Abstract

We study the propagation properties (intensity, degree of coherence and scintillation) of a new class of beams in a turbulent atmosphere, which are called Hermite non-uniformly correlated (HNUC) beams. The results show that the beams not only have lower scintillation but also higher intensity than Gaussian-Schell model (GSM) beams over certain propagation ranges. We can adjust the beam order of HNUC beams to enhance the intensity of the beam in the receiver plane and, simultaneously, reduce the detrimental scintillation, and we can also adjust the coherence length of HNUC beams to optimize the effects of a given propagation distance between a signal transmitter and a receiver.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Evolution properties of Bessel-Gaussian Schell-model beams in non-Kolmogorov turbulence

Xiaoyang Wang, Mingwu Yao, Zhiliang Qiu, Xiang Yi, and Zengji Liu
Opt. Express 23(10) 12508-12523 (2015)

Splitting and combining properties of an elegant Hermite-Gaussian correlated Schell-model beam in Kolmogorov and non-Kolmogorov turbulence

Jiayi Yu, Yahong Chen, Lin Liu, Xianlong Liu, and Yangjian Cai
Opt. Express 23(10) 13467-13481 (2015)

Propagation factors of cosine-Gaussian-correlated Schell-model beams in non-Kolmogorov turbulence

Hua-Feng Xu, Zhou Zhang, Jun Qu, and Wei Huang
Opt. Express 22(19) 22479-22489 (2014)

References

  • View by:
  • |
  • |
  • |

  1. L. C. Andrews and R. L. Phillips, Laser beam propagation through random media (SPIE, 2005).
    [Crossref]
  2. J. C. Leader, “Intensity fluctuations resulting from partially coherent light propagating through atmospheric turbulence,” J. Opt. Soc. Am. 69(1), 73–84 (1979).
    [Crossref]
  3. R. L. Fante, “Intensity fluctuations of an optical wave in a turbulent medium: effect of source coherence,” Opt. Acta 28(9), 1203–1207 (1981).
    [Crossref]
  4. V. A. Banakh and V. M. Buldakov, “Effect of the initial degree of spatial coherence of a light beam on intensity fluctuations in a turbulent atmosphere,” Optics and Spectroscopy 55, 423–426 (1983).
  5. V. A. Banach, V. M. Buldakov, and V. L. Mironov, “Intensity fluctuations of a partially coherent light beam in a turbulent atmosphere,” Optics and Spectroscopy 54, 626–629 (1983).
  6. O. Korotkova, L. C. Andrews, and R. L. Phillips, “Model for a partially coherent Gaussian beam in atmospheric turbulence with application in Lasercom,” Opt. Eng. 43(2), 330–341 (2004).
    [Crossref]
  7. G. P. Berman, V. N. Gorshkov, and S. V. Torous, “Scintillation reduction for laser bames propagating through turbulent atmosphere,” J. Phys. B. 44(5), 055402 (2011).
    [Crossref]
  8. G. Gbur, “Partially coherent beam propagation in atmospheric turbulence,” J. Opt. Soc. Am. A 31(9), 2038–2045 (2014).
    [Crossref]
  9. G. Gbur and E. Wolf, “Spreading of partially coherent beams in random media,” J. Opt. Soc. Am. A 19(8), 1592–1598 (2002).
    [Crossref]
  10. T. Shirai, A. Dogariu, and E. Wolf, “Mode analysis of spreading of partially coherent beams propagating through atmospheric turbulence,” J. Opt. Soc. Am. A 20(6), 1094–1102 (2003).
    [Crossref]
  11. Y. Yuan and Y. Cai, “Scintillation index of a flat-topped beam array in a weakly turbulent atmosphere,” J. Opt. 13(12), 125701 (2011).
    [Crossref]
  12. F. Wang, X. Liu, L. Liu, Y. Yuan, and Y. Cai, “Experimental study of the scintillation index of a radially polarized beam with controllable spatial coherence,” Appl. Phys. Lett. 103(9), 091102 (2013).
    [Crossref]
  13. F. Wang, Y. Cai, H. T. Eyyuboglu, and Y. Baykal, “Twist phase induced reduction in scintillation of a partially coherent beam in turbulent atmosphere,” Opt. Lett. 37(2), 184–186 (2012).
    [Crossref] [PubMed]
  14. X. Liu, Y. Shen, L. Liu, F. Wang, and Y. Cai, “Experimental demonstration of vortex phase-induced reduction in scintillation of a partially coherent beam,” Opt. Lett. 38(24), 5323–5326 (2013).
    [Crossref] [PubMed]
  15. Y. Yuan, X. Liu, F. Wang, Y. Chen, Y. Cai, J. Qu, and H. T. Eyyuboglu, “Scintillation index of a multi-Gaussian Schell-model beam in turbulent atmosphere,” Opt. Commun. 305, 57–65 (2013).
    [Crossref]
  16. O. Korotkova, S. Avramov-Zamurovic, C. Nelson, R. Malek-Madani, Y. Gu, and G. Gbur, “Scintillation reduction in multi-Gaussian Schell-model beams propagating in atmospheric turbulence,” Proc. SPIE 9224, 92240M (2014).
  17. Y. Gu and G. Gbur, “Scintillation of pseudo-Bessel correlated beams in atmospheric turbulence,” J. Opt. Soc. Am. A 27(12), 2621–2629 (2010).
    [Crossref]
  18. X. Liu, J. Yu, Y. Cai, and S. A. Ponomarenko, “Propagation of optical coherence lattices in the turbulent atmosphere,” Opt. Lett. 41(18), 4182–4185 (2016).
    [Crossref] [PubMed]
  19. F. Gori and M. Santarsiero, “Devising genuine spatial correlation functions,” Opt. Lett. 32(24), 3531–3533 (2007).
    [Crossref] [PubMed]
  20. F. Gori, V. Ramírez-Sánchez, M. Santarsiero, and T. Shirai, “On genuine cross-spectral density matrices,” J. Opt. A: Pure Appl. Opt. 11(8), 085706 (2009).
    [Crossref]
  21. H. Lajunen and T. Saastamoinen, “Propagation characteristics of partially coherent beams with spatially varying correlations,” Opt. Lett. 36(20), 4104–4106 (2011).
    [Crossref] [PubMed]
  22. Z. Tong and O. Korotkova, “Nonuniformly correlated light beams in uniformly correlated media,” Opt. Lett. 37(15), 3240–3242 (2012).
    [Crossref] [PubMed]
  23. Y. Gu and G. Gbur, “Scintillation of nonuniformly correlated beams in atmospheric turbulence,” Opt. Lett. 38(9), 1395–1397 (2013).
    [Crossref] [PubMed]
  24. X. Jia, M. Tang, and D. Zhao, “Propagation of electromagnetic non-uniformly correlated beams in the oceanic turbulence,” Opt. Commun. 331, 1–5 (2014).
    [Crossref]
  25. Z. Tong and O. Korotkova, “Electromagnetic nonuniformly correlated beams,” J. Opt. Soc. Am. A 29(10), 2154–2158 (2012).
    [Crossref]
  26. Z. Mei, Z. Tong, and O. Korotkova, “Electromagnetic non-uniformly correlated beams in turbulent atmosphere,” Opt. Express 20(24), 26458–26463 (2012).
    [Crossref] [PubMed]
  27. H. Lajunen and T. Saastamoinen, “Non-uniformly correlated partially coherent pulses,” Opt. Express 21(1), 190–195 (2013).
    [Crossref] [PubMed]
  28. C. Ding, Y. Cai, Y. Zhang, H. Wang, Z. Zhao, and L. Pan, “Stochastic electromagnetic planewave pulse with non-uniform correlation distribution,” Phys. Lett. A 377(25–27), 1563–1565 (2013).
    [Crossref]
  29. I. Toselli, L. C. Andrews, R. L. Phillips, and V. Ferrero, “Angle of arrival fluctuations for free space laser beam propagation through non-Kolmogorov turbulence,” Proc. SPIE 6551, 65510E (2007).
    [Crossref]
  30. I. Toselli, L. C. Andrews, R. L. Phillips, and V. Ferrero, “Free-space optical system performance for laser beam propagation through non-Kolmogorov turbulence,” Opt. Eng. 47(2), 026003 (2008).
    [Crossref]

2016 (1)

2014 (3)

X. Jia, M. Tang, and D. Zhao, “Propagation of electromagnetic non-uniformly correlated beams in the oceanic turbulence,” Opt. Commun. 331, 1–5 (2014).
[Crossref]

G. Gbur, “Partially coherent beam propagation in atmospheric turbulence,” J. Opt. Soc. Am. A 31(9), 2038–2045 (2014).
[Crossref]

O. Korotkova, S. Avramov-Zamurovic, C. Nelson, R. Malek-Madani, Y. Gu, and G. Gbur, “Scintillation reduction in multi-Gaussian Schell-model beams propagating in atmospheric turbulence,” Proc. SPIE 9224, 92240M (2014).

2013 (6)

X. Liu, Y. Shen, L. Liu, F. Wang, and Y. Cai, “Experimental demonstration of vortex phase-induced reduction in scintillation of a partially coherent beam,” Opt. Lett. 38(24), 5323–5326 (2013).
[Crossref] [PubMed]

Y. Yuan, X. Liu, F. Wang, Y. Chen, Y. Cai, J. Qu, and H. T. Eyyuboglu, “Scintillation index of a multi-Gaussian Schell-model beam in turbulent atmosphere,” Opt. Commun. 305, 57–65 (2013).
[Crossref]

F. Wang, X. Liu, L. Liu, Y. Yuan, and Y. Cai, “Experimental study of the scintillation index of a radially polarized beam with controllable spatial coherence,” Appl. Phys. Lett. 103(9), 091102 (2013).
[Crossref]

Y. Gu and G. Gbur, “Scintillation of nonuniformly correlated beams in atmospheric turbulence,” Opt. Lett. 38(9), 1395–1397 (2013).
[Crossref] [PubMed]

H. Lajunen and T. Saastamoinen, “Non-uniformly correlated partially coherent pulses,” Opt. Express 21(1), 190–195 (2013).
[Crossref] [PubMed]

C. Ding, Y. Cai, Y. Zhang, H. Wang, Z. Zhao, and L. Pan, “Stochastic electromagnetic planewave pulse with non-uniform correlation distribution,” Phys. Lett. A 377(25–27), 1563–1565 (2013).
[Crossref]

2012 (4)

2011 (3)

Y. Yuan and Y. Cai, “Scintillation index of a flat-topped beam array in a weakly turbulent atmosphere,” J. Opt. 13(12), 125701 (2011).
[Crossref]

G. P. Berman, V. N. Gorshkov, and S. V. Torous, “Scintillation reduction for laser bames propagating through turbulent atmosphere,” J. Phys. B. 44(5), 055402 (2011).
[Crossref]

H. Lajunen and T. Saastamoinen, “Propagation characteristics of partially coherent beams with spatially varying correlations,” Opt. Lett. 36(20), 4104–4106 (2011).
[Crossref] [PubMed]

2010 (1)

2009 (1)

F. Gori, V. Ramírez-Sánchez, M. Santarsiero, and T. Shirai, “On genuine cross-spectral density matrices,” J. Opt. A: Pure Appl. Opt. 11(8), 085706 (2009).
[Crossref]

2008 (1)

I. Toselli, L. C. Andrews, R. L. Phillips, and V. Ferrero, “Free-space optical system performance for laser beam propagation through non-Kolmogorov turbulence,” Opt. Eng. 47(2), 026003 (2008).
[Crossref]

2007 (2)

I. Toselli, L. C. Andrews, R. L. Phillips, and V. Ferrero, “Angle of arrival fluctuations for free space laser beam propagation through non-Kolmogorov turbulence,” Proc. SPIE 6551, 65510E (2007).
[Crossref]

F. Gori and M. Santarsiero, “Devising genuine spatial correlation functions,” Opt. Lett. 32(24), 3531–3533 (2007).
[Crossref] [PubMed]

2004 (1)

O. Korotkova, L. C. Andrews, and R. L. Phillips, “Model for a partially coherent Gaussian beam in atmospheric turbulence with application in Lasercom,” Opt. Eng. 43(2), 330–341 (2004).
[Crossref]

2003 (1)

2002 (1)

1983 (2)

V. A. Banakh and V. M. Buldakov, “Effect of the initial degree of spatial coherence of a light beam on intensity fluctuations in a turbulent atmosphere,” Optics and Spectroscopy 55, 423–426 (1983).

V. A. Banach, V. M. Buldakov, and V. L. Mironov, “Intensity fluctuations of a partially coherent light beam in a turbulent atmosphere,” Optics and Spectroscopy 54, 626–629 (1983).

1981 (1)

R. L. Fante, “Intensity fluctuations of an optical wave in a turbulent medium: effect of source coherence,” Opt. Acta 28(9), 1203–1207 (1981).
[Crossref]

1979 (1)

Andrews, L. C.

I. Toselli, L. C. Andrews, R. L. Phillips, and V. Ferrero, “Free-space optical system performance for laser beam propagation through non-Kolmogorov turbulence,” Opt. Eng. 47(2), 026003 (2008).
[Crossref]

I. Toselli, L. C. Andrews, R. L. Phillips, and V. Ferrero, “Angle of arrival fluctuations for free space laser beam propagation through non-Kolmogorov turbulence,” Proc. SPIE 6551, 65510E (2007).
[Crossref]

O. Korotkova, L. C. Andrews, and R. L. Phillips, “Model for a partially coherent Gaussian beam in atmospheric turbulence with application in Lasercom,” Opt. Eng. 43(2), 330–341 (2004).
[Crossref]

L. C. Andrews and R. L. Phillips, Laser beam propagation through random media (SPIE, 2005).
[Crossref]

Avramov-Zamurovic, S.

O. Korotkova, S. Avramov-Zamurovic, C. Nelson, R. Malek-Madani, Y. Gu, and G. Gbur, “Scintillation reduction in multi-Gaussian Schell-model beams propagating in atmospheric turbulence,” Proc. SPIE 9224, 92240M (2014).

Banach, V. A.

V. A. Banach, V. M. Buldakov, and V. L. Mironov, “Intensity fluctuations of a partially coherent light beam in a turbulent atmosphere,” Optics and Spectroscopy 54, 626–629 (1983).

Banakh, V. A.

V. A. Banakh and V. M. Buldakov, “Effect of the initial degree of spatial coherence of a light beam on intensity fluctuations in a turbulent atmosphere,” Optics and Spectroscopy 55, 423–426 (1983).

Baykal, Y.

Berman, G. P.

G. P. Berman, V. N. Gorshkov, and S. V. Torous, “Scintillation reduction for laser bames propagating through turbulent atmosphere,” J. Phys. B. 44(5), 055402 (2011).
[Crossref]

Buldakov, V. M.

V. A. Banakh and V. M. Buldakov, “Effect of the initial degree of spatial coherence of a light beam on intensity fluctuations in a turbulent atmosphere,” Optics and Spectroscopy 55, 423–426 (1983).

V. A. Banach, V. M. Buldakov, and V. L. Mironov, “Intensity fluctuations of a partially coherent light beam in a turbulent atmosphere,” Optics and Spectroscopy 54, 626–629 (1983).

Cai, Y.

X. Liu, J. Yu, Y. Cai, and S. A. Ponomarenko, “Propagation of optical coherence lattices in the turbulent atmosphere,” Opt. Lett. 41(18), 4182–4185 (2016).
[Crossref] [PubMed]

X. Liu, Y. Shen, L. Liu, F. Wang, and Y. Cai, “Experimental demonstration of vortex phase-induced reduction in scintillation of a partially coherent beam,” Opt. Lett. 38(24), 5323–5326 (2013).
[Crossref] [PubMed]

Y. Yuan, X. Liu, F. Wang, Y. Chen, Y. Cai, J. Qu, and H. T. Eyyuboglu, “Scintillation index of a multi-Gaussian Schell-model beam in turbulent atmosphere,” Opt. Commun. 305, 57–65 (2013).
[Crossref]

F. Wang, X. Liu, L. Liu, Y. Yuan, and Y. Cai, “Experimental study of the scintillation index of a radially polarized beam with controllable spatial coherence,” Appl. Phys. Lett. 103(9), 091102 (2013).
[Crossref]

C. Ding, Y. Cai, Y. Zhang, H. Wang, Z. Zhao, and L. Pan, “Stochastic electromagnetic planewave pulse with non-uniform correlation distribution,” Phys. Lett. A 377(25–27), 1563–1565 (2013).
[Crossref]

F. Wang, Y. Cai, H. T. Eyyuboglu, and Y. Baykal, “Twist phase induced reduction in scintillation of a partially coherent beam in turbulent atmosphere,” Opt. Lett. 37(2), 184–186 (2012).
[Crossref] [PubMed]

Y. Yuan and Y. Cai, “Scintillation index of a flat-topped beam array in a weakly turbulent atmosphere,” J. Opt. 13(12), 125701 (2011).
[Crossref]

Chen, Y.

Y. Yuan, X. Liu, F. Wang, Y. Chen, Y. Cai, J. Qu, and H. T. Eyyuboglu, “Scintillation index of a multi-Gaussian Schell-model beam in turbulent atmosphere,” Opt. Commun. 305, 57–65 (2013).
[Crossref]

Ding, C.

C. Ding, Y. Cai, Y. Zhang, H. Wang, Z. Zhao, and L. Pan, “Stochastic electromagnetic planewave pulse with non-uniform correlation distribution,” Phys. Lett. A 377(25–27), 1563–1565 (2013).
[Crossref]

Dogariu, A.

Eyyuboglu, H. T.

Y. Yuan, X. Liu, F. Wang, Y. Chen, Y. Cai, J. Qu, and H. T. Eyyuboglu, “Scintillation index of a multi-Gaussian Schell-model beam in turbulent atmosphere,” Opt. Commun. 305, 57–65 (2013).
[Crossref]

F. Wang, Y. Cai, H. T. Eyyuboglu, and Y. Baykal, “Twist phase induced reduction in scintillation of a partially coherent beam in turbulent atmosphere,” Opt. Lett. 37(2), 184–186 (2012).
[Crossref] [PubMed]

Fante, R. L.

R. L. Fante, “Intensity fluctuations of an optical wave in a turbulent medium: effect of source coherence,” Opt. Acta 28(9), 1203–1207 (1981).
[Crossref]

Ferrero, V.

I. Toselli, L. C. Andrews, R. L. Phillips, and V. Ferrero, “Free-space optical system performance for laser beam propagation through non-Kolmogorov turbulence,” Opt. Eng. 47(2), 026003 (2008).
[Crossref]

I. Toselli, L. C. Andrews, R. L. Phillips, and V. Ferrero, “Angle of arrival fluctuations for free space laser beam propagation through non-Kolmogorov turbulence,” Proc. SPIE 6551, 65510E (2007).
[Crossref]

Gbur, G.

Gori, F.

F. Gori, V. Ramírez-Sánchez, M. Santarsiero, and T. Shirai, “On genuine cross-spectral density matrices,” J. Opt. A: Pure Appl. Opt. 11(8), 085706 (2009).
[Crossref]

F. Gori and M. Santarsiero, “Devising genuine spatial correlation functions,” Opt. Lett. 32(24), 3531–3533 (2007).
[Crossref] [PubMed]

Gorshkov, V. N.

G. P. Berman, V. N. Gorshkov, and S. V. Torous, “Scintillation reduction for laser bames propagating through turbulent atmosphere,” J. Phys. B. 44(5), 055402 (2011).
[Crossref]

Gu, Y.

O. Korotkova, S. Avramov-Zamurovic, C. Nelson, R. Malek-Madani, Y. Gu, and G. Gbur, “Scintillation reduction in multi-Gaussian Schell-model beams propagating in atmospheric turbulence,” Proc. SPIE 9224, 92240M (2014).

Y. Gu and G. Gbur, “Scintillation of nonuniformly correlated beams in atmospheric turbulence,” Opt. Lett. 38(9), 1395–1397 (2013).
[Crossref] [PubMed]

Y. Gu and G. Gbur, “Scintillation of pseudo-Bessel correlated beams in atmospheric turbulence,” J. Opt. Soc. Am. A 27(12), 2621–2629 (2010).
[Crossref]

Jia, X.

X. Jia, M. Tang, and D. Zhao, “Propagation of electromagnetic non-uniformly correlated beams in the oceanic turbulence,” Opt. Commun. 331, 1–5 (2014).
[Crossref]

Korotkova, O.

O. Korotkova, S. Avramov-Zamurovic, C. Nelson, R. Malek-Madani, Y. Gu, and G. Gbur, “Scintillation reduction in multi-Gaussian Schell-model beams propagating in atmospheric turbulence,” Proc. SPIE 9224, 92240M (2014).

Z. Mei, Z. Tong, and O. Korotkova, “Electromagnetic non-uniformly correlated beams in turbulent atmosphere,” Opt. Express 20(24), 26458–26463 (2012).
[Crossref] [PubMed]

Z. Tong and O. Korotkova, “Nonuniformly correlated light beams in uniformly correlated media,” Opt. Lett. 37(15), 3240–3242 (2012).
[Crossref] [PubMed]

Z. Tong and O. Korotkova, “Electromagnetic nonuniformly correlated beams,” J. Opt. Soc. Am. A 29(10), 2154–2158 (2012).
[Crossref]

O. Korotkova, L. C. Andrews, and R. L. Phillips, “Model for a partially coherent Gaussian beam in atmospheric turbulence with application in Lasercom,” Opt. Eng. 43(2), 330–341 (2004).
[Crossref]

Lajunen, H.

Leader, J. C.

Liu, L.

F. Wang, X. Liu, L. Liu, Y. Yuan, and Y. Cai, “Experimental study of the scintillation index of a radially polarized beam with controllable spatial coherence,” Appl. Phys. Lett. 103(9), 091102 (2013).
[Crossref]

X. Liu, Y. Shen, L. Liu, F. Wang, and Y. Cai, “Experimental demonstration of vortex phase-induced reduction in scintillation of a partially coherent beam,” Opt. Lett. 38(24), 5323–5326 (2013).
[Crossref] [PubMed]

Liu, X.

X. Liu, J. Yu, Y. Cai, and S. A. Ponomarenko, “Propagation of optical coherence lattices in the turbulent atmosphere,” Opt. Lett. 41(18), 4182–4185 (2016).
[Crossref] [PubMed]

X. Liu, Y. Shen, L. Liu, F. Wang, and Y. Cai, “Experimental demonstration of vortex phase-induced reduction in scintillation of a partially coherent beam,” Opt. Lett. 38(24), 5323–5326 (2013).
[Crossref] [PubMed]

F. Wang, X. Liu, L. Liu, Y. Yuan, and Y. Cai, “Experimental study of the scintillation index of a radially polarized beam with controllable spatial coherence,” Appl. Phys. Lett. 103(9), 091102 (2013).
[Crossref]

Y. Yuan, X. Liu, F. Wang, Y. Chen, Y. Cai, J. Qu, and H. T. Eyyuboglu, “Scintillation index of a multi-Gaussian Schell-model beam in turbulent atmosphere,” Opt. Commun. 305, 57–65 (2013).
[Crossref]

Malek-Madani, R.

O. Korotkova, S. Avramov-Zamurovic, C. Nelson, R. Malek-Madani, Y. Gu, and G. Gbur, “Scintillation reduction in multi-Gaussian Schell-model beams propagating in atmospheric turbulence,” Proc. SPIE 9224, 92240M (2014).

Mei, Z.

Mironov, V. L.

V. A. Banach, V. M. Buldakov, and V. L. Mironov, “Intensity fluctuations of a partially coherent light beam in a turbulent atmosphere,” Optics and Spectroscopy 54, 626–629 (1983).

Nelson, C.

O. Korotkova, S. Avramov-Zamurovic, C. Nelson, R. Malek-Madani, Y. Gu, and G. Gbur, “Scintillation reduction in multi-Gaussian Schell-model beams propagating in atmospheric turbulence,” Proc. SPIE 9224, 92240M (2014).

Pan, L.

C. Ding, Y. Cai, Y. Zhang, H. Wang, Z. Zhao, and L. Pan, “Stochastic electromagnetic planewave pulse with non-uniform correlation distribution,” Phys. Lett. A 377(25–27), 1563–1565 (2013).
[Crossref]

Phillips, R. L.

I. Toselli, L. C. Andrews, R. L. Phillips, and V. Ferrero, “Free-space optical system performance for laser beam propagation through non-Kolmogorov turbulence,” Opt. Eng. 47(2), 026003 (2008).
[Crossref]

I. Toselli, L. C. Andrews, R. L. Phillips, and V. Ferrero, “Angle of arrival fluctuations for free space laser beam propagation through non-Kolmogorov turbulence,” Proc. SPIE 6551, 65510E (2007).
[Crossref]

O. Korotkova, L. C. Andrews, and R. L. Phillips, “Model for a partially coherent Gaussian beam in atmospheric turbulence with application in Lasercom,” Opt. Eng. 43(2), 330–341 (2004).
[Crossref]

L. C. Andrews and R. L. Phillips, Laser beam propagation through random media (SPIE, 2005).
[Crossref]

Ponomarenko, S. A.

Qu, J.

Y. Yuan, X. Liu, F. Wang, Y. Chen, Y. Cai, J. Qu, and H. T. Eyyuboglu, “Scintillation index of a multi-Gaussian Schell-model beam in turbulent atmosphere,” Opt. Commun. 305, 57–65 (2013).
[Crossref]

Ramírez-Sánchez, V.

F. Gori, V. Ramírez-Sánchez, M. Santarsiero, and T. Shirai, “On genuine cross-spectral density matrices,” J. Opt. A: Pure Appl. Opt. 11(8), 085706 (2009).
[Crossref]

Saastamoinen, T.

Santarsiero, M.

F. Gori, V. Ramírez-Sánchez, M. Santarsiero, and T. Shirai, “On genuine cross-spectral density matrices,” J. Opt. A: Pure Appl. Opt. 11(8), 085706 (2009).
[Crossref]

F. Gori and M. Santarsiero, “Devising genuine spatial correlation functions,” Opt. Lett. 32(24), 3531–3533 (2007).
[Crossref] [PubMed]

Shen, Y.

Shirai, T.

F. Gori, V. Ramírez-Sánchez, M. Santarsiero, and T. Shirai, “On genuine cross-spectral density matrices,” J. Opt. A: Pure Appl. Opt. 11(8), 085706 (2009).
[Crossref]

T. Shirai, A. Dogariu, and E. Wolf, “Mode analysis of spreading of partially coherent beams propagating through atmospheric turbulence,” J. Opt. Soc. Am. A 20(6), 1094–1102 (2003).
[Crossref]

Tang, M.

X. Jia, M. Tang, and D. Zhao, “Propagation of electromagnetic non-uniformly correlated beams in the oceanic turbulence,” Opt. Commun. 331, 1–5 (2014).
[Crossref]

Tong, Z.

Torous, S. V.

G. P. Berman, V. N. Gorshkov, and S. V. Torous, “Scintillation reduction for laser bames propagating through turbulent atmosphere,” J. Phys. B. 44(5), 055402 (2011).
[Crossref]

Toselli, I.

I. Toselli, L. C. Andrews, R. L. Phillips, and V. Ferrero, “Free-space optical system performance for laser beam propagation through non-Kolmogorov turbulence,” Opt. Eng. 47(2), 026003 (2008).
[Crossref]

I. Toselli, L. C. Andrews, R. L. Phillips, and V. Ferrero, “Angle of arrival fluctuations for free space laser beam propagation through non-Kolmogorov turbulence,” Proc. SPIE 6551, 65510E (2007).
[Crossref]

Wang, F.

Y. Yuan, X. Liu, F. Wang, Y. Chen, Y. Cai, J. Qu, and H. T. Eyyuboglu, “Scintillation index of a multi-Gaussian Schell-model beam in turbulent atmosphere,” Opt. Commun. 305, 57–65 (2013).
[Crossref]

F. Wang, X. Liu, L. Liu, Y. Yuan, and Y. Cai, “Experimental study of the scintillation index of a radially polarized beam with controllable spatial coherence,” Appl. Phys. Lett. 103(9), 091102 (2013).
[Crossref]

X. Liu, Y. Shen, L. Liu, F. Wang, and Y. Cai, “Experimental demonstration of vortex phase-induced reduction in scintillation of a partially coherent beam,” Opt. Lett. 38(24), 5323–5326 (2013).
[Crossref] [PubMed]

F. Wang, Y. Cai, H. T. Eyyuboglu, and Y. Baykal, “Twist phase induced reduction in scintillation of a partially coherent beam in turbulent atmosphere,” Opt. Lett. 37(2), 184–186 (2012).
[Crossref] [PubMed]

Wang, H.

C. Ding, Y. Cai, Y. Zhang, H. Wang, Z. Zhao, and L. Pan, “Stochastic electromagnetic planewave pulse with non-uniform correlation distribution,” Phys. Lett. A 377(25–27), 1563–1565 (2013).
[Crossref]

Wolf, E.

Yu, J.

Yuan, Y.

F. Wang, X. Liu, L. Liu, Y. Yuan, and Y. Cai, “Experimental study of the scintillation index of a radially polarized beam with controllable spatial coherence,” Appl. Phys. Lett. 103(9), 091102 (2013).
[Crossref]

Y. Yuan, X. Liu, F. Wang, Y. Chen, Y. Cai, J. Qu, and H. T. Eyyuboglu, “Scintillation index of a multi-Gaussian Schell-model beam in turbulent atmosphere,” Opt. Commun. 305, 57–65 (2013).
[Crossref]

Y. Yuan and Y. Cai, “Scintillation index of a flat-topped beam array in a weakly turbulent atmosphere,” J. Opt. 13(12), 125701 (2011).
[Crossref]

Zhang, Y.

C. Ding, Y. Cai, Y. Zhang, H. Wang, Z. Zhao, and L. Pan, “Stochastic electromagnetic planewave pulse with non-uniform correlation distribution,” Phys. Lett. A 377(25–27), 1563–1565 (2013).
[Crossref]

Zhao, D.

X. Jia, M. Tang, and D. Zhao, “Propagation of electromagnetic non-uniformly correlated beams in the oceanic turbulence,” Opt. Commun. 331, 1–5 (2014).
[Crossref]

Zhao, Z.

C. Ding, Y. Cai, Y. Zhang, H. Wang, Z. Zhao, and L. Pan, “Stochastic electromagnetic planewave pulse with non-uniform correlation distribution,” Phys. Lett. A 377(25–27), 1563–1565 (2013).
[Crossref]

Appl. Phys. Lett. (1)

F. Wang, X. Liu, L. Liu, Y. Yuan, and Y. Cai, “Experimental study of the scintillation index of a radially polarized beam with controllable spatial coherence,” Appl. Phys. Lett. 103(9), 091102 (2013).
[Crossref]

J. Opt. (1)

Y. Yuan and Y. Cai, “Scintillation index of a flat-topped beam array in a weakly turbulent atmosphere,” J. Opt. 13(12), 125701 (2011).
[Crossref]

J. Opt. A: Pure Appl. Opt. (1)

F. Gori, V. Ramírez-Sánchez, M. Santarsiero, and T. Shirai, “On genuine cross-spectral density matrices,” J. Opt. A: Pure Appl. Opt. 11(8), 085706 (2009).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (5)

J. Phys. B. (1)

G. P. Berman, V. N. Gorshkov, and S. V. Torous, “Scintillation reduction for laser bames propagating through turbulent atmosphere,” J. Phys. B. 44(5), 055402 (2011).
[Crossref]

Opt. Acta (1)

R. L. Fante, “Intensity fluctuations of an optical wave in a turbulent medium: effect of source coherence,” Opt. Acta 28(9), 1203–1207 (1981).
[Crossref]

Opt. Commun. (2)

Y. Yuan, X. Liu, F. Wang, Y. Chen, Y. Cai, J. Qu, and H. T. Eyyuboglu, “Scintillation index of a multi-Gaussian Schell-model beam in turbulent atmosphere,” Opt. Commun. 305, 57–65 (2013).
[Crossref]

X. Jia, M. Tang, and D. Zhao, “Propagation of electromagnetic non-uniformly correlated beams in the oceanic turbulence,” Opt. Commun. 331, 1–5 (2014).
[Crossref]

Opt. Eng. (2)

I. Toselli, L. C. Andrews, R. L. Phillips, and V. Ferrero, “Free-space optical system performance for laser beam propagation through non-Kolmogorov turbulence,” Opt. Eng. 47(2), 026003 (2008).
[Crossref]

O. Korotkova, L. C. Andrews, and R. L. Phillips, “Model for a partially coherent Gaussian beam in atmospheric turbulence with application in Lasercom,” Opt. Eng. 43(2), 330–341 (2004).
[Crossref]

Opt. Express (2)

Opt. Lett. (7)

Optics and Spectroscopy (2)

V. A. Banakh and V. M. Buldakov, “Effect of the initial degree of spatial coherence of a light beam on intensity fluctuations in a turbulent atmosphere,” Optics and Spectroscopy 55, 423–426 (1983).

V. A. Banach, V. M. Buldakov, and V. L. Mironov, “Intensity fluctuations of a partially coherent light beam in a turbulent atmosphere,” Optics and Spectroscopy 54, 626–629 (1983).

Phys. Lett. A (1)

C. Ding, Y. Cai, Y. Zhang, H. Wang, Z. Zhao, and L. Pan, “Stochastic electromagnetic planewave pulse with non-uniform correlation distribution,” Phys. Lett. A 377(25–27), 1563–1565 (2013).
[Crossref]

Proc. SPIE (2)

I. Toselli, L. C. Andrews, R. L. Phillips, and V. Ferrero, “Angle of arrival fluctuations for free space laser beam propagation through non-Kolmogorov turbulence,” Proc. SPIE 6551, 65510E (2007).
[Crossref]

O. Korotkova, S. Avramov-Zamurovic, C. Nelson, R. Malek-Madani, Y. Gu, and G. Gbur, “Scintillation reduction in multi-Gaussian Schell-model beams propagating in atmospheric turbulence,” Proc. SPIE 9224, 92240M (2014).

Other (1)

L. C. Andrews and R. L. Phillips, Laser beam propagation through random media (SPIE, 2005).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Density plot of the absolute value of the DOC of HNUC beams for different values of the beam order m with rc=3cm.
Fig. 2
Fig. 2 Density plot of the normalized intensity and the absolute value of the DOC of HNUC beams upon propagation in free space at different distances, for the choice m = 2.
Fig. 3
Fig. 3 Density plot of the normalized intensity and the absolute value of the DOC of HNUC beams upon propagation in turbulence at different distances, for the choice m = 2.
Fig. 4
Fig. 4 Normalized intensity on-axis of HNUC beams propagation (a) in free space (b) in turbulence with rc=3cm for different beam orders.
Fig. 5
Fig. 5 Normalized intensity on-axis (a)–(c) and scintillation index on-axis (d)–(f) of HNUC beams propagation in turbulence with different beam order and different coherent length.
Fig. 6
Fig. 6 Scintillation peak value (a) and scintillation peak position (b) of HNUC beams versus the beam order m different coherent length.
Fig. 7
Fig. 7 Normalized intensity peak value (a) and intensity peak position (b) of HNUC beams versus the beam order m different coherent length.

Equations (32)

Equations on this page are rendered with MathJax. Learn more.

W ( r 1 , r 2 ) = E * ( r 1 ) E ( r 2 ) ,
W ( r 1 , r 2 ) = p ( v ) V 0 * ( r 1 , v ) V 0 ( r 2 , v ) d v ,
p ( v ) = ( π a 2 ) 1 / 2 exp ( v 2 / a 2 ) ,
V 0 ( x , v ) = exp ( x 2 w 0 2 ) exp [ i k ( x x 0 ) 2 v ] ,
p ( v ) = ( 4 π ) 1 / 2 ( 2 a ) 2 m + 1 v 2 m exp ( v 2 a 2 ) ,
V 0 ( r , v ) = exp ( r 2 w 0 2 ) exp ( i k v r 2 ) .
W ( r 1 , r 2 ) = exp ( r 1 2 + r 2 2 w 0 2 ) μ ( r 1 , r 2 ) ,
μ ( r 1 , r 2 ) = G 0 H 2 m ( r 2 2 r 1 2 r c 2 ) exp [ ( r 2 2 r 1 2 ) 2 r c 4 ] ,
W ( ρ 1 , ρ 2 , z ) = ( k 2 π z ) 2 W 0 ( r 1 , r 2 ) exp [ i k 2 z ( r 1 ρ 1 ) 2 + i k 2 z ( r 2 ρ 2 ) 2 ] × exp [ Ψ ( r 1 , ρ 1 ) + Ψ * ( r 2 , ρ 2 ) ] d 2 r 1 d 2 r 2 ,
exp [ Ψ ( r 1 , ρ 1 ) + Ψ * ( r 2 , ρ 2 ) ] = exp { 4 π 2 k 2 z 0 1 0 κ Φ n ( κ ) { 1 J 0 [ | ( 1 ξ ) P + ξ Q | κ ] } } d 2 κ d ξ ,
J 0 [ | ( 1 ξ ) P + ξ Q | κ ] ~ 1 1 4 [ ( 1 ξ ) P + ξ Q ] 2 κ 2 .
exp [ Ψ ( r 1 , ρ 1 ) + Ψ * ( r 2 , ρ 2 ) ] = exp { ( π 2 k 2 z 3 ) [ ( ρ 1 ρ 2 ) 2 + ( ρ 1 ρ 2 ) ( r 1 r 2 ) + ( r 1 r 2 ) 2 ] 0 κ 3 Φ n ( κ ) d 2 κ } ,
T = 0 κ 3 Φ n ( κ ) d 2 κ .
Φ n ( κ ) = A ( α ) C n 2 ( κ 2 + κ 0 2 ) α / 2 exp ( κ 2 / κ m 2 ) .
T = A ( α ) 2 ( α 2 ) C n 2 [ β κ m 2 α exp ( κ 0 2 / κ m 2 ) Γ 1 ( 2 α / 2 , κ 0 2 / κ m 2 ) 2 κ 0 4 α ] , 3 < α < 4 ,
A ( α ) = 1 4 π 2 Γ ( α 1 ) cos ( α π / 2 ) , c ( α ) = [ 2 π A ( α ) 3 Γ ( 5 α / 2 ) ] 1 / ( α 5 ) .
W ( ρ 1 , ρ 2 , z ) = p ( v ) P ( ρ 1 , ρ 2 , v , z ) d v ,
P ( ρ 1 , ρ 2 , v , z ) = ( k 2 π z ) 2 V 0 * ( r 1 , v ) V 0 ( r 2 , v ) exp [ i k 2 z ( r 1 , ρ 1 ) 2 + i k 2 z ( r 2 , ρ 2 ) 2 ] exp { π 2 k 2 z T 3 [ ( ρ 1 ρ 2 ) 2 + ( ρ 1 ρ 2 ) ( r 1 r 2 ) + ( r 1 r 2 ) 2 ] } d 2 r 1 d 2 r 2 .
P ( ρ 1 , ρ 2 , v , z ) = w 0 2 2 w z 2 exp [ i k 2 z ( ρ 1 2 ρ 2 2 ) ] exp [ ( w 0 2 k 2 8 z 2 + 1 3 π 2 k 2 z T ) ( ρ 1 ρ 2 ) 2 ] × exp { 1 w z 2 | i [ k w 0 2 4 z ( 1 2 v z ) 1 3 π 2 k z 2 T ] ( ρ 1 ρ 2 ) + ( ρ 1 + ρ 2 2 ) | 2 } ,
w z 2 = w 0 2 2 ( 1 2 v z k ) 2 + ( 2 z k w 0 ) 2 + 4 π 2 z 3 3 T .
W ( ρ 1 , ρ 2 , z ) = p ( v ) P ( ρ 1 , ρ 2 , v , z ) d v .
S ( ρ , z ) = W ( ρ , ρ , z ) .
μ ( ρ 1 , ρ 2 , z ) = W ( ρ 1 , ρ 2 , z ) W ( ρ 1 , ρ 1 , z ) W ( ρ 2 , ρ 2 , z ) .
W ( ρ 1 , ρ 2 ) n = 1 N A n * ( ρ 1 ) A n ( ρ 2 ) ,
A n ( ρ ) = Δ v p ( v n ) V 0 ( ρ , v n ) ,
σ 2 ( ρ , L ) = m = 1 N n = 1 N I m ( ρ , L ) I n ( ρ , L ) / ( n = 1 N I n ( ρ , L ) ) 2 1 ,
I n ( ρ , L ) = | A 0 n ( ρ , L ) | 2 exp { 2 Re [ E 1 n ( ρ , L ) ] } exp [ E 2 n n ( ρ , L ) ] ,
I m ( ρ , L ) I n ( ρ , L ) = I m ( ρ , L ) I n ( ρ , L ) exp { 2 Re [ E 2 m n ( ρ , L ) ] } exp { 2 Re [ E 3 m n ( ρ , L ) ] } ,
A 0 n ( ρ , L ) = p ( v n ) exp ( i k L ) 1 + i α n L exp [ α n k ρ 2 2 ( 1 + i α n L ) ] ,
E 1 n ( ρ , L ) = π k 2 0 L d z Φ n ( κ ) d 2 κ ,
E 2 m n ( ρ , L ) = 2 π k 2 0 L d z exp [ i ( γ m γ n * ) κ ρ ] exp [ i ( γ m γ n * ) ( L z ) κ 2 2 k ] Φ n ( κ ) d 2 κ ,
E 3 m n ( ρ , L ) = 2 π k 2 0 L d z exp [ i ( γ m γ n ) κ ρ ] exp [ i ( γ m γ n ) ( L z ) κ 2 2 k ] Φ n ( κ ) d 2 κ ,

Metrics