Abstract

A tunable channel selector operating over both the C and L bands of wavelength-division-multiplexing optical network is proposed based on a thermo-optic tunable Bragg grating device in a polymer waveguide. A tilted Bragg grating cascaded with an asymmetric Y-branch waveguide effectively implements a small Bragg-reflection wavelength filter that does not require an external circulator. To increase the operating wavelength span of the channel selector, two Bragg gratings with different periods are fabricated on a single substrate for covering C and L bands, respectively. A wide tuning range over 80 nm along with a narrow bandwidth is demonstrated. Moreover, the polarization dependence of the reflection spectrum is observed to be less than 0.1 nm.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Tunable channel drop filters consisting of a tilted Bragg grating and a mode sorting polymer waveguide

Tae-Hyun Park, Jin-Soo Shin, Guanghao Huang, Woo-Sung Chu, and Min-Cheol Oh
Opt. Express 24(6) 5709-5714 (2016)

Tunable channel-drop filters consisting of polymeric Bragg reflectors and a mode sorting asymmetric X-junction

Jin-Soo Shin, Tea-Hyun Park, Woo-Sung Chu, Chang-Hee Lee, Sang-Yung Shin, and Min-Cheol Oh
Opt. Express 23(13) 17223-17228 (2015)

Continuously tunable compact lasers based on thermo-optic polymer waveguides with Bragg gratings

Young-Ouk Noh, Hyung-Jong Lee, Jung Jin Ju, Min-su Kim, Su Hwan Oh, and Min-Cheol Oh
Opt. Express 16(22) 18194-18201 (2008)

References

  • View by:
  • |
  • |
  • |

  1. B. Mukherjee, “WDM optical communication networks: progress and challenges,” IEEE J. Sel. Areas Comm. 18(10), 1810–1824 (2000).
    [Crossref]
  2. N. Kikuchi, Y. Shibata, H. Okamoto, Y. Kawaguchi, S. Oku, H. Ishii, Y. Yoshikuni, and Y. Tohmori, “Monolithically integrated 64-channel WDM channel selector with novel configuration,” Electron. Lett. 38(7), 331–332 (2002).
    [Crossref]
  3. H. Uetsuka, “AWG Technologies for Dense WDM Applications,” IEEE J. Sel. Top. Quantum Electron. 10(2), 393–402 (2004).
    [Crossref]
  4. Q. Fang, T.-Y. Liow, J. F. Song, K. W. Ang, M. B. Yu, G. Q. Lo, and D.-L. Kwong, “WDM multi-channel silicon photonic receiver with 320 Gbps data transmission capability,” Opt. Express 18(5), 5106–5113 (2010).
    [Crossref] [PubMed]
  5. J.-F. Viens, C. L. Callender, J. P. Noad, and L. Eldada, “Compact wide-band polymer wavelength-division multiplexers,” IEEE Photonics Technol. Lett. 12(8), 1010–1012 (2000).
    [Crossref]
  6. E. R. Lyon and H. P. Lee, “An efficient electrically tunable etched cladding fiber Bragg grating filter tested under vacuum,” IEEE Photonics Technol. Lett. 11, 1626–1628 (1999).
  7. T. Inui, T. Komukai, and M. Nakazawa, “Highly efficient tunable fiber Bragg grating filters using multiplayer piezoelectric transducers,” Opt. Commun. 190(1-6), 1–4 (2001).
    [Crossref]
  8. M. Ibsen, J. Hubner, J. E. Pedersen, R. Kromann, L.-U. A. Andersen, and M. Kristensen, “30 dB sampled gratings in germanosilicate planar waveguides,” Electron. Lett. 32(24), 2233–2235 (1996).
    [Crossref]
  9. J. Hubner, D. Zauner, and M. Kristensen, “Strong sampled Bragg gratings for WDM applications,” IEEE Photonics Technol. Lett. 10(4), 552–554 (1998).
    [Crossref]
  10. Y. Ding, M. Pu, L. Liu, J. Xu, C. Peucheret, X. Zhang, D. Huang, and H. Ou, “Bandwidth and wavelength-tunable optical bandpass filter based on silicon microring-MZI structure,” Opt. Express 19(7), 6462–6470 (2011).
    [Crossref] [PubMed]
  11. Y. Chen, H. Li, and M. Li, “Flexible and tunable silicon photonic circuits on plastic substrates,” Sci. Rep. 2(1), 622 (2012).
    [Crossref] [PubMed]
  12. J. R. Ong, R. Kumar, and S. Mookherjea, “Ultra-high-contrast and tunable-bandwidth filter using cascaded high-order silicon microring filters,” IEEE Photonics Technol. Lett. 25(16), 1543–1546 (2013).
    [Crossref]
  13. M. Oh, W. Chu, J. Shin, J. Kim, K. Kim, J. Seo, H. Lee, Y. Noh, and H. Lee, “Polymeric optical waveguide devices exploiting special properties of polymer materials,” Opt. Commun. 362, 3–12 (2016).
    [Crossref]
  14. X. Jiang, W. Qi, H. Zhang, Y. Tang, Y. L. Hao, J. Y. Yang, and M. H. Wang, “Low crosstalk 1x2 thermo optic digital optical switch with integrated S-bend attenuator,” IEEE Photonics Technol. Lett. 18(4), 610–612 (2006).
    [Crossref]
  15. Y.-O. Noh, H.-J. Lee, Y.-H. Won, and M.-C. Oh, “Polymer waveguide thermo-optic switches with −70 dB optical crosstalk,” Opt. Commun. 258(1), 18–22 (2006).
    [Crossref]
  16. Y.-O. Noh, C.-H. Lee, J.-M. Kim, W.-Y. Hwang, Y.-H. Won, H.-J. Lee, S.-G. Han, and M.-C. Oh, “Polymer waveguide variable optical attenuator and its reliability,” Opt. Commun. 242(4-6), 533–540 (2004).
    [Crossref]
  17. Y. Nasu, K. Watanabe, M. Itoh, H. Yamazaki, S. Kamei, R. Kasahara, I. Ogawa, A. Kaneko, and Y. Inoue, “Ultrasmall 100 GHz 40-Channel VMUX/DEMUX Based on Single-Chip 2.5%-Δ PLC,” J. Lightwave Technol. 27(12), 2087–2094 (2009).
    [Crossref]
  18. R. Kasahara, M. Yanagisawa, A. Sugitia, T. Goh, M. Yasu, A. Himeno, and S. Matsui, “Low-power consumption silica-based 2x2 thermooptic switch using trenched silicon substrate,” IEEE Photonics Technol. Lett. 11(9), 1132–1134 (1999).
    [Crossref]
  19. Q. Fang, J. F. Song, G. Zhang, M. B. Yu, Y. L. Liu, G. Q. Lo, and D. L. Kwong, “Monolithic integration of a multiplexer/demultiplexer with a thermo-optic VOA array on an SOI platform,” IEEE Photonics Technol. Lett. 21(5), 319–321 (2009).
    [Crossref]
  20. C. Lee, “Monolithic-integrated 8CH MEMS variable optical attenuators,” Sens. Actuators A Phys. 123–124, 596–601 (2005).
    [Crossref]
  21. T. Kanie, M. Katayama, T. Sano, H. Kohda, T. Sunaga, M. Shiozaki, M. Furukawa, H. Suganuma, K. Saitoh, and M. Nishimura, “Ultra-compact multichannel optical components based on PLC and MEMS technologies,” in Opt. Fiber Commun. Conf. (2003), pp. 388–390.
  22. Y.-O. Noh, H.-J. Lee, J. J. Ju, M.-S. Kim, S. H. Oh, and M.-C. Oh, “Continuously tunable compact lasers based on thermo-optic polymer waveguides with Bragg gratings,” Opt. Express 16(22), 18194–18201 (2008).
    [Crossref] [PubMed]
  23. M.-C. Oh, K.-J. Kim, W.-S. Chu, J.-W. Kim, J.-K. Seo, Y.-O. Noh, and H.-J. Lee, “Integrated photonic devices incorporating low-loss fluorinated polymer materials,” Polymers (Basel) 3(3), 975–997 (2011).
    [Crossref]
  24. T.-H. Park, J.-S. Shin, G. Huang, W. S. Chu, and M. C. Oh, “Tunable channel drop filters consisting of a tilted Bragg grating and a mode sorting polymer waveguide,” Opt. Express 24(6), 5709–5714 (2016).
    [Crossref] [PubMed]
  25. T.-H. Park, G. Huang, E.-T. Kim, and M.-C. Oh, “Optimization of tilted Bragg grating tunable filters based on polymeric optical waveguides,” Curr. Opt. Photonics 1(3), 214–220 (2017).
  26. Y. Inoue, K. Katoh, and M. Kawachi, “Polarization sensitivity of a silica waveguide thermooptic phase shifter for planar lightwave circuits,” IEEE Photonics Technol. Lett. 4(1), 36–38 (1992).
    [Crossref]
  27. Y. Vlasov and S. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express 12(8), 1622–1631 (2004).
    [Crossref] [PubMed]
  28. L. Eldada and L. W. Shacklette, “Advances in polymer integrated optics,” IEEE J. Sel. Top. Quantum Electron. 6(1), 54–68 (2000).
    [Crossref]
  29. J. M. Castro, D. F. Geraghty, B. R. West, and S. Honkanen, “Fabrication and comprehensive modeling of ion-exchanged Bragg optical add-drop multiplexers,” Appl. Opt. 43(33), 6166–6173 (2004).
    [Crossref] [PubMed]
  30. J. M. Castro, D. F. Geraghty, S. Honkanen, C. M. Greiner, D. Iazikov, and T. W. Mossberg, “Optical add-drop multiplexers based on the antisymmetric waveguide Bragg grating,” Appl. Opt. 45(6), 1236–1243 (2006).
    [Crossref] [PubMed]
  31. Z. Zhang and N. Keil, “Thermo-optic devices on polymer platform,” Opt. Commun. 362, 101–114 (2015).
    [Crossref]
  32. T. Mizuochi, “Recent progress in forward error correction and its interplay with transmission impairments,” IEEE J. Sel. Top. Quantum Electron. 12(4), 544–554 (2006).
    [Crossref]

2017 (1)

T.-H. Park, G. Huang, E.-T. Kim, and M.-C. Oh, “Optimization of tilted Bragg grating tunable filters based on polymeric optical waveguides,” Curr. Opt. Photonics 1(3), 214–220 (2017).

2016 (2)

T.-H. Park, J.-S. Shin, G. Huang, W. S. Chu, and M. C. Oh, “Tunable channel drop filters consisting of a tilted Bragg grating and a mode sorting polymer waveguide,” Opt. Express 24(6), 5709–5714 (2016).
[Crossref] [PubMed]

M. Oh, W. Chu, J. Shin, J. Kim, K. Kim, J. Seo, H. Lee, Y. Noh, and H. Lee, “Polymeric optical waveguide devices exploiting special properties of polymer materials,” Opt. Commun. 362, 3–12 (2016).
[Crossref]

2015 (1)

Z. Zhang and N. Keil, “Thermo-optic devices on polymer platform,” Opt. Commun. 362, 101–114 (2015).
[Crossref]

2013 (1)

J. R. Ong, R. Kumar, and S. Mookherjea, “Ultra-high-contrast and tunable-bandwidth filter using cascaded high-order silicon microring filters,” IEEE Photonics Technol. Lett. 25(16), 1543–1546 (2013).
[Crossref]

2012 (1)

Y. Chen, H. Li, and M. Li, “Flexible and tunable silicon photonic circuits on plastic substrates,” Sci. Rep. 2(1), 622 (2012).
[Crossref] [PubMed]

2011 (2)

M.-C. Oh, K.-J. Kim, W.-S. Chu, J.-W. Kim, J.-K. Seo, Y.-O. Noh, and H.-J. Lee, “Integrated photonic devices incorporating low-loss fluorinated polymer materials,” Polymers (Basel) 3(3), 975–997 (2011).
[Crossref]

Y. Ding, M. Pu, L. Liu, J. Xu, C. Peucheret, X. Zhang, D. Huang, and H. Ou, “Bandwidth and wavelength-tunable optical bandpass filter based on silicon microring-MZI structure,” Opt. Express 19(7), 6462–6470 (2011).
[Crossref] [PubMed]

2010 (1)

2009 (2)

Y. Nasu, K. Watanabe, M. Itoh, H. Yamazaki, S. Kamei, R. Kasahara, I. Ogawa, A. Kaneko, and Y. Inoue, “Ultrasmall 100 GHz 40-Channel VMUX/DEMUX Based on Single-Chip 2.5%-Δ PLC,” J. Lightwave Technol. 27(12), 2087–2094 (2009).
[Crossref]

Q. Fang, J. F. Song, G. Zhang, M. B. Yu, Y. L. Liu, G. Q. Lo, and D. L. Kwong, “Monolithic integration of a multiplexer/demultiplexer with a thermo-optic VOA array on an SOI platform,” IEEE Photonics Technol. Lett. 21(5), 319–321 (2009).
[Crossref]

2008 (1)

2006 (4)

T. Mizuochi, “Recent progress in forward error correction and its interplay with transmission impairments,” IEEE J. Sel. Top. Quantum Electron. 12(4), 544–554 (2006).
[Crossref]

J. M. Castro, D. F. Geraghty, S. Honkanen, C. M. Greiner, D. Iazikov, and T. W. Mossberg, “Optical add-drop multiplexers based on the antisymmetric waveguide Bragg grating,” Appl. Opt. 45(6), 1236–1243 (2006).
[Crossref] [PubMed]

X. Jiang, W. Qi, H. Zhang, Y. Tang, Y. L. Hao, J. Y. Yang, and M. H. Wang, “Low crosstalk 1x2 thermo optic digital optical switch with integrated S-bend attenuator,” IEEE Photonics Technol. Lett. 18(4), 610–612 (2006).
[Crossref]

Y.-O. Noh, H.-J. Lee, Y.-H. Won, and M.-C. Oh, “Polymer waveguide thermo-optic switches with −70 dB optical crosstalk,” Opt. Commun. 258(1), 18–22 (2006).
[Crossref]

2005 (1)

C. Lee, “Monolithic-integrated 8CH MEMS variable optical attenuators,” Sens. Actuators A Phys. 123–124, 596–601 (2005).
[Crossref]

2004 (4)

Y.-O. Noh, C.-H. Lee, J.-M. Kim, W.-Y. Hwang, Y.-H. Won, H.-J. Lee, S.-G. Han, and M.-C. Oh, “Polymer waveguide variable optical attenuator and its reliability,” Opt. Commun. 242(4-6), 533–540 (2004).
[Crossref]

H. Uetsuka, “AWG Technologies for Dense WDM Applications,” IEEE J. Sel. Top. Quantum Electron. 10(2), 393–402 (2004).
[Crossref]

Y. Vlasov and S. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express 12(8), 1622–1631 (2004).
[Crossref] [PubMed]

J. M. Castro, D. F. Geraghty, B. R. West, and S. Honkanen, “Fabrication and comprehensive modeling of ion-exchanged Bragg optical add-drop multiplexers,” Appl. Opt. 43(33), 6166–6173 (2004).
[Crossref] [PubMed]

2002 (1)

N. Kikuchi, Y. Shibata, H. Okamoto, Y. Kawaguchi, S. Oku, H. Ishii, Y. Yoshikuni, and Y. Tohmori, “Monolithically integrated 64-channel WDM channel selector with novel configuration,” Electron. Lett. 38(7), 331–332 (2002).
[Crossref]

2001 (1)

T. Inui, T. Komukai, and M. Nakazawa, “Highly efficient tunable fiber Bragg grating filters using multiplayer piezoelectric transducers,” Opt. Commun. 190(1-6), 1–4 (2001).
[Crossref]

2000 (3)

B. Mukherjee, “WDM optical communication networks: progress and challenges,” IEEE J. Sel. Areas Comm. 18(10), 1810–1824 (2000).
[Crossref]

J.-F. Viens, C. L. Callender, J. P. Noad, and L. Eldada, “Compact wide-band polymer wavelength-division multiplexers,” IEEE Photonics Technol. Lett. 12(8), 1010–1012 (2000).
[Crossref]

L. Eldada and L. W. Shacklette, “Advances in polymer integrated optics,” IEEE J. Sel. Top. Quantum Electron. 6(1), 54–68 (2000).
[Crossref]

1999 (2)

E. R. Lyon and H. P. Lee, “An efficient electrically tunable etched cladding fiber Bragg grating filter tested under vacuum,” IEEE Photonics Technol. Lett. 11, 1626–1628 (1999).

R. Kasahara, M. Yanagisawa, A. Sugitia, T. Goh, M. Yasu, A. Himeno, and S. Matsui, “Low-power consumption silica-based 2x2 thermooptic switch using trenched silicon substrate,” IEEE Photonics Technol. Lett. 11(9), 1132–1134 (1999).
[Crossref]

1998 (1)

J. Hubner, D. Zauner, and M. Kristensen, “Strong sampled Bragg gratings for WDM applications,” IEEE Photonics Technol. Lett. 10(4), 552–554 (1998).
[Crossref]

1996 (1)

M. Ibsen, J. Hubner, J. E. Pedersen, R. Kromann, L.-U. A. Andersen, and M. Kristensen, “30 dB sampled gratings in germanosilicate planar waveguides,” Electron. Lett. 32(24), 2233–2235 (1996).
[Crossref]

1992 (1)

Y. Inoue, K. Katoh, and M. Kawachi, “Polarization sensitivity of a silica waveguide thermooptic phase shifter for planar lightwave circuits,” IEEE Photonics Technol. Lett. 4(1), 36–38 (1992).
[Crossref]

Andersen, L.-U. A.

M. Ibsen, J. Hubner, J. E. Pedersen, R. Kromann, L.-U. A. Andersen, and M. Kristensen, “30 dB sampled gratings in germanosilicate planar waveguides,” Electron. Lett. 32(24), 2233–2235 (1996).
[Crossref]

Ang, K. W.

Callender, C. L.

J.-F. Viens, C. L. Callender, J. P. Noad, and L. Eldada, “Compact wide-band polymer wavelength-division multiplexers,” IEEE Photonics Technol. Lett. 12(8), 1010–1012 (2000).
[Crossref]

Castro, J. M.

Chen, Y.

Y. Chen, H. Li, and M. Li, “Flexible and tunable silicon photonic circuits on plastic substrates,” Sci. Rep. 2(1), 622 (2012).
[Crossref] [PubMed]

Chu, W.

M. Oh, W. Chu, J. Shin, J. Kim, K. Kim, J. Seo, H. Lee, Y. Noh, and H. Lee, “Polymeric optical waveguide devices exploiting special properties of polymer materials,” Opt. Commun. 362, 3–12 (2016).
[Crossref]

Chu, W. S.

Chu, W.-S.

M.-C. Oh, K.-J. Kim, W.-S. Chu, J.-W. Kim, J.-K. Seo, Y.-O. Noh, and H.-J. Lee, “Integrated photonic devices incorporating low-loss fluorinated polymer materials,” Polymers (Basel) 3(3), 975–997 (2011).
[Crossref]

Ding, Y.

Eldada, L.

L. Eldada and L. W. Shacklette, “Advances in polymer integrated optics,” IEEE J. Sel. Top. Quantum Electron. 6(1), 54–68 (2000).
[Crossref]

J.-F. Viens, C. L. Callender, J. P. Noad, and L. Eldada, “Compact wide-band polymer wavelength-division multiplexers,” IEEE Photonics Technol. Lett. 12(8), 1010–1012 (2000).
[Crossref]

Fang, Q.

Q. Fang, T.-Y. Liow, J. F. Song, K. W. Ang, M. B. Yu, G. Q. Lo, and D.-L. Kwong, “WDM multi-channel silicon photonic receiver with 320 Gbps data transmission capability,” Opt. Express 18(5), 5106–5113 (2010).
[Crossref] [PubMed]

Q. Fang, J. F. Song, G. Zhang, M. B. Yu, Y. L. Liu, G. Q. Lo, and D. L. Kwong, “Monolithic integration of a multiplexer/demultiplexer with a thermo-optic VOA array on an SOI platform,” IEEE Photonics Technol. Lett. 21(5), 319–321 (2009).
[Crossref]

Furukawa, M.

T. Kanie, M. Katayama, T. Sano, H. Kohda, T. Sunaga, M. Shiozaki, M. Furukawa, H. Suganuma, K. Saitoh, and M. Nishimura, “Ultra-compact multichannel optical components based on PLC and MEMS technologies,” in Opt. Fiber Commun. Conf. (2003), pp. 388–390.

Geraghty, D. F.

Goh, T.

R. Kasahara, M. Yanagisawa, A. Sugitia, T. Goh, M. Yasu, A. Himeno, and S. Matsui, “Low-power consumption silica-based 2x2 thermooptic switch using trenched silicon substrate,” IEEE Photonics Technol. Lett. 11(9), 1132–1134 (1999).
[Crossref]

Greiner, C. M.

Han, S.-G.

Y.-O. Noh, C.-H. Lee, J.-M. Kim, W.-Y. Hwang, Y.-H. Won, H.-J. Lee, S.-G. Han, and M.-C. Oh, “Polymer waveguide variable optical attenuator and its reliability,” Opt. Commun. 242(4-6), 533–540 (2004).
[Crossref]

Hao, Y. L.

X. Jiang, W. Qi, H. Zhang, Y. Tang, Y. L. Hao, J. Y. Yang, and M. H. Wang, “Low crosstalk 1x2 thermo optic digital optical switch with integrated S-bend attenuator,” IEEE Photonics Technol. Lett. 18(4), 610–612 (2006).
[Crossref]

Himeno, A.

R. Kasahara, M. Yanagisawa, A. Sugitia, T. Goh, M. Yasu, A. Himeno, and S. Matsui, “Low-power consumption silica-based 2x2 thermooptic switch using trenched silicon substrate,” IEEE Photonics Technol. Lett. 11(9), 1132–1134 (1999).
[Crossref]

Honkanen, S.

Huang, D.

Huang, G.

T.-H. Park, G. Huang, E.-T. Kim, and M.-C. Oh, “Optimization of tilted Bragg grating tunable filters based on polymeric optical waveguides,” Curr. Opt. Photonics 1(3), 214–220 (2017).

T.-H. Park, J.-S. Shin, G. Huang, W. S. Chu, and M. C. Oh, “Tunable channel drop filters consisting of a tilted Bragg grating and a mode sorting polymer waveguide,” Opt. Express 24(6), 5709–5714 (2016).
[Crossref] [PubMed]

Hubner, J.

J. Hubner, D. Zauner, and M. Kristensen, “Strong sampled Bragg gratings for WDM applications,” IEEE Photonics Technol. Lett. 10(4), 552–554 (1998).
[Crossref]

M. Ibsen, J. Hubner, J. E. Pedersen, R. Kromann, L.-U. A. Andersen, and M. Kristensen, “30 dB sampled gratings in germanosilicate planar waveguides,” Electron. Lett. 32(24), 2233–2235 (1996).
[Crossref]

Hwang, W.-Y.

Y.-O. Noh, C.-H. Lee, J.-M. Kim, W.-Y. Hwang, Y.-H. Won, H.-J. Lee, S.-G. Han, and M.-C. Oh, “Polymer waveguide variable optical attenuator and its reliability,” Opt. Commun. 242(4-6), 533–540 (2004).
[Crossref]

Iazikov, D.

Ibsen, M.

M. Ibsen, J. Hubner, J. E. Pedersen, R. Kromann, L.-U. A. Andersen, and M. Kristensen, “30 dB sampled gratings in germanosilicate planar waveguides,” Electron. Lett. 32(24), 2233–2235 (1996).
[Crossref]

Inoue, Y.

Y. Nasu, K. Watanabe, M. Itoh, H. Yamazaki, S. Kamei, R. Kasahara, I. Ogawa, A. Kaneko, and Y. Inoue, “Ultrasmall 100 GHz 40-Channel VMUX/DEMUX Based on Single-Chip 2.5%-Δ PLC,” J. Lightwave Technol. 27(12), 2087–2094 (2009).
[Crossref]

Y. Inoue, K. Katoh, and M. Kawachi, “Polarization sensitivity of a silica waveguide thermooptic phase shifter for planar lightwave circuits,” IEEE Photonics Technol. Lett. 4(1), 36–38 (1992).
[Crossref]

Inui, T.

T. Inui, T. Komukai, and M. Nakazawa, “Highly efficient tunable fiber Bragg grating filters using multiplayer piezoelectric transducers,” Opt. Commun. 190(1-6), 1–4 (2001).
[Crossref]

Ishii, H.

N. Kikuchi, Y. Shibata, H. Okamoto, Y. Kawaguchi, S. Oku, H. Ishii, Y. Yoshikuni, and Y. Tohmori, “Monolithically integrated 64-channel WDM channel selector with novel configuration,” Electron. Lett. 38(7), 331–332 (2002).
[Crossref]

Itoh, M.

Jiang, X.

X. Jiang, W. Qi, H. Zhang, Y. Tang, Y. L. Hao, J. Y. Yang, and M. H. Wang, “Low crosstalk 1x2 thermo optic digital optical switch with integrated S-bend attenuator,” IEEE Photonics Technol. Lett. 18(4), 610–612 (2006).
[Crossref]

Ju, J. J.

Kamei, S.

Kaneko, A.

Kanie, T.

T. Kanie, M. Katayama, T. Sano, H. Kohda, T. Sunaga, M. Shiozaki, M. Furukawa, H. Suganuma, K. Saitoh, and M. Nishimura, “Ultra-compact multichannel optical components based on PLC and MEMS technologies,” in Opt. Fiber Commun. Conf. (2003), pp. 388–390.

Kasahara, R.

Y. Nasu, K. Watanabe, M. Itoh, H. Yamazaki, S. Kamei, R. Kasahara, I. Ogawa, A. Kaneko, and Y. Inoue, “Ultrasmall 100 GHz 40-Channel VMUX/DEMUX Based on Single-Chip 2.5%-Δ PLC,” J. Lightwave Technol. 27(12), 2087–2094 (2009).
[Crossref]

R. Kasahara, M. Yanagisawa, A. Sugitia, T. Goh, M. Yasu, A. Himeno, and S. Matsui, “Low-power consumption silica-based 2x2 thermooptic switch using trenched silicon substrate,” IEEE Photonics Technol. Lett. 11(9), 1132–1134 (1999).
[Crossref]

Katayama, M.

T. Kanie, M. Katayama, T. Sano, H. Kohda, T. Sunaga, M. Shiozaki, M. Furukawa, H. Suganuma, K. Saitoh, and M. Nishimura, “Ultra-compact multichannel optical components based on PLC and MEMS technologies,” in Opt. Fiber Commun. Conf. (2003), pp. 388–390.

Katoh, K.

Y. Inoue, K. Katoh, and M. Kawachi, “Polarization sensitivity of a silica waveguide thermooptic phase shifter for planar lightwave circuits,” IEEE Photonics Technol. Lett. 4(1), 36–38 (1992).
[Crossref]

Kawachi, M.

Y. Inoue, K. Katoh, and M. Kawachi, “Polarization sensitivity of a silica waveguide thermooptic phase shifter for planar lightwave circuits,” IEEE Photonics Technol. Lett. 4(1), 36–38 (1992).
[Crossref]

Kawaguchi, Y.

N. Kikuchi, Y. Shibata, H. Okamoto, Y. Kawaguchi, S. Oku, H. Ishii, Y. Yoshikuni, and Y. Tohmori, “Monolithically integrated 64-channel WDM channel selector with novel configuration,” Electron. Lett. 38(7), 331–332 (2002).
[Crossref]

Keil, N.

Z. Zhang and N. Keil, “Thermo-optic devices on polymer platform,” Opt. Commun. 362, 101–114 (2015).
[Crossref]

Kikuchi, N.

N. Kikuchi, Y. Shibata, H. Okamoto, Y. Kawaguchi, S. Oku, H. Ishii, Y. Yoshikuni, and Y. Tohmori, “Monolithically integrated 64-channel WDM channel selector with novel configuration,” Electron. Lett. 38(7), 331–332 (2002).
[Crossref]

Kim, E.-T.

T.-H. Park, G. Huang, E.-T. Kim, and M.-C. Oh, “Optimization of tilted Bragg grating tunable filters based on polymeric optical waveguides,” Curr. Opt. Photonics 1(3), 214–220 (2017).

Kim, J.

M. Oh, W. Chu, J. Shin, J. Kim, K. Kim, J. Seo, H. Lee, Y. Noh, and H. Lee, “Polymeric optical waveguide devices exploiting special properties of polymer materials,” Opt. Commun. 362, 3–12 (2016).
[Crossref]

Kim, J.-M.

Y.-O. Noh, C.-H. Lee, J.-M. Kim, W.-Y. Hwang, Y.-H. Won, H.-J. Lee, S.-G. Han, and M.-C. Oh, “Polymer waveguide variable optical attenuator and its reliability,” Opt. Commun. 242(4-6), 533–540 (2004).
[Crossref]

Kim, J.-W.

M.-C. Oh, K.-J. Kim, W.-S. Chu, J.-W. Kim, J.-K. Seo, Y.-O. Noh, and H.-J. Lee, “Integrated photonic devices incorporating low-loss fluorinated polymer materials,” Polymers (Basel) 3(3), 975–997 (2011).
[Crossref]

Kim, K.

M. Oh, W. Chu, J. Shin, J. Kim, K. Kim, J. Seo, H. Lee, Y. Noh, and H. Lee, “Polymeric optical waveguide devices exploiting special properties of polymer materials,” Opt. Commun. 362, 3–12 (2016).
[Crossref]

Kim, K.-J.

M.-C. Oh, K.-J. Kim, W.-S. Chu, J.-W. Kim, J.-K. Seo, Y.-O. Noh, and H.-J. Lee, “Integrated photonic devices incorporating low-loss fluorinated polymer materials,” Polymers (Basel) 3(3), 975–997 (2011).
[Crossref]

Kim, M.-S.

Kohda, H.

T. Kanie, M. Katayama, T. Sano, H. Kohda, T. Sunaga, M. Shiozaki, M. Furukawa, H. Suganuma, K. Saitoh, and M. Nishimura, “Ultra-compact multichannel optical components based on PLC and MEMS technologies,” in Opt. Fiber Commun. Conf. (2003), pp. 388–390.

Komukai, T.

T. Inui, T. Komukai, and M. Nakazawa, “Highly efficient tunable fiber Bragg grating filters using multiplayer piezoelectric transducers,” Opt. Commun. 190(1-6), 1–4 (2001).
[Crossref]

Kristensen, M.

J. Hubner, D. Zauner, and M. Kristensen, “Strong sampled Bragg gratings for WDM applications,” IEEE Photonics Technol. Lett. 10(4), 552–554 (1998).
[Crossref]

M. Ibsen, J. Hubner, J. E. Pedersen, R. Kromann, L.-U. A. Andersen, and M. Kristensen, “30 dB sampled gratings in germanosilicate planar waveguides,” Electron. Lett. 32(24), 2233–2235 (1996).
[Crossref]

Kromann, R.

M. Ibsen, J. Hubner, J. E. Pedersen, R. Kromann, L.-U. A. Andersen, and M. Kristensen, “30 dB sampled gratings in germanosilicate planar waveguides,” Electron. Lett. 32(24), 2233–2235 (1996).
[Crossref]

Kumar, R.

J. R. Ong, R. Kumar, and S. Mookherjea, “Ultra-high-contrast and tunable-bandwidth filter using cascaded high-order silicon microring filters,” IEEE Photonics Technol. Lett. 25(16), 1543–1546 (2013).
[Crossref]

Kwong, D. L.

Q. Fang, J. F. Song, G. Zhang, M. B. Yu, Y. L. Liu, G. Q. Lo, and D. L. Kwong, “Monolithic integration of a multiplexer/demultiplexer with a thermo-optic VOA array on an SOI platform,” IEEE Photonics Technol. Lett. 21(5), 319–321 (2009).
[Crossref]

Kwong, D.-L.

Lee, C.

C. Lee, “Monolithic-integrated 8CH MEMS variable optical attenuators,” Sens. Actuators A Phys. 123–124, 596–601 (2005).
[Crossref]

Lee, C.-H.

Y.-O. Noh, C.-H. Lee, J.-M. Kim, W.-Y. Hwang, Y.-H. Won, H.-J. Lee, S.-G. Han, and M.-C. Oh, “Polymer waveguide variable optical attenuator and its reliability,” Opt. Commun. 242(4-6), 533–540 (2004).
[Crossref]

Lee, H.

M. Oh, W. Chu, J. Shin, J. Kim, K. Kim, J. Seo, H. Lee, Y. Noh, and H. Lee, “Polymeric optical waveguide devices exploiting special properties of polymer materials,” Opt. Commun. 362, 3–12 (2016).
[Crossref]

M. Oh, W. Chu, J. Shin, J. Kim, K. Kim, J. Seo, H. Lee, Y. Noh, and H. Lee, “Polymeric optical waveguide devices exploiting special properties of polymer materials,” Opt. Commun. 362, 3–12 (2016).
[Crossref]

Lee, H. P.

E. R. Lyon and H. P. Lee, “An efficient electrically tunable etched cladding fiber Bragg grating filter tested under vacuum,” IEEE Photonics Technol. Lett. 11, 1626–1628 (1999).

Lee, H.-J.

M.-C. Oh, K.-J. Kim, W.-S. Chu, J.-W. Kim, J.-K. Seo, Y.-O. Noh, and H.-J. Lee, “Integrated photonic devices incorporating low-loss fluorinated polymer materials,” Polymers (Basel) 3(3), 975–997 (2011).
[Crossref]

Y.-O. Noh, H.-J. Lee, J. J. Ju, M.-S. Kim, S. H. Oh, and M.-C. Oh, “Continuously tunable compact lasers based on thermo-optic polymer waveguides with Bragg gratings,” Opt. Express 16(22), 18194–18201 (2008).
[Crossref] [PubMed]

Y.-O. Noh, H.-J. Lee, Y.-H. Won, and M.-C. Oh, “Polymer waveguide thermo-optic switches with −70 dB optical crosstalk,” Opt. Commun. 258(1), 18–22 (2006).
[Crossref]

Y.-O. Noh, C.-H. Lee, J.-M. Kim, W.-Y. Hwang, Y.-H. Won, H.-J. Lee, S.-G. Han, and M.-C. Oh, “Polymer waveguide variable optical attenuator and its reliability,” Opt. Commun. 242(4-6), 533–540 (2004).
[Crossref]

Li, H.

Y. Chen, H. Li, and M. Li, “Flexible and tunable silicon photonic circuits on plastic substrates,” Sci. Rep. 2(1), 622 (2012).
[Crossref] [PubMed]

Li, M.

Y. Chen, H. Li, and M. Li, “Flexible and tunable silicon photonic circuits on plastic substrates,” Sci. Rep. 2(1), 622 (2012).
[Crossref] [PubMed]

Liow, T.-Y.

Liu, L.

Liu, Y. L.

Q. Fang, J. F. Song, G. Zhang, M. B. Yu, Y. L. Liu, G. Q. Lo, and D. L. Kwong, “Monolithic integration of a multiplexer/demultiplexer with a thermo-optic VOA array on an SOI platform,” IEEE Photonics Technol. Lett. 21(5), 319–321 (2009).
[Crossref]

Lo, G. Q.

Q. Fang, T.-Y. Liow, J. F. Song, K. W. Ang, M. B. Yu, G. Q. Lo, and D.-L. Kwong, “WDM multi-channel silicon photonic receiver with 320 Gbps data transmission capability,” Opt. Express 18(5), 5106–5113 (2010).
[Crossref] [PubMed]

Q. Fang, J. F. Song, G. Zhang, M. B. Yu, Y. L. Liu, G. Q. Lo, and D. L. Kwong, “Monolithic integration of a multiplexer/demultiplexer with a thermo-optic VOA array on an SOI platform,” IEEE Photonics Technol. Lett. 21(5), 319–321 (2009).
[Crossref]

Lyon, E. R.

E. R. Lyon and H. P. Lee, “An efficient electrically tunable etched cladding fiber Bragg grating filter tested under vacuum,” IEEE Photonics Technol. Lett. 11, 1626–1628 (1999).

Matsui, S.

R. Kasahara, M. Yanagisawa, A. Sugitia, T. Goh, M. Yasu, A. Himeno, and S. Matsui, “Low-power consumption silica-based 2x2 thermooptic switch using trenched silicon substrate,” IEEE Photonics Technol. Lett. 11(9), 1132–1134 (1999).
[Crossref]

McNab, S.

Mizuochi, T.

T. Mizuochi, “Recent progress in forward error correction and its interplay with transmission impairments,” IEEE J. Sel. Top. Quantum Electron. 12(4), 544–554 (2006).
[Crossref]

Mookherjea, S.

J. R. Ong, R. Kumar, and S. Mookherjea, “Ultra-high-contrast and tunable-bandwidth filter using cascaded high-order silicon microring filters,” IEEE Photonics Technol. Lett. 25(16), 1543–1546 (2013).
[Crossref]

Mossberg, T. W.

Mukherjee, B.

B. Mukherjee, “WDM optical communication networks: progress and challenges,” IEEE J. Sel. Areas Comm. 18(10), 1810–1824 (2000).
[Crossref]

Nakazawa, M.

T. Inui, T. Komukai, and M. Nakazawa, “Highly efficient tunable fiber Bragg grating filters using multiplayer piezoelectric transducers,” Opt. Commun. 190(1-6), 1–4 (2001).
[Crossref]

Nasu, Y.

Nishimura, M.

T. Kanie, M. Katayama, T. Sano, H. Kohda, T. Sunaga, M. Shiozaki, M. Furukawa, H. Suganuma, K. Saitoh, and M. Nishimura, “Ultra-compact multichannel optical components based on PLC and MEMS technologies,” in Opt. Fiber Commun. Conf. (2003), pp. 388–390.

Noad, J. P.

J.-F. Viens, C. L. Callender, J. P. Noad, and L. Eldada, “Compact wide-band polymer wavelength-division multiplexers,” IEEE Photonics Technol. Lett. 12(8), 1010–1012 (2000).
[Crossref]

Noh, Y.

M. Oh, W. Chu, J. Shin, J. Kim, K. Kim, J. Seo, H. Lee, Y. Noh, and H. Lee, “Polymeric optical waveguide devices exploiting special properties of polymer materials,” Opt. Commun. 362, 3–12 (2016).
[Crossref]

Noh, Y.-O.

M.-C. Oh, K.-J. Kim, W.-S. Chu, J.-W. Kim, J.-K. Seo, Y.-O. Noh, and H.-J. Lee, “Integrated photonic devices incorporating low-loss fluorinated polymer materials,” Polymers (Basel) 3(3), 975–997 (2011).
[Crossref]

Y.-O. Noh, H.-J. Lee, J. J. Ju, M.-S. Kim, S. H. Oh, and M.-C. Oh, “Continuously tunable compact lasers based on thermo-optic polymer waveguides with Bragg gratings,” Opt. Express 16(22), 18194–18201 (2008).
[Crossref] [PubMed]

Y.-O. Noh, H.-J. Lee, Y.-H. Won, and M.-C. Oh, “Polymer waveguide thermo-optic switches with −70 dB optical crosstalk,” Opt. Commun. 258(1), 18–22 (2006).
[Crossref]

Y.-O. Noh, C.-H. Lee, J.-M. Kim, W.-Y. Hwang, Y.-H. Won, H.-J. Lee, S.-G. Han, and M.-C. Oh, “Polymer waveguide variable optical attenuator and its reliability,” Opt. Commun. 242(4-6), 533–540 (2004).
[Crossref]

Ogawa, I.

Oh, M.

M. Oh, W. Chu, J. Shin, J. Kim, K. Kim, J. Seo, H. Lee, Y. Noh, and H. Lee, “Polymeric optical waveguide devices exploiting special properties of polymer materials,” Opt. Commun. 362, 3–12 (2016).
[Crossref]

Oh, M. C.

Oh, M.-C.

T.-H. Park, G. Huang, E.-T. Kim, and M.-C. Oh, “Optimization of tilted Bragg grating tunable filters based on polymeric optical waveguides,” Curr. Opt. Photonics 1(3), 214–220 (2017).

M.-C. Oh, K.-J. Kim, W.-S. Chu, J.-W. Kim, J.-K. Seo, Y.-O. Noh, and H.-J. Lee, “Integrated photonic devices incorporating low-loss fluorinated polymer materials,” Polymers (Basel) 3(3), 975–997 (2011).
[Crossref]

Y.-O. Noh, H.-J. Lee, J. J. Ju, M.-S. Kim, S. H. Oh, and M.-C. Oh, “Continuously tunable compact lasers based on thermo-optic polymer waveguides with Bragg gratings,” Opt. Express 16(22), 18194–18201 (2008).
[Crossref] [PubMed]

Y.-O. Noh, H.-J. Lee, Y.-H. Won, and M.-C. Oh, “Polymer waveguide thermo-optic switches with −70 dB optical crosstalk,” Opt. Commun. 258(1), 18–22 (2006).
[Crossref]

Y.-O. Noh, C.-H. Lee, J.-M. Kim, W.-Y. Hwang, Y.-H. Won, H.-J. Lee, S.-G. Han, and M.-C. Oh, “Polymer waveguide variable optical attenuator and its reliability,” Opt. Commun. 242(4-6), 533–540 (2004).
[Crossref]

Oh, S. H.

Okamoto, H.

N. Kikuchi, Y. Shibata, H. Okamoto, Y. Kawaguchi, S. Oku, H. Ishii, Y. Yoshikuni, and Y. Tohmori, “Monolithically integrated 64-channel WDM channel selector with novel configuration,” Electron. Lett. 38(7), 331–332 (2002).
[Crossref]

Oku, S.

N. Kikuchi, Y. Shibata, H. Okamoto, Y. Kawaguchi, S. Oku, H. Ishii, Y. Yoshikuni, and Y. Tohmori, “Monolithically integrated 64-channel WDM channel selector with novel configuration,” Electron. Lett. 38(7), 331–332 (2002).
[Crossref]

Ong, J. R.

J. R. Ong, R. Kumar, and S. Mookherjea, “Ultra-high-contrast and tunable-bandwidth filter using cascaded high-order silicon microring filters,” IEEE Photonics Technol. Lett. 25(16), 1543–1546 (2013).
[Crossref]

Ou, H.

Park, T.-H.

T.-H. Park, G. Huang, E.-T. Kim, and M.-C. Oh, “Optimization of tilted Bragg grating tunable filters based on polymeric optical waveguides,” Curr. Opt. Photonics 1(3), 214–220 (2017).

T.-H. Park, J.-S. Shin, G. Huang, W. S. Chu, and M. C. Oh, “Tunable channel drop filters consisting of a tilted Bragg grating and a mode sorting polymer waveguide,” Opt. Express 24(6), 5709–5714 (2016).
[Crossref] [PubMed]

Pedersen, J. E.

M. Ibsen, J. Hubner, J. E. Pedersen, R. Kromann, L.-U. A. Andersen, and M. Kristensen, “30 dB sampled gratings in germanosilicate planar waveguides,” Electron. Lett. 32(24), 2233–2235 (1996).
[Crossref]

Peucheret, C.

Pu, M.

Qi, W.

X. Jiang, W. Qi, H. Zhang, Y. Tang, Y. L. Hao, J. Y. Yang, and M. H. Wang, “Low crosstalk 1x2 thermo optic digital optical switch with integrated S-bend attenuator,” IEEE Photonics Technol. Lett. 18(4), 610–612 (2006).
[Crossref]

Saitoh, K.

T. Kanie, M. Katayama, T. Sano, H. Kohda, T. Sunaga, M. Shiozaki, M. Furukawa, H. Suganuma, K. Saitoh, and M. Nishimura, “Ultra-compact multichannel optical components based on PLC and MEMS technologies,” in Opt. Fiber Commun. Conf. (2003), pp. 388–390.

Sano, T.

T. Kanie, M. Katayama, T. Sano, H. Kohda, T. Sunaga, M. Shiozaki, M. Furukawa, H. Suganuma, K. Saitoh, and M. Nishimura, “Ultra-compact multichannel optical components based on PLC and MEMS technologies,” in Opt. Fiber Commun. Conf. (2003), pp. 388–390.

Seo, J.

M. Oh, W. Chu, J. Shin, J. Kim, K. Kim, J. Seo, H. Lee, Y. Noh, and H. Lee, “Polymeric optical waveguide devices exploiting special properties of polymer materials,” Opt. Commun. 362, 3–12 (2016).
[Crossref]

Seo, J.-K.

M.-C. Oh, K.-J. Kim, W.-S. Chu, J.-W. Kim, J.-K. Seo, Y.-O. Noh, and H.-J. Lee, “Integrated photonic devices incorporating low-loss fluorinated polymer materials,” Polymers (Basel) 3(3), 975–997 (2011).
[Crossref]

Shacklette, L. W.

L. Eldada and L. W. Shacklette, “Advances in polymer integrated optics,” IEEE J. Sel. Top. Quantum Electron. 6(1), 54–68 (2000).
[Crossref]

Shibata, Y.

N. Kikuchi, Y. Shibata, H. Okamoto, Y. Kawaguchi, S. Oku, H. Ishii, Y. Yoshikuni, and Y. Tohmori, “Monolithically integrated 64-channel WDM channel selector with novel configuration,” Electron. Lett. 38(7), 331–332 (2002).
[Crossref]

Shin, J.

M. Oh, W. Chu, J. Shin, J. Kim, K. Kim, J. Seo, H. Lee, Y. Noh, and H. Lee, “Polymeric optical waveguide devices exploiting special properties of polymer materials,” Opt. Commun. 362, 3–12 (2016).
[Crossref]

Shin, J.-S.

Shiozaki, M.

T. Kanie, M. Katayama, T. Sano, H. Kohda, T. Sunaga, M. Shiozaki, M. Furukawa, H. Suganuma, K. Saitoh, and M. Nishimura, “Ultra-compact multichannel optical components based on PLC and MEMS technologies,” in Opt. Fiber Commun. Conf. (2003), pp. 388–390.

Song, J. F.

Q. Fang, T.-Y. Liow, J. F. Song, K. W. Ang, M. B. Yu, G. Q. Lo, and D.-L. Kwong, “WDM multi-channel silicon photonic receiver with 320 Gbps data transmission capability,” Opt. Express 18(5), 5106–5113 (2010).
[Crossref] [PubMed]

Q. Fang, J. F. Song, G. Zhang, M. B. Yu, Y. L. Liu, G. Q. Lo, and D. L. Kwong, “Monolithic integration of a multiplexer/demultiplexer with a thermo-optic VOA array on an SOI platform,” IEEE Photonics Technol. Lett. 21(5), 319–321 (2009).
[Crossref]

Suganuma, H.

T. Kanie, M. Katayama, T. Sano, H. Kohda, T. Sunaga, M. Shiozaki, M. Furukawa, H. Suganuma, K. Saitoh, and M. Nishimura, “Ultra-compact multichannel optical components based on PLC and MEMS technologies,” in Opt. Fiber Commun. Conf. (2003), pp. 388–390.

Sugitia, A.

R. Kasahara, M. Yanagisawa, A. Sugitia, T. Goh, M. Yasu, A. Himeno, and S. Matsui, “Low-power consumption silica-based 2x2 thermooptic switch using trenched silicon substrate,” IEEE Photonics Technol. Lett. 11(9), 1132–1134 (1999).
[Crossref]

Sunaga, T.

T. Kanie, M. Katayama, T. Sano, H. Kohda, T. Sunaga, M. Shiozaki, M. Furukawa, H. Suganuma, K. Saitoh, and M. Nishimura, “Ultra-compact multichannel optical components based on PLC and MEMS technologies,” in Opt. Fiber Commun. Conf. (2003), pp. 388–390.

Tang, Y.

X. Jiang, W. Qi, H. Zhang, Y. Tang, Y. L. Hao, J. Y. Yang, and M. H. Wang, “Low crosstalk 1x2 thermo optic digital optical switch with integrated S-bend attenuator,” IEEE Photonics Technol. Lett. 18(4), 610–612 (2006).
[Crossref]

Tohmori, Y.

N. Kikuchi, Y. Shibata, H. Okamoto, Y. Kawaguchi, S. Oku, H. Ishii, Y. Yoshikuni, and Y. Tohmori, “Monolithically integrated 64-channel WDM channel selector with novel configuration,” Electron. Lett. 38(7), 331–332 (2002).
[Crossref]

Uetsuka, H.

H. Uetsuka, “AWG Technologies for Dense WDM Applications,” IEEE J. Sel. Top. Quantum Electron. 10(2), 393–402 (2004).
[Crossref]

Viens, J.-F.

J.-F. Viens, C. L. Callender, J. P. Noad, and L. Eldada, “Compact wide-band polymer wavelength-division multiplexers,” IEEE Photonics Technol. Lett. 12(8), 1010–1012 (2000).
[Crossref]

Vlasov, Y.

Wang, M. H.

X. Jiang, W. Qi, H. Zhang, Y. Tang, Y. L. Hao, J. Y. Yang, and M. H. Wang, “Low crosstalk 1x2 thermo optic digital optical switch with integrated S-bend attenuator,” IEEE Photonics Technol. Lett. 18(4), 610–612 (2006).
[Crossref]

Watanabe, K.

West, B. R.

Won, Y.-H.

Y.-O. Noh, H.-J. Lee, Y.-H. Won, and M.-C. Oh, “Polymer waveguide thermo-optic switches with −70 dB optical crosstalk,” Opt. Commun. 258(1), 18–22 (2006).
[Crossref]

Y.-O. Noh, C.-H. Lee, J.-M. Kim, W.-Y. Hwang, Y.-H. Won, H.-J. Lee, S.-G. Han, and M.-C. Oh, “Polymer waveguide variable optical attenuator and its reliability,” Opt. Commun. 242(4-6), 533–540 (2004).
[Crossref]

Xu, J.

Yamazaki, H.

Yanagisawa, M.

R. Kasahara, M. Yanagisawa, A. Sugitia, T. Goh, M. Yasu, A. Himeno, and S. Matsui, “Low-power consumption silica-based 2x2 thermooptic switch using trenched silicon substrate,” IEEE Photonics Technol. Lett. 11(9), 1132–1134 (1999).
[Crossref]

Yang, J. Y.

X. Jiang, W. Qi, H. Zhang, Y. Tang, Y. L. Hao, J. Y. Yang, and M. H. Wang, “Low crosstalk 1x2 thermo optic digital optical switch with integrated S-bend attenuator,” IEEE Photonics Technol. Lett. 18(4), 610–612 (2006).
[Crossref]

Yasu, M.

R. Kasahara, M. Yanagisawa, A. Sugitia, T. Goh, M. Yasu, A. Himeno, and S. Matsui, “Low-power consumption silica-based 2x2 thermooptic switch using trenched silicon substrate,” IEEE Photonics Technol. Lett. 11(9), 1132–1134 (1999).
[Crossref]

Yoshikuni, Y.

N. Kikuchi, Y. Shibata, H. Okamoto, Y. Kawaguchi, S. Oku, H. Ishii, Y. Yoshikuni, and Y. Tohmori, “Monolithically integrated 64-channel WDM channel selector with novel configuration,” Electron. Lett. 38(7), 331–332 (2002).
[Crossref]

Yu, M. B.

Q. Fang, T.-Y. Liow, J. F. Song, K. W. Ang, M. B. Yu, G. Q. Lo, and D.-L. Kwong, “WDM multi-channel silicon photonic receiver with 320 Gbps data transmission capability,” Opt. Express 18(5), 5106–5113 (2010).
[Crossref] [PubMed]

Q. Fang, J. F. Song, G. Zhang, M. B. Yu, Y. L. Liu, G. Q. Lo, and D. L. Kwong, “Monolithic integration of a multiplexer/demultiplexer with a thermo-optic VOA array on an SOI platform,” IEEE Photonics Technol. Lett. 21(5), 319–321 (2009).
[Crossref]

Zauner, D.

J. Hubner, D. Zauner, and M. Kristensen, “Strong sampled Bragg gratings for WDM applications,” IEEE Photonics Technol. Lett. 10(4), 552–554 (1998).
[Crossref]

Zhang, G.

Q. Fang, J. F. Song, G. Zhang, M. B. Yu, Y. L. Liu, G. Q. Lo, and D. L. Kwong, “Monolithic integration of a multiplexer/demultiplexer with a thermo-optic VOA array on an SOI platform,” IEEE Photonics Technol. Lett. 21(5), 319–321 (2009).
[Crossref]

Zhang, H.

X. Jiang, W. Qi, H. Zhang, Y. Tang, Y. L. Hao, J. Y. Yang, and M. H. Wang, “Low crosstalk 1x2 thermo optic digital optical switch with integrated S-bend attenuator,” IEEE Photonics Technol. Lett. 18(4), 610–612 (2006).
[Crossref]

Zhang, X.

Zhang, Z.

Z. Zhang and N. Keil, “Thermo-optic devices on polymer platform,” Opt. Commun. 362, 101–114 (2015).
[Crossref]

Appl. Opt. (2)

Curr. Opt. Photonics (1)

T.-H. Park, G. Huang, E.-T. Kim, and M.-C. Oh, “Optimization of tilted Bragg grating tunable filters based on polymeric optical waveguides,” Curr. Opt. Photonics 1(3), 214–220 (2017).

Electron. Lett. (2)

N. Kikuchi, Y. Shibata, H. Okamoto, Y. Kawaguchi, S. Oku, H. Ishii, Y. Yoshikuni, and Y. Tohmori, “Monolithically integrated 64-channel WDM channel selector with novel configuration,” Electron. Lett. 38(7), 331–332 (2002).
[Crossref]

M. Ibsen, J. Hubner, J. E. Pedersen, R. Kromann, L.-U. A. Andersen, and M. Kristensen, “30 dB sampled gratings in germanosilicate planar waveguides,” Electron. Lett. 32(24), 2233–2235 (1996).
[Crossref]

IEEE J. Sel. Areas Comm. (1)

B. Mukherjee, “WDM optical communication networks: progress and challenges,” IEEE J. Sel. Areas Comm. 18(10), 1810–1824 (2000).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

L. Eldada and L. W. Shacklette, “Advances in polymer integrated optics,” IEEE J. Sel. Top. Quantum Electron. 6(1), 54–68 (2000).
[Crossref]

T. Mizuochi, “Recent progress in forward error correction and its interplay with transmission impairments,” IEEE J. Sel. Top. Quantum Electron. 12(4), 544–554 (2006).
[Crossref]

H. Uetsuka, “AWG Technologies for Dense WDM Applications,” IEEE J. Sel. Top. Quantum Electron. 10(2), 393–402 (2004).
[Crossref]

IEEE Photonics Technol. Lett. (8)

J.-F. Viens, C. L. Callender, J. P. Noad, and L. Eldada, “Compact wide-band polymer wavelength-division multiplexers,” IEEE Photonics Technol. Lett. 12(8), 1010–1012 (2000).
[Crossref]

E. R. Lyon and H. P. Lee, “An efficient electrically tunable etched cladding fiber Bragg grating filter tested under vacuum,” IEEE Photonics Technol. Lett. 11, 1626–1628 (1999).

J. Hubner, D. Zauner, and M. Kristensen, “Strong sampled Bragg gratings for WDM applications,” IEEE Photonics Technol. Lett. 10(4), 552–554 (1998).
[Crossref]

J. R. Ong, R. Kumar, and S. Mookherjea, “Ultra-high-contrast and tunable-bandwidth filter using cascaded high-order silicon microring filters,” IEEE Photonics Technol. Lett. 25(16), 1543–1546 (2013).
[Crossref]

X. Jiang, W. Qi, H. Zhang, Y. Tang, Y. L. Hao, J. Y. Yang, and M. H. Wang, “Low crosstalk 1x2 thermo optic digital optical switch with integrated S-bend attenuator,” IEEE Photonics Technol. Lett. 18(4), 610–612 (2006).
[Crossref]

R. Kasahara, M. Yanagisawa, A. Sugitia, T. Goh, M. Yasu, A. Himeno, and S. Matsui, “Low-power consumption silica-based 2x2 thermooptic switch using trenched silicon substrate,” IEEE Photonics Technol. Lett. 11(9), 1132–1134 (1999).
[Crossref]

Q. Fang, J. F. Song, G. Zhang, M. B. Yu, Y. L. Liu, G. Q. Lo, and D. L. Kwong, “Monolithic integration of a multiplexer/demultiplexer with a thermo-optic VOA array on an SOI platform,” IEEE Photonics Technol. Lett. 21(5), 319–321 (2009).
[Crossref]

Y. Inoue, K. Katoh, and M. Kawachi, “Polarization sensitivity of a silica waveguide thermooptic phase shifter for planar lightwave circuits,” IEEE Photonics Technol. Lett. 4(1), 36–38 (1992).
[Crossref]

J. Lightwave Technol. (1)

Opt. Commun. (5)

Z. Zhang and N. Keil, “Thermo-optic devices on polymer platform,” Opt. Commun. 362, 101–114 (2015).
[Crossref]

Y.-O. Noh, H.-J. Lee, Y.-H. Won, and M.-C. Oh, “Polymer waveguide thermo-optic switches with −70 dB optical crosstalk,” Opt. Commun. 258(1), 18–22 (2006).
[Crossref]

Y.-O. Noh, C.-H. Lee, J.-M. Kim, W.-Y. Hwang, Y.-H. Won, H.-J. Lee, S.-G. Han, and M.-C. Oh, “Polymer waveguide variable optical attenuator and its reliability,” Opt. Commun. 242(4-6), 533–540 (2004).
[Crossref]

M. Oh, W. Chu, J. Shin, J. Kim, K. Kim, J. Seo, H. Lee, Y. Noh, and H. Lee, “Polymeric optical waveguide devices exploiting special properties of polymer materials,” Opt. Commun. 362, 3–12 (2016).
[Crossref]

T. Inui, T. Komukai, and M. Nakazawa, “Highly efficient tunable fiber Bragg grating filters using multiplayer piezoelectric transducers,” Opt. Commun. 190(1-6), 1–4 (2001).
[Crossref]

Opt. Express (5)

Polymers (Basel) (1)

M.-C. Oh, K.-J. Kim, W.-S. Chu, J.-W. Kim, J.-K. Seo, Y.-O. Noh, and H.-J. Lee, “Integrated photonic devices incorporating low-loss fluorinated polymer materials,” Polymers (Basel) 3(3), 975–997 (2011).
[Crossref]

Sci. Rep. (1)

Y. Chen, H. Li, and M. Li, “Flexible and tunable silicon photonic circuits on plastic substrates,” Sci. Rep. 2(1), 622 (2012).
[Crossref] [PubMed]

Sens. Actuators A Phys. (1)

C. Lee, “Monolithic-integrated 8CH MEMS variable optical attenuators,” Sens. Actuators A Phys. 123–124, 596–601 (2005).
[Crossref]

Other (1)

T. Kanie, M. Katayama, T. Sano, H. Kohda, T. Sunaga, M. Shiozaki, M. Furukawa, H. Suganuma, K. Saitoh, and M. Nishimura, “Ultra-compact multichannel optical components based on PLC and MEMS technologies,” in Opt. Fiber Commun. Conf. (2003), pp. 388–390.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematic structure of the proposed tunable channel selector consisting of asymmetric Y-branch and tilted Bragg gratings for C and L bands, respectively. External C-, L-band couplers are used to combine the two Bragg reflectors.
Fig. 2
Fig. 2 Design results of (a) modal crosstalk in the asymmetric Y-branch, (b) cross-coupling efficiency between even and odd modes in the tilted Bragg grating, (c) resultant reflectivity of the device determined by the modal conversion efficiencies, and (d) reflectivity of the tilted Bragg gratings with and without the high-index polymer.
Fig. 3
Fig. 3 Temperature distribution over the waveguide cross-section of the devices with (a) top electrode, and (b) bottom electrode with air trench.
Fig. 4
Fig. 4 Fabrication procedure of the polymeric tunable channel selector device.
Fig. 5
Fig. 5 Microphotographs of the fabricated device exhibiting (a) the vertex of the asymmetric Y-branch, and (b) fifth-order tilted Bragg grating inscribed on the two-mode waveguide.
Fig. 6
Fig. 6 (a) Alignment setup for chip characterization, (b) reflection spectrum measured for the TE and TM polarizations, and (c) magnified spectra exhibiting polarization dependence less than 0.1 nm.
Fig. 7
Fig. 7 Wavelength-tuning capability of the tunable channel selector for (a) C-band grating device, and (b) L-band grating device, and (c) reflection peak drawn as a function of heating power for the C- and L-band devices.
Fig. 8
Fig. 8 (a) Packaging parts included in the tunable channel selector, (b) photograph of assembled polymer chip inside the package, and (c) completely packaged device.
Fig. 9
Fig. 9 (a) Transmission experiment setup consisting of tunable laser and tunable channel selector, (b) eye diagram of the received signal, and (c) bit error rates measured for various wavelengths.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δn( x,z )=Δn(z)exp(iΔ 2π Λ tan θ t Δx).
   η oe =  ψ o * (x,y)exp[i2πxtan( θ t )/Λ] ψ e (x,y)dxdy [ ψ o * (x,y) ψ o (x,y)dxdy ψ e * (x,y) ψ e (x,y)dxdy ] 1/2 .

Metrics