Abstract

We propose three-dimensional (3D) polymer directional couplers operating at 1550 nm for on-board optical interconnects. The proposed directional coupler can realize free-position light coupling and splitting in three dimension and can be cascaded to serve as an effective and scalable device for multi-layer and multi-channel interconnects. The 3D directional coupler was fabricated with commercially available UV-curable epoxies by combining the use of a needle-type liquid micro-dispenser and a 3-axis robot stage. The main parameters of the 3D directional coupler such as the interaction length, coupling ratio, coupling position, and cascade numbers can be easily adjusted. In the experiment, single-mode two-dimensional (2D) polymer directional couplers in both horizontal and vertical directions operating at 1550 nm with different coupling ratios (CRs) were demonstrated at first. The experimental results agree with the simulated ones. A 3D directional coupler with coupling ratios of 58:23:19 at 1550 nm was then successfully fabricated using the mosquito method for the first time to the best of our knowledge. The CR varies with the wavelength as expected while the excess loss remains almost the same within C-band. The results imply that the proposed method may be applicable in the fabrication of functional devices in three dimension for high-density on-board optical interconnects with further improvement on fabrication process.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Circular-core single-mode polymer waveguide for high-density and high-speed optical interconnects application at 1550 nm

Xiao Xu, Lin Ma, Shoulin Jiang, and Zuyuan He
Opt. Express 25(21) 25689-25696 (2017)

Circular core single-mode polymer optical waveguide fabricated using the Mosquito method with low loss at 1310/1550 nm

Kazuki Yasuhara, Feng Yu, and Takaaki Ishigure
Opt. Express 25(8) 8524-8533 (2017)

Dispensed polymer waveguides and laser-fabricated couplers for optical interconnects on printed circuit boards

Yongzhang Leng, Victor Yun, Lisa Lucas, Warren N. Herman, and Julius Goldhar
Appl. Opt. 46(4) 602-610 (2007)

References

  • View by:
  • |
  • |
  • |

  1. E. D. Kyriakis-Bitzaros, N. Haralabidis, M. Lagadas, A. Georgakilas, Y. Moisiadis, and G. Halkias, “Realistic end-to-end simulation of the optoelectronic links and comparison with the electrical interconnections for system-on-chip applications,” J. Lightw. Technol. 19(10), 1532–1542 (2001).
    [Crossref]
  2. A. Alduino and M. Paniccia, “Interconnects: Wiring electronics with light,” Nat. Photonics 1(3), 153–155 (2007).
    [Crossref]
  3. N. Sherwood-Droz and M. Lipson, “Scalable 3d dense integration of photonics on bulk silicon,” Opt. Express 19(18), 17758–17765 (2011).
    [Crossref] [PubMed]
  4. S. Gross and M. Withford, “Ultrafast-laser-inscribed 3d integrated photonics: challenges and emerging applications,” Nanophotonics 4(3), 332–352 (2015).
    [Crossref]
  5. S. B. Yoo, B. Guan, and R. P. Scott, “Heterogeneous 2d/3d photonic integrated microsystems,” Microsystems Nanoengineering 2, 16030 (2016).
    [Crossref]
  6. K. Shang, S. Pathak, G. Liu, and S. J. B. Yoo, “Ultra-low loss vertical optical couplers for 3d photonic integrated circuits,” in “Optical Fiber Communication Conference,” (2015), OSA Technical Digest, p. Th1F.6.
  7. S. Charania, S. Lingen, Z. Al-Husseini, S. Killge, K. Nieweglowski, N. Neumann, D. Plettemeier, K. Bock, and J. W. Bartha, “Micro structured coupling elements for 3d silicon optical interposer,” in “Integrated Optics: Physics and Simulations III,” (2017), International Society for Optics and Photonics, p. 102420V.
  8. P. Sun and R. M. Reano, “Vertical chip-to-chip coupling between silicon photonic integrated circuits using cantilever couplers,” Opt. Express 19(5), 4722–4727 (2011).
    [Crossref] [PubMed]
  9. N. Riesen, S. Gross, J. D. Love, and M. J. Withford, “Femtosecond direct-written integrated mode couplers,” Opt. Express 22(24), 29855–29861 (2014).
    [Crossref]
  10. H. Chen, N. K. Fontaine, R. Ryf, B. Guan, S. J. B. Yoo, and T. Koonen, “Design constraints of photonic-lantern spatial multiplexer based on laser-inscribed 3-d waveguide technology,” J. Lightwave Technol. 33(6), 1147–1154 (2015).
    [Crossref]
  11. N. Lindenmann, G. Balthasar, D. Hillerkuss, R. Schmogrow, M. Jordan, J. Leuthold, W. Freude, and C. Koos, “Photonic wire bonding: a novel concept for chip-scale interconnects,” Opt. Express 20(16), 17667–17677 (2012).
    [Crossref] [PubMed]
  12. R. R. Thomson, R. J. Harris, T. A. Birks, G. Brown, J. Allington-Smith, and J. Bland-Hawthorn, “Ultrafast laser inscription of a 121-waveguide fan-out for astrophotonics,” Opt. Lett. 37(12), 2331–2333 (2012).
    [Crossref] [PubMed]
  13. K. Minoshima, A. M. Kowalevicz, E. P. Ippen, and J. G. Fujimoto, “Fabrication of coupled mode photonic devices in glass by nonlinear femtosecond laser materials processing,” Opt. Express 10(15), 645–652 (2002).
    [Crossref] [PubMed]
  14. S. M. Eaton, W. Chen, L. Zhang, H. Zhang, R. Iyer, J. S. Aitchison, and P. R. Herman, “Telecom-band directional coupler written with femtosecond fiber laser,” IEEE Photonics Technol. Lett. 18(20), 2174–2176 (2006).
    [Crossref]
  15. K. Suzuki, V. Sharma, J. G. Fujimoto, E. P. Ippen, and Y. Nasu, “Characterization of symmetric [3 × 3] directional couplers fabricated by direct writing with a femtosecond laser oscillator,” Opt. Express 14(6), 2335–2343 (2006).
    [Crossref] [PubMed]
  16. S. Mukherjee, A. Spracklen, M. Valiente, E. Andersson, P. Ohberg, N. Goldman, and R. R. Thomson, “Experimental observation of anomalous topological edge modes in a slowly driven photonic lattice,” Nat. Commun. 8, 13918 (2017).
    [Crossref]
  17. K. Soma and T. Ishigure, “Fabrication of a graded-index circular-core polymer parallel optical waveguide using a microdispenser for a high-density optical printed circuit board,” IEEE J. Sel. Top. Quantum Electron. 19(2), 3600310 (2013).
    [Crossref]
  18. R. Kinoshita, D. Suganuma, and T. Ishigure, “Accurate interchannel pitch control in graded-index circular-core polymer parallel optical waveguide using the mosquito method,” Opt. Express 22(7), 8426–8437 (2014).
    [Crossref] [PubMed]
  19. K. Suzuki and T. Ishigure, “Fabrication for high-density multilayered GI circular core polymer parallel optical waveguides,” in “Optical Interconnects Conference (OI),” (2015), IEEE, p. 86–87.
  20. D. Suganuma and T. Ishigure, “Fan-in/out polymer optical waveguide for a multicore fiber fabricated using the mosquito method,” Opt. Express 23(2), 1585–1593 (2015).
    [Crossref] [PubMed]
  21. O. F. Rasel and T. Ishigure, “3-dimensionally crossed polymer optical waveguide with gi circular core using the mosquito method,” in “2017 IEEE CPMT Symposium Japan (ICSJ),” (2017), IEEE, p. 173–176.
  22. H. Toda and T. Ishigure, “Index profile design of graded-index core tapered polymer waveguide for low loss light coupling,” in “2016 IEEE CPMT Symposium Japan (ICSJ),” (2016), IEEE, p. 149–150.
  23. K. Yasuhara, F. Yu, and T. Ishigure, “Polymer waveguide based spot-size converter for low-loss coupling between Si photonics chips and single-mode fibers,” in “2017 Optical Fiber Communications Conference and Exhibition (OFC),” (2017), Optical Society of America, p. 1–3.
  24. T. Ishigure, “Graded-index core polymer optical waveguide for high-bandwidth-density optical printed circuit boards: fabrication and characterization,” in “Optical Interconnects XIV”, (2013), International Society for Optics and Photonics, p. 899102.
  25. K. Date, K. Fukagata, and T. Ishigure, “Accurate core alignment technique in the mosquito method for realizing 3-dimensional optical wiring,” in “2017 IEEE CPMT Symposium Japan (ICSJ),” (2017), IEEE, p. 143–144.
  26. X. Xu, L. Ma, S. Jiang, and Z. He, “Circular-core single-mode polymer waveguide for high-density and high-speed optical interconnects application at 1550 nm,” Opt. Express 25(21), 25689–25696 (2017).
    [Crossref] [PubMed]

2017 (2)

S. Mukherjee, A. Spracklen, M. Valiente, E. Andersson, P. Ohberg, N. Goldman, and R. R. Thomson, “Experimental observation of anomalous topological edge modes in a slowly driven photonic lattice,” Nat. Commun. 8, 13918 (2017).
[Crossref]

X. Xu, L. Ma, S. Jiang, and Z. He, “Circular-core single-mode polymer waveguide for high-density and high-speed optical interconnects application at 1550 nm,” Opt. Express 25(21), 25689–25696 (2017).
[Crossref] [PubMed]

2016 (1)

S. B. Yoo, B. Guan, and R. P. Scott, “Heterogeneous 2d/3d photonic integrated microsystems,” Microsystems Nanoengineering 2, 16030 (2016).
[Crossref]

2015 (3)

2014 (2)

2013 (1)

K. Soma and T. Ishigure, “Fabrication of a graded-index circular-core polymer parallel optical waveguide using a microdispenser for a high-density optical printed circuit board,” IEEE J. Sel. Top. Quantum Electron. 19(2), 3600310 (2013).
[Crossref]

2012 (2)

2011 (2)

2007 (1)

A. Alduino and M. Paniccia, “Interconnects: Wiring electronics with light,” Nat. Photonics 1(3), 153–155 (2007).
[Crossref]

2006 (2)

S. M. Eaton, W. Chen, L. Zhang, H. Zhang, R. Iyer, J. S. Aitchison, and P. R. Herman, “Telecom-band directional coupler written with femtosecond fiber laser,” IEEE Photonics Technol. Lett. 18(20), 2174–2176 (2006).
[Crossref]

K. Suzuki, V. Sharma, J. G. Fujimoto, E. P. Ippen, and Y. Nasu, “Characterization of symmetric [3 × 3] directional couplers fabricated by direct writing with a femtosecond laser oscillator,” Opt. Express 14(6), 2335–2343 (2006).
[Crossref] [PubMed]

2002 (1)

2001 (1)

E. D. Kyriakis-Bitzaros, N. Haralabidis, M. Lagadas, A. Georgakilas, Y. Moisiadis, and G. Halkias, “Realistic end-to-end simulation of the optoelectronic links and comparison with the electrical interconnections for system-on-chip applications,” J. Lightw. Technol. 19(10), 1532–1542 (2001).
[Crossref]

Aitchison, J. S.

S. M. Eaton, W. Chen, L. Zhang, H. Zhang, R. Iyer, J. S. Aitchison, and P. R. Herman, “Telecom-band directional coupler written with femtosecond fiber laser,” IEEE Photonics Technol. Lett. 18(20), 2174–2176 (2006).
[Crossref]

Alduino, A.

A. Alduino and M. Paniccia, “Interconnects: Wiring electronics with light,” Nat. Photonics 1(3), 153–155 (2007).
[Crossref]

Al-Husseini, Z.

S. Charania, S. Lingen, Z. Al-Husseini, S. Killge, K. Nieweglowski, N. Neumann, D. Plettemeier, K. Bock, and J. W. Bartha, “Micro structured coupling elements for 3d silicon optical interposer,” in “Integrated Optics: Physics and Simulations III,” (2017), International Society for Optics and Photonics, p. 102420V.

Allington-Smith, J.

Andersson, E.

S. Mukherjee, A. Spracklen, M. Valiente, E. Andersson, P. Ohberg, N. Goldman, and R. R. Thomson, “Experimental observation of anomalous topological edge modes in a slowly driven photonic lattice,” Nat. Commun. 8, 13918 (2017).
[Crossref]

Balthasar, G.

Bartha, J. W.

S. Charania, S. Lingen, Z. Al-Husseini, S. Killge, K. Nieweglowski, N. Neumann, D. Plettemeier, K. Bock, and J. W. Bartha, “Micro structured coupling elements for 3d silicon optical interposer,” in “Integrated Optics: Physics and Simulations III,” (2017), International Society for Optics and Photonics, p. 102420V.

Birks, T. A.

Bland-Hawthorn, J.

Bock, K.

S. Charania, S. Lingen, Z. Al-Husseini, S. Killge, K. Nieweglowski, N. Neumann, D. Plettemeier, K. Bock, and J. W. Bartha, “Micro structured coupling elements for 3d silicon optical interposer,” in “Integrated Optics: Physics and Simulations III,” (2017), International Society for Optics and Photonics, p. 102420V.

Brown, G.

Charania, S.

S. Charania, S. Lingen, Z. Al-Husseini, S. Killge, K. Nieweglowski, N. Neumann, D. Plettemeier, K. Bock, and J. W. Bartha, “Micro structured coupling elements for 3d silicon optical interposer,” in “Integrated Optics: Physics and Simulations III,” (2017), International Society for Optics and Photonics, p. 102420V.

Chen, H.

Chen, W.

S. M. Eaton, W. Chen, L. Zhang, H. Zhang, R. Iyer, J. S. Aitchison, and P. R. Herman, “Telecom-band directional coupler written with femtosecond fiber laser,” IEEE Photonics Technol. Lett. 18(20), 2174–2176 (2006).
[Crossref]

Date, K.

K. Date, K. Fukagata, and T. Ishigure, “Accurate core alignment technique in the mosquito method for realizing 3-dimensional optical wiring,” in “2017 IEEE CPMT Symposium Japan (ICSJ),” (2017), IEEE, p. 143–144.

Eaton, S. M.

S. M. Eaton, W. Chen, L. Zhang, H. Zhang, R. Iyer, J. S. Aitchison, and P. R. Herman, “Telecom-band directional coupler written with femtosecond fiber laser,” IEEE Photonics Technol. Lett. 18(20), 2174–2176 (2006).
[Crossref]

Fontaine, N. K.

Freude, W.

Fujimoto, J. G.

Fukagata, K.

K. Date, K. Fukagata, and T. Ishigure, “Accurate core alignment technique in the mosquito method for realizing 3-dimensional optical wiring,” in “2017 IEEE CPMT Symposium Japan (ICSJ),” (2017), IEEE, p. 143–144.

Georgakilas, A.

E. D. Kyriakis-Bitzaros, N. Haralabidis, M. Lagadas, A. Georgakilas, Y. Moisiadis, and G. Halkias, “Realistic end-to-end simulation of the optoelectronic links and comparison with the electrical interconnections for system-on-chip applications,” J. Lightw. Technol. 19(10), 1532–1542 (2001).
[Crossref]

Goldman, N.

S. Mukherjee, A. Spracklen, M. Valiente, E. Andersson, P. Ohberg, N. Goldman, and R. R. Thomson, “Experimental observation of anomalous topological edge modes in a slowly driven photonic lattice,” Nat. Commun. 8, 13918 (2017).
[Crossref]

Gross, S.

S. Gross and M. Withford, “Ultrafast-laser-inscribed 3d integrated photonics: challenges and emerging applications,” Nanophotonics 4(3), 332–352 (2015).
[Crossref]

N. Riesen, S. Gross, J. D. Love, and M. J. Withford, “Femtosecond direct-written integrated mode couplers,” Opt. Express 22(24), 29855–29861 (2014).
[Crossref]

Guan, B.

Halkias, G.

E. D. Kyriakis-Bitzaros, N. Haralabidis, M. Lagadas, A. Georgakilas, Y. Moisiadis, and G. Halkias, “Realistic end-to-end simulation of the optoelectronic links and comparison with the electrical interconnections for system-on-chip applications,” J. Lightw. Technol. 19(10), 1532–1542 (2001).
[Crossref]

Haralabidis, N.

E. D. Kyriakis-Bitzaros, N. Haralabidis, M. Lagadas, A. Georgakilas, Y. Moisiadis, and G. Halkias, “Realistic end-to-end simulation of the optoelectronic links and comparison with the electrical interconnections for system-on-chip applications,” J. Lightw. Technol. 19(10), 1532–1542 (2001).
[Crossref]

Harris, R. J.

He, Z.

Herman, P. R.

S. M. Eaton, W. Chen, L. Zhang, H. Zhang, R. Iyer, J. S. Aitchison, and P. R. Herman, “Telecom-band directional coupler written with femtosecond fiber laser,” IEEE Photonics Technol. Lett. 18(20), 2174–2176 (2006).
[Crossref]

Hillerkuss, D.

Ippen, E. P.

Ishigure, T.

D. Suganuma and T. Ishigure, “Fan-in/out polymer optical waveguide for a multicore fiber fabricated using the mosquito method,” Opt. Express 23(2), 1585–1593 (2015).
[Crossref] [PubMed]

R. Kinoshita, D. Suganuma, and T. Ishigure, “Accurate interchannel pitch control in graded-index circular-core polymer parallel optical waveguide using the mosquito method,” Opt. Express 22(7), 8426–8437 (2014).
[Crossref] [PubMed]

K. Soma and T. Ishigure, “Fabrication of a graded-index circular-core polymer parallel optical waveguide using a microdispenser for a high-density optical printed circuit board,” IEEE J. Sel. Top. Quantum Electron. 19(2), 3600310 (2013).
[Crossref]

O. F. Rasel and T. Ishigure, “3-dimensionally crossed polymer optical waveguide with gi circular core using the mosquito method,” in “2017 IEEE CPMT Symposium Japan (ICSJ),” (2017), IEEE, p. 173–176.

K. Date, K. Fukagata, and T. Ishigure, “Accurate core alignment technique in the mosquito method for realizing 3-dimensional optical wiring,” in “2017 IEEE CPMT Symposium Japan (ICSJ),” (2017), IEEE, p. 143–144.

H. Toda and T. Ishigure, “Index profile design of graded-index core tapered polymer waveguide for low loss light coupling,” in “2016 IEEE CPMT Symposium Japan (ICSJ),” (2016), IEEE, p. 149–150.

K. Yasuhara, F. Yu, and T. Ishigure, “Polymer waveguide based spot-size converter for low-loss coupling between Si photonics chips and single-mode fibers,” in “2017 Optical Fiber Communications Conference and Exhibition (OFC),” (2017), Optical Society of America, p. 1–3.

T. Ishigure, “Graded-index core polymer optical waveguide for high-bandwidth-density optical printed circuit boards: fabrication and characterization,” in “Optical Interconnects XIV”, (2013), International Society for Optics and Photonics, p. 899102.

K. Suzuki and T. Ishigure, “Fabrication for high-density multilayered GI circular core polymer parallel optical waveguides,” in “Optical Interconnects Conference (OI),” (2015), IEEE, p. 86–87.

Iyer, R.

S. M. Eaton, W. Chen, L. Zhang, H. Zhang, R. Iyer, J. S. Aitchison, and P. R. Herman, “Telecom-band directional coupler written with femtosecond fiber laser,” IEEE Photonics Technol. Lett. 18(20), 2174–2176 (2006).
[Crossref]

Jiang, S.

Jordan, M.

Killge, S.

S. Charania, S. Lingen, Z. Al-Husseini, S. Killge, K. Nieweglowski, N. Neumann, D. Plettemeier, K. Bock, and J. W. Bartha, “Micro structured coupling elements for 3d silicon optical interposer,” in “Integrated Optics: Physics and Simulations III,” (2017), International Society for Optics and Photonics, p. 102420V.

Kinoshita, R.

Koonen, T.

Koos, C.

Kowalevicz, A. M.

Kyriakis-Bitzaros, E. D.

E. D. Kyriakis-Bitzaros, N. Haralabidis, M. Lagadas, A. Georgakilas, Y. Moisiadis, and G. Halkias, “Realistic end-to-end simulation of the optoelectronic links and comparison with the electrical interconnections for system-on-chip applications,” J. Lightw. Technol. 19(10), 1532–1542 (2001).
[Crossref]

Lagadas, M.

E. D. Kyriakis-Bitzaros, N. Haralabidis, M. Lagadas, A. Georgakilas, Y. Moisiadis, and G. Halkias, “Realistic end-to-end simulation of the optoelectronic links and comparison with the electrical interconnections for system-on-chip applications,” J. Lightw. Technol. 19(10), 1532–1542 (2001).
[Crossref]

Leuthold, J.

Lindenmann, N.

Lingen, S.

S. Charania, S. Lingen, Z. Al-Husseini, S. Killge, K. Nieweglowski, N. Neumann, D. Plettemeier, K. Bock, and J. W. Bartha, “Micro structured coupling elements for 3d silicon optical interposer,” in “Integrated Optics: Physics and Simulations III,” (2017), International Society for Optics and Photonics, p. 102420V.

Lipson, M.

Liu, G.

K. Shang, S. Pathak, G. Liu, and S. J. B. Yoo, “Ultra-low loss vertical optical couplers for 3d photonic integrated circuits,” in “Optical Fiber Communication Conference,” (2015), OSA Technical Digest, p. Th1F.6.

Love, J. D.

Ma, L.

Minoshima, K.

Moisiadis, Y.

E. D. Kyriakis-Bitzaros, N. Haralabidis, M. Lagadas, A. Georgakilas, Y. Moisiadis, and G. Halkias, “Realistic end-to-end simulation of the optoelectronic links and comparison with the electrical interconnections for system-on-chip applications,” J. Lightw. Technol. 19(10), 1532–1542 (2001).
[Crossref]

Mukherjee, S.

S. Mukherjee, A. Spracklen, M. Valiente, E. Andersson, P. Ohberg, N. Goldman, and R. R. Thomson, “Experimental observation of anomalous topological edge modes in a slowly driven photonic lattice,” Nat. Commun. 8, 13918 (2017).
[Crossref]

Nasu, Y.

Neumann, N.

S. Charania, S. Lingen, Z. Al-Husseini, S. Killge, K. Nieweglowski, N. Neumann, D. Plettemeier, K. Bock, and J. W. Bartha, “Micro structured coupling elements for 3d silicon optical interposer,” in “Integrated Optics: Physics and Simulations III,” (2017), International Society for Optics and Photonics, p. 102420V.

Nieweglowski, K.

S. Charania, S. Lingen, Z. Al-Husseini, S. Killge, K. Nieweglowski, N. Neumann, D. Plettemeier, K. Bock, and J. W. Bartha, “Micro structured coupling elements for 3d silicon optical interposer,” in “Integrated Optics: Physics and Simulations III,” (2017), International Society for Optics and Photonics, p. 102420V.

Ohberg, P.

S. Mukherjee, A. Spracklen, M. Valiente, E. Andersson, P. Ohberg, N. Goldman, and R. R. Thomson, “Experimental observation of anomalous topological edge modes in a slowly driven photonic lattice,” Nat. Commun. 8, 13918 (2017).
[Crossref]

Paniccia, M.

A. Alduino and M. Paniccia, “Interconnects: Wiring electronics with light,” Nat. Photonics 1(3), 153–155 (2007).
[Crossref]

Pathak, S.

K. Shang, S. Pathak, G. Liu, and S. J. B. Yoo, “Ultra-low loss vertical optical couplers for 3d photonic integrated circuits,” in “Optical Fiber Communication Conference,” (2015), OSA Technical Digest, p. Th1F.6.

Plettemeier, D.

S. Charania, S. Lingen, Z. Al-Husseini, S. Killge, K. Nieweglowski, N. Neumann, D. Plettemeier, K. Bock, and J. W. Bartha, “Micro structured coupling elements for 3d silicon optical interposer,” in “Integrated Optics: Physics and Simulations III,” (2017), International Society for Optics and Photonics, p. 102420V.

Rasel, O. F.

O. F. Rasel and T. Ishigure, “3-dimensionally crossed polymer optical waveguide with gi circular core using the mosquito method,” in “2017 IEEE CPMT Symposium Japan (ICSJ),” (2017), IEEE, p. 173–176.

Reano, R. M.

Riesen, N.

Ryf, R.

Schmogrow, R.

Scott, R. P.

S. B. Yoo, B. Guan, and R. P. Scott, “Heterogeneous 2d/3d photonic integrated microsystems,” Microsystems Nanoengineering 2, 16030 (2016).
[Crossref]

Shang, K.

K. Shang, S. Pathak, G. Liu, and S. J. B. Yoo, “Ultra-low loss vertical optical couplers for 3d photonic integrated circuits,” in “Optical Fiber Communication Conference,” (2015), OSA Technical Digest, p. Th1F.6.

Sharma, V.

Sherwood-Droz, N.

Soma, K.

K. Soma and T. Ishigure, “Fabrication of a graded-index circular-core polymer parallel optical waveguide using a microdispenser for a high-density optical printed circuit board,” IEEE J. Sel. Top. Quantum Electron. 19(2), 3600310 (2013).
[Crossref]

Spracklen, A.

S. Mukherjee, A. Spracklen, M. Valiente, E. Andersson, P. Ohberg, N. Goldman, and R. R. Thomson, “Experimental observation of anomalous topological edge modes in a slowly driven photonic lattice,” Nat. Commun. 8, 13918 (2017).
[Crossref]

Suganuma, D.

Sun, P.

Suzuki, K.

K. Suzuki, V. Sharma, J. G. Fujimoto, E. P. Ippen, and Y. Nasu, “Characterization of symmetric [3 × 3] directional couplers fabricated by direct writing with a femtosecond laser oscillator,” Opt. Express 14(6), 2335–2343 (2006).
[Crossref] [PubMed]

K. Suzuki and T. Ishigure, “Fabrication for high-density multilayered GI circular core polymer parallel optical waveguides,” in “Optical Interconnects Conference (OI),” (2015), IEEE, p. 86–87.

Thomson, R. R.

S. Mukherjee, A. Spracklen, M. Valiente, E. Andersson, P. Ohberg, N. Goldman, and R. R. Thomson, “Experimental observation of anomalous topological edge modes in a slowly driven photonic lattice,” Nat. Commun. 8, 13918 (2017).
[Crossref]

R. R. Thomson, R. J. Harris, T. A. Birks, G. Brown, J. Allington-Smith, and J. Bland-Hawthorn, “Ultrafast laser inscription of a 121-waveguide fan-out for astrophotonics,” Opt. Lett. 37(12), 2331–2333 (2012).
[Crossref] [PubMed]

Toda, H.

H. Toda and T. Ishigure, “Index profile design of graded-index core tapered polymer waveguide for low loss light coupling,” in “2016 IEEE CPMT Symposium Japan (ICSJ),” (2016), IEEE, p. 149–150.

Valiente, M.

S. Mukherjee, A. Spracklen, M. Valiente, E. Andersson, P. Ohberg, N. Goldman, and R. R. Thomson, “Experimental observation of anomalous topological edge modes in a slowly driven photonic lattice,” Nat. Commun. 8, 13918 (2017).
[Crossref]

Withford, M.

S. Gross and M. Withford, “Ultrafast-laser-inscribed 3d integrated photonics: challenges and emerging applications,” Nanophotonics 4(3), 332–352 (2015).
[Crossref]

Withford, M. J.

Xu, X.

Yasuhara, K.

K. Yasuhara, F. Yu, and T. Ishigure, “Polymer waveguide based spot-size converter for low-loss coupling between Si photonics chips and single-mode fibers,” in “2017 Optical Fiber Communications Conference and Exhibition (OFC),” (2017), Optical Society of America, p. 1–3.

Yoo, S. B.

S. B. Yoo, B. Guan, and R. P. Scott, “Heterogeneous 2d/3d photonic integrated microsystems,” Microsystems Nanoengineering 2, 16030 (2016).
[Crossref]

Yoo, S. J. B.

H. Chen, N. K. Fontaine, R. Ryf, B. Guan, S. J. B. Yoo, and T. Koonen, “Design constraints of photonic-lantern spatial multiplexer based on laser-inscribed 3-d waveguide technology,” J. Lightwave Technol. 33(6), 1147–1154 (2015).
[Crossref]

K. Shang, S. Pathak, G. Liu, and S. J. B. Yoo, “Ultra-low loss vertical optical couplers for 3d photonic integrated circuits,” in “Optical Fiber Communication Conference,” (2015), OSA Technical Digest, p. Th1F.6.

Yu, F.

K. Yasuhara, F. Yu, and T. Ishigure, “Polymer waveguide based spot-size converter for low-loss coupling between Si photonics chips and single-mode fibers,” in “2017 Optical Fiber Communications Conference and Exhibition (OFC),” (2017), Optical Society of America, p. 1–3.

Zhang, H.

S. M. Eaton, W. Chen, L. Zhang, H. Zhang, R. Iyer, J. S. Aitchison, and P. R. Herman, “Telecom-band directional coupler written with femtosecond fiber laser,” IEEE Photonics Technol. Lett. 18(20), 2174–2176 (2006).
[Crossref]

Zhang, L.

S. M. Eaton, W. Chen, L. Zhang, H. Zhang, R. Iyer, J. S. Aitchison, and P. R. Herman, “Telecom-band directional coupler written with femtosecond fiber laser,” IEEE Photonics Technol. Lett. 18(20), 2174–2176 (2006).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

K. Soma and T. Ishigure, “Fabrication of a graded-index circular-core polymer parallel optical waveguide using a microdispenser for a high-density optical printed circuit board,” IEEE J. Sel. Top. Quantum Electron. 19(2), 3600310 (2013).
[Crossref]

IEEE Photonics Technol. Lett. (1)

S. M. Eaton, W. Chen, L. Zhang, H. Zhang, R. Iyer, J. S. Aitchison, and P. R. Herman, “Telecom-band directional coupler written with femtosecond fiber laser,” IEEE Photonics Technol. Lett. 18(20), 2174–2176 (2006).
[Crossref]

J. Lightw. Technol. (1)

E. D. Kyriakis-Bitzaros, N. Haralabidis, M. Lagadas, A. Georgakilas, Y. Moisiadis, and G. Halkias, “Realistic end-to-end simulation of the optoelectronic links and comparison with the electrical interconnections for system-on-chip applications,” J. Lightw. Technol. 19(10), 1532–1542 (2001).
[Crossref]

J. Lightwave Technol. (1)

Microsystems Nanoengineering (1)

S. B. Yoo, B. Guan, and R. P. Scott, “Heterogeneous 2d/3d photonic integrated microsystems,” Microsystems Nanoengineering 2, 16030 (2016).
[Crossref]

Nanophotonics (1)

S. Gross and M. Withford, “Ultrafast-laser-inscribed 3d integrated photonics: challenges and emerging applications,” Nanophotonics 4(3), 332–352 (2015).
[Crossref]

Nat. Commun. (1)

S. Mukherjee, A. Spracklen, M. Valiente, E. Andersson, P. Ohberg, N. Goldman, and R. R. Thomson, “Experimental observation of anomalous topological edge modes in a slowly driven photonic lattice,” Nat. Commun. 8, 13918 (2017).
[Crossref]

Nat. Photonics (1)

A. Alduino and M. Paniccia, “Interconnects: Wiring electronics with light,” Nat. Photonics 1(3), 153–155 (2007).
[Crossref]

Opt. Express (9)

N. Sherwood-Droz and M. Lipson, “Scalable 3d dense integration of photonics on bulk silicon,” Opt. Express 19(18), 17758–17765 (2011).
[Crossref] [PubMed]

N. Lindenmann, G. Balthasar, D. Hillerkuss, R. Schmogrow, M. Jordan, J. Leuthold, W. Freude, and C. Koos, “Photonic wire bonding: a novel concept for chip-scale interconnects,” Opt. Express 20(16), 17667–17677 (2012).
[Crossref] [PubMed]

P. Sun and R. M. Reano, “Vertical chip-to-chip coupling between silicon photonic integrated circuits using cantilever couplers,” Opt. Express 19(5), 4722–4727 (2011).
[Crossref] [PubMed]

N. Riesen, S. Gross, J. D. Love, and M. J. Withford, “Femtosecond direct-written integrated mode couplers,” Opt. Express 22(24), 29855–29861 (2014).
[Crossref]

K. Minoshima, A. M. Kowalevicz, E. P. Ippen, and J. G. Fujimoto, “Fabrication of coupled mode photonic devices in glass by nonlinear femtosecond laser materials processing,” Opt. Express 10(15), 645–652 (2002).
[Crossref] [PubMed]

K. Suzuki, V. Sharma, J. G. Fujimoto, E. P. Ippen, and Y. Nasu, “Characterization of symmetric [3 × 3] directional couplers fabricated by direct writing with a femtosecond laser oscillator,” Opt. Express 14(6), 2335–2343 (2006).
[Crossref] [PubMed]

D. Suganuma and T. Ishigure, “Fan-in/out polymer optical waveguide for a multicore fiber fabricated using the mosquito method,” Opt. Express 23(2), 1585–1593 (2015).
[Crossref] [PubMed]

X. Xu, L. Ma, S. Jiang, and Z. He, “Circular-core single-mode polymer waveguide for high-density and high-speed optical interconnects application at 1550 nm,” Opt. Express 25(21), 25689–25696 (2017).
[Crossref] [PubMed]

R. Kinoshita, D. Suganuma, and T. Ishigure, “Accurate interchannel pitch control in graded-index circular-core polymer parallel optical waveguide using the mosquito method,” Opt. Express 22(7), 8426–8437 (2014).
[Crossref] [PubMed]

Opt. Lett. (1)

Other (8)

K. Shang, S. Pathak, G. Liu, and S. J. B. Yoo, “Ultra-low loss vertical optical couplers for 3d photonic integrated circuits,” in “Optical Fiber Communication Conference,” (2015), OSA Technical Digest, p. Th1F.6.

S. Charania, S. Lingen, Z. Al-Husseini, S. Killge, K. Nieweglowski, N. Neumann, D. Plettemeier, K. Bock, and J. W. Bartha, “Micro structured coupling elements for 3d silicon optical interposer,” in “Integrated Optics: Physics and Simulations III,” (2017), International Society for Optics and Photonics, p. 102420V.

O. F. Rasel and T. Ishigure, “3-dimensionally crossed polymer optical waveguide with gi circular core using the mosquito method,” in “2017 IEEE CPMT Symposium Japan (ICSJ),” (2017), IEEE, p. 173–176.

H. Toda and T. Ishigure, “Index profile design of graded-index core tapered polymer waveguide for low loss light coupling,” in “2016 IEEE CPMT Symposium Japan (ICSJ),” (2016), IEEE, p. 149–150.

K. Yasuhara, F. Yu, and T. Ishigure, “Polymer waveguide based spot-size converter for low-loss coupling between Si photonics chips and single-mode fibers,” in “2017 Optical Fiber Communications Conference and Exhibition (OFC),” (2017), Optical Society of America, p. 1–3.

T. Ishigure, “Graded-index core polymer optical waveguide for high-bandwidth-density optical printed circuit boards: fabrication and characterization,” in “Optical Interconnects XIV”, (2013), International Society for Optics and Photonics, p. 899102.

K. Date, K. Fukagata, and T. Ishigure, “Accurate core alignment technique in the mosquito method for realizing 3-dimensional optical wiring,” in “2017 IEEE CPMT Symposium Japan (ICSJ),” (2017), IEEE, p. 143–144.

K. Suzuki and T. Ishigure, “Fabrication for high-density multilayered GI circular core polymer parallel optical waveguides,” in “Optical Interconnects Conference (OI),” (2015), IEEE, p. 86–87.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematics of (a) 3D directional coupler and (b) cascaded 3D directional couplers. The insets show the cross-sectional views.
Fig. 2
Fig. 2 Schematics of the fabrication process.
Fig. 3
Fig. 3 Schematics of 2D directional couplers in (a) horizontal direction and (b) vertical direction. The insets show the micrographs of the output facet.
Fig. 4
Fig. 4 The CR and EL as functions of wavelength for horizontal couplers of (a) Coupler H1 with an interaction length of 7.5 mm and (b) Coupler H2 with an interaction length of 13.0 mm. Insets are the observed NFPs at 1530 and 1560 nm, respectively.
Fig. 5
Fig. 5 The CR and EL as functions of wavelength for vertical couplers of (a) Coupler V1 with an interaction length of 10.0 mm and (b) Coupler V2 with an interaction length of 7.0 mm. Insets are the NFPs at 1530 and 1560 nm, respectively.
Fig. 6
Fig. 6 CR as a function of interaction length for horizontal directional couplers.
Fig. 7
Fig. 7 Fabrication tolerance on (a) core diameter, (b) spacing and (c) waveguide asymmetry for the interaction length of 8.8 mm and 7.3 mm, respectively; (d) The minimum coupling ratio and the difference in propagation constants as functions of waveguide asymmetry.
Fig. 8
Fig. 8 (a) Output-facet micrograph of the fabricated 3D directional coupler; (b) NFPs at 1530 and 1560 nm; (c) CRs and EL as functions of wavelength.

Tables (1)

Tables Icon

Table 1 Parameters for calculation of CRs

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

C R = P 1 P 1 + P 2
E L = 10 l o g ( P 1 + P 2 P i n )

Metrics