Abstract

Dual longitudinal mode distributed feedback lasers have been fabricated using surface gratings with and without apodization. Analytic formulas and simulations that have been used to derive design guidelines are presented. The fabricated device characteristics are in good agreement with the simulations. The grating apodization enables a lower threshold current density, a higher output power and a broader range of difference frequency tunability by bias, which can be extended beyond the measured 15–55 GHz by changing the device structure. The apodization and the complex coupling of the surface gratings reduce the effects of the uncontrollable phase of facet reflections, enabling the use of higher facet reflectivities, which leads to narrower intrinsic short time-scale linewidths.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Integrated wavelength stabilization of in-plane semiconductor lasers by use of a dual-grating reflector

Jason K. O'Daniel, Oleg V. Smolski, M. G. Moharam, and Eric G. Johnson
Opt. Lett. 31(2) 211-213 (2006)

Surface plasmon photonic structures in terahertz quantum cascade lasers

Olivier Demichel, Lukas Mahler, Tonia Losco, Cosimo Mauro, Richard Green, Jihua Xu, Alessandro Tredicucci, Fabio Beltram, Harvey E. Beere, David A. Ritchie, and Vincas Tamŏsiūnas
Opt. Express 14(12) 5335-5345 (2006)

A novel concavely apodized DFB semiconductor laser using common holographic exposure

Yuechun Shi, Simin Li, Renjia Guo, Rui Liu, Yating Zhou, and Xiangfei Chen
Opt. Express 21(13) 16022-16028 (2013)

References

  • View by:
  • |
  • |
  • |

  1. X. Q. Qi and J. M. Liu, “Photonic microwave applications of the dynamics of semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 17, 1198–1211 (2011).
    [Crossref]
  2. B. Lin, B. Pan, Z. Zheng, M. Li, and S. C. Tjin, A review of photonic microwave generation (IEEE, 2016), p. 1–3.
  3. R. Waterhouse and D. Novack, “Realizing 5G: Microwave photonics for 5G mobile wireless systems,” IEEE Microw. Mag. 16, 84–92 (2015).
    [Crossref]
  4. A. Corradi, G. Carpintero, B. W. Tilma, M. K. Smit, and E. A. J. M. Bente, Integrated dual-wavelength semiconductor laser systems for millimeter wave generation (IEEE, 2012), p. 34–35.
  5. Y. Yang, Y. Wang, L. Wang, S. Zhang, and J. J. He, Single-mode narrow linewidth three-section coupled-cavity laser (IEEE, 2012), p. 515–516.
  6. F. v. Dijk, A. Accard, A. Enard, O. Drisse, D. Make, and F. Lelarge, Monolithic dual wavelength DFB lasers for narrow linewidth heterodyne beat-note generation (IEEE, 2011), p. 73–76.
  7. L. Yu, D. Lu, Y. Sun, and L. Zhao, “Tunable photonic microwave generation by directly modulating a dual-wavelength amplified feedback laser,” Opt. Commun. 345, 57–61 (2015).
    [Crossref]
  8. S.-C. Chan and J.-M. Liu, “Tunable narrow-linewidth photonic microwave generation using semiconductor laser dynamics,” IEEE J. Sel. Top. Quantum Electron. 10, 1025–1032 (2004).
    [Crossref]
  9. J. Zheng, N. Song, Y. Zhang, Y. Shi, S. Tang, L. Li, R. Guo, and X. Chen, “An equivalent-asymmetric coupling coefficient DFB laser with high output efficiency and stable single longitudinal mode operation,” IEEE Photonics J. 6, 1–9 (2014).
  10. J. Fricke, J. Decker, A. Maaßdorf, H. Wenzel, G. Erbert, A. Knigge, and P. Crump, “DFB lasers with apodized surface gratings for wavelength stabilization and high efficiency,” Semicond. Sci. Technol. 32, 075012 (2017).
    [Crossref]
  11. Y. Shi, S. Li, R. Guo, R. Liu, Y. Zhou, and X. Chen, “A novel concavely apodized DFB semiconductor laser using common holographic exposure,” Opt. Express 21, 16022–16028 (2013).
    [Crossref] [PubMed]
  12. T. Uusitalo, H. Virtanen, and M. Dumitrescu, “Transverse structure optimization of distributed feedback and distributed bragg reflector lasers with surface gratings,” Opt. Quantum Electron.  49, 206 (2017).
    [Crossref]
  13. R. Millett, K. Hinzer, A. Benhsaien, T. J. Hall, and H. Schriemer, “The impact of laterally coupled grating microstructure on effective coupling coefficients,” Nanotechnology.  21, 134015 (2010).
    [Crossref] [PubMed]
  14. K. David, G. Morthier, P. Vankwikelberge, R. G. Baets, T. Wolf, and B. Borchert, “Gain-coupled DFB lasers versus index-coupled and phase shifted DFB lasers: a comparison based on spatial hole burning corrected yield,” IEEE J. Quantum Electron. 27, 1714–1723 (1991).
    [Crossref]
  15. M. Dumitrescu, T. Uusitalo, H. Virtanen, J. Viheriälä, and A. Laakso, “Semiconductor laser structure with a grating and multiple phase shifts therein,” (2017). PCT Patent ApplicationWO/2017/220144
  16. T. Uusitalo, H. Virtanen, M. Karjalainen, S. Ranta, J. Viheriälä, and M. Dumitrescu, “Distributed feedback lasers with alternating laterally coupled ridge-waveguide surface gratings,” Opt. Lett. 42, 3141–3144 (2017).
    [Crossref] [PubMed]
  17. M. J. Strain and M. Sorel, “Integrated III–V bragg gratings for arbitrary control over chirp and coupling coefficient,” IEEE Photonics Technol. Lett. 20, 1863–1865 (2008).
    [Crossref]
  18. P. S. J. Russell, J.-L. Archambault, and L. Reekie, “Fibre gratings,” Phys. World 6, 41–46 (1993).
    [Crossref]
  19. H. Virtanen, T. Uusitalo, and M. Dumitrescu, “Simulation studies of DFB laser longitudinal structures for narrow linewidth emission,” Opt. Quantum Electron.  49, 160 (2017).
    [Crossref]
  20. L. A. Coldren, S. W. Corzine, and M. L. Mashanovitch, Diode lasers and photonic integrated circuits, vol. 218 (John Wiley & Sons, 2012).
    [Crossref]
  21. H. Wenzel, G. Erbert, and P. M. Enders, “Improved theory of the refractive-index change in quantum-well lasers,” IEEE J. Sel. Top. Quantum Electron. 5, 637–642 (1999).
    [Crossref]

2017 (4)

J. Fricke, J. Decker, A. Maaßdorf, H. Wenzel, G. Erbert, A. Knigge, and P. Crump, “DFB lasers with apodized surface gratings for wavelength stabilization and high efficiency,” Semicond. Sci. Technol. 32, 075012 (2017).
[Crossref]

T. Uusitalo, H. Virtanen, and M. Dumitrescu, “Transverse structure optimization of distributed feedback and distributed bragg reflector lasers with surface gratings,” Opt. Quantum Electron.  49, 206 (2017).
[Crossref]

H. Virtanen, T. Uusitalo, and M. Dumitrescu, “Simulation studies of DFB laser longitudinal structures for narrow linewidth emission,” Opt. Quantum Electron.  49, 160 (2017).
[Crossref]

T. Uusitalo, H. Virtanen, M. Karjalainen, S. Ranta, J. Viheriälä, and M. Dumitrescu, “Distributed feedback lasers with alternating laterally coupled ridge-waveguide surface gratings,” Opt. Lett. 42, 3141–3144 (2017).
[Crossref] [PubMed]

2015 (2)

R. Waterhouse and D. Novack, “Realizing 5G: Microwave photonics for 5G mobile wireless systems,” IEEE Microw. Mag. 16, 84–92 (2015).
[Crossref]

L. Yu, D. Lu, Y. Sun, and L. Zhao, “Tunable photonic microwave generation by directly modulating a dual-wavelength amplified feedback laser,” Opt. Commun. 345, 57–61 (2015).
[Crossref]

2014 (1)

J. Zheng, N. Song, Y. Zhang, Y. Shi, S. Tang, L. Li, R. Guo, and X. Chen, “An equivalent-asymmetric coupling coefficient DFB laser with high output efficiency and stable single longitudinal mode operation,” IEEE Photonics J. 6, 1–9 (2014).

2013 (1)

2011 (1)

X. Q. Qi and J. M. Liu, “Photonic microwave applications of the dynamics of semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 17, 1198–1211 (2011).
[Crossref]

2010 (1)

R. Millett, K. Hinzer, A. Benhsaien, T. J. Hall, and H. Schriemer, “The impact of laterally coupled grating microstructure on effective coupling coefficients,” Nanotechnology.  21, 134015 (2010).
[Crossref] [PubMed]

2008 (1)

M. J. Strain and M. Sorel, “Integrated III–V bragg gratings for arbitrary control over chirp and coupling coefficient,” IEEE Photonics Technol. Lett. 20, 1863–1865 (2008).
[Crossref]

2004 (1)

S.-C. Chan and J.-M. Liu, “Tunable narrow-linewidth photonic microwave generation using semiconductor laser dynamics,” IEEE J. Sel. Top. Quantum Electron. 10, 1025–1032 (2004).
[Crossref]

1999 (1)

H. Wenzel, G. Erbert, and P. M. Enders, “Improved theory of the refractive-index change in quantum-well lasers,” IEEE J. Sel. Top. Quantum Electron. 5, 637–642 (1999).
[Crossref]

1993 (1)

P. S. J. Russell, J.-L. Archambault, and L. Reekie, “Fibre gratings,” Phys. World 6, 41–46 (1993).
[Crossref]

1991 (1)

K. David, G. Morthier, P. Vankwikelberge, R. G. Baets, T. Wolf, and B. Borchert, “Gain-coupled DFB lasers versus index-coupled and phase shifted DFB lasers: a comparison based on spatial hole burning corrected yield,” IEEE J. Quantum Electron. 27, 1714–1723 (1991).
[Crossref]

Accard, A.

F. v. Dijk, A. Accard, A. Enard, O. Drisse, D. Make, and F. Lelarge, Monolithic dual wavelength DFB lasers for narrow linewidth heterodyne beat-note generation (IEEE, 2011), p. 73–76.

Archambault, J.-L.

P. S. J. Russell, J.-L. Archambault, and L. Reekie, “Fibre gratings,” Phys. World 6, 41–46 (1993).
[Crossref]

Baets, R. G.

K. David, G. Morthier, P. Vankwikelberge, R. G. Baets, T. Wolf, and B. Borchert, “Gain-coupled DFB lasers versus index-coupled and phase shifted DFB lasers: a comparison based on spatial hole burning corrected yield,” IEEE J. Quantum Electron. 27, 1714–1723 (1991).
[Crossref]

Benhsaien, A.

R. Millett, K. Hinzer, A. Benhsaien, T. J. Hall, and H. Schriemer, “The impact of laterally coupled grating microstructure on effective coupling coefficients,” Nanotechnology.  21, 134015 (2010).
[Crossref] [PubMed]

Bente, E. A. J. M.

A. Corradi, G. Carpintero, B. W. Tilma, M. K. Smit, and E. A. J. M. Bente, Integrated dual-wavelength semiconductor laser systems for millimeter wave generation (IEEE, 2012), p. 34–35.

Borchert, B.

K. David, G. Morthier, P. Vankwikelberge, R. G. Baets, T. Wolf, and B. Borchert, “Gain-coupled DFB lasers versus index-coupled and phase shifted DFB lasers: a comparison based on spatial hole burning corrected yield,” IEEE J. Quantum Electron. 27, 1714–1723 (1991).
[Crossref]

Carpintero, G.

A. Corradi, G. Carpintero, B. W. Tilma, M. K. Smit, and E. A. J. M. Bente, Integrated dual-wavelength semiconductor laser systems for millimeter wave generation (IEEE, 2012), p. 34–35.

Chan, S.-C.

S.-C. Chan and J.-M. Liu, “Tunable narrow-linewidth photonic microwave generation using semiconductor laser dynamics,” IEEE J. Sel. Top. Quantum Electron. 10, 1025–1032 (2004).
[Crossref]

Chen, X.

J. Zheng, N. Song, Y. Zhang, Y. Shi, S. Tang, L. Li, R. Guo, and X. Chen, “An equivalent-asymmetric coupling coefficient DFB laser with high output efficiency and stable single longitudinal mode operation,” IEEE Photonics J. 6, 1–9 (2014).

Y. Shi, S. Li, R. Guo, R. Liu, Y. Zhou, and X. Chen, “A novel concavely apodized DFB semiconductor laser using common holographic exposure,” Opt. Express 21, 16022–16028 (2013).
[Crossref] [PubMed]

Coldren, L. A.

L. A. Coldren, S. W. Corzine, and M. L. Mashanovitch, Diode lasers and photonic integrated circuits, vol. 218 (John Wiley & Sons, 2012).
[Crossref]

Corradi, A.

A. Corradi, G. Carpintero, B. W. Tilma, M. K. Smit, and E. A. J. M. Bente, Integrated dual-wavelength semiconductor laser systems for millimeter wave generation (IEEE, 2012), p. 34–35.

Corzine, S. W.

L. A. Coldren, S. W. Corzine, and M. L. Mashanovitch, Diode lasers and photonic integrated circuits, vol. 218 (John Wiley & Sons, 2012).
[Crossref]

Crump, P.

J. Fricke, J. Decker, A. Maaßdorf, H. Wenzel, G. Erbert, A. Knigge, and P. Crump, “DFB lasers with apodized surface gratings for wavelength stabilization and high efficiency,” Semicond. Sci. Technol. 32, 075012 (2017).
[Crossref]

David, K.

K. David, G. Morthier, P. Vankwikelberge, R. G. Baets, T. Wolf, and B. Borchert, “Gain-coupled DFB lasers versus index-coupled and phase shifted DFB lasers: a comparison based on spatial hole burning corrected yield,” IEEE J. Quantum Electron. 27, 1714–1723 (1991).
[Crossref]

Decker, J.

J. Fricke, J. Decker, A. Maaßdorf, H. Wenzel, G. Erbert, A. Knigge, and P. Crump, “DFB lasers with apodized surface gratings for wavelength stabilization and high efficiency,” Semicond. Sci. Technol. 32, 075012 (2017).
[Crossref]

Dijk, F. v.

F. v. Dijk, A. Accard, A. Enard, O. Drisse, D. Make, and F. Lelarge, Monolithic dual wavelength DFB lasers for narrow linewidth heterodyne beat-note generation (IEEE, 2011), p. 73–76.

Drisse, O.

F. v. Dijk, A. Accard, A. Enard, O. Drisse, D. Make, and F. Lelarge, Monolithic dual wavelength DFB lasers for narrow linewidth heterodyne beat-note generation (IEEE, 2011), p. 73–76.

Dumitrescu, M.

T. Uusitalo, H. Virtanen, and M. Dumitrescu, “Transverse structure optimization of distributed feedback and distributed bragg reflector lasers with surface gratings,” Opt. Quantum Electron.  49, 206 (2017).
[Crossref]

H. Virtanen, T. Uusitalo, and M. Dumitrescu, “Simulation studies of DFB laser longitudinal structures for narrow linewidth emission,” Opt. Quantum Electron.  49, 160 (2017).
[Crossref]

T. Uusitalo, H. Virtanen, M. Karjalainen, S. Ranta, J. Viheriälä, and M. Dumitrescu, “Distributed feedback lasers with alternating laterally coupled ridge-waveguide surface gratings,” Opt. Lett. 42, 3141–3144 (2017).
[Crossref] [PubMed]

M. Dumitrescu, T. Uusitalo, H. Virtanen, J. Viheriälä, and A. Laakso, “Semiconductor laser structure with a grating and multiple phase shifts therein,” (2017). PCT Patent ApplicationWO/2017/220144

Enard, A.

F. v. Dijk, A. Accard, A. Enard, O. Drisse, D. Make, and F. Lelarge, Monolithic dual wavelength DFB lasers for narrow linewidth heterodyne beat-note generation (IEEE, 2011), p. 73–76.

Enders, P. M.

H. Wenzel, G. Erbert, and P. M. Enders, “Improved theory of the refractive-index change in quantum-well lasers,” IEEE J. Sel. Top. Quantum Electron. 5, 637–642 (1999).
[Crossref]

Erbert, G.

J. Fricke, J. Decker, A. Maaßdorf, H. Wenzel, G. Erbert, A. Knigge, and P. Crump, “DFB lasers with apodized surface gratings for wavelength stabilization and high efficiency,” Semicond. Sci. Technol. 32, 075012 (2017).
[Crossref]

H. Wenzel, G. Erbert, and P. M. Enders, “Improved theory of the refractive-index change in quantum-well lasers,” IEEE J. Sel. Top. Quantum Electron. 5, 637–642 (1999).
[Crossref]

Fricke, J.

J. Fricke, J. Decker, A. Maaßdorf, H. Wenzel, G. Erbert, A. Knigge, and P. Crump, “DFB lasers with apodized surface gratings for wavelength stabilization and high efficiency,” Semicond. Sci. Technol. 32, 075012 (2017).
[Crossref]

Guo, R.

J. Zheng, N. Song, Y. Zhang, Y. Shi, S. Tang, L. Li, R. Guo, and X. Chen, “An equivalent-asymmetric coupling coefficient DFB laser with high output efficiency and stable single longitudinal mode operation,” IEEE Photonics J. 6, 1–9 (2014).

Y. Shi, S. Li, R. Guo, R. Liu, Y. Zhou, and X. Chen, “A novel concavely apodized DFB semiconductor laser using common holographic exposure,” Opt. Express 21, 16022–16028 (2013).
[Crossref] [PubMed]

Hall, T. J.

R. Millett, K. Hinzer, A. Benhsaien, T. J. Hall, and H. Schriemer, “The impact of laterally coupled grating microstructure on effective coupling coefficients,” Nanotechnology.  21, 134015 (2010).
[Crossref] [PubMed]

He, J. J.

Y. Yang, Y. Wang, L. Wang, S. Zhang, and J. J. He, Single-mode narrow linewidth three-section coupled-cavity laser (IEEE, 2012), p. 515–516.

Hinzer, K.

R. Millett, K. Hinzer, A. Benhsaien, T. J. Hall, and H. Schriemer, “The impact of laterally coupled grating microstructure on effective coupling coefficients,” Nanotechnology.  21, 134015 (2010).
[Crossref] [PubMed]

Karjalainen, M.

Knigge, A.

J. Fricke, J. Decker, A. Maaßdorf, H. Wenzel, G. Erbert, A. Knigge, and P. Crump, “DFB lasers with apodized surface gratings for wavelength stabilization and high efficiency,” Semicond. Sci. Technol. 32, 075012 (2017).
[Crossref]

Laakso, A.

M. Dumitrescu, T. Uusitalo, H. Virtanen, J. Viheriälä, and A. Laakso, “Semiconductor laser structure with a grating and multiple phase shifts therein,” (2017). PCT Patent ApplicationWO/2017/220144

Lelarge, F.

F. v. Dijk, A. Accard, A. Enard, O. Drisse, D. Make, and F. Lelarge, Monolithic dual wavelength DFB lasers for narrow linewidth heterodyne beat-note generation (IEEE, 2011), p. 73–76.

Li, L.

J. Zheng, N. Song, Y. Zhang, Y. Shi, S. Tang, L. Li, R. Guo, and X. Chen, “An equivalent-asymmetric coupling coefficient DFB laser with high output efficiency and stable single longitudinal mode operation,” IEEE Photonics J. 6, 1–9 (2014).

Li, M.

B. Lin, B. Pan, Z. Zheng, M. Li, and S. C. Tjin, A review of photonic microwave generation (IEEE, 2016), p. 1–3.

Li, S.

Lin, B.

B. Lin, B. Pan, Z. Zheng, M. Li, and S. C. Tjin, A review of photonic microwave generation (IEEE, 2016), p. 1–3.

Liu, J. M.

X. Q. Qi and J. M. Liu, “Photonic microwave applications of the dynamics of semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 17, 1198–1211 (2011).
[Crossref]

Liu, J.-M.

S.-C. Chan and J.-M. Liu, “Tunable narrow-linewidth photonic microwave generation using semiconductor laser dynamics,” IEEE J. Sel. Top. Quantum Electron. 10, 1025–1032 (2004).
[Crossref]

Liu, R.

Lu, D.

L. Yu, D. Lu, Y. Sun, and L. Zhao, “Tunable photonic microwave generation by directly modulating a dual-wavelength amplified feedback laser,” Opt. Commun. 345, 57–61 (2015).
[Crossref]

Maaßdorf, A.

J. Fricke, J. Decker, A. Maaßdorf, H. Wenzel, G. Erbert, A. Knigge, and P. Crump, “DFB lasers with apodized surface gratings for wavelength stabilization and high efficiency,” Semicond. Sci. Technol. 32, 075012 (2017).
[Crossref]

Make, D.

F. v. Dijk, A. Accard, A. Enard, O. Drisse, D. Make, and F. Lelarge, Monolithic dual wavelength DFB lasers for narrow linewidth heterodyne beat-note generation (IEEE, 2011), p. 73–76.

Mashanovitch, M. L.

L. A. Coldren, S. W. Corzine, and M. L. Mashanovitch, Diode lasers and photonic integrated circuits, vol. 218 (John Wiley & Sons, 2012).
[Crossref]

Millett, R.

R. Millett, K. Hinzer, A. Benhsaien, T. J. Hall, and H. Schriemer, “The impact of laterally coupled grating microstructure on effective coupling coefficients,” Nanotechnology.  21, 134015 (2010).
[Crossref] [PubMed]

Morthier, G.

K. David, G. Morthier, P. Vankwikelberge, R. G. Baets, T. Wolf, and B. Borchert, “Gain-coupled DFB lasers versus index-coupled and phase shifted DFB lasers: a comparison based on spatial hole burning corrected yield,” IEEE J. Quantum Electron. 27, 1714–1723 (1991).
[Crossref]

Novack, D.

R. Waterhouse and D. Novack, “Realizing 5G: Microwave photonics for 5G mobile wireless systems,” IEEE Microw. Mag. 16, 84–92 (2015).
[Crossref]

Pan, B.

B. Lin, B. Pan, Z. Zheng, M. Li, and S. C. Tjin, A review of photonic microwave generation (IEEE, 2016), p. 1–3.

Qi, X. Q.

X. Q. Qi and J. M. Liu, “Photonic microwave applications of the dynamics of semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 17, 1198–1211 (2011).
[Crossref]

Ranta, S.

Reekie, L.

P. S. J. Russell, J.-L. Archambault, and L. Reekie, “Fibre gratings,” Phys. World 6, 41–46 (1993).
[Crossref]

Russell, P. S. J.

P. S. J. Russell, J.-L. Archambault, and L. Reekie, “Fibre gratings,” Phys. World 6, 41–46 (1993).
[Crossref]

Schriemer, H.

R. Millett, K. Hinzer, A. Benhsaien, T. J. Hall, and H. Schriemer, “The impact of laterally coupled grating microstructure on effective coupling coefficients,” Nanotechnology.  21, 134015 (2010).
[Crossref] [PubMed]

Shi, Y.

J. Zheng, N. Song, Y. Zhang, Y. Shi, S. Tang, L. Li, R. Guo, and X. Chen, “An equivalent-asymmetric coupling coefficient DFB laser with high output efficiency and stable single longitudinal mode operation,” IEEE Photonics J. 6, 1–9 (2014).

Y. Shi, S. Li, R. Guo, R. Liu, Y. Zhou, and X. Chen, “A novel concavely apodized DFB semiconductor laser using common holographic exposure,” Opt. Express 21, 16022–16028 (2013).
[Crossref] [PubMed]

Smit, M. K.

A. Corradi, G. Carpintero, B. W. Tilma, M. K. Smit, and E. A. J. M. Bente, Integrated dual-wavelength semiconductor laser systems for millimeter wave generation (IEEE, 2012), p. 34–35.

Song, N.

J. Zheng, N. Song, Y. Zhang, Y. Shi, S. Tang, L. Li, R. Guo, and X. Chen, “An equivalent-asymmetric coupling coefficient DFB laser with high output efficiency and stable single longitudinal mode operation,” IEEE Photonics J. 6, 1–9 (2014).

Sorel, M.

M. J. Strain and M. Sorel, “Integrated III–V bragg gratings for arbitrary control over chirp and coupling coefficient,” IEEE Photonics Technol. Lett. 20, 1863–1865 (2008).
[Crossref]

Strain, M. J.

M. J. Strain and M. Sorel, “Integrated III–V bragg gratings for arbitrary control over chirp and coupling coefficient,” IEEE Photonics Technol. Lett. 20, 1863–1865 (2008).
[Crossref]

Sun, Y.

L. Yu, D. Lu, Y. Sun, and L. Zhao, “Tunable photonic microwave generation by directly modulating a dual-wavelength amplified feedback laser,” Opt. Commun. 345, 57–61 (2015).
[Crossref]

Tang, S.

J. Zheng, N. Song, Y. Zhang, Y. Shi, S. Tang, L. Li, R. Guo, and X. Chen, “An equivalent-asymmetric coupling coefficient DFB laser with high output efficiency and stable single longitudinal mode operation,” IEEE Photonics J. 6, 1–9 (2014).

Tilma, B. W.

A. Corradi, G. Carpintero, B. W. Tilma, M. K. Smit, and E. A. J. M. Bente, Integrated dual-wavelength semiconductor laser systems for millimeter wave generation (IEEE, 2012), p. 34–35.

Tjin, S. C.

B. Lin, B. Pan, Z. Zheng, M. Li, and S. C. Tjin, A review of photonic microwave generation (IEEE, 2016), p. 1–3.

Uusitalo, T.

T. Uusitalo, H. Virtanen, and M. Dumitrescu, “Transverse structure optimization of distributed feedback and distributed bragg reflector lasers with surface gratings,” Opt. Quantum Electron.  49, 206 (2017).
[Crossref]

T. Uusitalo, H. Virtanen, M. Karjalainen, S. Ranta, J. Viheriälä, and M. Dumitrescu, “Distributed feedback lasers with alternating laterally coupled ridge-waveguide surface gratings,” Opt. Lett. 42, 3141–3144 (2017).
[Crossref] [PubMed]

H. Virtanen, T. Uusitalo, and M. Dumitrescu, “Simulation studies of DFB laser longitudinal structures for narrow linewidth emission,” Opt. Quantum Electron.  49, 160 (2017).
[Crossref]

M. Dumitrescu, T. Uusitalo, H. Virtanen, J. Viheriälä, and A. Laakso, “Semiconductor laser structure with a grating and multiple phase shifts therein,” (2017). PCT Patent ApplicationWO/2017/220144

Vankwikelberge, P.

K. David, G. Morthier, P. Vankwikelberge, R. G. Baets, T. Wolf, and B. Borchert, “Gain-coupled DFB lasers versus index-coupled and phase shifted DFB lasers: a comparison based on spatial hole burning corrected yield,” IEEE J. Quantum Electron. 27, 1714–1723 (1991).
[Crossref]

Viheriälä, J.

T. Uusitalo, H. Virtanen, M. Karjalainen, S. Ranta, J. Viheriälä, and M. Dumitrescu, “Distributed feedback lasers with alternating laterally coupled ridge-waveguide surface gratings,” Opt. Lett. 42, 3141–3144 (2017).
[Crossref] [PubMed]

M. Dumitrescu, T. Uusitalo, H. Virtanen, J. Viheriälä, and A. Laakso, “Semiconductor laser structure with a grating and multiple phase shifts therein,” (2017). PCT Patent ApplicationWO/2017/220144

Virtanen, H.

H. Virtanen, T. Uusitalo, and M. Dumitrescu, “Simulation studies of DFB laser longitudinal structures for narrow linewidth emission,” Opt. Quantum Electron.  49, 160 (2017).
[Crossref]

T. Uusitalo, H. Virtanen, M. Karjalainen, S. Ranta, J. Viheriälä, and M. Dumitrescu, “Distributed feedback lasers with alternating laterally coupled ridge-waveguide surface gratings,” Opt. Lett. 42, 3141–3144 (2017).
[Crossref] [PubMed]

T. Uusitalo, H. Virtanen, and M. Dumitrescu, “Transverse structure optimization of distributed feedback and distributed bragg reflector lasers with surface gratings,” Opt. Quantum Electron.  49, 206 (2017).
[Crossref]

M. Dumitrescu, T. Uusitalo, H. Virtanen, J. Viheriälä, and A. Laakso, “Semiconductor laser structure with a grating and multiple phase shifts therein,” (2017). PCT Patent ApplicationWO/2017/220144

Wang, L.

Y. Yang, Y. Wang, L. Wang, S. Zhang, and J. J. He, Single-mode narrow linewidth three-section coupled-cavity laser (IEEE, 2012), p. 515–516.

Wang, Y.

Y. Yang, Y. Wang, L. Wang, S. Zhang, and J. J. He, Single-mode narrow linewidth three-section coupled-cavity laser (IEEE, 2012), p. 515–516.

Waterhouse, R.

R. Waterhouse and D. Novack, “Realizing 5G: Microwave photonics for 5G mobile wireless systems,” IEEE Microw. Mag. 16, 84–92 (2015).
[Crossref]

Wenzel, H.

J. Fricke, J. Decker, A. Maaßdorf, H. Wenzel, G. Erbert, A. Knigge, and P. Crump, “DFB lasers with apodized surface gratings for wavelength stabilization and high efficiency,” Semicond. Sci. Technol. 32, 075012 (2017).
[Crossref]

H. Wenzel, G. Erbert, and P. M. Enders, “Improved theory of the refractive-index change in quantum-well lasers,” IEEE J. Sel. Top. Quantum Electron. 5, 637–642 (1999).
[Crossref]

Wolf, T.

K. David, G. Morthier, P. Vankwikelberge, R. G. Baets, T. Wolf, and B. Borchert, “Gain-coupled DFB lasers versus index-coupled and phase shifted DFB lasers: a comparison based on spatial hole burning corrected yield,” IEEE J. Quantum Electron. 27, 1714–1723 (1991).
[Crossref]

Yang, Y.

Y. Yang, Y. Wang, L. Wang, S. Zhang, and J. J. He, Single-mode narrow linewidth three-section coupled-cavity laser (IEEE, 2012), p. 515–516.

Yu, L.

L. Yu, D. Lu, Y. Sun, and L. Zhao, “Tunable photonic microwave generation by directly modulating a dual-wavelength amplified feedback laser,” Opt. Commun. 345, 57–61 (2015).
[Crossref]

Zhang, S.

Y. Yang, Y. Wang, L. Wang, S. Zhang, and J. J. He, Single-mode narrow linewidth three-section coupled-cavity laser (IEEE, 2012), p. 515–516.

Zhang, Y.

J. Zheng, N. Song, Y. Zhang, Y. Shi, S. Tang, L. Li, R. Guo, and X. Chen, “An equivalent-asymmetric coupling coefficient DFB laser with high output efficiency and stable single longitudinal mode operation,” IEEE Photonics J. 6, 1–9 (2014).

Zhao, L.

L. Yu, D. Lu, Y. Sun, and L. Zhao, “Tunable photonic microwave generation by directly modulating a dual-wavelength amplified feedback laser,” Opt. Commun. 345, 57–61 (2015).
[Crossref]

Zheng, J.

J. Zheng, N. Song, Y. Zhang, Y. Shi, S. Tang, L. Li, R. Guo, and X. Chen, “An equivalent-asymmetric coupling coefficient DFB laser with high output efficiency and stable single longitudinal mode operation,” IEEE Photonics J. 6, 1–9 (2014).

Zheng, Z.

B. Lin, B. Pan, Z. Zheng, M. Li, and S. C. Tjin, A review of photonic microwave generation (IEEE, 2016), p. 1–3.

Zhou, Y.

IEEE J. Quantum Electron. (1)

K. David, G. Morthier, P. Vankwikelberge, R. G. Baets, T. Wolf, and B. Borchert, “Gain-coupled DFB lasers versus index-coupled and phase shifted DFB lasers: a comparison based on spatial hole burning corrected yield,” IEEE J. Quantum Electron. 27, 1714–1723 (1991).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

X. Q. Qi and J. M. Liu, “Photonic microwave applications of the dynamics of semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 17, 1198–1211 (2011).
[Crossref]

S.-C. Chan and J.-M. Liu, “Tunable narrow-linewidth photonic microwave generation using semiconductor laser dynamics,” IEEE J. Sel. Top. Quantum Electron. 10, 1025–1032 (2004).
[Crossref]

H. Wenzel, G. Erbert, and P. M. Enders, “Improved theory of the refractive-index change in quantum-well lasers,” IEEE J. Sel. Top. Quantum Electron. 5, 637–642 (1999).
[Crossref]

IEEE Microw. Mag. (1)

R. Waterhouse and D. Novack, “Realizing 5G: Microwave photonics for 5G mobile wireless systems,” IEEE Microw. Mag. 16, 84–92 (2015).
[Crossref]

IEEE Photonics J. (1)

J. Zheng, N. Song, Y. Zhang, Y. Shi, S. Tang, L. Li, R. Guo, and X. Chen, “An equivalent-asymmetric coupling coefficient DFB laser with high output efficiency and stable single longitudinal mode operation,” IEEE Photonics J. 6, 1–9 (2014).

IEEE Photonics Technol. Lett. (1)

M. J. Strain and M. Sorel, “Integrated III–V bragg gratings for arbitrary control over chirp and coupling coefficient,” IEEE Photonics Technol. Lett. 20, 1863–1865 (2008).
[Crossref]

Nanotechnology (1)

R. Millett, K. Hinzer, A. Benhsaien, T. J. Hall, and H. Schriemer, “The impact of laterally coupled grating microstructure on effective coupling coefficients,” Nanotechnology.  21, 134015 (2010).
[Crossref] [PubMed]

Opt. Commun. (1)

L. Yu, D. Lu, Y. Sun, and L. Zhao, “Tunable photonic microwave generation by directly modulating a dual-wavelength amplified feedback laser,” Opt. Commun. 345, 57–61 (2015).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Opt. Quantum Electron (2)

T. Uusitalo, H. Virtanen, and M. Dumitrescu, “Transverse structure optimization of distributed feedback and distributed bragg reflector lasers with surface gratings,” Opt. Quantum Electron.  49, 206 (2017).
[Crossref]

H. Virtanen, T. Uusitalo, and M. Dumitrescu, “Simulation studies of DFB laser longitudinal structures for narrow linewidth emission,” Opt. Quantum Electron.  49, 160 (2017).
[Crossref]

Phys. World (1)

P. S. J. Russell, J.-L. Archambault, and L. Reekie, “Fibre gratings,” Phys. World 6, 41–46 (1993).
[Crossref]

Semicond. Sci. Technol. (1)

J. Fricke, J. Decker, A. Maaßdorf, H. Wenzel, G. Erbert, A. Knigge, and P. Crump, “DFB lasers with apodized surface gratings for wavelength stabilization and high efficiency,” Semicond. Sci. Technol. 32, 075012 (2017).
[Crossref]

Other (6)

B. Lin, B. Pan, Z. Zheng, M. Li, and S. C. Tjin, A review of photonic microwave generation (IEEE, 2016), p. 1–3.

A. Corradi, G. Carpintero, B. W. Tilma, M. K. Smit, and E. A. J. M. Bente, Integrated dual-wavelength semiconductor laser systems for millimeter wave generation (IEEE, 2012), p. 34–35.

Y. Yang, Y. Wang, L. Wang, S. Zhang, and J. J. He, Single-mode narrow linewidth three-section coupled-cavity laser (IEEE, 2012), p. 515–516.

F. v. Dijk, A. Accard, A. Enard, O. Drisse, D. Make, and F. Lelarge, Monolithic dual wavelength DFB lasers for narrow linewidth heterodyne beat-note generation (IEEE, 2011), p. 73–76.

L. A. Coldren, S. W. Corzine, and M. L. Mashanovitch, Diode lasers and photonic integrated circuits, vol. 218 (John Wiley & Sons, 2012).
[Crossref]

M. Dumitrescu, T. Uusitalo, H. Virtanen, J. Viheriälä, and A. Laakso, “Semiconductor laser structure with a grating and multiple phase shifts therein,” (2017). PCT Patent ApplicationWO/2017/220144

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Schematics of the transverse and longitudinal structure of the studied lasers. The scanning electron micrograph is from the side of the grating. W: ridge width (W1=W2 for un-apodized gratings); D: lateral extension of the protrustions; WG: waveguide; QW: quantum well; t: un-etched cladding thickness; Li: length of ith section.
Fig. 2
Fig. 2 Calculated dependencies of the coupling coefficient and effective refractive index on the ridge width (W).
Fig. 3
Fig. 3 Dual-stopband grating reflectivity for different values of M (top panel), κ (middle panel), and P (bottom panel). Mode positions on the stop band edges are illustrated with gray symbols. λBragg = 1562 nm, κ = 20 cm−1, P = 2, and M = 400 (with corresponding L ≈ 0.88 mm) when not varied.
Fig. 4
Fig. 4 Variations of the difference frequency (∆νmodes) for a 3rd order grating with a period of 733 nm: a) with the coupling coefficient (κ) and with the number of grating periods between phase shifts (M), for structures with three grating sections (P + 1 = 3); b) with the number of grating sections (P + 1), for κ ≈9.5 cm−1 (corresponding to the value evaluated for the fabricated un-apodized devices) and M = 150; c) with the number of grating periods in the end sections, for κ ≈9.5 cm−1 and M=150 in the inner grating sections; d) with M, for κ ≈9.5 cm−1 and different P values. The corresponding side mode suppression ratio (SMSR) variations included in panels b and c have been evaluated from calculated mirror losses [20].
Fig. 5
Fig. 5 TDTW simulation of the longitudinal distributions of the photon and carrier densities for lasers with apodized and un-apodized gratings when the powers of the two emitted modes at the output facet are in balance. The output facet is at 0 cavity position, next to the low κ side of the apodization.
Fig. 6
Fig. 6 Light-current characteristics of the DM-DFB lasers with apodized and un-apodized gratings. Both devices are AR coated.
Fig. 7
Fig. 7 Optical spectra of DM-DFB lasers with apodized and un-apodized gratings. The spectra have been shifted to make them overlap.
Fig. 8
Fig. 8 Difference frequency as a function of front and middle section bias currents for DM-DFB lasers with un-apodized gratings and AR-coated facets and for DM-DFB lasers with apodized gratings and either as-cleaved or AR-coated facets. The difference frequency variation has been determined from optical spectra. The dotted lines indicate 30 GHz difference frequency level. Gray tiled areas correspond to the situations when the two strongest modes are not next to the inner nodes of the grating reflectivity stopbands.
Fig. 9
Fig. 9 Measured beat-mode RF spectra and unconstrained pseudo-Voigt fits for DM-DFB lasers having un-apodized gratings and AR-coated facets and for DM-DFB lasers having apodized gratings and as-cleaved or AR-coated facets. The radio and video bandwidth of the ESA was = 10 kHz.
Fig. 10
Fig. 10 FWHM of the Lorentzian linewidth component from the unconstrained pseudo-Voigt fit as a function of integration time for the DM-DFB lasers with un-apodized gratings and AR-coated facets and for the DM-DFB lasers with apodized gratings and as-cleaved facets. The ESA bandwidth was set to 100 kHz to enable shorter integration times.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ ν Bragg = ν 0 B ( m M )
Δ ν modes Δ ν Bragg Δ ν s b ν 0 B [ 1 m M S ( 2 Δ n 2 n eff _ 0 ) 2 + ( 1 M ( P + 1 ) ) 2 ]