Abstract

Multi-gigahertz fundamental repetition rate, tunable repetition rate and wavelength, ultrafast fiber lasers at wavelengths of 1.0, 1.5, and 2.0 µm are experimentally demonstrated and summarized. At the wavelength of 1.0 µm, the laser wavelength is tuned in the range of 1040.1–1042.9 nm and the repetition rate is shifted by 226 kHz in a 3-cm-long all-fiber laser by controlling the temperature of the resonator. Compared with a previous work where the maximum average power was 0.8 mW, the power in this study is significantly improved to 57 mW under a launched pump power of 213 mW, thus achieving an optical-to-optical efficiency of 27%. For comparison, a similar temperature-tuning technique is implemented in a Tm3+-doped ultrafast oscillator but, as expected, it results in a broader tunable range of 14.1 nm (1974.1–1988.2 nm) in wavelength as compared with the value of 1.8 nm for the wavelength of 1.0 µm. The repetition rate in the process is shifted by 294 kHz. For the high-frequency range from 100 kHz to 10 MHz, the value of integrated timing jitter gradually increases with an increase in temperature. Finally, to the best of our knowledge, for the first time, a new method for tuning wavelength and repetition rate is proposed and demonstrated for a femtosecond fiber laser at the wavelength of 1.5 µm. Through fine rotation of the alignment angle between the Er/Yb:glass fiber and a semiconductor saturable absorption mirror, the peak wavelength can be tuned in the range of 1591.4–1586.1 nm and the repetition rate is shifted by 60 kHz.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
5 GHz fundamental repetition rate, wavelength tunable, all-fiber passively mode-locked Yb-fiber laser

Huihui Cheng, Wenlong Wang, Yi Zhou, Tian Qiao, Wei Lin, Shanhui Xu, and Zhongmin Yang
Opt. Express 25(22) 27646-27651 (2017)

Ultrafast, high repetition rate, ultraviolet, fiber-laser-based source: application towards Yb+ fast quantum-logic

Mahmood Irtiza Hussain, Matthew Joseph Petrasiunas, Christopher D. B. Bentley, Richard L. Taylor, André R. R. Carvalho, Joseph J. Hope, Erik W. Streed, Mirko Lobino, and David Kielpinski
Opt. Express 24(15) 16638-16648 (2016)

High speed laser drilling of metals using a high repetition rate, high average power ultrafast fiber CPA system

A. Ancona, F. Röser, K. Rademaker, J. Limpert, S. Nolte, and A. Tünnermann
Opt. Express 16(12) 8958-8968 (2008)

References

  • View by:
  • |
  • |
  • |

  1. T. Wilken, G. L. Curto, R. A. Probst, T. Steinmetz, A. Manescau, L. Pasquini, J. I. González Hernández, R. Rebolo, T. W. Hänsch, T. Udem, and R. Holzwarth, “A spectrograph for exoplanet observations calibrated at the centimetre-per-second level,” Nature 485(7400), 611–614 (2012).
    [Crossref] [PubMed]
  2. D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing alloptical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
    [Crossref]
  3. H. Mikami, J. Harmon, H. Kobayashi, S. Hamad, Y. Wang, O. Iwata, K. Suzuki, T. Ito, Y. Aisaka, N. Kutsuna, K. Nagasawa, H. Watarai, Y. Ozeki, and K. Goda, “Ultrafast confocal fluorescence microscopy beyond the fluorescence lifetime limit,” Optica 5(2), 117–126 (2018).
    [Crossref]
  4. N. Ji, J. C. Magee, and E. Betzig, “High-speed, low-photodamage nonlinear imaging using passive pulse splitters,” Nat. Methods 5(2), 197–202 (2008).
    [Crossref] [PubMed]
  5. J. Schröder, D. Alasia, T. Sylvestre, and S. Coen, “Dynamics of an ultrahigh-repetition-rate passively mode-locked Raman fiber laser,” J. Opt. Soc. Am. B 25(7), 1178–1186 (2008).
    [Crossref]
  6. M. Pang, W. He, and P. St. J. Russell, “Gigahertz-repetition-rate Tm-doped fiber laser passively mode-locked by optoacoustic effects in nanobore photonic crystal fiber,” Opt. Lett. 41(19), 4601–4604 (2016).
    [Crossref] [PubMed]
  7. F. Amrani, A. Haboucha, M. Salhi, H. Leblond, A. Komarov, P. Grelu, and F. Sanchez, “Passively mode-locked erbium-doped double-clad fiber laser operating at the 322nd harmonic,” Opt. Lett. 34(14), 2120–2122 (2009).
    [Crossref] [PubMed]
  8. T. Sizer, “Increase in laser repetition rate by spectral selection,” IEEE J. Quantum Electron. 25(1), 97–103 (1989).
    [Crossref]
  9. J. Lhermite, D. Sabourdy, A. Desfarges-Berthelemot, V. Kermene, A. Barthelemy, and J. L. Oudar, “Tunable high-repetition-rate fiber laser for the generation of pulse trains and packets,” Opt. Lett. 32(12), 1734–1736 (2007).
    [Crossref] [PubMed]
  10. H. Cheng, Y. Zhou, A. E. Mironov, W. Wang, T. Qiao, W. Lin, Q. Qian, S. Xu, Z. Yang, and J. G. Eden, “Mode suppression of 53 dB and pulse repetition rates of 2.87 and 36.4 GHz in a compact, mode-locked fiber laser comprising coupled Fabry-Perot cavities of low finesse (F = 2),” Opt. Express 25(20), 24400–24409 (2017).
    [Crossref] [PubMed]
  11. A. S. Mayer, C. R. Phillips, and U. Keller, “Watt-level 10-gigahertz solid-state laser enabled by self-defocusing nonlinearities in an aperiodically poled crystal,” Nat. Commun. 8(1), 1673 (2017).
    [Crossref] [PubMed]
  12. A. Bartels, D. Heinecke, and S. A. Diddams, “Passively mode-locked 10 GHz femtosecond Ti:sapphire laser,” Opt. Lett. 33(16), 1905–1907 (2008).
    [Crossref] [PubMed]
  13. M. Endo, I. Ito, and Y. Kobayashi, “Direct 15-GHz mode-spacing optical frequency comb with a Kerr-lens mode-locked Yb:Y(2)O(3) ceramic laser,” Opt. Express 23(2), 1276–1282 (2015).
    [Crossref] [PubMed]
  14. S. Yamazoe, M. Katou, T. Adachi, and T. Kasamatsu, “Palm-top-size, 1.5 kW peak-power, and femtosecond (160 fs) diode-pumped mode-locked Yb+3:KY(WO4)2 solid-state laser with a semiconductor saturable absorber mirror,” Opt. Lett. 35(5), 748–750 (2010).
    [Crossref] [PubMed]
  15. S. Pekarek, A. Klenner, T. Südmeyer, C. Fiebig, K. Paschke, G. Erbert, and U. Keller, “Femtosecond diode-pumped solid-state laser with a repetition rate of 4.8 GHz,” Opt. Express 20(4), 4248–4253 (2012).
    [Crossref] [PubMed]
  16. D. Waldburger, S. M. Link, M. Mangold, C. G. E. Alfieri, E. Gini, M. Golling, B. W. Tilma, and U. Keller, “High-power 100 fs semiconductor disk lasers,” Optica 3(8), 844–852 (2016).
    [Crossref]
  17. P. Dupriez, C. Finot, A. Malinowski, J. K. Sahu, J. Nilsson, D. J. Richardson, K. G. Wilcox, H. D. Foreman, and A. C. Tropper, “High-power, high repetition rate picosecond and femtosecond sources based on Yb-doped fiber amplification of VECSELs,” Opt. Express 14(21), 9611–9616 (2006).
    [Crossref] [PubMed]
  18. D. D. Lorenser, H. J. Unold, D. J. H. C. Maas, A. Aschwanden, R. Grange, R. Paschotta, D. Ebling, E. Gini, and U. Keller, “Towards wafer-scale integration of high repetition rate passively mode-locked surface-emitting semiconductor lasers,” Appl. Phys. B 79(8), 927–932 (2004).
    [Crossref]
  19. A. Choudhary, A. A. Lagatsky, P. Kannan, W. Sibbett, C. T. A. Brown, and D. P. Shepherd, “Diode-pumped femtosecond solid-state waveguide laser with a 4.9 GHz pulse repetition rate,” Opt. Lett. 37(21), 4416–4418 (2012).
    [Crossref] [PubMed]
  20. A. A. Lagatsky, A. Choudhary, P. Kannan, D. P. Shepherd, W. Sibbett, and C. T. A. Brown, “Fundamentally mode-locked, femtosecond waveguide oscillators with multi-gigahertz repetition frequencies up to 15 GHz,” Opt. Express 21(17), 19608–19614 (2013).
    [Crossref] [PubMed]
  21. S. Y. Choi, T. Calmano, F. Rotermund, C. Saraceno, and C. Kränkel, “GHz mode-locked Yb:YAG channel waveguide lasers,” OSA Laser Congress 2017 (ASSL, LAC), ATh1A.4 (2017).
    [Crossref]
  22. H. Cheng, W. Wang, Y. Zhou, T. Qiao, W. Lin, S. Xu, and Z. Yang, “5 GHz fundamental repetition rate, wavelength tunable, all-fiber passively mode-locked Yb-fiber laser,” Opt. Express 25(22), 27646–27651 (2017).
    [Crossref] [PubMed]
  23. H.-W. Chen, G. Chang, S. Xu, Z. Yang, and F. X. Kärtner, “3 GHz, fundamentally mode-locked, femtosecond Yb-fiber laser,” Opt. Lett. 37(17), 3522–3524 (2012).
    [Crossref] [PubMed]
  24. C. Li, Y. Ma, X. Gao, F. Niu, T. Jiang, A. Wang, and Z. Zhang, “1 GHz repetition rate femtosecond Yb:fiber laser for direct generation of carrier-envelope offset frequency,” Appl. Opt. 54(28), 8350–8353 (2015).
    [Crossref] [PubMed]
  25. H. Byun, M. Y. Sander, A. Motamedi, H. Shen, G. S. Petrich, L. A. Kolodziejski, E. P. Ippen, and F. X. Kärtner, “Compact, stable 1 GHz femtosecond Er-doped fiber lasers,” Appl. Opt. 49(29), 5577–5582 (2010).
    [Crossref] [PubMed]
  26. A. Martinez and S. Yamashita, “Multi-gigahertz repetition rate passively modelocked fiber lasers using carbon nanotubes,” Opt. Express 19(7), 6155–6163 (2011).
    [Crossref] [PubMed]
  27. J. J. McFerran, L. Nenadović, W. C. Swann, J. B. Schlager, and N. R. Newbury, “A passively mode-locked fiber laser at 1.54 µm with a fundamental repetition frequency reaching 2 GHz,” Opt. Express 15(20), 13155–13166 (2007).
    [Crossref] [PubMed]
  28. A. Martinez and S. Yamashita, “10 GHz fundamental mode fiber laser using a graphene saturable absorber,” Appl. Phys. Lett. 101(4), 041118 (2012).
    [Crossref]
  29. R. Thapa, D. Nguyen, J. Zong, and A. Chavez-Pirson, “All-fiber fundamentally mode-locked 12 GHz laser oscillator based on an Er/Yb-doped phosphate glass fiber,” Opt. Lett. 39(6), 1418–1421 (2014).
    [Crossref] [PubMed]
  30. H. Cheng, W. Lin, Z. Luo, and Z. Yang, “Passively mode-locked Tm3+-doped fiber laser with gigahertz fundamental repetition rate,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1100106 (2018).
    [Crossref]
  31. P.-W. Kuan, K. Li, L. Zhang, X. Li, C. Yu, G. Feng, and L. Hu, “0.5-GHz repetition rate fundamentally Tm-doped mode-locked fiber laser,” IEEE Photonics Technol. Lett. 28(14), 1525–1528 (2016).
    [Crossref]
  32. Q. Wang, J. Geng, T. Luo, and S. Jiang, “2 µm mode-locked fiber lasers,” Proc. SPIE 8237, 82371N (2012).
  33. H. A. Haus, “Parameter ranges for CW passive mode locking,” IEEE J. Quantum Electron. 12(3), 169–176 (1976).
    [Crossref]
  34. C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, “Q-switching stability limits of continuous-wave passive mode locking,” J. Opt. Soc. Am. B 16(1), 46–56 (1999).
    [Crossref]
  35. H. Cheng, W. Lin, T. Qiao, S. Xu, and Z. Yang, “Theoretical and experimental analysis of instability of continuous wave mode locking: Towards high fundamental repetition rate in Tm3+-doped fiber lasers,” Opt. Express 24(26), 29882–29895 (2016).
    [Crossref] [PubMed]
  36. H. Cheng, W. Wang, Y. Zhou, T. Qiao, W. Lin, S. Xu, and Z. Yang, “Investigation of rectangular shaped wave packet dynamics in a high-repetition-rate ultrafast fiber laser,” Opt. Express 25(17), 20125–20132 (2017).
    [Crossref] [PubMed]
  37. S. Xu, Z. Yang, W. Zhang, X. Wei, Q. Qian, D. Chen, Q. Zhang, S. Shen, M. Peng, and J. Qiu, “400 mW ultrashort cavity low-noise single-frequency Yb3+-doped phosphate fiber laser,” Opt. Lett. 36(18), 3708–3710 (2011).
    [Crossref] [PubMed]
  38. S. H. Xu, Z. M. Yang, T. Liu, W. N. Zhang, Z. M. Feng, Q. Y. Zhang, and Z. H. Jiang, “An efficient compact 300 mW narrow-linewidth single frequency fiber laser at 1.5 microm,” Opt. Express 18(2), 1249–1254 (2010).
    [Crossref] [PubMed]
  39. S. Hakobyan, V. J. Wittwer, P. Brochard, K. Gürel, S. Schilt, A. S. Mayer, U. Keller, and T. Südmeyer, “Full stabilization and characterization of an optical frequency comb from a diode-pumped solid-state laser with GHz repetition rate,” Opt. Express 25(17), 20437–20453 (2017).
    [Crossref] [PubMed]
  40. R. Paschotta, “Noise of mode-locked laser (Part II): timing jitter and other fluctuations,” Appl. Phys. B 79(2), 163–173 (2004).
    [Crossref]
  41. O. Razskazovskaya, F. Krausz, and V. Pervak, “Multilayer coatings for femto- and attosecond technology,” Optica 4(1), 129–138 (2017).
    [Crossref]

2018 (2)

2017 (6)

H. Cheng, W. Wang, Y. Zhou, T. Qiao, W. Lin, S. Xu, and Z. Yang, “Investigation of rectangular shaped wave packet dynamics in a high-repetition-rate ultrafast fiber laser,” Opt. Express 25(17), 20125–20132 (2017).
[Crossref] [PubMed]

H. Cheng, W. Wang, Y. Zhou, T. Qiao, W. Lin, S. Xu, and Z. Yang, “5 GHz fundamental repetition rate, wavelength tunable, all-fiber passively mode-locked Yb-fiber laser,” Opt. Express 25(22), 27646–27651 (2017).
[Crossref] [PubMed]

H. Cheng, Y. Zhou, A. E. Mironov, W. Wang, T. Qiao, W. Lin, Q. Qian, S. Xu, Z. Yang, and J. G. Eden, “Mode suppression of 53 dB and pulse repetition rates of 2.87 and 36.4 GHz in a compact, mode-locked fiber laser comprising coupled Fabry-Perot cavities of low finesse (F = 2),” Opt. Express 25(20), 24400–24409 (2017).
[Crossref] [PubMed]

A. S. Mayer, C. R. Phillips, and U. Keller, “Watt-level 10-gigahertz solid-state laser enabled by self-defocusing nonlinearities in an aperiodically poled crystal,” Nat. Commun. 8(1), 1673 (2017).
[Crossref] [PubMed]

S. Hakobyan, V. J. Wittwer, P. Brochard, K. Gürel, S. Schilt, A. S. Mayer, U. Keller, and T. Südmeyer, “Full stabilization and characterization of an optical frequency comb from a diode-pumped solid-state laser with GHz repetition rate,” Opt. Express 25(17), 20437–20453 (2017).
[Crossref] [PubMed]

O. Razskazovskaya, F. Krausz, and V. Pervak, “Multilayer coatings for femto- and attosecond technology,” Optica 4(1), 129–138 (2017).
[Crossref]

2016 (4)

2015 (2)

2014 (1)

2013 (1)

2012 (6)

A. Choudhary, A. A. Lagatsky, P. Kannan, W. Sibbett, C. T. A. Brown, and D. P. Shepherd, “Diode-pumped femtosecond solid-state waveguide laser with a 4.9 GHz pulse repetition rate,” Opt. Lett. 37(21), 4416–4418 (2012).
[Crossref] [PubMed]

S. Pekarek, A. Klenner, T. Südmeyer, C. Fiebig, K. Paschke, G. Erbert, and U. Keller, “Femtosecond diode-pumped solid-state laser with a repetition rate of 4.8 GHz,” Opt. Express 20(4), 4248–4253 (2012).
[Crossref] [PubMed]

T. Wilken, G. L. Curto, R. A. Probst, T. Steinmetz, A. Manescau, L. Pasquini, J. I. González Hernández, R. Rebolo, T. W. Hänsch, T. Udem, and R. Holzwarth, “A spectrograph for exoplanet observations calibrated at the centimetre-per-second level,” Nature 485(7400), 611–614 (2012).
[Crossref] [PubMed]

A. Martinez and S. Yamashita, “10 GHz fundamental mode fiber laser using a graphene saturable absorber,” Appl. Phys. Lett. 101(4), 041118 (2012).
[Crossref]

H.-W. Chen, G. Chang, S. Xu, Z. Yang, and F. X. Kärtner, “3 GHz, fundamentally mode-locked, femtosecond Yb-fiber laser,” Opt. Lett. 37(17), 3522–3524 (2012).
[Crossref] [PubMed]

Q. Wang, J. Geng, T. Luo, and S. Jiang, “2 µm mode-locked fiber lasers,” Proc. SPIE 8237, 82371N (2012).

2011 (3)

S. Xu, Z. Yang, W. Zhang, X. Wei, Q. Qian, D. Chen, Q. Zhang, S. Shen, M. Peng, and J. Qiu, “400 mW ultrashort cavity low-noise single-frequency Yb3+-doped phosphate fiber laser,” Opt. Lett. 36(18), 3708–3710 (2011).
[Crossref] [PubMed]

A. Martinez and S. Yamashita, “Multi-gigahertz repetition rate passively modelocked fiber lasers using carbon nanotubes,” Opt. Express 19(7), 6155–6163 (2011).
[Crossref] [PubMed]

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing alloptical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

2010 (3)

2009 (1)

2008 (3)

2007 (2)

2006 (1)

2004 (2)

D. D. Lorenser, H. J. Unold, D. J. H. C. Maas, A. Aschwanden, R. Grange, R. Paschotta, D. Ebling, E. Gini, and U. Keller, “Towards wafer-scale integration of high repetition rate passively mode-locked surface-emitting semiconductor lasers,” Appl. Phys. B 79(8), 927–932 (2004).
[Crossref]

R. Paschotta, “Noise of mode-locked laser (Part II): timing jitter and other fluctuations,” Appl. Phys. B 79(2), 163–173 (2004).
[Crossref]

1999 (1)

1989 (1)

T. Sizer, “Increase in laser repetition rate by spectral selection,” IEEE J. Quantum Electron. 25(1), 97–103 (1989).
[Crossref]

1976 (1)

H. A. Haus, “Parameter ranges for CW passive mode locking,” IEEE J. Quantum Electron. 12(3), 169–176 (1976).
[Crossref]

Adachi, T.

Aisaka, Y.

Alasia, D.

Alfieri, C. G. E.

Amrani, F.

Aschwanden, A.

D. D. Lorenser, H. J. Unold, D. J. H. C. Maas, A. Aschwanden, R. Grange, R. Paschotta, D. Ebling, E. Gini, and U. Keller, “Towards wafer-scale integration of high repetition rate passively mode-locked surface-emitting semiconductor lasers,” Appl. Phys. B 79(8), 927–932 (2004).
[Crossref]

Bartels, A.

Barthelemy, A.

Becker, J.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing alloptical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Ben Ezra, S.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing alloptical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Betzig, E.

N. Ji, J. C. Magee, and E. Betzig, “High-speed, low-photodamage nonlinear imaging using passive pulse splitters,” Nat. Methods 5(2), 197–202 (2008).
[Crossref] [PubMed]

Bonk, R.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing alloptical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Brochard, P.

Brown, C. T. A.

Byun, H.

Chang, G.

Chavez-Pirson, A.

Chen, D.

Chen, H.-W.

Cheng, H.

Choudhary, A.

Coen, S.

Curto, G. L.

T. Wilken, G. L. Curto, R. A. Probst, T. Steinmetz, A. Manescau, L. Pasquini, J. I. González Hernández, R. Rebolo, T. W. Hänsch, T. Udem, and R. Holzwarth, “A spectrograph for exoplanet observations calibrated at the centimetre-per-second level,” Nature 485(7400), 611–614 (2012).
[Crossref] [PubMed]

Desfarges-Berthelemot, A.

Diddams, S. A.

Dreschmann, M.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing alloptical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Dupriez, P.

Ebling, D.

D. D. Lorenser, H. J. Unold, D. J. H. C. Maas, A. Aschwanden, R. Grange, R. Paschotta, D. Ebling, E. Gini, and U. Keller, “Towards wafer-scale integration of high repetition rate passively mode-locked surface-emitting semiconductor lasers,” Appl. Phys. B 79(8), 927–932 (2004).
[Crossref]

Eden, J. G.

Ellermeyer, T.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing alloptical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Endo, M.

Erbert, G.

Feng, G.

P.-W. Kuan, K. Li, L. Zhang, X. Li, C. Yu, G. Feng, and L. Hu, “0.5-GHz repetition rate fundamentally Tm-doped mode-locked fiber laser,” IEEE Photonics Technol. Lett. 28(14), 1525–1528 (2016).
[Crossref]

Feng, Z. M.

Fiebig, C.

Finot, C.

Foreman, H. D.

Freude, W.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing alloptical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Frey, F.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing alloptical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Gao, X.

Geng, J.

Q. Wang, J. Geng, T. Luo, and S. Jiang, “2 µm mode-locked fiber lasers,” Proc. SPIE 8237, 82371N (2012).

Gini, E.

D. Waldburger, S. M. Link, M. Mangold, C. G. E. Alfieri, E. Gini, M. Golling, B. W. Tilma, and U. Keller, “High-power 100 fs semiconductor disk lasers,” Optica 3(8), 844–852 (2016).
[Crossref]

D. D. Lorenser, H. J. Unold, D. J. H. C. Maas, A. Aschwanden, R. Grange, R. Paschotta, D. Ebling, E. Gini, and U. Keller, “Towards wafer-scale integration of high repetition rate passively mode-locked surface-emitting semiconductor lasers,” Appl. Phys. B 79(8), 927–932 (2004).
[Crossref]

Goda, K.

Golling, M.

González Hernández, J. I.

T. Wilken, G. L. Curto, R. A. Probst, T. Steinmetz, A. Manescau, L. Pasquini, J. I. González Hernández, R. Rebolo, T. W. Hänsch, T. Udem, and R. Holzwarth, “A spectrograph for exoplanet observations calibrated at the centimetre-per-second level,” Nature 485(7400), 611–614 (2012).
[Crossref] [PubMed]

Grange, R.

D. D. Lorenser, H. J. Unold, D. J. H. C. Maas, A. Aschwanden, R. Grange, R. Paschotta, D. Ebling, E. Gini, and U. Keller, “Towards wafer-scale integration of high repetition rate passively mode-locked surface-emitting semiconductor lasers,” Appl. Phys. B 79(8), 927–932 (2004).
[Crossref]

Grelu, P.

Gürel, K.

Haboucha, A.

Hakobyan, S.

Hamad, S.

Hänsch, T. W.

T. Wilken, G. L. Curto, R. A. Probst, T. Steinmetz, A. Manescau, L. Pasquini, J. I. González Hernández, R. Rebolo, T. W. Hänsch, T. Udem, and R. Holzwarth, “A spectrograph for exoplanet observations calibrated at the centimetre-per-second level,” Nature 485(7400), 611–614 (2012).
[Crossref] [PubMed]

Harmon, J.

Haus, H. A.

H. A. Haus, “Parameter ranges for CW passive mode locking,” IEEE J. Quantum Electron. 12(3), 169–176 (1976).
[Crossref]

He, W.

Heinecke, D.

Hillerkuss, D.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing alloptical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Hoh, M.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing alloptical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Holzwarth, R.

T. Wilken, G. L. Curto, R. A. Probst, T. Steinmetz, A. Manescau, L. Pasquini, J. I. González Hernández, R. Rebolo, T. W. Hänsch, T. Udem, and R. Holzwarth, “A spectrograph for exoplanet observations calibrated at the centimetre-per-second level,” Nature 485(7400), 611–614 (2012).
[Crossref] [PubMed]

Hönninger, C.

Hu, L.

P.-W. Kuan, K. Li, L. Zhang, X. Li, C. Yu, G. Feng, and L. Hu, “0.5-GHz repetition rate fundamentally Tm-doped mode-locked fiber laser,” IEEE Photonics Technol. Lett. 28(14), 1525–1528 (2016).
[Crossref]

Huber, G.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing alloptical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Huebner, M.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing alloptical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Ippen, E. P.

Ito, I.

Ito, T.

Iwata, O.

Ji, N.

N. Ji, J. C. Magee, and E. Betzig, “High-speed, low-photodamage nonlinear imaging using passive pulse splitters,” Nat. Methods 5(2), 197–202 (2008).
[Crossref] [PubMed]

Jiang, S.

Q. Wang, J. Geng, T. Luo, and S. Jiang, “2 µm mode-locked fiber lasers,” Proc. SPIE 8237, 82371N (2012).

Jiang, T.

Jiang, Z. H.

Jordan, M.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing alloptical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Kannan, P.

Kärtner, F. X.

Kasamatsu, T.

Katou, M.

Keller, U.

Kermene, V.

Kleinow, P.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing alloptical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Klenner, A.

Kobayashi, H.

Kobayashi, Y.

Koenig, S.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing alloptical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Kolodziejski, L. A.

Komarov, A.

Koos, C.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing alloptical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Krausz, F.

Kuan, P.-W.

P.-W. Kuan, K. Li, L. Zhang, X. Li, C. Yu, G. Feng, and L. Hu, “0.5-GHz repetition rate fundamentally Tm-doped mode-locked fiber laser,” IEEE Photonics Technol. Lett. 28(14), 1525–1528 (2016).
[Crossref]

Kutsuna, N.

Lagatsky, A. A.

Leblond, H.

Leuthold, J.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing alloptical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Lhermite, J.

Li, C.

Li, J.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing alloptical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Li, K.

P.-W. Kuan, K. Li, L. Zhang, X. Li, C. Yu, G. Feng, and L. Hu, “0.5-GHz repetition rate fundamentally Tm-doped mode-locked fiber laser,” IEEE Photonics Technol. Lett. 28(14), 1525–1528 (2016).
[Crossref]

Li, X.

P.-W. Kuan, K. Li, L. Zhang, X. Li, C. Yu, G. Feng, and L. Hu, “0.5-GHz repetition rate fundamentally Tm-doped mode-locked fiber laser,” IEEE Photonics Technol. Lett. 28(14), 1525–1528 (2016).
[Crossref]

Lin, W.

Link, S. M.

Liu, T.

Lorenser, D. D.

D. D. Lorenser, H. J. Unold, D. J. H. C. Maas, A. Aschwanden, R. Grange, R. Paschotta, D. Ebling, E. Gini, and U. Keller, “Towards wafer-scale integration of high repetition rate passively mode-locked surface-emitting semiconductor lasers,” Appl. Phys. B 79(8), 927–932 (2004).
[Crossref]

Ludwig, A.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing alloptical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Luo, T.

Q. Wang, J. Geng, T. Luo, and S. Jiang, “2 µm mode-locked fiber lasers,” Proc. SPIE 8237, 82371N (2012).

Luo, Z.

H. Cheng, W. Lin, Z. Luo, and Z. Yang, “Passively mode-locked Tm3+-doped fiber laser with gigahertz fundamental repetition rate,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1100106 (2018).
[Crossref]

Lutz, J.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing alloptical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Ma, Y.

Maas, D. J. H. C.

D. D. Lorenser, H. J. Unold, D. J. H. C. Maas, A. Aschwanden, R. Grange, R. Paschotta, D. Ebling, E. Gini, and U. Keller, “Towards wafer-scale integration of high repetition rate passively mode-locked surface-emitting semiconductor lasers,” Appl. Phys. B 79(8), 927–932 (2004).
[Crossref]

Magee, J. C.

N. Ji, J. C. Magee, and E. Betzig, “High-speed, low-photodamage nonlinear imaging using passive pulse splitters,” Nat. Methods 5(2), 197–202 (2008).
[Crossref] [PubMed]

Malinowski, A.

Manescau, A.

T. Wilken, G. L. Curto, R. A. Probst, T. Steinmetz, A. Manescau, L. Pasquini, J. I. González Hernández, R. Rebolo, T. W. Hänsch, T. Udem, and R. Holzwarth, “A spectrograph for exoplanet observations calibrated at the centimetre-per-second level,” Nature 485(7400), 611–614 (2012).
[Crossref] [PubMed]

Mangold, M.

Marculescu, A.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing alloptical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Martinez, A.

A. Martinez and S. Yamashita, “10 GHz fundamental mode fiber laser using a graphene saturable absorber,” Appl. Phys. Lett. 101(4), 041118 (2012).
[Crossref]

A. Martinez and S. Yamashita, “Multi-gigahertz repetition rate passively modelocked fiber lasers using carbon nanotubes,” Opt. Express 19(7), 6155–6163 (2011).
[Crossref] [PubMed]

Mayer, A. S.

McFerran, J. J.

Meyer, J.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing alloptical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Mikami, H.

Mironov, A. E.

Moeller, M.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing alloptical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Morier-Genoud, F.

Moser, M.

Motamedi, A.

Nagasawa, K.

Narkiss, N.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing alloptical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Nebendahl, B.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing alloptical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Nenadovic, L.

Newbury, N. R.

Nguyen, D.

Nilsson, J.

Niu, F.

Oehler, A.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing alloptical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Oudar, J. L.

Ozeki, Y.

Pang, M.

Parmigiani, F.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing alloptical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Paschke, K.

Paschotta, R.

D. D. Lorenser, H. J. Unold, D. J. H. C. Maas, A. Aschwanden, R. Grange, R. Paschotta, D. Ebling, E. Gini, and U. Keller, “Towards wafer-scale integration of high repetition rate passively mode-locked surface-emitting semiconductor lasers,” Appl. Phys. B 79(8), 927–932 (2004).
[Crossref]

R. Paschotta, “Noise of mode-locked laser (Part II): timing jitter and other fluctuations,” Appl. Phys. B 79(2), 163–173 (2004).
[Crossref]

C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, “Q-switching stability limits of continuous-wave passive mode locking,” J. Opt. Soc. Am. B 16(1), 46–56 (1999).
[Crossref]

Pasquini, L.

T. Wilken, G. L. Curto, R. A. Probst, T. Steinmetz, A. Manescau, L. Pasquini, J. I. González Hernández, R. Rebolo, T. W. Hänsch, T. Udem, and R. Holzwarth, “A spectrograph for exoplanet observations calibrated at the centimetre-per-second level,” Nature 485(7400), 611–614 (2012).
[Crossref] [PubMed]

Pekarek, S.

Peng, M.

Pervak, V.

Petrich, G. S.

Petropoulos, P.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing alloptical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Phillips, C. R.

A. S. Mayer, C. R. Phillips, and U. Keller, “Watt-level 10-gigahertz solid-state laser enabled by self-defocusing nonlinearities in an aperiodically poled crystal,” Nat. Commun. 8(1), 1673 (2017).
[Crossref] [PubMed]

Probst, R. A.

T. Wilken, G. L. Curto, R. A. Probst, T. Steinmetz, A. Manescau, L. Pasquini, J. I. González Hernández, R. Rebolo, T. W. Hänsch, T. Udem, and R. Holzwarth, “A spectrograph for exoplanet observations calibrated at the centimetre-per-second level,” Nature 485(7400), 611–614 (2012).
[Crossref] [PubMed]

Qian, Q.

Qiao, T.

Qiu, J.

Razskazovskaya, O.

Rebolo, R.

T. Wilken, G. L. Curto, R. A. Probst, T. Steinmetz, A. Manescau, L. Pasquini, J. I. González Hernández, R. Rebolo, T. W. Hänsch, T. Udem, and R. Holzwarth, “A spectrograph for exoplanet observations calibrated at the centimetre-per-second level,” Nature 485(7400), 611–614 (2012).
[Crossref] [PubMed]

Resan, B.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing alloptical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Richardson, D. J.

Roeger, M.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing alloptical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Sabourdy, D.

Sahu, J. K.

Salhi, M.

Sanchez, F.

Sander, M. Y.

Schellinger, T.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing alloptical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Schilt, S.

Schlager, J. B.

Schmogrow, R.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing alloptical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Schröder, J.

Shen, H.

Shen, S.

Shepherd, D. P.

Sibbett, W.

Sizer, T.

T. Sizer, “Increase in laser repetition rate by spectral selection,” IEEE J. Quantum Electron. 25(1), 97–103 (1989).
[Crossref]

St. J. Russell, P.

Steinmetz, T.

T. Wilken, G. L. Curto, R. A. Probst, T. Steinmetz, A. Manescau, L. Pasquini, J. I. González Hernández, R. Rebolo, T. W. Hänsch, T. Udem, and R. Holzwarth, “A spectrograph for exoplanet observations calibrated at the centimetre-per-second level,” Nature 485(7400), 611–614 (2012).
[Crossref] [PubMed]

Südmeyer, T.

Suzuki, K.

Swann, W. C.

Sylvestre, T.

Thapa, R.

Tilma, B. W.

Tropper, A. C.

Udem, T.

T. Wilken, G. L. Curto, R. A. Probst, T. Steinmetz, A. Manescau, L. Pasquini, J. I. González Hernández, R. Rebolo, T. W. Hänsch, T. Udem, and R. Holzwarth, “A spectrograph for exoplanet observations calibrated at the centimetre-per-second level,” Nature 485(7400), 611–614 (2012).
[Crossref] [PubMed]

Unold, H. J.

D. D. Lorenser, H. J. Unold, D. J. H. C. Maas, A. Aschwanden, R. Grange, R. Paschotta, D. Ebling, E. Gini, and U. Keller, “Towards wafer-scale integration of high repetition rate passively mode-locked surface-emitting semiconductor lasers,” Appl. Phys. B 79(8), 927–932 (2004).
[Crossref]

Vallaitis, T.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing alloptical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Waldburger, D.

Wang, A.

Wang, Q.

Q. Wang, J. Geng, T. Luo, and S. Jiang, “2 µm mode-locked fiber lasers,” Proc. SPIE 8237, 82371N (2012).

Wang, W.

Wang, Y.

Watarai, H.

Wei, X.

Weingarten, K.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing alloptical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Wilcox, K. G.

Wilken, T.

T. Wilken, G. L. Curto, R. A. Probst, T. Steinmetz, A. Manescau, L. Pasquini, J. I. González Hernández, R. Rebolo, T. W. Hänsch, T. Udem, and R. Holzwarth, “A spectrograph for exoplanet observations calibrated at the centimetre-per-second level,” Nature 485(7400), 611–614 (2012).
[Crossref] [PubMed]

Winter, M.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing alloptical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Wittwer, V. J.

Xu, S.

H. Cheng, W. Wang, Y. Zhou, T. Qiao, W. Lin, S. Xu, and Z. Yang, “Investigation of rectangular shaped wave packet dynamics in a high-repetition-rate ultrafast fiber laser,” Opt. Express 25(17), 20125–20132 (2017).
[Crossref] [PubMed]

H. Cheng, W. Wang, Y. Zhou, T. Qiao, W. Lin, S. Xu, and Z. Yang, “5 GHz fundamental repetition rate, wavelength tunable, all-fiber passively mode-locked Yb-fiber laser,” Opt. Express 25(22), 27646–27651 (2017).
[Crossref] [PubMed]

H. Cheng, Y. Zhou, A. E. Mironov, W. Wang, T. Qiao, W. Lin, Q. Qian, S. Xu, Z. Yang, and J. G. Eden, “Mode suppression of 53 dB and pulse repetition rates of 2.87 and 36.4 GHz in a compact, mode-locked fiber laser comprising coupled Fabry-Perot cavities of low finesse (F = 2),” Opt. Express 25(20), 24400–24409 (2017).
[Crossref] [PubMed]

H. Cheng, W. Lin, T. Qiao, S. Xu, and Z. Yang, “Theoretical and experimental analysis of instability of continuous wave mode locking: Towards high fundamental repetition rate in Tm3+-doped fiber lasers,” Opt. Express 24(26), 29882–29895 (2016).
[Crossref] [PubMed]

H.-W. Chen, G. Chang, S. Xu, Z. Yang, and F. X. Kärtner, “3 GHz, fundamentally mode-locked, femtosecond Yb-fiber laser,” Opt. Lett. 37(17), 3522–3524 (2012).
[Crossref] [PubMed]

S. Xu, Z. Yang, W. Zhang, X. Wei, Q. Qian, D. Chen, Q. Zhang, S. Shen, M. Peng, and J. Qiu, “400 mW ultrashort cavity low-noise single-frequency Yb3+-doped phosphate fiber laser,” Opt. Lett. 36(18), 3708–3710 (2011).
[Crossref] [PubMed]

Xu, S. H.

Yamashita, S.

A. Martinez and S. Yamashita, “10 GHz fundamental mode fiber laser using a graphene saturable absorber,” Appl. Phys. Lett. 101(4), 041118 (2012).
[Crossref]

A. Martinez and S. Yamashita, “Multi-gigahertz repetition rate passively modelocked fiber lasers using carbon nanotubes,” Opt. Express 19(7), 6155–6163 (2011).
[Crossref] [PubMed]

Yamazoe, S.

Yang, Z.

H. Cheng, W. Lin, Z. Luo, and Z. Yang, “Passively mode-locked Tm3+-doped fiber laser with gigahertz fundamental repetition rate,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1100106 (2018).
[Crossref]

H. Cheng, W. Wang, Y. Zhou, T. Qiao, W. Lin, S. Xu, and Z. Yang, “Investigation of rectangular shaped wave packet dynamics in a high-repetition-rate ultrafast fiber laser,” Opt. Express 25(17), 20125–20132 (2017).
[Crossref] [PubMed]

H. Cheng, Y. Zhou, A. E. Mironov, W. Wang, T. Qiao, W. Lin, Q. Qian, S. Xu, Z. Yang, and J. G. Eden, “Mode suppression of 53 dB and pulse repetition rates of 2.87 and 36.4 GHz in a compact, mode-locked fiber laser comprising coupled Fabry-Perot cavities of low finesse (F = 2),” Opt. Express 25(20), 24400–24409 (2017).
[Crossref] [PubMed]

H. Cheng, W. Wang, Y. Zhou, T. Qiao, W. Lin, S. Xu, and Z. Yang, “5 GHz fundamental repetition rate, wavelength tunable, all-fiber passively mode-locked Yb-fiber laser,” Opt. Express 25(22), 27646–27651 (2017).
[Crossref] [PubMed]

H. Cheng, W. Lin, T. Qiao, S. Xu, and Z. Yang, “Theoretical and experimental analysis of instability of continuous wave mode locking: Towards high fundamental repetition rate in Tm3+-doped fiber lasers,” Opt. Express 24(26), 29882–29895 (2016).
[Crossref] [PubMed]

H.-W. Chen, G. Chang, S. Xu, Z. Yang, and F. X. Kärtner, “3 GHz, fundamentally mode-locked, femtosecond Yb-fiber laser,” Opt. Lett. 37(17), 3522–3524 (2012).
[Crossref] [PubMed]

S. Xu, Z. Yang, W. Zhang, X. Wei, Q. Qian, D. Chen, Q. Zhang, S. Shen, M. Peng, and J. Qiu, “400 mW ultrashort cavity low-noise single-frequency Yb3+-doped phosphate fiber laser,” Opt. Lett. 36(18), 3708–3710 (2011).
[Crossref] [PubMed]

Yang, Z. M.

Yu, C.

P.-W. Kuan, K. Li, L. Zhang, X. Li, C. Yu, G. Feng, and L. Hu, “0.5-GHz repetition rate fundamentally Tm-doped mode-locked fiber laser,” IEEE Photonics Technol. Lett. 28(14), 1525–1528 (2016).
[Crossref]

Zhang, L.

P.-W. Kuan, K. Li, L. Zhang, X. Li, C. Yu, G. Feng, and L. Hu, “0.5-GHz repetition rate fundamentally Tm-doped mode-locked fiber laser,” IEEE Photonics Technol. Lett. 28(14), 1525–1528 (2016).
[Crossref]

Zhang, Q.

Zhang, Q. Y.

Zhang, W.

Zhang, W. N.

Zhang, Z.

Zhou, Y.

Zong, J.

Appl. Opt. (2)

Appl. Phys. B (2)

D. D. Lorenser, H. J. Unold, D. J. H. C. Maas, A. Aschwanden, R. Grange, R. Paschotta, D. Ebling, E. Gini, and U. Keller, “Towards wafer-scale integration of high repetition rate passively mode-locked surface-emitting semiconductor lasers,” Appl. Phys. B 79(8), 927–932 (2004).
[Crossref]

R. Paschotta, “Noise of mode-locked laser (Part II): timing jitter and other fluctuations,” Appl. Phys. B 79(2), 163–173 (2004).
[Crossref]

Appl. Phys. Lett. (1)

A. Martinez and S. Yamashita, “10 GHz fundamental mode fiber laser using a graphene saturable absorber,” Appl. Phys. Lett. 101(4), 041118 (2012).
[Crossref]

IEEE J. Quantum Electron. (2)

H. A. Haus, “Parameter ranges for CW passive mode locking,” IEEE J. Quantum Electron. 12(3), 169–176 (1976).
[Crossref]

T. Sizer, “Increase in laser repetition rate by spectral selection,” IEEE J. Quantum Electron. 25(1), 97–103 (1989).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

H. Cheng, W. Lin, Z. Luo, and Z. Yang, “Passively mode-locked Tm3+-doped fiber laser with gigahertz fundamental repetition rate,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1100106 (2018).
[Crossref]

IEEE Photonics Technol. Lett. (1)

P.-W. Kuan, K. Li, L. Zhang, X. Li, C. Yu, G. Feng, and L. Hu, “0.5-GHz repetition rate fundamentally Tm-doped mode-locked fiber laser,” IEEE Photonics Technol. Lett. 28(14), 1525–1528 (2016).
[Crossref]

J. Opt. Soc. Am. B (2)

Nat. Commun. (1)

A. S. Mayer, C. R. Phillips, and U. Keller, “Watt-level 10-gigahertz solid-state laser enabled by self-defocusing nonlinearities in an aperiodically poled crystal,” Nat. Commun. 8(1), 1673 (2017).
[Crossref] [PubMed]

Nat. Methods (1)

N. Ji, J. C. Magee, and E. Betzig, “High-speed, low-photodamage nonlinear imaging using passive pulse splitters,” Nat. Methods 5(2), 197–202 (2008).
[Crossref] [PubMed]

Nat. Photonics (1)

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing alloptical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Nature (1)

T. Wilken, G. L. Curto, R. A. Probst, T. Steinmetz, A. Manescau, L. Pasquini, J. I. González Hernández, R. Rebolo, T. W. Hänsch, T. Udem, and R. Holzwarth, “A spectrograph for exoplanet observations calibrated at the centimetre-per-second level,” Nature 485(7400), 611–614 (2012).
[Crossref] [PubMed]

Opt. Express (12)

M. Endo, I. Ito, and Y. Kobayashi, “Direct 15-GHz mode-spacing optical frequency comb with a Kerr-lens mode-locked Yb:Y(2)O(3) ceramic laser,” Opt. Express 23(2), 1276–1282 (2015).
[Crossref] [PubMed]

S. Pekarek, A. Klenner, T. Südmeyer, C. Fiebig, K. Paschke, G. Erbert, and U. Keller, “Femtosecond diode-pumped solid-state laser with a repetition rate of 4.8 GHz,” Opt. Express 20(4), 4248–4253 (2012).
[Crossref] [PubMed]

H. Cheng, Y. Zhou, A. E. Mironov, W. Wang, T. Qiao, W. Lin, Q. Qian, S. Xu, Z. Yang, and J. G. Eden, “Mode suppression of 53 dB and pulse repetition rates of 2.87 and 36.4 GHz in a compact, mode-locked fiber laser comprising coupled Fabry-Perot cavities of low finesse (F = 2),” Opt. Express 25(20), 24400–24409 (2017).
[Crossref] [PubMed]

P. Dupriez, C. Finot, A. Malinowski, J. K. Sahu, J. Nilsson, D. J. Richardson, K. G. Wilcox, H. D. Foreman, and A. C. Tropper, “High-power, high repetition rate picosecond and femtosecond sources based on Yb-doped fiber amplification of VECSELs,” Opt. Express 14(21), 9611–9616 (2006).
[Crossref] [PubMed]

H. Cheng, W. Lin, T. Qiao, S. Xu, and Z. Yang, “Theoretical and experimental analysis of instability of continuous wave mode locking: Towards high fundamental repetition rate in Tm3+-doped fiber lasers,” Opt. Express 24(26), 29882–29895 (2016).
[Crossref] [PubMed]

H. Cheng, W. Wang, Y. Zhou, T. Qiao, W. Lin, S. Xu, and Z. Yang, “Investigation of rectangular shaped wave packet dynamics in a high-repetition-rate ultrafast fiber laser,” Opt. Express 25(17), 20125–20132 (2017).
[Crossref] [PubMed]

H. Cheng, W. Wang, Y. Zhou, T. Qiao, W. Lin, S. Xu, and Z. Yang, “5 GHz fundamental repetition rate, wavelength tunable, all-fiber passively mode-locked Yb-fiber laser,” Opt. Express 25(22), 27646–27651 (2017).
[Crossref] [PubMed]

A. A. Lagatsky, A. Choudhary, P. Kannan, D. P. Shepherd, W. Sibbett, and C. T. A. Brown, “Fundamentally mode-locked, femtosecond waveguide oscillators with multi-gigahertz repetition frequencies up to 15 GHz,” Opt. Express 21(17), 19608–19614 (2013).
[Crossref] [PubMed]

A. Martinez and S. Yamashita, “Multi-gigahertz repetition rate passively modelocked fiber lasers using carbon nanotubes,” Opt. Express 19(7), 6155–6163 (2011).
[Crossref] [PubMed]

J. J. McFerran, L. Nenadović, W. C. Swann, J. B. Schlager, and N. R. Newbury, “A passively mode-locked fiber laser at 1.54 µm with a fundamental repetition frequency reaching 2 GHz,” Opt. Express 15(20), 13155–13166 (2007).
[Crossref] [PubMed]

S. H. Xu, Z. M. Yang, T. Liu, W. N. Zhang, Z. M. Feng, Q. Y. Zhang, and Z. H. Jiang, “An efficient compact 300 mW narrow-linewidth single frequency fiber laser at 1.5 microm,” Opt. Express 18(2), 1249–1254 (2010).
[Crossref] [PubMed]

S. Hakobyan, V. J. Wittwer, P. Brochard, K. Gürel, S. Schilt, A. S. Mayer, U. Keller, and T. Südmeyer, “Full stabilization and characterization of an optical frequency comb from a diode-pumped solid-state laser with GHz repetition rate,” Opt. Express 25(17), 20437–20453 (2017).
[Crossref] [PubMed]

Opt. Lett. (9)

A. Choudhary, A. A. Lagatsky, P. Kannan, W. Sibbett, C. T. A. Brown, and D. P. Shepherd, “Diode-pumped femtosecond solid-state waveguide laser with a 4.9 GHz pulse repetition rate,” Opt. Lett. 37(21), 4416–4418 (2012).
[Crossref] [PubMed]

H.-W. Chen, G. Chang, S. Xu, Z. Yang, and F. X. Kärtner, “3 GHz, fundamentally mode-locked, femtosecond Yb-fiber laser,” Opt. Lett. 37(17), 3522–3524 (2012).
[Crossref] [PubMed]

R. Thapa, D. Nguyen, J. Zong, and A. Chavez-Pirson, “All-fiber fundamentally mode-locked 12 GHz laser oscillator based on an Er/Yb-doped phosphate glass fiber,” Opt. Lett. 39(6), 1418–1421 (2014).
[Crossref] [PubMed]

S. Xu, Z. Yang, W. Zhang, X. Wei, Q. Qian, D. Chen, Q. Zhang, S. Shen, M. Peng, and J. Qiu, “400 mW ultrashort cavity low-noise single-frequency Yb3+-doped phosphate fiber laser,” Opt. Lett. 36(18), 3708–3710 (2011).
[Crossref] [PubMed]

S. Yamazoe, M. Katou, T. Adachi, and T. Kasamatsu, “Palm-top-size, 1.5 kW peak-power, and femtosecond (160 fs) diode-pumped mode-locked Yb+3:KY(WO4)2 solid-state laser with a semiconductor saturable absorber mirror,” Opt. Lett. 35(5), 748–750 (2010).
[Crossref] [PubMed]

A. Bartels, D. Heinecke, and S. A. Diddams, “Passively mode-locked 10 GHz femtosecond Ti:sapphire laser,” Opt. Lett. 33(16), 1905–1907 (2008).
[Crossref] [PubMed]

M. Pang, W. He, and P. St. J. Russell, “Gigahertz-repetition-rate Tm-doped fiber laser passively mode-locked by optoacoustic effects in nanobore photonic crystal fiber,” Opt. Lett. 41(19), 4601–4604 (2016).
[Crossref] [PubMed]

F. Amrani, A. Haboucha, M. Salhi, H. Leblond, A. Komarov, P. Grelu, and F. Sanchez, “Passively mode-locked erbium-doped double-clad fiber laser operating at the 322nd harmonic,” Opt. Lett. 34(14), 2120–2122 (2009).
[Crossref] [PubMed]

J. Lhermite, D. Sabourdy, A. Desfarges-Berthelemot, V. Kermene, A. Barthelemy, and J. L. Oudar, “Tunable high-repetition-rate fiber laser for the generation of pulse trains and packets,” Opt. Lett. 32(12), 1734–1736 (2007).
[Crossref] [PubMed]

Optica (3)

Proc. SPIE (1)

Q. Wang, J. Geng, T. Luo, and S. Jiang, “2 µm mode-locked fiber lasers,” Proc. SPIE 8237, 82371N (2012).

Other (1)

S. Y. Choi, T. Calmano, F. Rotermund, C. Saraceno, and C. Kränkel, “GHz mode-locked Yb:YAG channel waveguide lasers,” OSA Laser Congress 2017 (ASSL, LAC), ATh1A.4 (2017).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic setups of tunable, high-repetition-rate ultrafast lasers based on Yb:glass, Tm:glass, and Er/Yb:glass fibers as gain mediums. (a) Yb:glass and Tm:glass fiber oscillator structures, using a TC on each gain fiber for tuning laser wavelengths and repetition rates. (b) Er/Yb:glass fiber laser structure, using the proposed method to accomplish tuning by rotating alignment angles between the gain fiber and the SESAM. The inset in the left of (b) illustrates the geometric details of the tunable module. The photograph in the right shows the laser cavity of the Er/Yb:glass fiber oscillator, along with the tunable module. LD, laser diode; WDM, wavelength-division multiplexer; DF, dielectric film; YGF, Yb:glass fiber; TGF, Tm:glass fiber; EYGF, Er/Yb:glass fiber; SESAM, semiconductor saturable absorber mirror; TC, temperature control; and FOAS, fiber optics alignment station.
Fig. 2
Fig. 2 Average output power, autocorrelation, and tunable performance of ultrafast Yb-fiber oscillator with a repetition rate of 3 GHz: (a) Measured variation of the laser average output power with the launched pump power (974 nm); (b) Measured autocorrelation trace of mode-locked pulse (blue solid line) and Sech2 fit trace (red dashed line); Tunable repetition rate (c) and spectra of wavelength (d) in mode-locked operation at different YGF temperatures controlled by TC of Fig. 1(a).
Fig. 3
Fig. 3 Tuning characteristics and autocorrelation measurements for the high-repetition-rate ultrafast fiber laser of wavelength 2.0 µm: (a) Spectral variation of the photodiode signals in the 1.587–1.591 GHz region acquired using an RF spectrum analyzer at different TGF temperatures controlled by the TC; (b) Corresponding optical spectral variation in the 1835-2085 nm wavelength interval with the TDF temperatures; (c) Magnified view of the optical spectra at the TDF temperatures of 18 °C, 24 °C, and 32 °C. The left Inset shows the measured autocorrelation trace at a TDF temperature of 24 °C. In recording the data, the launched pump power at the wavelength of 793 nm was fixed at 102 mW. The right Inset shows output power of ultrafast oscillator as a function of the temperature.
Fig. 4
Fig. 4 Noise characteristics of the high-repetition-rate Tm-doped oscillator: (a) The measurements of the phase noise (PN) at the TDF temperatures of 11 °C (blue trace), 12 °C (red trace), and 13 °C (green trace); (b) Corresponding relative intensity noise (RIN) curves at the TDF temperatures of 11 °C (blue trace), 12 °C (red trace), and 13 °C (green trace).
Fig. 5
Fig. 5 Tuning characteristics and autocorrelation measurements for the high-repetition-rate ultrafast laser of wavelength 1.5 µm using the proposed tuning method: (a) Spectral variation of the photodiode signals in the 3.19312–3.19360 GHz region by rotating θ from 0° to 0.1062°; (b) Corresponding optical spectral variation in the 1565–1615 nm wavelength interval; (c) Magnified view of the optical spectra at θ = 0.0502°. The inset in the left shows the measured autocorrelation trace at θ = 0.0502°, and the inset in the right is the optical spectrum at a span of 0.4 nm, indicating a longitudinal mode spacing of approximately 0.027 nm, as expected for a laser operating at a repetition rate of 3.2 GHz.
Fig. 6
Fig. 6 Noise characteristics of the high-repetition-rate ultrafast oscillator of wavelength 1.5 µm: (a) The measurements of the PN at θ of 0.0295° (blue), 0.0502° (red), and 0.0649° (green); (b) Corresponding RIN of the oscillator at θ of 0.0295° (blue), 0.0502° (red), and 0.0649° (green).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

x 1 =( x 0 +d ( n 2 2 sin 2 θ ) 1/2 )tan2θ.
d x 1 dw = n 2 dtan2θ ( n 2 2 sin 2 θ ) 3/2 n 2 .

Metrics