Abstract

Areal optical surface topography measurement is an emerging technology for industrial quality control. However, neither calibration procedures nor the utilization of material measures are standardized. State of the art is the calibration of a set of metrological characteristics with multiple calibration samples (material measures). Here, we propose a new calibration sample (artefact) capable of providing the entire set of relevant metrological characteristics within only one single sample. Our calibration artefact features multiple material measures and is manufactured with two-photon laser lithography (direct laser writing, DLW). This enables a holistic calibration of areal topography measuring instruments with only one series of measurements and without changing the sample.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Nondestructive, fast, and cost-effective image processing method for roughness measurement of randomly rough metallic surfaces

Sajjad Ghodrati, Saeideh Gorji Kandi, and Mohsen Mohseni
J. Opt. Soc. Am. A 35(6) 998-1013 (2018)

References

  • View by:
  • |
  • |
  • |

  1. R. Leach, Characterisation of areal surface texture (Springer, 2013). Chap. 1.
  2. K. Stout, Development of methods for the characterisation of roughness in three dimensions (Penton, 2000).
  3. L. Blunt and X. Jiang, Advanced techniques for assessment surface topography: Development of a basis for 3D surface texture standards SURFSTAND (Kogan Page Science, 2003).
  4. J. Seewig and M. Eifler, “Calibration of areal surface topography measuring instruments,” Proc. SPIE 10449, 1044911 (2017).
  5. International Organization for Standardization, “Geometrical product specifications (GPS) - Surface texture: Areal - Part 1: Indication of surface texture,” ISO 25178–1 (2016).
  6. International Organization for Standardization, “Geometrical product specifications (GPS) - Surface texture: Areal - Part 601: Nominal characteristics of contact (stylus) instruments,” ISO 25178–601 (2010).
  7. International Organization for Standardization, “Geometrical product specifications (GPS) - Surface texture: Areal - Part 600: Metrological characteristics for areal-topography measuring methods,” ISO/DIS 25178–600 (2018).
  8. International Organization for Standardization, “Geometrical product specifications (GPS) - Surface texture: Areal - Part 701: Calibration and measurement standards for contact (stylus) instruments,” ISO 25178–701 (2010).
  9. International Organization for Standardization, “Geometrical product specifications (GPS) - Surface texture: Areal - Part 700: Calibration and verification of areal topography measuring instruments,” ISO 25178–700.3:2016, WD (2016).
  10. C. L. Giusca, R. K. Leach, F. Helary, T. Gutauskas, and L. Nimishakavi, “Calibration of the scales of areal surface topography-measuring instruments: part 1. Measurement noise and residual flatness,” Meas. Sci. Technol. 23(3), 035008 (2012).
    [Crossref]
  11. C. L. Giusca, R. K. Leach, and F. Helery, “Calibration of the scales of areal surface topography measuring instruments: part 2. Amplification, linearity and squareness,” Meas. Sci. Technol. 23(6), 065005 (2012).
    [Crossref]
  12. C. L. Giusca and R. K. Leach, “Calibration of the scales of areal surface topography measuring instruments: part 3. Resolution,” Meas. Sci. Technol. 24(10), 105010 (2013).
    [Crossref]
  13. R.K. Leach, C.L. Giusca, and P. Rubert, “A single set of material measures for the calibration of areal surface topography measuring instruments: the NPL Areal Bento Box,” in Proceedings of Met and Props, 406–413 (2013).
  14. R. K. Leach, C. L. Giusca, K. Rickens, O. Riemer, and P. Rubert, “Development of material measures for performance verifying surface topography measuring instruments,” Surf. Topo. Met.Prop. 2(2), 025002 (2014).
    [Crossref]
  15. P. de Groot, “Progress in the specification of optical instruments for the measurement of surface form and texture,” Proc. SPIE 9110, 91100M (2014).
    [Crossref]
  16. P. de Groot, “The Meaning and Measure of Vertical Resolution in Optical Surface Topography Measurement,” Appl. Sci. 7(1), 54 (2017).
    [Crossref]
  17. J. K. Hohmann, M. Renner, E. H. Waller, and G. von Freymann, “Three-Dimensional µ-Printing: An Enabling Technology,” Adv. Optical Mater. 3(11), 1488–1507 (2015).
    [Crossref]
  18. M. Eifler, J. Seewig, J. Hering, and G. von Freymann, “Calibration of z-axis linearity for arbitrary optical topography measuring instruments,” Proc. SPIE 9525, 952510 (2015).
    [Crossref]
  19. F. Ströer, J. Hering, M. Eifler, I. Raid, G. von Freymann, and J. Seewig, “Ultrafast 3D High Precision Print of Micro Structures for Optical Instrument Calibration Procedures,” Additive Manufacturing 18, 22–30 (2017).
    [Crossref]
  20. M. Eifler, J. Hering, G. von Freymann, and J. Seewig, “Manufacturing of the ISO 25178-70 material measures with direct laser writing – a feasibility study,” Surf. Topo. Met.Prop.in press.
  21. G. V. Samsonov, Handbook of the Physicochemical Properties of the Elements (Springer, 1968).
  22. R. Krüger-Sehm, P. Bakucz, L. Jung, and H. Wilhelms, “Chirp-Kalibriernormale für Oberflächenmessgeräte (Chirp Calibration Standards for Surface Measuring Instruments),” Techn. Mess. 74(11), 572–576 (2007).
  23. J. Seewig, M. Eifler, and G. Wiora, “Unambiguous evaluation of a chirp measurement standard,” Surf. Topo. Met.Prop. 2(4), 045003 (2014).
    [Crossref]
  24. International Organization for Standardization, “Geometrical product specifications (GPS) – Surface texture: Areal – Part 603: Nominal characteristics of non-contact (phase-shifting interferometric microscopy) instruments,” ISO 25178–603 (2013).
  25. International Organization for Standardization, “Geometrical product specifications (GPS) – Surface texture: Areal – Part 2: Terms, definitions and surface texture parameters,” ISO 25178–2 (2012).
  26. International Organization for Standardization, “Geometrical product specification (GPS) – Surface texture: Areal – Part 70: Material measures,” ISO 25178–70 (2014).
  27. M. Eifler, “Modellbasierte Entwicklung von Kalibriernormalen zur geometrischen Produktspezifikation,” Kaiserslautern: Technische Universität Kaiserslautern (2016).
  28. Deutsches Institut für Normung, “Terms and definitions used on ageing of materials – Polymeric materials,” DIN 50035 (2012).
  29. K. Klauer, M. Eifler, F. Schneider, J. Seewig, and J. C. Aurich, “Ageing of roughness artefacts – impact on the measurement results,” in Proceedings of euspen’s Int. Conf. & Exhibition17, 403–404 (2017).
  30. D. W. Hoffman and J. A. Thornton, “Internal stresses in sputtered chromium,” Thin Solid Films 40, 355–363 (1977).
    [Crossref]
  31. J. S. Oakdale, J. Ye, W. L. Smith, and J. Biener, “Post-print UV curing method for improving the mechanical properties of prototypes derived from two-photon lithography,” Opt. Express 24(24), 27077–27086 (2016).
    [Crossref] [PubMed]

2017 (3)

J. Seewig and M. Eifler, “Calibration of areal surface topography measuring instruments,” Proc. SPIE 10449, 1044911 (2017).

P. de Groot, “The Meaning and Measure of Vertical Resolution in Optical Surface Topography Measurement,” Appl. Sci. 7(1), 54 (2017).
[Crossref]

F. Ströer, J. Hering, M. Eifler, I. Raid, G. von Freymann, and J. Seewig, “Ultrafast 3D High Precision Print of Micro Structures for Optical Instrument Calibration Procedures,” Additive Manufacturing 18, 22–30 (2017).
[Crossref]

2016 (1)

2015 (2)

J. K. Hohmann, M. Renner, E. H. Waller, and G. von Freymann, “Three-Dimensional µ-Printing: An Enabling Technology,” Adv. Optical Mater. 3(11), 1488–1507 (2015).
[Crossref]

M. Eifler, J. Seewig, J. Hering, and G. von Freymann, “Calibration of z-axis linearity for arbitrary optical topography measuring instruments,” Proc. SPIE 9525, 952510 (2015).
[Crossref]

2014 (3)

R. K. Leach, C. L. Giusca, K. Rickens, O. Riemer, and P. Rubert, “Development of material measures for performance verifying surface topography measuring instruments,” Surf. Topo. Met.Prop. 2(2), 025002 (2014).
[Crossref]

P. de Groot, “Progress in the specification of optical instruments for the measurement of surface form and texture,” Proc. SPIE 9110, 91100M (2014).
[Crossref]

J. Seewig, M. Eifler, and G. Wiora, “Unambiguous evaluation of a chirp measurement standard,” Surf. Topo. Met.Prop. 2(4), 045003 (2014).
[Crossref]

2013 (1)

C. L. Giusca and R. K. Leach, “Calibration of the scales of areal surface topography measuring instruments: part 3. Resolution,” Meas. Sci. Technol. 24(10), 105010 (2013).
[Crossref]

2012 (2)

C. L. Giusca, R. K. Leach, F. Helary, T. Gutauskas, and L. Nimishakavi, “Calibration of the scales of areal surface topography-measuring instruments: part 1. Measurement noise and residual flatness,” Meas. Sci. Technol. 23(3), 035008 (2012).
[Crossref]

C. L. Giusca, R. K. Leach, and F. Helery, “Calibration of the scales of areal surface topography measuring instruments: part 2. Amplification, linearity and squareness,” Meas. Sci. Technol. 23(6), 065005 (2012).
[Crossref]

2007 (1)

R. Krüger-Sehm, P. Bakucz, L. Jung, and H. Wilhelms, “Chirp-Kalibriernormale für Oberflächenmessgeräte (Chirp Calibration Standards for Surface Measuring Instruments),” Techn. Mess. 74(11), 572–576 (2007).

1977 (1)

D. W. Hoffman and J. A. Thornton, “Internal stresses in sputtered chromium,” Thin Solid Films 40, 355–363 (1977).
[Crossref]

Aurich, J. C.

K. Klauer, M. Eifler, F. Schneider, J. Seewig, and J. C. Aurich, “Ageing of roughness artefacts – impact on the measurement results,” in Proceedings of euspen’s Int. Conf. & Exhibition17, 403–404 (2017).

Bakucz, P.

R. Krüger-Sehm, P. Bakucz, L. Jung, and H. Wilhelms, “Chirp-Kalibriernormale für Oberflächenmessgeräte (Chirp Calibration Standards for Surface Measuring Instruments),” Techn. Mess. 74(11), 572–576 (2007).

Biener, J.

de Groot, P.

P. de Groot, “The Meaning and Measure of Vertical Resolution in Optical Surface Topography Measurement,” Appl. Sci. 7(1), 54 (2017).
[Crossref]

P. de Groot, “Progress in the specification of optical instruments for the measurement of surface form and texture,” Proc. SPIE 9110, 91100M (2014).
[Crossref]

Eifler, M.

F. Ströer, J. Hering, M. Eifler, I. Raid, G. von Freymann, and J. Seewig, “Ultrafast 3D High Precision Print of Micro Structures for Optical Instrument Calibration Procedures,” Additive Manufacturing 18, 22–30 (2017).
[Crossref]

J. Seewig and M. Eifler, “Calibration of areal surface topography measuring instruments,” Proc. SPIE 10449, 1044911 (2017).

M. Eifler, J. Seewig, J. Hering, and G. von Freymann, “Calibration of z-axis linearity for arbitrary optical topography measuring instruments,” Proc. SPIE 9525, 952510 (2015).
[Crossref]

J. Seewig, M. Eifler, and G. Wiora, “Unambiguous evaluation of a chirp measurement standard,” Surf. Topo. Met.Prop. 2(4), 045003 (2014).
[Crossref]

K. Klauer, M. Eifler, F. Schneider, J. Seewig, and J. C. Aurich, “Ageing of roughness artefacts – impact on the measurement results,” in Proceedings of euspen’s Int. Conf. & Exhibition17, 403–404 (2017).

M. Eifler, J. Hering, G. von Freymann, and J. Seewig, “Manufacturing of the ISO 25178-70 material measures with direct laser writing – a feasibility study,” Surf. Topo. Met.Prop.in press.

Giusca, C. L.

R. K. Leach, C. L. Giusca, K. Rickens, O. Riemer, and P. Rubert, “Development of material measures for performance verifying surface topography measuring instruments,” Surf. Topo. Met.Prop. 2(2), 025002 (2014).
[Crossref]

C. L. Giusca and R. K. Leach, “Calibration of the scales of areal surface topography measuring instruments: part 3. Resolution,” Meas. Sci. Technol. 24(10), 105010 (2013).
[Crossref]

C. L. Giusca, R. K. Leach, F. Helary, T. Gutauskas, and L. Nimishakavi, “Calibration of the scales of areal surface topography-measuring instruments: part 1. Measurement noise and residual flatness,” Meas. Sci. Technol. 23(3), 035008 (2012).
[Crossref]

C. L. Giusca, R. K. Leach, and F. Helery, “Calibration of the scales of areal surface topography measuring instruments: part 2. Amplification, linearity and squareness,” Meas. Sci. Technol. 23(6), 065005 (2012).
[Crossref]

Giusca, C.L.

R.K. Leach, C.L. Giusca, and P. Rubert, “A single set of material measures for the calibration of areal surface topography measuring instruments: the NPL Areal Bento Box,” in Proceedings of Met and Props, 406–413 (2013).

Gutauskas, T.

C. L. Giusca, R. K. Leach, F. Helary, T. Gutauskas, and L. Nimishakavi, “Calibration of the scales of areal surface topography-measuring instruments: part 1. Measurement noise and residual flatness,” Meas. Sci. Technol. 23(3), 035008 (2012).
[Crossref]

Helary, F.

C. L. Giusca, R. K. Leach, F. Helary, T. Gutauskas, and L. Nimishakavi, “Calibration of the scales of areal surface topography-measuring instruments: part 1. Measurement noise and residual flatness,” Meas. Sci. Technol. 23(3), 035008 (2012).
[Crossref]

Helery, F.

C. L. Giusca, R. K. Leach, and F. Helery, “Calibration of the scales of areal surface topography measuring instruments: part 2. Amplification, linearity and squareness,” Meas. Sci. Technol. 23(6), 065005 (2012).
[Crossref]

Hering, J.

F. Ströer, J. Hering, M. Eifler, I. Raid, G. von Freymann, and J. Seewig, “Ultrafast 3D High Precision Print of Micro Structures for Optical Instrument Calibration Procedures,” Additive Manufacturing 18, 22–30 (2017).
[Crossref]

M. Eifler, J. Seewig, J. Hering, and G. von Freymann, “Calibration of z-axis linearity for arbitrary optical topography measuring instruments,” Proc. SPIE 9525, 952510 (2015).
[Crossref]

M. Eifler, J. Hering, G. von Freymann, and J. Seewig, “Manufacturing of the ISO 25178-70 material measures with direct laser writing – a feasibility study,” Surf. Topo. Met.Prop.in press.

Hoffman, D. W.

D. W. Hoffman and J. A. Thornton, “Internal stresses in sputtered chromium,” Thin Solid Films 40, 355–363 (1977).
[Crossref]

Hohmann, J. K.

J. K. Hohmann, M. Renner, E. H. Waller, and G. von Freymann, “Three-Dimensional µ-Printing: An Enabling Technology,” Adv. Optical Mater. 3(11), 1488–1507 (2015).
[Crossref]

Jung, L.

R. Krüger-Sehm, P. Bakucz, L. Jung, and H. Wilhelms, “Chirp-Kalibriernormale für Oberflächenmessgeräte (Chirp Calibration Standards for Surface Measuring Instruments),” Techn. Mess. 74(11), 572–576 (2007).

Klauer, K.

K. Klauer, M. Eifler, F. Schneider, J. Seewig, and J. C. Aurich, “Ageing of roughness artefacts – impact on the measurement results,” in Proceedings of euspen’s Int. Conf. & Exhibition17, 403–404 (2017).

Krüger-Sehm, R.

R. Krüger-Sehm, P. Bakucz, L. Jung, and H. Wilhelms, “Chirp-Kalibriernormale für Oberflächenmessgeräte (Chirp Calibration Standards for Surface Measuring Instruments),” Techn. Mess. 74(11), 572–576 (2007).

Leach, R. K.

R. K. Leach, C. L. Giusca, K. Rickens, O. Riemer, and P. Rubert, “Development of material measures for performance verifying surface topography measuring instruments,” Surf. Topo. Met.Prop. 2(2), 025002 (2014).
[Crossref]

C. L. Giusca and R. K. Leach, “Calibration of the scales of areal surface topography measuring instruments: part 3. Resolution,” Meas. Sci. Technol. 24(10), 105010 (2013).
[Crossref]

C. L. Giusca, R. K. Leach, F. Helary, T. Gutauskas, and L. Nimishakavi, “Calibration of the scales of areal surface topography-measuring instruments: part 1. Measurement noise and residual flatness,” Meas. Sci. Technol. 23(3), 035008 (2012).
[Crossref]

C. L. Giusca, R. K. Leach, and F. Helery, “Calibration of the scales of areal surface topography measuring instruments: part 2. Amplification, linearity and squareness,” Meas. Sci. Technol. 23(6), 065005 (2012).
[Crossref]

Leach, R.K.

R.K. Leach, C.L. Giusca, and P. Rubert, “A single set of material measures for the calibration of areal surface topography measuring instruments: the NPL Areal Bento Box,” in Proceedings of Met and Props, 406–413 (2013).

Nimishakavi, L.

C. L. Giusca, R. K. Leach, F. Helary, T. Gutauskas, and L. Nimishakavi, “Calibration of the scales of areal surface topography-measuring instruments: part 1. Measurement noise and residual flatness,” Meas. Sci. Technol. 23(3), 035008 (2012).
[Crossref]

Oakdale, J. S.

Raid, I.

F. Ströer, J. Hering, M. Eifler, I. Raid, G. von Freymann, and J. Seewig, “Ultrafast 3D High Precision Print of Micro Structures for Optical Instrument Calibration Procedures,” Additive Manufacturing 18, 22–30 (2017).
[Crossref]

Renner, M.

J. K. Hohmann, M. Renner, E. H. Waller, and G. von Freymann, “Three-Dimensional µ-Printing: An Enabling Technology,” Adv. Optical Mater. 3(11), 1488–1507 (2015).
[Crossref]

Rickens, K.

R. K. Leach, C. L. Giusca, K. Rickens, O. Riemer, and P. Rubert, “Development of material measures for performance verifying surface topography measuring instruments,” Surf. Topo. Met.Prop. 2(2), 025002 (2014).
[Crossref]

Riemer, O.

R. K. Leach, C. L. Giusca, K. Rickens, O. Riemer, and P. Rubert, “Development of material measures for performance verifying surface topography measuring instruments,” Surf. Topo. Met.Prop. 2(2), 025002 (2014).
[Crossref]

Rubert, P.

R. K. Leach, C. L. Giusca, K. Rickens, O. Riemer, and P. Rubert, “Development of material measures for performance verifying surface topography measuring instruments,” Surf. Topo. Met.Prop. 2(2), 025002 (2014).
[Crossref]

R.K. Leach, C.L. Giusca, and P. Rubert, “A single set of material measures for the calibration of areal surface topography measuring instruments: the NPL Areal Bento Box,” in Proceedings of Met and Props, 406–413 (2013).

Schneider, F.

K. Klauer, M. Eifler, F. Schneider, J. Seewig, and J. C. Aurich, “Ageing of roughness artefacts – impact on the measurement results,” in Proceedings of euspen’s Int. Conf. & Exhibition17, 403–404 (2017).

Seewig, J.

F. Ströer, J. Hering, M. Eifler, I. Raid, G. von Freymann, and J. Seewig, “Ultrafast 3D High Precision Print of Micro Structures for Optical Instrument Calibration Procedures,” Additive Manufacturing 18, 22–30 (2017).
[Crossref]

J. Seewig and M. Eifler, “Calibration of areal surface topography measuring instruments,” Proc. SPIE 10449, 1044911 (2017).

M. Eifler, J. Seewig, J. Hering, and G. von Freymann, “Calibration of z-axis linearity for arbitrary optical topography measuring instruments,” Proc. SPIE 9525, 952510 (2015).
[Crossref]

J. Seewig, M. Eifler, and G. Wiora, “Unambiguous evaluation of a chirp measurement standard,” Surf. Topo. Met.Prop. 2(4), 045003 (2014).
[Crossref]

M. Eifler, J. Hering, G. von Freymann, and J. Seewig, “Manufacturing of the ISO 25178-70 material measures with direct laser writing – a feasibility study,” Surf. Topo. Met.Prop.in press.

K. Klauer, M. Eifler, F. Schneider, J. Seewig, and J. C. Aurich, “Ageing of roughness artefacts – impact on the measurement results,” in Proceedings of euspen’s Int. Conf. & Exhibition17, 403–404 (2017).

Smith, W. L.

Ströer, F.

F. Ströer, J. Hering, M. Eifler, I. Raid, G. von Freymann, and J. Seewig, “Ultrafast 3D High Precision Print of Micro Structures for Optical Instrument Calibration Procedures,” Additive Manufacturing 18, 22–30 (2017).
[Crossref]

Thornton, J. A.

D. W. Hoffman and J. A. Thornton, “Internal stresses in sputtered chromium,” Thin Solid Films 40, 355–363 (1977).
[Crossref]

von Freymann, G.

F. Ströer, J. Hering, M. Eifler, I. Raid, G. von Freymann, and J. Seewig, “Ultrafast 3D High Precision Print of Micro Structures for Optical Instrument Calibration Procedures,” Additive Manufacturing 18, 22–30 (2017).
[Crossref]

M. Eifler, J. Seewig, J. Hering, and G. von Freymann, “Calibration of z-axis linearity for arbitrary optical topography measuring instruments,” Proc. SPIE 9525, 952510 (2015).
[Crossref]

J. K. Hohmann, M. Renner, E. H. Waller, and G. von Freymann, “Three-Dimensional µ-Printing: An Enabling Technology,” Adv. Optical Mater. 3(11), 1488–1507 (2015).
[Crossref]

M. Eifler, J. Hering, G. von Freymann, and J. Seewig, “Manufacturing of the ISO 25178-70 material measures with direct laser writing – a feasibility study,” Surf. Topo. Met.Prop.in press.

Waller, E. H.

J. K. Hohmann, M. Renner, E. H. Waller, and G. von Freymann, “Three-Dimensional µ-Printing: An Enabling Technology,” Adv. Optical Mater. 3(11), 1488–1507 (2015).
[Crossref]

Wilhelms, H.

R. Krüger-Sehm, P. Bakucz, L. Jung, and H. Wilhelms, “Chirp-Kalibriernormale für Oberflächenmessgeräte (Chirp Calibration Standards for Surface Measuring Instruments),” Techn. Mess. 74(11), 572–576 (2007).

Wiora, G.

J. Seewig, M. Eifler, and G. Wiora, “Unambiguous evaluation of a chirp measurement standard,” Surf. Topo. Met.Prop. 2(4), 045003 (2014).
[Crossref]

Ye, J.

Additive Manufacturing (1)

F. Ströer, J. Hering, M. Eifler, I. Raid, G. von Freymann, and J. Seewig, “Ultrafast 3D High Precision Print of Micro Structures for Optical Instrument Calibration Procedures,” Additive Manufacturing 18, 22–30 (2017).
[Crossref]

Adv. Optical Mater. (1)

J. K. Hohmann, M. Renner, E. H. Waller, and G. von Freymann, “Three-Dimensional µ-Printing: An Enabling Technology,” Adv. Optical Mater. 3(11), 1488–1507 (2015).
[Crossref]

Appl. Sci. (1)

P. de Groot, “The Meaning and Measure of Vertical Resolution in Optical Surface Topography Measurement,” Appl. Sci. 7(1), 54 (2017).
[Crossref]

Meas. Sci. Technol. (3)

C. L. Giusca, R. K. Leach, F. Helary, T. Gutauskas, and L. Nimishakavi, “Calibration of the scales of areal surface topography-measuring instruments: part 1. Measurement noise and residual flatness,” Meas. Sci. Technol. 23(3), 035008 (2012).
[Crossref]

C. L. Giusca, R. K. Leach, and F. Helery, “Calibration of the scales of areal surface topography measuring instruments: part 2. Amplification, linearity and squareness,” Meas. Sci. Technol. 23(6), 065005 (2012).
[Crossref]

C. L. Giusca and R. K. Leach, “Calibration of the scales of areal surface topography measuring instruments: part 3. Resolution,” Meas. Sci. Technol. 24(10), 105010 (2013).
[Crossref]

Opt. Express (1)

Proc. SPIE (3)

J. Seewig and M. Eifler, “Calibration of areal surface topography measuring instruments,” Proc. SPIE 10449, 1044911 (2017).

M. Eifler, J. Seewig, J. Hering, and G. von Freymann, “Calibration of z-axis linearity for arbitrary optical topography measuring instruments,” Proc. SPIE 9525, 952510 (2015).
[Crossref]

P. de Groot, “Progress in the specification of optical instruments for the measurement of surface form and texture,” Proc. SPIE 9110, 91100M (2014).
[Crossref]

Surf. Topo. Met.Prop. (2)

R. K. Leach, C. L. Giusca, K. Rickens, O. Riemer, and P. Rubert, “Development of material measures for performance verifying surface topography measuring instruments,” Surf. Topo. Met.Prop. 2(2), 025002 (2014).
[Crossref]

J. Seewig, M. Eifler, and G. Wiora, “Unambiguous evaluation of a chirp measurement standard,” Surf. Topo. Met.Prop. 2(4), 045003 (2014).
[Crossref]

Techn. Mess. (1)

R. Krüger-Sehm, P. Bakucz, L. Jung, and H. Wilhelms, “Chirp-Kalibriernormale für Oberflächenmessgeräte (Chirp Calibration Standards for Surface Measuring Instruments),” Techn. Mess. 74(11), 572–576 (2007).

Thin Solid Films (1)

D. W. Hoffman and J. A. Thornton, “Internal stresses in sputtered chromium,” Thin Solid Films 40, 355–363 (1977).
[Crossref]

Other (17)

International Organization for Standardization, “Geometrical product specifications (GPS) – Surface texture: Areal – Part 603: Nominal characteristics of non-contact (phase-shifting interferometric microscopy) instruments,” ISO 25178–603 (2013).

International Organization for Standardization, “Geometrical product specifications (GPS) – Surface texture: Areal – Part 2: Terms, definitions and surface texture parameters,” ISO 25178–2 (2012).

International Organization for Standardization, “Geometrical product specification (GPS) – Surface texture: Areal – Part 70: Material measures,” ISO 25178–70 (2014).

M. Eifler, “Modellbasierte Entwicklung von Kalibriernormalen zur geometrischen Produktspezifikation,” Kaiserslautern: Technische Universität Kaiserslautern (2016).

Deutsches Institut für Normung, “Terms and definitions used on ageing of materials – Polymeric materials,” DIN 50035 (2012).

K. Klauer, M. Eifler, F. Schneider, J. Seewig, and J. C. Aurich, “Ageing of roughness artefacts – impact on the measurement results,” in Proceedings of euspen’s Int. Conf. & Exhibition17, 403–404 (2017).

R. Leach, Characterisation of areal surface texture (Springer, 2013). Chap. 1.

K. Stout, Development of methods for the characterisation of roughness in three dimensions (Penton, 2000).

L. Blunt and X. Jiang, Advanced techniques for assessment surface topography: Development of a basis for 3D surface texture standards SURFSTAND (Kogan Page Science, 2003).

M. Eifler, J. Hering, G. von Freymann, and J. Seewig, “Manufacturing of the ISO 25178-70 material measures with direct laser writing – a feasibility study,” Surf. Topo. Met.Prop.in press.

G. V. Samsonov, Handbook of the Physicochemical Properties of the Elements (Springer, 1968).

International Organization for Standardization, “Geometrical product specifications (GPS) - Surface texture: Areal - Part 1: Indication of surface texture,” ISO 25178–1 (2016).

International Organization for Standardization, “Geometrical product specifications (GPS) - Surface texture: Areal - Part 601: Nominal characteristics of contact (stylus) instruments,” ISO 25178–601 (2010).

International Organization for Standardization, “Geometrical product specifications (GPS) - Surface texture: Areal - Part 600: Metrological characteristics for areal-topography measuring methods,” ISO/DIS 25178–600 (2018).

International Organization for Standardization, “Geometrical product specifications (GPS) - Surface texture: Areal - Part 701: Calibration and measurement standards for contact (stylus) instruments,” ISO 25178–701 (2010).

International Organization for Standardization, “Geometrical product specifications (GPS) - Surface texture: Areal - Part 700: Calibration and verification of areal topography measuring instruments,” ISO 25178–700.3:2016, WD (2016).

R.K. Leach, C.L. Giusca, and P. Rubert, “A single set of material measures for the calibration of areal surface topography measuring instruments: the NPL Areal Bento Box,” in Proceedings of Met and Props, 406–413 (2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 (a) Target geometries imaged with a size of 100 µm x 100 µm (simulated data), (b) overview of all target geometries featuring varying sizes – the final “universal calibration artefact” (simulated data and SEM image of the type ARS material measure).
Fig. 2
Fig. 2 Aging study exemplarily shown for the type CIN material measure. Evaluated parameters: (a) small scale fidelity limit (ssf) as defined in [23], (b) deviation of arithmetic mean roughness (Sa-Sa,tar) / Sa,tar and (c) deviation of root mean square roughness (Sq-Sq,tar) / Sq,tar .
Fig. 3
Fig. 3 Aging study, exemplary profiles for the Ir-coated type CIN material measure. (a) Extracted profile before aging (t = 0 days), (b) extracted profile after t = 5 days of aging, (c) extracted profile after t = 8 days of aging, (d) extracted profile after t = 19 days of aging.
Fig. 4
Fig. 4 Aging study based on the small scale fidelity limit, exemplarily shown for the Ir-coated type CIN material measure after t = 19 days. (a) Fit (red) of the measured (blue) chirp geometry, (b) small scale fidelity limit (ssf) determination.
Fig. 5
Fig. 5 Aging study. Evaluation of the parameters: (a) deviation of arithmetic mean roughness (Sa-Sa,tar) / Sa,tar, (b) deviation of root mean square roughness (Sq-Sq,tar) / Sq,tar, (c) deviation of the amplification coefficient α and (d) linearity deviation lz as defined in ISO 25178-60x series for the type AIR material measure.
Fig. 6
Fig. 6 Aging study. Evaluation of the type AIR geometry with Ir-coating: (a) measured topography before artificial aging (t = 0 days), (b) measured topography after t = 19 days, (c) measured Abbott-curve before artificial aging, (d) measured Abbott-curve after t = 19 days.
Fig. 7
Fig. 7 Scaling study. Evaluation of the type ARS material measure with the above mentioned iridium coating. The 100 µm x 100 µm material measure is analyzed with a CM using (a) 100x magnification, whereas the 800 µm x 800 µm geometry is imaged using (b) 60x and (c) 20x magnification.
Fig. 8
Fig. 8 Scaling study. Evaluation of the type CIN material measure. Evaluated parameters: (a) small scale fidelity limit, (b) deviation of arithmetic mean roughness (Sa-Sa,tar) / Sa,tar, (c) deviation of root mean square roughness (Sq-Sq,tar) / Sq,tar. I 100 µm sample measured with 100x magnification, II 200 µm sample, 60x magnification, III 400 µm sample, 20x magnification, IV 400 µm sample, 60x magnification, V 800 µm sample, 20x magnification, VI 800 µm sample, 60x magnification.
Fig. 9
Fig. 9 Scaling study. Evaluation of the type AIR material measure. Evaluated parameters: (a) deviation of arithmetic mean roughness (Sa-Sa,tar) / Sa,tar, (b) deviation of root mean square roughness (Sq-Sq,tar) / Sq,tar, (c) deviation of the amplification coefficient α and (d) linearity deviation lz as defined in the ISO 25178-60x series.
Fig. 10
Fig. 10 Results of the type ASG material measure. (a)-(c): aging study; (d)-(f): scaling study. I-VI as described in Fig. 8.
Fig. 11
Fig. 11 Results of the type AFL material measure. (a)-(b): aging study; (c)-(d): scaling study. I-VI as described in Fig. 8. Because the target roughness parameters for the flat surface are Sa = Sq = 0, the measured parameters are plotted as absolute values.
Fig. 12
Fig. 12 Results of the type ARS material measure. (a)-(b): aging study; (c)-(d): scaling study. I-VI as described in Fig. 8.
Fig. 13
Fig. 13 Results of the type ACG material measure. (a)-(b): aging study. Pitch lengths lx,ly and deviation of the angle β between the x- and y-grating; (c)-(d): scaling study. I-VI as described in Fig. 8.

Tables (1)

Tables Icon

Table 1 Manufactured samples, target evaluation parameters.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

( C( M r k ), C tar (M r k ) ),k=1,...,nm,
l z =max( | C( M r k )( m C tar (M r k )+t ) | ),k=1,...nm, α z =m.

Metrics