O.

Szipocs, R.

P. G. Antal and R. Szipőcs, “Tunable, low-repetition-rate, cost-efficient femtosecond Ti:sapphire laser for nonlinear microscopy,” Appl. Phys. B 107(1), 17–22 (2012).
[Crossref]

Taccheo, S.

Tarasov, N.

S. Sugavanam, N. Tarasov, and D. V. Churkin, “Real-Time Intensity Domain Characterization of Fibre Lasers Using Spatio-Temporal Dynamics,” Appl. Sci. 6(3), 65 (2016).
[Crossref]

Tilma, B.

O. Sieber, M. Hoffmann, V. Wittwer, M. Mangold, M. Golling, B. Tilma, T. Sudmeyer, and U. Keller, “Experimentally verified pulse formation model for high-power femtosecond VECSELs,” Appl. Phys. B 113(1), 133–145 (2013).
[Crossref]

Tilma, B. W.

B. W. Tilma, M. Mangold, C. A. Zaugg, S. M. Link, D. Waldburger, A. Klenner, A. S. Mayer, E. Gini, M. Golling, and U. Keller, “Recent advances in ultrafast semiconductor disk lasers,” Light Sci. Appl. 4(7), e310 (2015).
[Crossref]

C. A. Zaugg, M. Hoffmann, W. P. Pallmann, V. J. Wittwer, O. D. Sieber, M. Mangold, M. Golling, K. J. Weingarten, B. W. Tilma, T. Südmeyer, and U. Keller, “Low repetition rate SESAM modelocked VECSEL using an extendable active multipass-cavity approach,” Opt. Express 20(25), 27915–27921 (2012).
[Crossref] [PubMed]

Toomey, J. P.

F. Gustave, N. Radwell, C. McIntyre, J. P. Toomey, D. M. Kane, S. Barland, W. J. Firth, G.-L. Oppo, and T. Ackemann, “Observation of Mode-Locked Spatial Laser Solitons,” Phys. Rev. Lett. 118(4), 044102 (2017).
[Crossref] [PubMed]

Treacy, E.

E. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. 5(9), 454–458 (1969).
[Crossref]

Treacy, E. B.

E. B. Treacy, “Compression of picosecond light pulses,” Phys. Lett. A 28(1), 34–35 (1968).
[Crossref]

Tropper, A. C.

U. Keller and A. C. Tropper, “Passively modelocked surface-emitting semiconductor lasers,” Phys. Rep. 429(2), 67–120 (2006).
[Crossref]

R. Paschotta, R. Häring, A. Garnache, S. Hoogland, A. C. Tropper, and U. Keller, “Soliton-like pulse-shaping mechanism in passively mode-locked surface-emitting semiconductor lasers,” Appl. Phys. B 75(4–5), 445–451 (2002).
[Crossref]

Tsuda, S.

S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, and J. E. Cunningham, “Mode-locking ultrafast solid-state lasers with saturable Bragg reflectors,” IEEE J. Sel. Top. Quantum Electron. 2(3), 454–464 (1996).
[Crossref]

van der Bourg, A.

Voigt, F. F.

Von Lehmen, A.

Waldburger, D.

Walker, A. C.

J. E. Ehrlich, D. T. Neilson, A. C. Walker, G. T. Kennedy, R. S. Grant, W. Sibbett, and M. Hopkinson, “Carrier lifetimes in MBE and MOCVD InGaAs quantum wells,” Semicond. Sci. Technol. 8(2), 307–309 (1993).
[Crossref]

Wang, P.

Y. C. Chen, P. Wang, J. J. Coleman, D. P. Bour, K. K. Lee, and R. G. Waters, “Carrier recombination rates in strained-layer InGaAs-GaAs quantum wells,” IEEE J. Quantum Electron. 27(6), 1451–1455 (1991).
[Crossref]

Waters, R. G.

Y. C. Chen, P. Wang, J. J. Coleman, D. P. Bour, K. K. Lee, and R. G. Waters, “Carrier recombination rates in strained-layer InGaAs-GaAs quantum wells,” IEEE J. Quantum Electron. 27(6), 1451–1455 (1991).
[Crossref]

Weingarten, K. J.

Wittwer, V.

O. Sieber, M. Hoffmann, V. Wittwer, M. Mangold, M. Golling, B. Tilma, T. Sudmeyer, and U. Keller, “Experimentally verified pulse formation model for high-power femtosecond VECSELs,” Appl. Phys. B 113(1), 133–145 (2013).
[Crossref]

Wittwer, V. J.

Zaugg, C. A.

B. W. Tilma, M. Mangold, C. A. Zaugg, S. M. Link, D. Waldburger, A. Klenner, A. S. Mayer, E. Gini, M. Golling, and U. Keller, “Recent advances in ultrafast semiconductor disk lasers,” Light Sci. Appl. 4(7), e310 (2015).
[Crossref]

C. A. Zaugg, M. Hoffmann, W. P. Pallmann, V. J. Wittwer, O. D. Sieber, M. Mangold, M. Golling, K. J. Weingarten, B. W. Tilma, T. Südmeyer, and U. Keller, “Low repetition rate SESAM modelocked VECSEL using an extendable active multipass-cavity approach,” Opt. Express 20(25), 27915–27921 (2012).
[Crossref] [PubMed]

Zucker, J. E.

Adv. Opt. Photonics (1)

M. A. Gaafar, A. Rahimi-Iman, K. A. Fedorova, W. Stolz, E. U. Rafailov, and M. Koch, “Mode-locked semiconductor disk lasers,” Adv. Opt. Photonics 8(3), 370–400 (2016).
[Crossref]

Appl. Phys. B (3)

R. Paschotta, R. Häring, A. Garnache, S. Hoogland, A. C. Tropper, and U. Keller, “Soliton-like pulse-shaping mechanism in passively mode-locked surface-emitting semiconductor lasers,” Appl. Phys. B 75(4–5), 445–451 (2002).
[Crossref]

P. G. Antal and R. Szipőcs, “Tunable, low-repetition-rate, cost-efficient femtosecond Ti:sapphire laser for nonlinear microscopy,” Appl. Phys. B 107(1), 17–22 (2012).
[Crossref]

O. Sieber, M. Hoffmann, V. Wittwer, M. Mangold, M. Golling, B. Tilma, T. Sudmeyer, and U. Keller, “Experimentally verified pulse formation model for high-power femtosecond VECSELs,” Appl. Phys. B 113(1), 133–145 (2013).
[Crossref]

Appl. Sci. (1)

S. Sugavanam, N. Tarasov, and D. V. Churkin, “Real-Time Intensity Domain Characterization of Fibre Lasers Using Spatio-Temporal Dynamics,” Appl. Sci. 6(3), 65 (2016).
[Crossref]

Biomed. Opt. Express (2)

IEEE J. Quantum Electron. (2)

Y. C. Chen, P. Wang, J. J. Coleman, D. P. Bour, K. K. Lee, and R. G. Waters, “Carrier recombination rates in strained-layer InGaAs-GaAs quantum wells,” IEEE J. Quantum Electron. 27(6), 1451–1455 (1991).
[Crossref]

E. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. 5(9), 454–458 (1969).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, and J. E. Cunningham, “Mode-locking ultrafast solid-state lasers with saturable Bragg reflectors,” IEEE J. Sel. Top. Quantum Electron. 2(3), 454–464 (1996).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. D Appl. Phys. (1)

M. Guina, A. Rantamäki, and A. Härkönen, “Optically pumped VECSELs: review of technology and progress,” J. Phys. D Appl. Phys. 50(38), 383001 (2017).
[Crossref]

Light Sci. Appl. (1)

B. W. Tilma, M. Mangold, C. A. Zaugg, S. M. Link, D. Waldburger, A. Klenner, A. S. Mayer, E. Gini, M. Golling, and U. Keller, “Recent advances in ultrafast semiconductor disk lasers,” Light Sci. Appl. 4(7), e310 (2015).
[Crossref]

Nature (1)

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424(6950), 831–838 (2003).
[Crossref] [PubMed]

Opt. Express (6)

C. A. Zaugg, M. Hoffmann, W. P. Pallmann, V. J. Wittwer, O. D. Sieber, M. Mangold, M. Golling, K. J. Weingarten, B. W. Tilma, T. Südmeyer, and U. Keller, “Low repetition rate SESAM modelocked VECSEL using an extendable active multipass-cavity approach,” Opt. Express 20(25), 27915–27921 (2012).
[Crossref] [PubMed]

C. G. E. Alfieri, D. Waldburger, S. M. Link, E. Gini, M. Golling, G. Eisenstein, and U. Keller, “Optical efficiency and gain dynamics of modelocked semiconductor disk lasers,” Opt. Express 25(6), 6402–6420 (2017).
[Crossref] [PubMed]

E. J. Saarinen, A. Härkönen, R. Herda, S. Suomalainen, L. Orsila, T. Hakulinen, M. Guina, and O. G. Okhotnikov, “Harmonically mode-locked VECSELs for multi-GHz pulse train generation,” Opt. Express 15(3), 955–964 (2007).
[Crossref] [PubMed]

W.-W. Hsiang, C.-Y. Lin, N. Sooi, and Y. Lai, “Long-term stabilization of a 10 GHz 0.8 ps asynchronously mode-locked Er-fiber soliton laser by deviation-frequency locking,” Opt. Express 14(5), 1822–1828 (2006).
[Crossref] [PubMed]

A. Khadour, S. Bouchoule, G. Aubin, J. C. Harmand, J. Decobert, and J. L. Oudar, “Ultrashort pulse generation from 1.56 µm mode-locked VECSEL at room temperature,” Opt. Express 18(19), 19902–19913 (2010).
[Crossref] [PubMed]

M. Hoffmann, O. D. Sieber, D. J. H. C. Maas, V. J. Wittwer, M. Golling, T. Südmeyer, and U. Keller, “Experimental verification of soliton-like pulse-shaping mechanisms in passively mode-locked VECSELs,” Opt. Express 18(10), 10143–10153 (2010).
[Crossref] [PubMed]

Opt. Lett. (3)

Optica (1)

Phys. Lett. A (1)

E. B. Treacy, “Compression of picosecond light pulses,” Phys. Lett. A 28(1), 34–35 (1968).
[Crossref]

Phys. Rep. (1)

U. Keller and A. C. Tropper, “Passively modelocked surface-emitting semiconductor lasers,” Phys. Rep. 429(2), 67–120 (2006).
[Crossref]

Phys. Rev. Lett. (2)

F. Gustave, N. Radwell, C. McIntyre, J. P. Toomey, D. M. Kane, S. Barland, W. J. Firth, G.-L. Oppo, and T. Ackemann, “Observation of Mode-Locked Spatial Laser Solitons,” Phys. Rev. Lett. 118(4), 044102 (2017).
[Crossref] [PubMed]

A. Mysyrowicz, D. Hulin, A. Antonetti, A. Migus, W. T. Masselink, and H. Morkoç, “Dressed Excitons’ in a Multiple-Quantum-Well Structure: Evidence for an Optical Stark Effect with Femtosecond Response Time,” Phys. Rev. Lett. 56(25), 2748–2751 (1986).
[Crossref] [PubMed]

Proc. SPIE (4)

W. Lubeigt, B. Bialkowski, J. Lin, C. Robin Head, N. Hempler, G. T. Maker, and G. P. A. Malcolm, “Commercial mode-locked vertical external cavity surface emitting lasers,” Proc. SPIE 10087, 100870D (2017).
[Crossref]

L. Kornaszewski, N. Hempler, C. J. Hamilton, G. T. Maker, and G. P. A. Malcolm, “Advances in mode-locked semiconductor disk lasers,” Proc. SPIE 8606, 86060N (2013).
[Crossref]

N. Hempler, W. Lubeigt, B. Bialkowski, C. J. Hamilton, G. T. Maker, and G. P. A. Malcolm, “Advances in commercial, mode-locked vertical external cavity surface emitting lasers,” Proc. SPIE 9734, 97340X (2016).
[Crossref]

N. Hempler, B. Bialkowski, C. J. Hamilton, G. T. Maker, and G. P. A. Malcolm, “Development and commercialization of mode-locked VECSELs,” Proc. SPIE 9349, 93490K (2015).
[Crossref]

Semicond. Sci. Technol. (2)

J. E. Ehrlich, D. T. Neilson, A. C. Walker, G. T. Kennedy, R. S. Grant, W. Sibbett, and M. Hopkinson, “Carrier lifetimes in MBE and MOCVD InGaAs quantum wells,” Semicond. Sci. Technol. 8(2), 307–309 (1993).
[Crossref]

J. Hader, M. Scheller, A. Laurain, I. Kilen, C. Baker, J. V. Moloney, and S. W. Koch, “Ultrafast non-equilibrium carrier dynamics in semiconductor laser mode-locking,” Semicond. Sci. Technol. 32(1), 013002 (2017).
[Crossref]

Other (1)

C. R. Head, B. Bialkowski, J. Lin, W. Lubeigt, N. Hempler, G. T. Maker, and G. P. A. Malcolm, “Commercial Mode-Locked Vertical-External-Cavity Surface-Emitting Lasers,” in 2017 European Conference on Lasers and Electro-Optics and European Quantum Electronics Conference, (Optical Society of America, 2017), paper CB_8_2.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Experimental setup for passive mode-locking using an optically pumped VCSEL semiconductor gain and SESAM with a pulse repetition rate of ~200 MHz with cavity round-trip length ~1.5 m. ROC- radius of curvature. BW – bandwidth.
Fig. 2
Fig. 2 The average output power (W) for each pump laser diode current (18 A - 24 A) is plotted as a function of VECSEL output wavelength (nm) and classified into three regions (i) CW low power region < 0.16 W, (ii) Medium power region between 0.22 W and 0.95 W, and (iii) high-power region >1 W. Points enclosed within ellipses indicate wavelengths at which the average output power has an almost linear relationship to the pump laser diode current.
Fig. 3
Fig. 3 Dynamical classification of the parameter space region. Each operating condition, defined by a manually tuned wavelength value and pump source drive current is represented with a colored circle, where, the color indicates the average output power as seen in Fig. 2 and calibrated by the color bar on the right of the figure.
Fig. 4
Fig. 4 0.5 μs subset of the time series captured at 991 nm and 23 A, displayed in a space-time representation showing a single pulse over 100 round-trips. The horizontal axis represents the laser cavity roundtrip consisting of ~1020 consecutive data points captured at 5ps sampling time. One round-trip is 5.0981 ns. The vertical axis represents consecutive round-trip times captured by the oscilloscope and stacked one above the other to show the pulse evolvement over time.
Fig. 5
Fig. 5 (a) A space-time plot, obtained at 986 nm and 21 A, showing a window of time displaying transient locking with additional pixel correction. Sample pulses captured at progressive round-trips are shown in (b)-(d): (b) prominent pulse sub peaks at 11300th round-trip, (c) 11430th round-trip, and, (d) 11490th round-trip.
Fig. 6
Fig. 6 (a) Space-time plot for a 0.5μs subset of the time series captured at 985 nm, 23 A; (b) average inter-pulse durations shown for a sample of pulse train.
Fig. 7
Fig. 7 (a) Space-time plot of 5000 round-trips showing window of destabilization of the first pulse followed by a window of destabilization of the second pulse with increasing number of round-trips. Each window of destabilization shows a systematic sequence of pulse broadening with sub-structure and pulse amplitude redistribution. Sample pulses show pulse broadening with sub structure for (b) the first pulse in the cavity while the second pulse appears stable, and (c) the second pulse destabilized with the first pulse stable.
Fig. 8
Fig. 8 (a), (c) Space-time representation over for (a) 0-0.5 μs and (c) ~229.41- 229.92 μs from the time series captured at 990 nm, 23 A. Sample temporal trace from space-time representations shown on the left respectively for (b) the 1st and (c) 45000th round-trip.
Fig. 9
Fig. 9 0-50 ns subset of time series captured at 986 nm and 23 A.
Fig. 10
Fig. 10 0-0.5μs subset of time series captured at 986 nm, 23 A showing dynamics over 100 round-trips of the region where the pulse formation is in the initial stages.

Metrics