Abstract

The performance of unipolar unicolor coded Brillouin optical time-domain analysis (BOTDA) is evaluated based on both Simplex and Golay codes. Four major detrimental factors that limit the system performance, including decoded-gain trace distortion, coding pulse power non-uniformity, polarization pulling and higher-order non-local effects, are thoroughly investigated. Through theoretical analysis and an experimental validations, solutions and optimal design conditions for unipolar unicolor coded BOTDA are clearly established. First, a logarithmic normalization approach is proposed to resolve the linear accumulated Brillouin amplification without distortion. Then it is found out that Simplex codes are more robust to pulse power non-uniformity compared to Golay codes; whilst the use of a polarization scrambler must be preferred in comparison to a polarization switch to mitigate uncompensated fading induced by polarization pulling in the decoded traces. These optimal conditions enables the sensing performance only limited by higher-order non-local effects. To secure systematic errors below 1.3 MHz on the Brillouin frequency estimation, while simultaneously reaching the maximum signal-to-noise ratio (SNR), a mathematical model is established to trade-off the key parameters in the design, i.e., the single-pulse Brillouin amplification, code length and probe power. It turns out that the optimal SNR performance depends in inverse proportion on the value of maximum single-pulse Brillouin amplification, which is ultimately determined by the spatial resolution. The analysis here presented is expected to serve as a quantitative guideline to design a distortion-free coded BOTDA system operating at maximum SNR.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Cyclic coding for Brillouin optical time-domain analyzers using probe dithering

Haritz Iribas, Alayn Loayssa, Florian Sauser, Miguel Llera, and Sébastien Le Floch
Opt. Express 25(8) 8787-8800 (2017)

Increasing robustness of bipolar pulse coding in Brillouin distributed fiber sensors

Zhisheng Yang, Marcelo A. Soto, and Luc Thévenaz
Opt. Express 24(1) 586-597 (2016)

Bipolar optical pulse coding for performance enhancement in BOTDA sensors

Marcelo A. Soto, Sébastien Le Floch, and Luc Thévenaz
Opt. Express 21(14) 16390-16397 (2013)

References

  • View by:
  • |
  • |
  • |

  1. T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13(7), 1296–1302 (1995).
  2. M. A. Soto and L. Thévenaz, “Modeling and evaluating the performance of Brillouin distributed optical fiber sensors,” Opt. Express 21(25), 31347–31366 (2013).
  3. M. Alem, M. A. Soto, and L. Thévenaz, “Analytical model and experimental verification of the critical power for modulation instability in optical fibers,” Opt. Express 23(23), 29514–29532 (2015).
  4. S. M. Foaleng and L. Thévenaz, “Impact of Raman scattering and modulation instability on the performances of Brillouin sensors,” Proc. SPIE 7753, 77539V (2011).
  5. A. Domínguez-López, X. Angulo-Vinuesa, A. López-Gil, S. Martín-López, and M. González-Herráez, “Non-local effects in dual-probe-sideband Brillouin optical time domain analysis,” Opt. Express 23(8), 10341–10352 (2015).
  6. A. Domínguez-López, Z. Yang, M. A. Soto, X. Angulo-Vinuesa, S. Martín-López, L. Thévenaz, and M. González-Herráez, “Novel scanning method for distortion-free BOTDA measurements,” Opt. Express 24(10), 10188–10204 (2016).
  7. R. Ruiz-Lombera, J. Urricelqui, M. Sagues, J. Mirapeix, J. M. López-Higuera, and A. Loayssa, “Overcoming nonlocal effects and Brillouin threshold limitations in Brillouin optical time-domain sensors,” IEEE Photonics J. 7(6), 1–9 (2015).
  8. F. Rodriguez-Barrios, S. Martin-Lopez, A. Carrasco-Sanz, P. Corredera, J. D. Ania-Castanon, L. Thévenaz, and M. Gonzalez-Herraez, “Distributed Brillouin Fiber Sensor Assisted by First-Order Raman Amplification,” J. Lightwave Technol. 28(15), 2162–2172 (2010).
  9. S. Martin-Lopez, M. Alcon-Camas, F. Rodriguez, P. Corredera, J. D. Ania-Castañon, L. Thévenaz, and M. Gonzalez-Herraez, “Brillouin optical time-domain analysis assisted by second-order Raman amplification,” Opt. Express 18(18), 18769–18778 (2010).
  10. Y. Dong, L. Chen, and X. Bao, “Time-division multiplexing-based BOTDA over 100 km sensing length,” Opt. Lett. 36(2), 277–279 (2011).
  11. X. H. Jia, Y. J. Rao, C. X. Yuan, J. Li, X. D. Yan, Z. N. Wang, W. L. Zhang, H. Wu, Y. Y. Zhu, and F. Peng, “Hybrid distributed Raman amplification combining random fiber laser based 2nd-order and low-noise LD based 1st-order pumping,” Opt. Express 21(21), 24611–24619 (2013).
  12. M. A. Soto, A. L. Ricchiuti, L. Zhang, D. Barrera, S. Sales, and L. Thévenaz, “Time and frequency pump-probe multiplexing to enhance the signal response of Brillouin optical time-domain analyzers,” Opt. Express 22(23), 28584–28595 (2014).
  13. Y. Dong, L. Chen, and X. Bao, “Extending the Sensing Range of Brillouin Optical Time-Domain Analysis Combining Frequency-Division Multiplexing and In-Line EDFAs,” J. Lightwave Technol. 30(8), 1161–1167 (2012).
  14. M. A. Soto, G. Bolognini, F. D. Pasquale, and L. Thévenaz, “Long-range Brillouin optical time-domain analysis sensor employing pulse coding techniques,” Meas. Sci. Technol. 21(9), 094024 (2010).
  15. M. A. Soto, G. Bolognini, F. Di Pasquale, and L. Thévenaz, “Simplex-coded BOTDA fiber sensor with 1 m spatial resolution over a 50 km range,” Opt. Lett. 35(2), 259–261 (2010).
  16. M. A. Soto, G. Bolognini, and F. Di Pasquale, “Analysis of pulse modulation format in coded BOTDA sensors,” Opt. Express 18(14), 14878–14892 (2010).
  17. M. A. Soto, G. Bolognini, and F. Di Pasquale, “Long-range simplex-coded BOTDA sensor over 120 km distance employing optical preamplification,” Opt. Lett. 36(2), 232–234 (2011).
  18. S. Le Floch, F. Sauser, M. Llera, M. A. Soto, and L. Thévenaz, “Colour simplex coding for Brillouin distributed sensors,” Proc. SPIE 8794, Fifth European Workshop on Optical Fibre Sensors (EWOFS), 879437 (2013).
  19. S. L. Floch, F. Sauser, M. Llera, and E. Rochat, “Novel Brillouin Optical Time-Domain Analyzer for Extreme Sensing Range Using High-Power Flat Frequency-Coded Pump Pulses,” J. Lightwave Technol. 33(12), 2623–2627 (2015).
  20. M. A. Soto, S. Le Floch, and L. Thévenaz, “Bipolar optical pulse coding for performance enhancement in BOTDA sensors,” Opt. Express 21(14), 16390–16397 (2013).
  21. Z. Yang, M. A. Soto, and L. Thévenaz, “Increasing robustness of bipolar pulse coding in Brillouin distributed fiber sensors,” Opt. Express 24(1), 586–597 (2016).
  22. J. Urricelqui, M. Sagues, and A. Loayssa, “Brillouin optical time-domain analysis sensor assisted by Brillouin distributed amplification of pump pulses,” Opt. Express 23(23), 30448–30458 (2015).
  23. X. Hong, W. Lin, Z. Yang, S. Wang, and J. Wu, “Brillouin optical time-domain analyzer based on orthogonally-polarized four-tone probe wave,” Opt. Express 24(18), 21046–21058 (2016).
  24. M. A. Soto, J. A. Ramírez, and L. Thévenaz, “Intensifying the response of distributed optical fibre sensors using 2D and 3D image restoration,” Nat. Commun. 7, 10870 (2016).
  25. W. Lin, Z. Yang, X. Hong, S. Wang, and J. Wu, “Brillouin gain bandwidth reduction in Brillouin optical time domain analyzers,” Opt. Express 25(7), 7604–7615 (2017).
  26. G. Bolognini, J. Park, M. A. Soto, N. Park, and F. Di Pasquale, “Analysis of distributed temperature sensing based on Raman scattering using OTDR coding and discrete Raman amplification,” Meas. Sci. Technol. 18(10), 3211–3218 (2007).
  27. J. B. Rosolem, F. R. Bassan, D. E. de Freitas, and F. C. Salgado, “Raman DTS Based on OTDR Improved by Using Gain-Controlled EDFA and Pre-Shaped Simplex Code,” IEEE Sens. J. 17(11), 3346–3353 (2017).
  28. F. Wang, C. Zhu, C. Cao, and X. Zhang, “Enhancing the performance of BOTDR based on the combination of FFT technique and complementary coding,” Opt. Express 25(4), 3504–3513 (2017).
  29. H. Iribas, A. Loayssa, F. Sauser, M. Llera, and S. Le Floch, “Cyclic coding for Brillouin optical time-domain analyzers using probe dithering,” Opt. Express 25(8), 8787–8800 (2017).
  30. M. D. Jones, “Using simplex codes to improve OTDR sensitivity,” IEEE Photonics Technol. Lett. 5(7), 822–824 (1993).
  31. D. Lee, H. Yoon, P. Kim, J. Park, and N. Park, “Optimization of SNR Improvement in the Noncoherent OTDR Based on Simplex Codes,” J. Lightwave Technol. 24(1), 322–328 (2006).
  32. M. A. Soto, M. Tur, A. Lopez-Gil, M. Gonzalez-Herraez, and L. Thévenaz, “Polarisation pulling in Brillouin optical time-domain analysers,” Proc. SPIE 10323, 103239L (2017).
  33. L. Thévenaz, S. F. Mafang, and J. Lin, “Effect of pulse depletion in a Brillouin optical time-domain analysis system,” Opt. Express 21(12), 14017–14035 (2013).

2017 (5)

J. B. Rosolem, F. R. Bassan, D. E. de Freitas, and F. C. Salgado, “Raman DTS Based on OTDR Improved by Using Gain-Controlled EDFA and Pre-Shaped Simplex Code,” IEEE Sens. J. 17(11), 3346–3353 (2017).

M. A. Soto, M. Tur, A. Lopez-Gil, M. Gonzalez-Herraez, and L. Thévenaz, “Polarisation pulling in Brillouin optical time-domain analysers,” Proc. SPIE 10323, 103239L (2017).

F. Wang, C. Zhu, C. Cao, and X. Zhang, “Enhancing the performance of BOTDR based on the combination of FFT technique and complementary coding,” Opt. Express 25(4), 3504–3513 (2017).

W. Lin, Z. Yang, X. Hong, S. Wang, and J. Wu, “Brillouin gain bandwidth reduction in Brillouin optical time domain analyzers,” Opt. Express 25(7), 7604–7615 (2017).

H. Iribas, A. Loayssa, F. Sauser, M. Llera, and S. Le Floch, “Cyclic coding for Brillouin optical time-domain analyzers using probe dithering,” Opt. Express 25(8), 8787–8800 (2017).

2016 (4)

2015 (5)

2014 (1)

2013 (4)

2012 (1)

2011 (3)

2010 (5)

2007 (1)

G. Bolognini, J. Park, M. A. Soto, N. Park, and F. Di Pasquale, “Analysis of distributed temperature sensing based on Raman scattering using OTDR coding and discrete Raman amplification,” Meas. Sci. Technol. 18(10), 3211–3218 (2007).

2006 (1)

1995 (1)

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13(7), 1296–1302 (1995).

1993 (1)

M. D. Jones, “Using simplex codes to improve OTDR sensitivity,” IEEE Photonics Technol. Lett. 5(7), 822–824 (1993).

Alcon-Camas, M.

Alem, M.

Angulo-Vinuesa, X.

Ania-Castanon, J. D.

Ania-Castañon, J. D.

Bao, X.

Barrera, D.

Bassan, F. R.

J. B. Rosolem, F. R. Bassan, D. E. de Freitas, and F. C. Salgado, “Raman DTS Based on OTDR Improved by Using Gain-Controlled EDFA and Pre-Shaped Simplex Code,” IEEE Sens. J. 17(11), 3346–3353 (2017).

Bolognini, G.

M. A. Soto, G. Bolognini, and F. Di Pasquale, “Long-range simplex-coded BOTDA sensor over 120 km distance employing optical preamplification,” Opt. Lett. 36(2), 232–234 (2011).

M. A. Soto, G. Bolognini, F. D. Pasquale, and L. Thévenaz, “Long-range Brillouin optical time-domain analysis sensor employing pulse coding techniques,” Meas. Sci. Technol. 21(9), 094024 (2010).

M. A. Soto, G. Bolognini, F. Di Pasquale, and L. Thévenaz, “Simplex-coded BOTDA fiber sensor with 1 m spatial resolution over a 50 km range,” Opt. Lett. 35(2), 259–261 (2010).

M. A. Soto, G. Bolognini, and F. Di Pasquale, “Analysis of pulse modulation format in coded BOTDA sensors,” Opt. Express 18(14), 14878–14892 (2010).

G. Bolognini, J. Park, M. A. Soto, N. Park, and F. Di Pasquale, “Analysis of distributed temperature sensing based on Raman scattering using OTDR coding and discrete Raman amplification,” Meas. Sci. Technol. 18(10), 3211–3218 (2007).

Cao, C.

Carrasco-Sanz, A.

Chen, L.

Corredera, P.

de Freitas, D. E.

J. B. Rosolem, F. R. Bassan, D. E. de Freitas, and F. C. Salgado, “Raman DTS Based on OTDR Improved by Using Gain-Controlled EDFA and Pre-Shaped Simplex Code,” IEEE Sens. J. 17(11), 3346–3353 (2017).

Di Pasquale, F.

Domínguez-López, A.

Dong, Y.

Floch, S. L.

Foaleng, S. M.

S. M. Foaleng and L. Thévenaz, “Impact of Raman scattering and modulation instability on the performances of Brillouin sensors,” Proc. SPIE 7753, 77539V (2011).

Gonzalez-Herraez, M.

González-Herráez, M.

Hong, X.

Horiguchi, T.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13(7), 1296–1302 (1995).

Iribas, H.

Jia, X. H.

Jones, M. D.

M. D. Jones, “Using simplex codes to improve OTDR sensitivity,” IEEE Photonics Technol. Lett. 5(7), 822–824 (1993).

Kim, P.

Koyamada, Y.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13(7), 1296–1302 (1995).

Kurashima, T.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13(7), 1296–1302 (1995).

Le Floch, S.

Lee, D.

Li, J.

Lin, J.

Lin, W.

Llera, M.

Loayssa, A.

Lopez-Gil, A.

M. A. Soto, M. Tur, A. Lopez-Gil, M. Gonzalez-Herraez, and L. Thévenaz, “Polarisation pulling in Brillouin optical time-domain analysers,” Proc. SPIE 10323, 103239L (2017).

López-Gil, A.

López-Higuera, J. M.

R. Ruiz-Lombera, J. Urricelqui, M. Sagues, J. Mirapeix, J. M. López-Higuera, and A. Loayssa, “Overcoming nonlocal effects and Brillouin threshold limitations in Brillouin optical time-domain sensors,” IEEE Photonics J. 7(6), 1–9 (2015).

Mafang, S. F.

Martin-Lopez, S.

Martín-López, S.

Mirapeix, J.

R. Ruiz-Lombera, J. Urricelqui, M. Sagues, J. Mirapeix, J. M. López-Higuera, and A. Loayssa, “Overcoming nonlocal effects and Brillouin threshold limitations in Brillouin optical time-domain sensors,” IEEE Photonics J. 7(6), 1–9 (2015).

Park, J.

G. Bolognini, J. Park, M. A. Soto, N. Park, and F. Di Pasquale, “Analysis of distributed temperature sensing based on Raman scattering using OTDR coding and discrete Raman amplification,” Meas. Sci. Technol. 18(10), 3211–3218 (2007).

D. Lee, H. Yoon, P. Kim, J. Park, and N. Park, “Optimization of SNR Improvement in the Noncoherent OTDR Based on Simplex Codes,” J. Lightwave Technol. 24(1), 322–328 (2006).

Park, N.

G. Bolognini, J. Park, M. A. Soto, N. Park, and F. Di Pasquale, “Analysis of distributed temperature sensing based on Raman scattering using OTDR coding and discrete Raman amplification,” Meas. Sci. Technol. 18(10), 3211–3218 (2007).

D. Lee, H. Yoon, P. Kim, J. Park, and N. Park, “Optimization of SNR Improvement in the Noncoherent OTDR Based on Simplex Codes,” J. Lightwave Technol. 24(1), 322–328 (2006).

Pasquale, F. D.

M. A. Soto, G. Bolognini, F. D. Pasquale, and L. Thévenaz, “Long-range Brillouin optical time-domain analysis sensor employing pulse coding techniques,” Meas. Sci. Technol. 21(9), 094024 (2010).

Peng, F.

Ramírez, J. A.

M. A. Soto, J. A. Ramírez, and L. Thévenaz, “Intensifying the response of distributed optical fibre sensors using 2D and 3D image restoration,” Nat. Commun. 7, 10870 (2016).

Rao, Y. J.

Ricchiuti, A. L.

Rochat, E.

Rodriguez, F.

Rodriguez-Barrios, F.

Rosolem, J. B.

J. B. Rosolem, F. R. Bassan, D. E. de Freitas, and F. C. Salgado, “Raman DTS Based on OTDR Improved by Using Gain-Controlled EDFA and Pre-Shaped Simplex Code,” IEEE Sens. J. 17(11), 3346–3353 (2017).

Ruiz-Lombera, R.

R. Ruiz-Lombera, J. Urricelqui, M. Sagues, J. Mirapeix, J. M. López-Higuera, and A. Loayssa, “Overcoming nonlocal effects and Brillouin threshold limitations in Brillouin optical time-domain sensors,” IEEE Photonics J. 7(6), 1–9 (2015).

Sagues, M.

R. Ruiz-Lombera, J. Urricelqui, M. Sagues, J. Mirapeix, J. M. López-Higuera, and A. Loayssa, “Overcoming nonlocal effects and Brillouin threshold limitations in Brillouin optical time-domain sensors,” IEEE Photonics J. 7(6), 1–9 (2015).

J. Urricelqui, M. Sagues, and A. Loayssa, “Brillouin optical time-domain analysis sensor assisted by Brillouin distributed amplification of pump pulses,” Opt. Express 23(23), 30448–30458 (2015).

Sales, S.

Salgado, F. C.

J. B. Rosolem, F. R. Bassan, D. E. de Freitas, and F. C. Salgado, “Raman DTS Based on OTDR Improved by Using Gain-Controlled EDFA and Pre-Shaped Simplex Code,” IEEE Sens. J. 17(11), 3346–3353 (2017).

Sauser, F.

Shimizu, K.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13(7), 1296–1302 (1995).

Soto, M. A.

M. A. Soto, M. Tur, A. Lopez-Gil, M. Gonzalez-Herraez, and L. Thévenaz, “Polarisation pulling in Brillouin optical time-domain analysers,” Proc. SPIE 10323, 103239L (2017).

A. Domínguez-López, Z. Yang, M. A. Soto, X. Angulo-Vinuesa, S. Martín-López, L. Thévenaz, and M. González-Herráez, “Novel scanning method for distortion-free BOTDA measurements,” Opt. Express 24(10), 10188–10204 (2016).

Z. Yang, M. A. Soto, and L. Thévenaz, “Increasing robustness of bipolar pulse coding in Brillouin distributed fiber sensors,” Opt. Express 24(1), 586–597 (2016).

M. A. Soto, J. A. Ramírez, and L. Thévenaz, “Intensifying the response of distributed optical fibre sensors using 2D and 3D image restoration,” Nat. Commun. 7, 10870 (2016).

M. Alem, M. A. Soto, and L. Thévenaz, “Analytical model and experimental verification of the critical power for modulation instability in optical fibers,” Opt. Express 23(23), 29514–29532 (2015).

M. A. Soto, A. L. Ricchiuti, L. Zhang, D. Barrera, S. Sales, and L. Thévenaz, “Time and frequency pump-probe multiplexing to enhance the signal response of Brillouin optical time-domain analyzers,” Opt. Express 22(23), 28584–28595 (2014).

M. A. Soto and L. Thévenaz, “Modeling and evaluating the performance of Brillouin distributed optical fiber sensors,” Opt. Express 21(25), 31347–31366 (2013).

M. A. Soto, S. Le Floch, and L. Thévenaz, “Bipolar optical pulse coding for performance enhancement in BOTDA sensors,” Opt. Express 21(14), 16390–16397 (2013).

M. A. Soto, G. Bolognini, and F. Di Pasquale, “Long-range simplex-coded BOTDA sensor over 120 km distance employing optical preamplification,” Opt. Lett. 36(2), 232–234 (2011).

M. A. Soto, G. Bolognini, F. D. Pasquale, and L. Thévenaz, “Long-range Brillouin optical time-domain analysis sensor employing pulse coding techniques,” Meas. Sci. Technol. 21(9), 094024 (2010).

M. A. Soto, G. Bolognini, F. Di Pasquale, and L. Thévenaz, “Simplex-coded BOTDA fiber sensor with 1 m spatial resolution over a 50 km range,” Opt. Lett. 35(2), 259–261 (2010).

M. A. Soto, G. Bolognini, and F. Di Pasquale, “Analysis of pulse modulation format in coded BOTDA sensors,” Opt. Express 18(14), 14878–14892 (2010).

G. Bolognini, J. Park, M. A. Soto, N. Park, and F. Di Pasquale, “Analysis of distributed temperature sensing based on Raman scattering using OTDR coding and discrete Raman amplification,” Meas. Sci. Technol. 18(10), 3211–3218 (2007).

Tateda, M.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13(7), 1296–1302 (1995).

Thévenaz, L.

M. A. Soto, M. Tur, A. Lopez-Gil, M. Gonzalez-Herraez, and L. Thévenaz, “Polarisation pulling in Brillouin optical time-domain analysers,” Proc. SPIE 10323, 103239L (2017).

Z. Yang, M. A. Soto, and L. Thévenaz, “Increasing robustness of bipolar pulse coding in Brillouin distributed fiber sensors,” Opt. Express 24(1), 586–597 (2016).

A. Domínguez-López, Z. Yang, M. A. Soto, X. Angulo-Vinuesa, S. Martín-López, L. Thévenaz, and M. González-Herráez, “Novel scanning method for distortion-free BOTDA measurements,” Opt. Express 24(10), 10188–10204 (2016).

M. A. Soto, J. A. Ramírez, and L. Thévenaz, “Intensifying the response of distributed optical fibre sensors using 2D and 3D image restoration,” Nat. Commun. 7, 10870 (2016).

M. Alem, M. A. Soto, and L. Thévenaz, “Analytical model and experimental verification of the critical power for modulation instability in optical fibers,” Opt. Express 23(23), 29514–29532 (2015).

M. A. Soto, A. L. Ricchiuti, L. Zhang, D. Barrera, S. Sales, and L. Thévenaz, “Time and frequency pump-probe multiplexing to enhance the signal response of Brillouin optical time-domain analyzers,” Opt. Express 22(23), 28584–28595 (2014).

L. Thévenaz, S. F. Mafang, and J. Lin, “Effect of pulse depletion in a Brillouin optical time-domain analysis system,” Opt. Express 21(12), 14017–14035 (2013).

M. A. Soto, S. Le Floch, and L. Thévenaz, “Bipolar optical pulse coding for performance enhancement in BOTDA sensors,” Opt. Express 21(14), 16390–16397 (2013).

M. A. Soto and L. Thévenaz, “Modeling and evaluating the performance of Brillouin distributed optical fiber sensors,” Opt. Express 21(25), 31347–31366 (2013).

S. M. Foaleng and L. Thévenaz, “Impact of Raman scattering and modulation instability on the performances of Brillouin sensors,” Proc. SPIE 7753, 77539V (2011).

M. A. Soto, G. Bolognini, F. D. Pasquale, and L. Thévenaz, “Long-range Brillouin optical time-domain analysis sensor employing pulse coding techniques,” Meas. Sci. Technol. 21(9), 094024 (2010).

M. A. Soto, G. Bolognini, F. Di Pasquale, and L. Thévenaz, “Simplex-coded BOTDA fiber sensor with 1 m spatial resolution over a 50 km range,” Opt. Lett. 35(2), 259–261 (2010).

F. Rodriguez-Barrios, S. Martin-Lopez, A. Carrasco-Sanz, P. Corredera, J. D. Ania-Castanon, L. Thévenaz, and M. Gonzalez-Herraez, “Distributed Brillouin Fiber Sensor Assisted by First-Order Raman Amplification,” J. Lightwave Technol. 28(15), 2162–2172 (2010).

S. Martin-Lopez, M. Alcon-Camas, F. Rodriguez, P. Corredera, J. D. Ania-Castañon, L. Thévenaz, and M. Gonzalez-Herraez, “Brillouin optical time-domain analysis assisted by second-order Raman amplification,” Opt. Express 18(18), 18769–18778 (2010).

Tur, M.

M. A. Soto, M. Tur, A. Lopez-Gil, M. Gonzalez-Herraez, and L. Thévenaz, “Polarisation pulling in Brillouin optical time-domain analysers,” Proc. SPIE 10323, 103239L (2017).

Urricelqui, J.

J. Urricelqui, M. Sagues, and A. Loayssa, “Brillouin optical time-domain analysis sensor assisted by Brillouin distributed amplification of pump pulses,” Opt. Express 23(23), 30448–30458 (2015).

R. Ruiz-Lombera, J. Urricelqui, M. Sagues, J. Mirapeix, J. M. López-Higuera, and A. Loayssa, “Overcoming nonlocal effects and Brillouin threshold limitations in Brillouin optical time-domain sensors,” IEEE Photonics J. 7(6), 1–9 (2015).

Wang, F.

Wang, S.

Wang, Z. N.

Wu, H.

Wu, J.

Yan, X. D.

Yang, Z.

Yoon, H.

Yuan, C. X.

Zhang, L.

Zhang, W. L.

Zhang, X.

Zhu, C.

Zhu, Y. Y.

IEEE Photonics J. (1)

R. Ruiz-Lombera, J. Urricelqui, M. Sagues, J. Mirapeix, J. M. López-Higuera, and A. Loayssa, “Overcoming nonlocal effects and Brillouin threshold limitations in Brillouin optical time-domain sensors,” IEEE Photonics J. 7(6), 1–9 (2015).

IEEE Photonics Technol. Lett. (1)

M. D. Jones, “Using simplex codes to improve OTDR sensitivity,” IEEE Photonics Technol. Lett. 5(7), 822–824 (1993).

IEEE Sens. J. (1)

J. B. Rosolem, F. R. Bassan, D. E. de Freitas, and F. C. Salgado, “Raman DTS Based on OTDR Improved by Using Gain-Controlled EDFA and Pre-Shaped Simplex Code,” IEEE Sens. J. 17(11), 3346–3353 (2017).

J. Lightwave Technol. (5)

Meas. Sci. Technol. (2)

M. A. Soto, G. Bolognini, F. D. Pasquale, and L. Thévenaz, “Long-range Brillouin optical time-domain analysis sensor employing pulse coding techniques,” Meas. Sci. Technol. 21(9), 094024 (2010).

G. Bolognini, J. Park, M. A. Soto, N. Park, and F. Di Pasquale, “Analysis of distributed temperature sensing based on Raman scattering using OTDR coding and discrete Raman amplification,” Meas. Sci. Technol. 18(10), 3211–3218 (2007).

Nat. Commun. (1)

M. A. Soto, J. A. Ramírez, and L. Thévenaz, “Intensifying the response of distributed optical fibre sensors using 2D and 3D image restoration,” Nat. Commun. 7, 10870 (2016).

Opt. Express (16)

S. Martin-Lopez, M. Alcon-Camas, F. Rodriguez, P. Corredera, J. D. Ania-Castañon, L. Thévenaz, and M. Gonzalez-Herraez, “Brillouin optical time-domain analysis assisted by second-order Raman amplification,” Opt. Express 18(18), 18769–18778 (2010).

M. A. Soto, G. Bolognini, and F. Di Pasquale, “Analysis of pulse modulation format in coded BOTDA sensors,” Opt. Express 18(14), 14878–14892 (2010).

L. Thévenaz, S. F. Mafang, and J. Lin, “Effect of pulse depletion in a Brillouin optical time-domain analysis system,” Opt. Express 21(12), 14017–14035 (2013).

M. A. Soto, S. Le Floch, and L. Thévenaz, “Bipolar optical pulse coding for performance enhancement in BOTDA sensors,” Opt. Express 21(14), 16390–16397 (2013).

X. H. Jia, Y. J. Rao, C. X. Yuan, J. Li, X. D. Yan, Z. N. Wang, W. L. Zhang, H. Wu, Y. Y. Zhu, and F. Peng, “Hybrid distributed Raman amplification combining random fiber laser based 2nd-order and low-noise LD based 1st-order pumping,” Opt. Express 21(21), 24611–24619 (2013).

M. A. Soto and L. Thévenaz, “Modeling and evaluating the performance of Brillouin distributed optical fiber sensors,” Opt. Express 21(25), 31347–31366 (2013).

M. A. Soto, A. L. Ricchiuti, L. Zhang, D. Barrera, S. Sales, and L. Thévenaz, “Time and frequency pump-probe multiplexing to enhance the signal response of Brillouin optical time-domain analyzers,” Opt. Express 22(23), 28584–28595 (2014).

A. Domínguez-López, X. Angulo-Vinuesa, A. López-Gil, S. Martín-López, and M. González-Herráez, “Non-local effects in dual-probe-sideband Brillouin optical time domain analysis,” Opt. Express 23(8), 10341–10352 (2015).

M. Alem, M. A. Soto, and L. Thévenaz, “Analytical model and experimental verification of the critical power for modulation instability in optical fibers,” Opt. Express 23(23), 29514–29532 (2015).

J. Urricelqui, M. Sagues, and A. Loayssa, “Brillouin optical time-domain analysis sensor assisted by Brillouin distributed amplification of pump pulses,” Opt. Express 23(23), 30448–30458 (2015).

Z. Yang, M. A. Soto, and L. Thévenaz, “Increasing robustness of bipolar pulse coding in Brillouin distributed fiber sensors,” Opt. Express 24(1), 586–597 (2016).

A. Domínguez-López, Z. Yang, M. A. Soto, X. Angulo-Vinuesa, S. Martín-López, L. Thévenaz, and M. González-Herráez, “Novel scanning method for distortion-free BOTDA measurements,” Opt. Express 24(10), 10188–10204 (2016).

X. Hong, W. Lin, Z. Yang, S. Wang, and J. Wu, “Brillouin optical time-domain analyzer based on orthogonally-polarized four-tone probe wave,” Opt. Express 24(18), 21046–21058 (2016).

F. Wang, C. Zhu, C. Cao, and X. Zhang, “Enhancing the performance of BOTDR based on the combination of FFT technique and complementary coding,” Opt. Express 25(4), 3504–3513 (2017).

W. Lin, Z. Yang, X. Hong, S. Wang, and J. Wu, “Brillouin gain bandwidth reduction in Brillouin optical time domain analyzers,” Opt. Express 25(7), 7604–7615 (2017).

H. Iribas, A. Loayssa, F. Sauser, M. Llera, and S. Le Floch, “Cyclic coding for Brillouin optical time-domain analyzers using probe dithering,” Opt. Express 25(8), 8787–8800 (2017).

Opt. Lett. (3)

Proc. SPIE (2)

M. A. Soto, M. Tur, A. Lopez-Gil, M. Gonzalez-Herraez, and L. Thévenaz, “Polarisation pulling in Brillouin optical time-domain analysers,” Proc. SPIE 10323, 103239L (2017).

S. M. Foaleng and L. Thévenaz, “Impact of Raman scattering and modulation instability on the performances of Brillouin sensors,” Proc. SPIE 7753, 77539V (2011).

Other (1)

S. Le Floch, F. Sauser, M. Llera, M. A. Soto, and L. Thévenaz, “Colour simplex coding for Brillouin distributed sensors,” Proc. SPIE 8794, Fifth European Workshop on Optical Fibre Sensors (EWOFS), 879437 (2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1 Illustration of an RZ coded sequence ‘1101…101’ with M coding units
Fig. 2
Fig. 2 Schematic illustration of general decoding process for a given ν.
Fig. 3
Fig. 3 Experimental setup.
Fig. 4
Fig. 4 Decoded Brillouin gain traces after conventional linear normalization for different G0, using (a) Golay and (b) Simplex codes.
Fig. 5
Fig. 5 Decoded Brillouin gain traces after the proposed logarithmic normalization for different G0, using (a) Golay and (b) Simplex codes.
Fig. 6
Fig. 6 (a) BFS profiles over the whole sensing fiber, obtained from a single-pulse BOTDA and a Simplex coded BOTDA with different normalization methods in case of G0 = 240%. (b) BFS profiles over a fiber section from 100 m to 250 m. (c) BFS error profiles over the sensing fiber in case of G0 = 240%. (d) BFS error profiles over the sensing fiber in case of G0 = 60%.
Fig. 7
Fig. 7 BFS error profiles over the sensing fiber in case of Golay coding when (a) G0 = 240% and (b) G0 = 60%.
Fig. 8
Fig. 8 Impact of EDFA amplification on code sequence amplitude. Normalized 512-bit Golay coded optical pulse sequence (a) at the EDFA input and (b) at the EDFA output.
Fig. 9
Fig. 9 Decoded autocorrelation functions using the coded sequences with 512-bit coding length measured (a) at the EDFA input and (b) at the EDFA output.
Fig. 10
Fig. 10 Decoded Brillouin gain traces after logarithmic normalization for different G0 levels using 512-bit Golay coded BOTDA.
Fig. 11
Fig. 11 Decoded Brillouin gain traces after logarithmic normalization (when using polarization switch or polarization scrambler) for the cases of (a) G0 = 240% and (b) G0 = 60%.
Fig. 12
Fig. 12 (a) Experimentally measured code sequence power distribution when turning on and off the probe wave. (b) Depletion level of the last coded pulse as a function of the input probe power in cases of different G0.
Fig. 13
Fig. 13 BFS profiles measured around a hot-spot, obtained using single-pulse BOTDA and Simplex coded BOTDA with 20%, 10% and 5% depletion of the last coded pulse, respectively.
Fig. 14
Fig. 14 (a) Maximum input probe power per sideband and (b) value of P iS max ( G 0 ) G 0 , both versus the accumulated Brillouin amplification in the cases of d = 20% and d = 10% depletion.

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

P S (z L c ,ν)= P S (z) exp[ g s_1 (z,ν) ]exp[ g s_2 (z L d ,ν) ]exp[ g s_3 (z(M1) L d ,ν) ] Cascadedgain = P iS exp[ α(Lz) ]exp[ i=1 M g s_i ( z i ,ν) ]
g s_i ( z i ,ν)={ g B ( z i ,ν) P iP exp(αz)Δzfor C i =1 0for C i =0
P S (z L c ,ν)= P iS exp[ α(Lz) ]exp[ G(z,ν) ]
G(z,ν)= M 2 g s (z,ν)= M 2 g B (z,ν) P iP exp(αz)Δz
P S 0 (z,ν)= P S (z L c ,ν)exp(αz) = P iS exp(αL)exp[ G(z,ν) ]
P S 0_DC = P iS exp(αL)
G(z,ν) P S 0 (z,ν) P S 0_DC P S 0_DC =exp[ G(z,ν) ]1
G(z,ν)=ln[ P S 0 (z,ν) P S 0_DC ]
P SL (z)= P iSL f SL (z)= P iSL exp[ α(Lz) ]exp[ G(z,ν)exp(αz) ]
P SU (z)= P iSU f SU (z)= P iSU exp[ α(Lz) ]exp[ G(z,ν)exp(αz) ]
1d=exp[ g B (ν)( 0 L P SL (z)dz 0 L P SU (z)dz ) ]
1d=exp[ g B (ν) P iS ( 0 L f SL (z)dz 0 L f SU (z)dz ) ]
P iS max ( G 0 ,d)= ln(1d) g B (ν)[ 0 L f SU (z)dz 0 L f SL (z)dz ]
SN R coded max ( G 0 ,d,M) M 2 2 G 0 M P iS max ( G 0 ,d)= P iS max ( G 0 ,d) G 0 M
M min = 2 G 0 g s max
SN R coded max ( G 0 ,d) P iS max ( G 0 ,d) G 0 M min = P iS max ( G 0 ,d) G 0 g s max 2
SN R pulse max P iSpulse max g s max
ΔSN R max ( G 0 ,d)= SN R coded max SN R pulse max = P iS max ( G 0 ,d) G 0 P iSpulse max 2 g s max
ΔSN R max = 1 2 g s max