Y. M. Liu, C. H. Bai, D. Y. Wang, T. Wang, M. H. Zheng, H. F. Wang, A. D. Zhu, and S. Zhang, “Ground-state cooling of rotating mirror in double-laguerre-gaussian-cavity with atomic ensemble,” Opt. Express 26, 6143–6157 (2018).

[Crossref]
[PubMed]

J. Cao, Y. Xing, L. Qi, D. Y. Wang, C. H. Bai, A. D. Zhu, S. Zhang, and H. F. Wang, “Simulating and studying the topological properties of generalized commensurate Aubry-André-Harper model with microresonator array,” Laser Phys. Lett. 15, 015211 (2018).

[Crossref]

L. Qi, Y. Xing, J. Cao, X. X. Jiang, C. S. An, A. D. Zhu, S. Zhang, and H. F. Wang, “Simulating and detecting the topological properties of modulated Rice-Mele model in one-dimensional circuit-QED lattice,” Sci. China-Phys. Mech. Astron. 61, 080313 (2018).

[Crossref]

Y. Xing, L. Qi, J. Cao, D. Y. Wang, C. H. Bai, H. F. Wang, A. D. Zhu, and S. Zhang, “Spontaneous 𝒫𝒯-symmetry breaking in non-Hermitian coupled-cavity array,” Phys. Rev. A 96, 043810 (2017).

[Crossref]

C. Kong, H. Xiong, and Y. Wu, “Coulomb-interaction-dependent effect of high-order sideband generation in an optomechanical system,” Phys. Rev. A 95, 033820 (2017).

[Crossref]

C. H. Bai, D. Y. Wang, H. F. Wang, A. D. Zhu, and S. Zhang, “Classical-to-quantum transition behavior between two oscillators separated in space under the action of optomechanical interaction,” Sci. Rep. 7, 2545 (2017).

[Crossref]
[PubMed]

L. Qi, Y. Xing, H. F. Wang, A. D. Zhu, and S. Zhang, “Simulating Z2 topological insulators via a one-dimensional cavity optomechanical cells array,” Opt. Express 25, 17948–17959 (2017).

[Crossref]
[PubMed]

L. L. Wan, X. Y. Lü, J. H. Gao, and Y. Wu, “Controllable photon and phonon localization in optomechanical Lieb lattices,” Opt. Express 25, 17364–17374 (2017).

[Crossref]
[PubMed]

J. J. Miao, H. K. Jin, F. C. Zhang, and Y. Zhou, “Exact solution for the interacting Kitaev chain at the symmetric point,” Phys. Rev. Lett. 118, 267701 (2017).

[Crossref]
[PubMed]

Y. P. Gao, C. Cao, T. J. Wang, Y. Zhang, and C. Wang, “Cavity-mediated coupling of phonons and magnons,” Phys. Rev. A 96, 023826 (2017).

[Crossref]

Q. B. Zeng, S. Chen, and R. Lü, “Anderson localization in the non-Hermitian Aubry-André-Harper model with physical gain and loss,” Phys. Rev. A 95, 062118 (2017).

[Crossref]

M. Klett, H. Cartarius, D. Dast, J. Main, and G. Wunner, “Relation between 𝒫𝒯-symmetry breaking and topologically nontrivial phases in the Su-Schrieffer-Heeger and Kitaev models,” Phys. Rev. A 95, 053626 (2017).

[Crossref]

Y. C. Wang, J. J. Miao, H. K. Jin, and S. Chen, “Characterization of topological phases of dimerized Kitaev chain via edge correlation functions,” Phys. Rev. B 96, 205428 (2017).

[Crossref]

M. N. Chen, F. Mei, W Su, H. Q. Wang, S. L. Zhu, L. Sheng, and D. Y. Xing, “Topological phases of the kicked Harper–Kitaev model with ultracold atoms,” J. Phys. Condens. Matter 29, 035601 (2017).

[Crossref]

H. Q. Wang, M. N. Chen, R. W. Bomantara, J. B. Gong, and D. Y. Xing, “Line nodes and surface Majorana flat bands in static and kicked p-wave superconducting Harper model,” Phys. Rev. B 95, 075136 (2017).

[Crossref]

D. P. Liu, “Topological phase boundary in a generalized Kitaev model,” Chin. Phys. B 25, 057101 (2016).

[Crossref]

Q. B. Zeng, S. Chen, and R. Lü, “Generalized Aubry-André-Harper model with p-wave superconducting pairing,” Phys. Rev. B 94, 125408 (2016).

[Crossref]

C. Yuce, “Majorana edge modes with gain and loss,” Phys. Rev. A 93, 062130 (2016).

[Crossref]

Q. B. Zeng, B. G. Zhu, S. Chen, L. You, and R. Lü, “Non-Hermitian Kitaev chain with complex on-site potentials,” Phys. Rev. A 94, 022119 (2016).

[Crossref]

C. Cao, X. Chen, Y. W. Duan, L. Fan, R. Zhang, T. J. Wang, and C. Wang, “Concentrating partially entangled W-class states on nonlocal atoms using low-Q optical cavity and linear optical elements,” Sci. China-Phys. Mech. Astron. 59, 100315 (2016).

[Crossref]

G. S. Agarwal and S. M. Huang, “Strong mechanical squeezing and its detection,” Phys. Rev. A 93, 043844 (2016).

[Crossref]

D. Y. Wang, C. H. Bai, H. F. Wang, A. D. Zhu, and S. Zhang, “Steady-state mechanical squeezing in a hybrid atom-optomechanical system with a highly dissipative cavity,” Sci. Rep. 6, 24421 (2016).

[Crossref]
[PubMed]

D. Y. Wang, C. H. Bai, H. F. Wang, A. D. Zhu, and S. Zhang, “Steady-state mechanical squeezing in a double-cavity optomechanical system,” Sci. Rep. 6, 38559 (2016).

[Crossref]
[PubMed]

C. H. Bai, D. Y. Wang, H. F. Wang, A. D. Zhu, and S. Zhang, “Robust entanglement between a movable mirror and atomic ensemble and entanglement transfer in coupled optomechanical system,” Sci. Rep. 6, 33404 (2016).

[Crossref]
[PubMed]

Q. Wu, Y. Xiao, and Z. M. Zhang, “Entanglements in a coupled cavity-array with one oscillating end-mirror,” Chin. Phys. B 24, 104208 (2015).

[Crossref]

G. Kells, “Many-body Majorana operators and the equivalence of parity sectors,” Phys. Rev. B 92, 081401 (2015).

[Crossref]

X. H. Wang, T. T. Liu, Y. Xiong, and P. Q. Tong, “Spontaneous 𝒫𝒯-symmetry breaking in non-Hermitian Kitaev and extended Kitaev models,” Phys. Rev. A 92, 012116 (2015).

[Crossref]

Y. Xiong and P. Q. Tong, “A NOT operation on Majorana qubits with mobilizable solitons in an extended Su-Schrieffer-Heeger model,” New. J. Phys. 17, 013017 (2015).

[Crossref]

Y. H. Chan, C. K. Chiu, and K. Sun, “Multiple signatures of topological transitions for interacting fermions in chain lattices,” Phys. Rev. B 92, 104514 (2015).

[Crossref]

S. R. Elliott and M. Franz, “Majorana fermions in nuclear, particle, and solid-state physics,” Rev. Mod. Phys. 87, 137 (2015).

[Crossref]

R. Wakatsuki, M. Ezawa, Y. Tanaka, and N. Nagaosa, “Fermion fractionalization to Majorana fermions in a dimerized Kitaev superconductor,” Phys. Rev. B 90, 014505 (2014).

[Crossref]

Y. J. Guo, K. Li, W. J. Nie, and Y. Li, “Electromagnetically-induced-transparency-like ground-state cooling in a double-cavity optomechanical system,” Phys. Rev. A 90, 053841 (2014).

[Crossref]

P. C. Ma, J. Q. Zhang, Y. Xiao, M. Feng, and Z. M. Zhang, “Tunable double optomechanically induced transparency in an optomechanical system,” Phys. Rev. A 90, 043825 (2014).

[Crossref]

S. Ganeshan, K. Sun, and S. D. Sarma, “Topological zero-energy modes in gapless commensurate Aubry-André-Harper models,” Phys. Rev. Lett. 110, 180403 (2013).

[Crossref]

H. Shi and M. Bhattacharya, “Quantum mechanical study of a generic quadratically coupled optomechanical system,” Phys. Rev. A 87, 043829 (2013).

[Crossref]

C. W. J. Beenakker, “Search for Majorana fermions in superconductors,” Annu. Rev. Condens. Matter Phys. 4, 113–136 (2013).

[Crossref]

M. Leijnse and K. Flensberg, “Introduction to topological superconductivity and Majorana fermions,” Semicond. Sci. Technol. 27, 124003 (2012).

[Crossref]

J. Alicea, “New directions in the pursuit of Majorana fermions in solid state systems,” Rep. Prog. Phys. 75, 076501 (2012).

[Crossref]
[PubMed]

L. J. Lang and S. Chen, “Majorana fermions in density-modulated p-wave superconducting wires,” Phys. Rev. B 86, 205135 (2012).

[Crossref]

G. Goldstein and C. Chamon, “Exact zero modes in closed systems of interacting fermions,” Phys. Rev. B 86, 115122 (2012).

[Crossref]

F. Mei, S. L. Zhu, Z. M. Zhang, C. H. Oh, and N. Goldman, “Simulating Z2 topological insulators with cold atoms in a one-dimensional optical lattice,” Phys. Rev. A 85, 013638 (2012).

[Crossref]

J. Q. Liao and C. K. Law, “Parametric generation of quadrature squeezing of mirrors in cavity optomechanics,” Phys. Rev. A 83, 033820 (2011).

[Crossref]

L. Fidkowski and A. Kitaev, “Topological phases of fermions in one dimension,” Phys. Rev. B 83, 075103 (2011).

[Crossref]

A. M. Turner, F. Pollmann, and E. Berg, “Topological phases of one-dimensional fermions: An entanglement point of view,” Phys. Rev. B 83, 075102 (2011).

[Crossref]

T. D. Stanescu, R. M. Lutchyn, and S. Das Sarma, “Majorana fermions in semiconductor nanowires,” Phys. Rev. B 84, 144522 (2011).

[Crossref]

S. Gangadharaiah, B. Braunecker, P. Simon, and D. Loss, “Majorana edge states in interacting one-dimensional systems,” Phys. Rev. Lett. 107, 036801 (2011).

[Crossref]
[PubMed]

E. Sela, A. Altland, and A. Rosch, “Majorana fermions in strongly interacting helical liquids,” Phys. Rev. B 84, 085114 (2011).

[Crossref]

E. M. Stoudenmire, J. Alicea, O. A. Starykh, and M. P. A. Fisher, “Interaction effects in topological superconducting wires supporting Majorana fermions,” Phys. Rev. B 84, 014503 (2011).

[Crossref]

R. M. Lutchyn and M. P. A. Fisher, “Interacting topological phases in multiband nanowires,” Phys. Rev. B 84, 214528 (2011).

[Crossref]

J. D. Sau, R. M. Lutchyn, S. Tewari, and S. Das Sarma, “Generic new platform for topological quantum computation using semiconductor heterostructures,” Phys. Rev. Lett. 104, 040502 (2010).

[Crossref]
[PubMed]

J. Alicea, “Majorana fermions in a tunable semiconductor device,” Phys. Rev. B 81, 125318 (2010).

[Crossref]

M. Sato, Y. Takahashi, and S. Fujimoto, “Non-Abelian topological orders and Majorana fermions in spin-singlet superconductors,” Phys. Rev. B 82, 134521 (2010).

[Crossref]

R. M. Lutchyn, J. D. Sau, and S. Das Sarma, “Majorana fermions and a topological phase transition in semiconductor-superconductor heterostructures,” Phys. Rev. Lett. 105, 077001 (2010).

[Crossref]
[PubMed]

Y. Oreg, G. Refael, and F. von Oppen, “Helical liquids and Majorana bound states in quantum wires,” Phys. Rev. Lett. 105, 177002 (2010).

[Crossref]

F. Wilczek, “Majorana returns,” Nat. Phys. 5, 614–618 (2009).

[Crossref]

Y. S. Park and H. Wang, “Resolved-sideband and cryogenic cooling of an optomechanical resonator,” Nat. Physics 5, 489–493 (2009).

[Crossref]

F. Marquardt and S. M. Girvin, “Trend: Optomechanics,” Physics 2, 40 (2009).

[Crossref]

I. Favero and K. Karrai, “Optomechanics of deformable optical cavities,” Nat. Photonics 3, 201–205 (2009).

[Crossref]

T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321, 1172–1176 (2008).

[Crossref]
[PubMed]

C. Genes, D. Vitali, P. Tombesi, S. Gigan, and M. Aspelmeyer, “Ground-state cooling of a micromechanical oscillator: Comparing cold damping and cavity-assisted cooling schemes,” Phys. Rev. A 77, 033804 (2008).

[Crossref]

C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das Sarma, “Non-Abelian anyons and topological quantum computation,” Rev. Mod. Phys. 80, 1083 (2008).

[Crossref]

L. Fu and C. L. Kane, “Superconducting proximity effect and Majorana fermions at the surface of a topological insulator,” Phys. Rev. Lett. 100, 096407 (2008).

[Crossref]
[PubMed]

I. Wilson-Rae, N. Nooshi, W. Zwerger, and T. J. Kippenberg, “Theory of ground state cooling of a mechanical oscillator using dynamical backaction,” Phys. Rev. Lett. 99, 093901 (2007).

[Crossref]
[PubMed]

F. Marquardt, J. P. Chen, A. A. Clerk, and S. M. Girvin, “Quantum theory of cavity-assisted sideband cooling of mechanical motion,” Phys. Rev. Lett. 99, 093902 (2007).

[Crossref]
[PubMed]

D. Vitali, S. Gigan, A. Ferreira, H. R. Böhm, P. Tombesi, A. Guerreiro, V. Vedral, A. Zeilinger, and M. Aspelmeyer, “Optomechanical entanglement between a movable mirror and a cavity field,” Phys. Rev. Lett. 98, 030405 (2007).

[Crossref]
[PubMed]

D. Kleckner and D. Bouwmeester, “Sub-kelvin optical cooling of a micromechanical resonator,” Nature (London) 444, 75–78 (2006).

[Crossref]

A. Y. Kitaev, “Unpaired Majorana fermions in quantum wires,” Phys.-Usp. 44, 131–136 (2001).

[Crossref]

G. S. Agarwal and S. M. Huang, “Strong mechanical squeezing and its detection,” Phys. Rev. A 93, 043844 (2016).

[Crossref]

J. Alicea, “New directions in the pursuit of Majorana fermions in solid state systems,” Rep. Prog. Phys. 75, 076501 (2012).

[Crossref]
[PubMed]

E. M. Stoudenmire, J. Alicea, O. A. Starykh, and M. P. A. Fisher, “Interaction effects in topological superconducting wires supporting Majorana fermions,” Phys. Rev. B 84, 014503 (2011).

[Crossref]

J. Alicea, “Majorana fermions in a tunable semiconductor device,” Phys. Rev. B 81, 125318 (2010).

[Crossref]

E. Sela, A. Altland, and A. Rosch, “Majorana fermions in strongly interacting helical liquids,” Phys. Rev. B 84, 085114 (2011).

[Crossref]

L. Qi, Y. Xing, J. Cao, X. X. Jiang, C. S. An, A. D. Zhu, S. Zhang, and H. F. Wang, “Simulating and detecting the topological properties of modulated Rice-Mele model in one-dimensional circuit-QED lattice,” Sci. China-Phys. Mech. Astron. 61, 080313 (2018).

[Crossref]

C. Genes, D. Vitali, P. Tombesi, S. Gigan, and M. Aspelmeyer, “Ground-state cooling of a micromechanical oscillator: Comparing cold damping and cavity-assisted cooling schemes,” Phys. Rev. A 77, 033804 (2008).

[Crossref]

D. Vitali, S. Gigan, A. Ferreira, H. R. Böhm, P. Tombesi, A. Guerreiro, V. Vedral, A. Zeilinger, and M. Aspelmeyer, “Optomechanical entanglement between a movable mirror and a cavity field,” Phys. Rev. Lett. 98, 030405 (2007).

[Crossref]
[PubMed]

J. Cao, Y. Xing, L. Qi, D. Y. Wang, C. H. Bai, A. D. Zhu, S. Zhang, and H. F. Wang, “Simulating and studying the topological properties of generalized commensurate Aubry-André-Harper model with microresonator array,” Laser Phys. Lett. 15, 015211 (2018).

[Crossref]

Y. M. Liu, C. H. Bai, D. Y. Wang, T. Wang, M. H. Zheng, H. F. Wang, A. D. Zhu, and S. Zhang, “Ground-state cooling of rotating mirror in double-laguerre-gaussian-cavity with atomic ensemble,” Opt. Express 26, 6143–6157 (2018).

[Crossref]
[PubMed]

Y. Xing, L. Qi, J. Cao, D. Y. Wang, C. H. Bai, H. F. Wang, A. D. Zhu, and S. Zhang, “Spontaneous 𝒫𝒯-symmetry breaking in non-Hermitian coupled-cavity array,” Phys. Rev. A 96, 043810 (2017).

[Crossref]

C. H. Bai, D. Y. Wang, H. F. Wang, A. D. Zhu, and S. Zhang, “Classical-to-quantum transition behavior between two oscillators separated in space under the action of optomechanical interaction,” Sci. Rep. 7, 2545 (2017).

[Crossref]
[PubMed]

C. H. Bai, D. Y. Wang, H. F. Wang, A. D. Zhu, and S. Zhang, “Robust entanglement between a movable mirror and atomic ensemble and entanglement transfer in coupled optomechanical system,” Sci. Rep. 6, 33404 (2016).

[Crossref]
[PubMed]

D. Y. Wang, C. H. Bai, H. F. Wang, A. D. Zhu, and S. Zhang, “Steady-state mechanical squeezing in a hybrid atom-optomechanical system with a highly dissipative cavity,” Sci. Rep. 6, 24421 (2016).

[Crossref]
[PubMed]

D. Y. Wang, C. H. Bai, H. F. Wang, A. D. Zhu, and S. Zhang, “Steady-state mechanical squeezing in a double-cavity optomechanical system,” Sci. Rep. 6, 38559 (2016).

[Crossref]
[PubMed]

C. W. J. Beenakker, “Search for Majorana fermions in superconductors,” Annu. Rev. Condens. Matter Phys. 4, 113–136 (2013).

[Crossref]

A. M. Turner, F. Pollmann, and E. Berg, “Topological phases of one-dimensional fermions: An entanglement point of view,” Phys. Rev. B 83, 075102 (2011).

[Crossref]

H. Shi and M. Bhattacharya, “Quantum mechanical study of a generic quadratically coupled optomechanical system,” Phys. Rev. A 87, 043829 (2013).

[Crossref]

D. Vitali, S. Gigan, A. Ferreira, H. R. Böhm, P. Tombesi, A. Guerreiro, V. Vedral, A. Zeilinger, and M. Aspelmeyer, “Optomechanical entanglement between a movable mirror and a cavity field,” Phys. Rev. Lett. 98, 030405 (2007).

[Crossref]
[PubMed]

H. Q. Wang, M. N. Chen, R. W. Bomantara, J. B. Gong, and D. Y. Xing, “Line nodes and surface Majorana flat bands in static and kicked p-wave superconducting Harper model,” Phys. Rev. B 95, 075136 (2017).

[Crossref]

D. Kleckner and D. Bouwmeester, “Sub-kelvin optical cooling of a micromechanical resonator,” Nature (London) 444, 75–78 (2006).

[Crossref]

S. Gangadharaiah, B. Braunecker, P. Simon, and D. Loss, “Majorana edge states in interacting one-dimensional systems,” Phys. Rev. Lett. 107, 036801 (2011).

[Crossref]
[PubMed]

Y. P. Gao, C. Cao, T. J. Wang, Y. Zhang, and C. Wang, “Cavity-mediated coupling of phonons and magnons,” Phys. Rev. A 96, 023826 (2017).

[Crossref]

C. Cao, X. Chen, Y. W. Duan, L. Fan, R. Zhang, T. J. Wang, and C. Wang, “Concentrating partially entangled W-class states on nonlocal atoms using low-Q optical cavity and linear optical elements,” Sci. China-Phys. Mech. Astron. 59, 100315 (2016).

[Crossref]

J. Cao, Y. Xing, L. Qi, D. Y. Wang, C. H. Bai, A. D. Zhu, S. Zhang, and H. F. Wang, “Simulating and studying the topological properties of generalized commensurate Aubry-André-Harper model with microresonator array,” Laser Phys. Lett. 15, 015211 (2018).

[Crossref]

L. Qi, Y. Xing, J. Cao, X. X. Jiang, C. S. An, A. D. Zhu, S. Zhang, and H. F. Wang, “Simulating and detecting the topological properties of modulated Rice-Mele model in one-dimensional circuit-QED lattice,” Sci. China-Phys. Mech. Astron. 61, 080313 (2018).

[Crossref]

Y. Xing, L. Qi, J. Cao, D. Y. Wang, C. H. Bai, H. F. Wang, A. D. Zhu, and S. Zhang, “Spontaneous 𝒫𝒯-symmetry breaking in non-Hermitian coupled-cavity array,” Phys. Rev. A 96, 043810 (2017).

[Crossref]

M. Klett, H. Cartarius, D. Dast, J. Main, and G. Wunner, “Relation between 𝒫𝒯-symmetry breaking and topologically nontrivial phases in the Su-Schrieffer-Heeger and Kitaev models,” Phys. Rev. A 95, 053626 (2017).

[Crossref]

G. Goldstein and C. Chamon, “Exact zero modes in closed systems of interacting fermions,” Phys. Rev. B 86, 115122 (2012).

[Crossref]

Y. H. Chan, C. K. Chiu, and K. Sun, “Multiple signatures of topological transitions for interacting fermions in chain lattices,” Phys. Rev. B 92, 104514 (2015).

[Crossref]

F. Marquardt, J. P. Chen, A. A. Clerk, and S. M. Girvin, “Quantum theory of cavity-assisted sideband cooling of mechanical motion,” Phys. Rev. Lett. 99, 093902 (2007).

[Crossref]
[PubMed]

H. Q. Wang, M. N. Chen, R. W. Bomantara, J. B. Gong, and D. Y. Xing, “Line nodes and surface Majorana flat bands in static and kicked p-wave superconducting Harper model,” Phys. Rev. B 95, 075136 (2017).

[Crossref]

M. N. Chen, F. Mei, W Su, H. Q. Wang, S. L. Zhu, L. Sheng, and D. Y. Xing, “Topological phases of the kicked Harper–Kitaev model with ultracold atoms,” J. Phys. Condens. Matter 29, 035601 (2017).

[Crossref]

Y. C. Wang, J. J. Miao, H. K. Jin, and S. Chen, “Characterization of topological phases of dimerized Kitaev chain via edge correlation functions,” Phys. Rev. B 96, 205428 (2017).

[Crossref]

Q. B. Zeng, S. Chen, and R. Lü, “Anderson localization in the non-Hermitian Aubry-André-Harper model with physical gain and loss,” Phys. Rev. A 95, 062118 (2017).

[Crossref]

Q. B. Zeng, B. G. Zhu, S. Chen, L. You, and R. Lü, “Non-Hermitian Kitaev chain with complex on-site potentials,” Phys. Rev. A 94, 022119 (2016).

[Crossref]

Q. B. Zeng, S. Chen, and R. Lü, “Generalized Aubry-André-Harper model with p-wave superconducting pairing,” Phys. Rev. B 94, 125408 (2016).

[Crossref]

L. J. Lang and S. Chen, “Majorana fermions in density-modulated p-wave superconducting wires,” Phys. Rev. B 86, 205135 (2012).

[Crossref]

C. Cao, X. Chen, Y. W. Duan, L. Fan, R. Zhang, T. J. Wang, and C. Wang, “Concentrating partially entangled W-class states on nonlocal atoms using low-Q optical cavity and linear optical elements,” Sci. China-Phys. Mech. Astron. 59, 100315 (2016).

[Crossref]

Y. H. Chan, C. K. Chiu, and K. Sun, “Multiple signatures of topological transitions for interacting fermions in chain lattices,” Phys. Rev. B 92, 104514 (2015).

[Crossref]

F. Marquardt, J. P. Chen, A. A. Clerk, and S. M. Girvin, “Quantum theory of cavity-assisted sideband cooling of mechanical motion,” Phys. Rev. Lett. 99, 093902 (2007).

[Crossref]
[PubMed]

T. D. Stanescu, R. M. Lutchyn, and S. Das Sarma, “Majorana fermions in semiconductor nanowires,” Phys. Rev. B 84, 144522 (2011).

[Crossref]

J. D. Sau, R. M. Lutchyn, S. Tewari, and S. Das Sarma, “Generic new platform for topological quantum computation using semiconductor heterostructures,” Phys. Rev. Lett. 104, 040502 (2010).

[Crossref]
[PubMed]

R. M. Lutchyn, J. D. Sau, and S. Das Sarma, “Majorana fermions and a topological phase transition in semiconductor-superconductor heterostructures,” Phys. Rev. Lett. 105, 077001 (2010).

[Crossref]
[PubMed]

C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das Sarma, “Non-Abelian anyons and topological quantum computation,” Rev. Mod. Phys. 80, 1083 (2008).

[Crossref]

M. Klett, H. Cartarius, D. Dast, J. Main, and G. Wunner, “Relation between 𝒫𝒯-symmetry breaking and topologically nontrivial phases in the Su-Schrieffer-Heeger and Kitaev models,” Phys. Rev. A 95, 053626 (2017).

[Crossref]

C. Cao, X. Chen, Y. W. Duan, L. Fan, R. Zhang, T. J. Wang, and C. Wang, “Concentrating partially entangled W-class states on nonlocal atoms using low-Q optical cavity and linear optical elements,” Sci. China-Phys. Mech. Astron. 59, 100315 (2016).

[Crossref]

S. R. Elliott and M. Franz, “Majorana fermions in nuclear, particle, and solid-state physics,” Rev. Mod. Phys. 87, 137 (2015).

[Crossref]

R. Wakatsuki, M. Ezawa, Y. Tanaka, and N. Nagaosa, “Fermion fractionalization to Majorana fermions in a dimerized Kitaev superconductor,” Phys. Rev. B 90, 014505 (2014).

[Crossref]

C. Cao, X. Chen, Y. W. Duan, L. Fan, R. Zhang, T. J. Wang, and C. Wang, “Concentrating partially entangled W-class states on nonlocal atoms using low-Q optical cavity and linear optical elements,” Sci. China-Phys. Mech. Astron. 59, 100315 (2016).

[Crossref]

I. Favero and K. Karrai, “Optomechanics of deformable optical cavities,” Nat. Photonics 3, 201–205 (2009).

[Crossref]

P. C. Ma, J. Q. Zhang, Y. Xiao, M. Feng, and Z. M. Zhang, “Tunable double optomechanically induced transparency in an optomechanical system,” Phys. Rev. A 90, 043825 (2014).

[Crossref]

D. Vitali, S. Gigan, A. Ferreira, H. R. Böhm, P. Tombesi, A. Guerreiro, V. Vedral, A. Zeilinger, and M. Aspelmeyer, “Optomechanical entanglement between a movable mirror and a cavity field,” Phys. Rev. Lett. 98, 030405 (2007).

[Crossref]
[PubMed]

L. Fidkowski and A. Kitaev, “Topological phases of fermions in one dimension,” Phys. Rev. B 83, 075103 (2011).

[Crossref]

E. M. Stoudenmire, J. Alicea, O. A. Starykh, and M. P. A. Fisher, “Interaction effects in topological superconducting wires supporting Majorana fermions,” Phys. Rev. B 84, 014503 (2011).

[Crossref]

R. M. Lutchyn and M. P. A. Fisher, “Interacting topological phases in multiband nanowires,” Phys. Rev. B 84, 214528 (2011).

[Crossref]

M. Leijnse and K. Flensberg, “Introduction to topological superconductivity and Majorana fermions,” Semicond. Sci. Technol. 27, 124003 (2012).

[Crossref]

S. R. Elliott and M. Franz, “Majorana fermions in nuclear, particle, and solid-state physics,” Rev. Mod. Phys. 87, 137 (2015).

[Crossref]

C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das Sarma, “Non-Abelian anyons and topological quantum computation,” Rev. Mod. Phys. 80, 1083 (2008).

[Crossref]

L. Fu and C. L. Kane, “Superconducting proximity effect and Majorana fermions at the surface of a topological insulator,” Phys. Rev. Lett. 100, 096407 (2008).

[Crossref]
[PubMed]

M. Sato, Y. Takahashi, and S. Fujimoto, “Non-Abelian topological orders and Majorana fermions in spin-singlet superconductors,” Phys. Rev. B 82, 134521 (2010).

[Crossref]

S. Ganeshan, K. Sun, and S. D. Sarma, “Topological zero-energy modes in gapless commensurate Aubry-André-Harper models,” Phys. Rev. Lett. 110, 180403 (2013).

[Crossref]

S. Gangadharaiah, B. Braunecker, P. Simon, and D. Loss, “Majorana edge states in interacting one-dimensional systems,” Phys. Rev. Lett. 107, 036801 (2011).

[Crossref]
[PubMed]

Y. P. Gao, C. Cao, T. J. Wang, Y. Zhang, and C. Wang, “Cavity-mediated coupling of phonons and magnons,” Phys. Rev. A 96, 023826 (2017).

[Crossref]

C. Genes, D. Vitali, P. Tombesi, S. Gigan, and M. Aspelmeyer, “Ground-state cooling of a micromechanical oscillator: Comparing cold damping and cavity-assisted cooling schemes,” Phys. Rev. A 77, 033804 (2008).

[Crossref]

C. Genes, D. Vitali, P. Tombesi, S. Gigan, and M. Aspelmeyer, “Ground-state cooling of a micromechanical oscillator: Comparing cold damping and cavity-assisted cooling schemes,” Phys. Rev. A 77, 033804 (2008).

[Crossref]

D. Vitali, S. Gigan, A. Ferreira, H. R. Böhm, P. Tombesi, A. Guerreiro, V. Vedral, A. Zeilinger, and M. Aspelmeyer, “Optomechanical entanglement between a movable mirror and a cavity field,” Phys. Rev. Lett. 98, 030405 (2007).

[Crossref]
[PubMed]

F. Marquardt and S. M. Girvin, “Trend: Optomechanics,” Physics 2, 40 (2009).

[Crossref]

F. Marquardt, J. P. Chen, A. A. Clerk, and S. M. Girvin, “Quantum theory of cavity-assisted sideband cooling of mechanical motion,” Phys. Rev. Lett. 99, 093902 (2007).

[Crossref]
[PubMed]

F. Mei, S. L. Zhu, Z. M. Zhang, C. H. Oh, and N. Goldman, “Simulating Z2 topological insulators with cold atoms in a one-dimensional optical lattice,” Phys. Rev. A 85, 013638 (2012).

[Crossref]

G. Goldstein and C. Chamon, “Exact zero modes in closed systems of interacting fermions,” Phys. Rev. B 86, 115122 (2012).

[Crossref]

H. Q. Wang, M. N. Chen, R. W. Bomantara, J. B. Gong, and D. Y. Xing, “Line nodes and surface Majorana flat bands in static and kicked p-wave superconducting Harper model,” Phys. Rev. B 95, 075136 (2017).

[Crossref]

D. Vitali, S. Gigan, A. Ferreira, H. R. Böhm, P. Tombesi, A. Guerreiro, V. Vedral, A. Zeilinger, and M. Aspelmeyer, “Optomechanical entanglement between a movable mirror and a cavity field,” Phys. Rev. Lett. 98, 030405 (2007).

[Crossref]
[PubMed]

Y. J. Guo, K. Li, W. J. Nie, and Y. Li, “Electromagnetically-induced-transparency-like ground-state cooling in a double-cavity optomechanical system,” Phys. Rev. A 90, 053841 (2014).

[Crossref]

G. S. Agarwal and S. M. Huang, “Strong mechanical squeezing and its detection,” Phys. Rev. A 93, 043844 (2016).

[Crossref]

L. Qi, Y. Xing, J. Cao, X. X. Jiang, C. S. An, A. D. Zhu, S. Zhang, and H. F. Wang, “Simulating and detecting the topological properties of modulated Rice-Mele model in one-dimensional circuit-QED lattice,” Sci. China-Phys. Mech. Astron. 61, 080313 (2018).

[Crossref]

J. J. Miao, H. K. Jin, F. C. Zhang, and Y. Zhou, “Exact solution for the interacting Kitaev chain at the symmetric point,” Phys. Rev. Lett. 118, 267701 (2017).

[Crossref]
[PubMed]

Y. C. Wang, J. J. Miao, H. K. Jin, and S. Chen, “Characterization of topological phases of dimerized Kitaev chain via edge correlation functions,” Phys. Rev. B 96, 205428 (2017).

[Crossref]

L. Fu and C. L. Kane, “Superconducting proximity effect and Majorana fermions at the surface of a topological insulator,” Phys. Rev. Lett. 100, 096407 (2008).

[Crossref]
[PubMed]

I. Favero and K. Karrai, “Optomechanics of deformable optical cavities,” Nat. Photonics 3, 201–205 (2009).

[Crossref]

G. Kells, “Many-body Majorana operators and the equivalence of parity sectors,” Phys. Rev. B 92, 081401 (2015).

[Crossref]

T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321, 1172–1176 (2008).

[Crossref]
[PubMed]

I. Wilson-Rae, N. Nooshi, W. Zwerger, and T. J. Kippenberg, “Theory of ground state cooling of a mechanical oscillator using dynamical backaction,” Phys. Rev. Lett. 99, 093901 (2007).

[Crossref]
[PubMed]

L. Fidkowski and A. Kitaev, “Topological phases of fermions in one dimension,” Phys. Rev. B 83, 075103 (2011).

[Crossref]

A. Y. Kitaev, “Unpaired Majorana fermions in quantum wires,” Phys.-Usp. 44, 131–136 (2001).

[Crossref]

D. Kleckner and D. Bouwmeester, “Sub-kelvin optical cooling of a micromechanical resonator,” Nature (London) 444, 75–78 (2006).

[Crossref]

M. Klett, H. Cartarius, D. Dast, J. Main, and G. Wunner, “Relation between 𝒫𝒯-symmetry breaking and topologically nontrivial phases in the Su-Schrieffer-Heeger and Kitaev models,” Phys. Rev. A 95, 053626 (2017).

[Crossref]

C. Kong, H. Xiong, and Y. Wu, “Coulomb-interaction-dependent effect of high-order sideband generation in an optomechanical system,” Phys. Rev. A 95, 033820 (2017).

[Crossref]

L. J. Lang and S. Chen, “Majorana fermions in density-modulated p-wave superconducting wires,” Phys. Rev. B 86, 205135 (2012).

[Crossref]

J. Q. Liao and C. K. Law, “Parametric generation of quadrature squeezing of mirrors in cavity optomechanics,” Phys. Rev. A 83, 033820 (2011).

[Crossref]

M. Leijnse and K. Flensberg, “Introduction to topological superconductivity and Majorana fermions,” Semicond. Sci. Technol. 27, 124003 (2012).

[Crossref]

Y. J. Guo, K. Li, W. J. Nie, and Y. Li, “Electromagnetically-induced-transparency-like ground-state cooling in a double-cavity optomechanical system,” Phys. Rev. A 90, 053841 (2014).

[Crossref]

Y. J. Guo, K. Li, W. J. Nie, and Y. Li, “Electromagnetically-induced-transparency-like ground-state cooling in a double-cavity optomechanical system,” Phys. Rev. A 90, 053841 (2014).

[Crossref]

J. Q. Liao and C. K. Law, “Parametric generation of quadrature squeezing of mirrors in cavity optomechanics,” Phys. Rev. A 83, 033820 (2011).

[Crossref]

D. P. Liu, “Topological phase boundary in a generalized Kitaev model,” Chin. Phys. B 25, 057101 (2016).

[Crossref]

X. H. Wang, T. T. Liu, Y. Xiong, and P. Q. Tong, “Spontaneous 𝒫𝒯-symmetry breaking in non-Hermitian Kitaev and extended Kitaev models,” Phys. Rev. A 92, 012116 (2015).

[Crossref]

Y. M. Liu, C. H. Bai, D. Y. Wang, T. Wang, M. H. Zheng, H. F. Wang, A. D. Zhu, and S. Zhang, “Ground-state cooling of rotating mirror in double-laguerre-gaussian-cavity with atomic ensemble,” Opt. Express 26, 6143–6157 (2018).

[Crossref]
[PubMed]

S. Gangadharaiah, B. Braunecker, P. Simon, and D. Loss, “Majorana edge states in interacting one-dimensional systems,” Phys. Rev. Lett. 107, 036801 (2011).

[Crossref]
[PubMed]

Q. B. Zeng, S. Chen, and R. Lü, “Anderson localization in the non-Hermitian Aubry-André-Harper model with physical gain and loss,” Phys. Rev. A 95, 062118 (2017).

[Crossref]

Q. B. Zeng, B. G. Zhu, S. Chen, L. You, and R. Lü, “Non-Hermitian Kitaev chain with complex on-site potentials,” Phys. Rev. A 94, 022119 (2016).

[Crossref]

Q. B. Zeng, S. Chen, and R. Lü, “Generalized Aubry-André-Harper model with p-wave superconducting pairing,” Phys. Rev. B 94, 125408 (2016).

[Crossref]

T. D. Stanescu, R. M. Lutchyn, and S. Das Sarma, “Majorana fermions in semiconductor nanowires,” Phys. Rev. B 84, 144522 (2011).

[Crossref]

R. M. Lutchyn and M. P. A. Fisher, “Interacting topological phases in multiband nanowires,” Phys. Rev. B 84, 214528 (2011).

[Crossref]

J. D. Sau, R. M. Lutchyn, S. Tewari, and S. Das Sarma, “Generic new platform for topological quantum computation using semiconductor heterostructures,” Phys. Rev. Lett. 104, 040502 (2010).

[Crossref]
[PubMed]

R. M. Lutchyn, J. D. Sau, and S. Das Sarma, “Majorana fermions and a topological phase transition in semiconductor-superconductor heterostructures,” Phys. Rev. Lett. 105, 077001 (2010).

[Crossref]
[PubMed]

P. C. Ma, J. Q. Zhang, Y. Xiao, M. Feng, and Z. M. Zhang, “Tunable double optomechanically induced transparency in an optomechanical system,” Phys. Rev. A 90, 043825 (2014).

[Crossref]

M. Klett, H. Cartarius, D. Dast, J. Main, and G. Wunner, “Relation between 𝒫𝒯-symmetry breaking and topologically nontrivial phases in the Su-Schrieffer-Heeger and Kitaev models,” Phys. Rev. A 95, 053626 (2017).

[Crossref]

F. Marquardt and S. M. Girvin, “Trend: Optomechanics,” Physics 2, 40 (2009).

[Crossref]

F. Marquardt, J. P. Chen, A. A. Clerk, and S. M. Girvin, “Quantum theory of cavity-assisted sideband cooling of mechanical motion,” Phys. Rev. Lett. 99, 093902 (2007).

[Crossref]
[PubMed]

M. N. Chen, F. Mei, W Su, H. Q. Wang, S. L. Zhu, L. Sheng, and D. Y. Xing, “Topological phases of the kicked Harper–Kitaev model with ultracold atoms,” J. Phys. Condens. Matter 29, 035601 (2017).

[Crossref]

F. Mei, S. L. Zhu, Z. M. Zhang, C. H. Oh, and N. Goldman, “Simulating Z2 topological insulators with cold atoms in a one-dimensional optical lattice,” Phys. Rev. A 85, 013638 (2012).

[Crossref]

Y. C. Wang, J. J. Miao, H. K. Jin, and S. Chen, “Characterization of topological phases of dimerized Kitaev chain via edge correlation functions,” Phys. Rev. B 96, 205428 (2017).

[Crossref]

J. J. Miao, H. K. Jin, F. C. Zhang, and Y. Zhou, “Exact solution for the interacting Kitaev chain at the symmetric point,” Phys. Rev. Lett. 118, 267701 (2017).

[Crossref]
[PubMed]

R. Wakatsuki, M. Ezawa, Y. Tanaka, and N. Nagaosa, “Fermion fractionalization to Majorana fermions in a dimerized Kitaev superconductor,” Phys. Rev. B 90, 014505 (2014).

[Crossref]

C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das Sarma, “Non-Abelian anyons and topological quantum computation,” Rev. Mod. Phys. 80, 1083 (2008).

[Crossref]

Y. J. Guo, K. Li, W. J. Nie, and Y. Li, “Electromagnetically-induced-transparency-like ground-state cooling in a double-cavity optomechanical system,” Phys. Rev. A 90, 053841 (2014).

[Crossref]

I. Wilson-Rae, N. Nooshi, W. Zwerger, and T. J. Kippenberg, “Theory of ground state cooling of a mechanical oscillator using dynamical backaction,” Phys. Rev. Lett. 99, 093901 (2007).

[Crossref]
[PubMed]

F. Mei, S. L. Zhu, Z. M. Zhang, C. H. Oh, and N. Goldman, “Simulating Z2 topological insulators with cold atoms in a one-dimensional optical lattice,” Phys. Rev. A 85, 013638 (2012).

[Crossref]

Y. Oreg, G. Refael, and F. von Oppen, “Helical liquids and Majorana bound states in quantum wires,” Phys. Rev. Lett. 105, 177002 (2010).

[Crossref]

Y. S. Park and H. Wang, “Resolved-sideband and cryogenic cooling of an optomechanical resonator,” Nat. Physics 5, 489–493 (2009).

[Crossref]

A. M. Turner, F. Pollmann, and E. Berg, “Topological phases of one-dimensional fermions: An entanglement point of view,” Phys. Rev. B 83, 075102 (2011).

[Crossref]

J. Cao, Y. Xing, L. Qi, D. Y. Wang, C. H. Bai, A. D. Zhu, S. Zhang, and H. F. Wang, “Simulating and studying the topological properties of generalized commensurate Aubry-André-Harper model with microresonator array,” Laser Phys. Lett. 15, 015211 (2018).

[Crossref]

L. Qi, Y. Xing, J. Cao, X. X. Jiang, C. S. An, A. D. Zhu, S. Zhang, and H. F. Wang, “Simulating and detecting the topological properties of modulated Rice-Mele model in one-dimensional circuit-QED lattice,” Sci. China-Phys. Mech. Astron. 61, 080313 (2018).

[Crossref]

Y. Xing, L. Qi, J. Cao, D. Y. Wang, C. H. Bai, H. F. Wang, A. D. Zhu, and S. Zhang, “Spontaneous 𝒫𝒯-symmetry breaking in non-Hermitian coupled-cavity array,” Phys. Rev. A 96, 043810 (2017).

[Crossref]

L. Qi, Y. Xing, H. F. Wang, A. D. Zhu, and S. Zhang, “Simulating Z2 topological insulators via a one-dimensional cavity optomechanical cells array,” Opt. Express 25, 17948–17959 (2017).

[Crossref]
[PubMed]

Y. Oreg, G. Refael, and F. von Oppen, “Helical liquids and Majorana bound states in quantum wires,” Phys. Rev. Lett. 105, 177002 (2010).

[Crossref]

E. Sela, A. Altland, and A. Rosch, “Majorana fermions in strongly interacting helical liquids,” Phys. Rev. B 84, 085114 (2011).

[Crossref]

S. Ganeshan, K. Sun, and S. D. Sarma, “Topological zero-energy modes in gapless commensurate Aubry-André-Harper models,” Phys. Rev. Lett. 110, 180403 (2013).

[Crossref]

M. Sato, Y. Takahashi, and S. Fujimoto, “Non-Abelian topological orders and Majorana fermions in spin-singlet superconductors,” Phys. Rev. B 82, 134521 (2010).

[Crossref]

R. M. Lutchyn, J. D. Sau, and S. Das Sarma, “Majorana fermions and a topological phase transition in semiconductor-superconductor heterostructures,” Phys. Rev. Lett. 105, 077001 (2010).

[Crossref]
[PubMed]

J. D. Sau, R. M. Lutchyn, S. Tewari, and S. Das Sarma, “Generic new platform for topological quantum computation using semiconductor heterostructures,” Phys. Rev. Lett. 104, 040502 (2010).

[Crossref]
[PubMed]

E. Sela, A. Altland, and A. Rosch, “Majorana fermions in strongly interacting helical liquids,” Phys. Rev. B 84, 085114 (2011).

[Crossref]

M. N. Chen, F. Mei, W Su, H. Q. Wang, S. L. Zhu, L. Sheng, and D. Y. Xing, “Topological phases of the kicked Harper–Kitaev model with ultracold atoms,” J. Phys. Condens. Matter 29, 035601 (2017).

[Crossref]

H. Shi and M. Bhattacharya, “Quantum mechanical study of a generic quadratically coupled optomechanical system,” Phys. Rev. A 87, 043829 (2013).

[Crossref]

S. Gangadharaiah, B. Braunecker, P. Simon, and D. Loss, “Majorana edge states in interacting one-dimensional systems,” Phys. Rev. Lett. 107, 036801 (2011).

[Crossref]
[PubMed]

C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das Sarma, “Non-Abelian anyons and topological quantum computation,” Rev. Mod. Phys. 80, 1083 (2008).

[Crossref]

T. D. Stanescu, R. M. Lutchyn, and S. Das Sarma, “Majorana fermions in semiconductor nanowires,” Phys. Rev. B 84, 144522 (2011).

[Crossref]

E. M. Stoudenmire, J. Alicea, O. A. Starykh, and M. P. A. Fisher, “Interaction effects in topological superconducting wires supporting Majorana fermions,” Phys. Rev. B 84, 014503 (2011).

[Crossref]

C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das Sarma, “Non-Abelian anyons and topological quantum computation,” Rev. Mod. Phys. 80, 1083 (2008).

[Crossref]

E. M. Stoudenmire, J. Alicea, O. A. Starykh, and M. P. A. Fisher, “Interaction effects in topological superconducting wires supporting Majorana fermions,” Phys. Rev. B 84, 014503 (2011).

[Crossref]

M. N. Chen, F. Mei, W Su, H. Q. Wang, S. L. Zhu, L. Sheng, and D. Y. Xing, “Topological phases of the kicked Harper–Kitaev model with ultracold atoms,” J. Phys. Condens. Matter 29, 035601 (2017).

[Crossref]

Y. H. Chan, C. K. Chiu, and K. Sun, “Multiple signatures of topological transitions for interacting fermions in chain lattices,” Phys. Rev. B 92, 104514 (2015).

[Crossref]

S. Ganeshan, K. Sun, and S. D. Sarma, “Topological zero-energy modes in gapless commensurate Aubry-André-Harper models,” Phys. Rev. Lett. 110, 180403 (2013).

[Crossref]

M. Sato, Y. Takahashi, and S. Fujimoto, “Non-Abelian topological orders and Majorana fermions in spin-singlet superconductors,” Phys. Rev. B 82, 134521 (2010).

[Crossref]

R. Wakatsuki, M. Ezawa, Y. Tanaka, and N. Nagaosa, “Fermion fractionalization to Majorana fermions in a dimerized Kitaev superconductor,” Phys. Rev. B 90, 014505 (2014).

[Crossref]

J. D. Sau, R. M. Lutchyn, S. Tewari, and S. Das Sarma, “Generic new platform for topological quantum computation using semiconductor heterostructures,” Phys. Rev. Lett. 104, 040502 (2010).

[Crossref]
[PubMed]

C. Genes, D. Vitali, P. Tombesi, S. Gigan, and M. Aspelmeyer, “Ground-state cooling of a micromechanical oscillator: Comparing cold damping and cavity-assisted cooling schemes,” Phys. Rev. A 77, 033804 (2008).

[Crossref]

D. Vitali, S. Gigan, A. Ferreira, H. R. Böhm, P. Tombesi, A. Guerreiro, V. Vedral, A. Zeilinger, and M. Aspelmeyer, “Optomechanical entanglement between a movable mirror and a cavity field,” Phys. Rev. Lett. 98, 030405 (2007).

[Crossref]
[PubMed]

Y. Xiong and P. Q. Tong, “A NOT operation on Majorana qubits with mobilizable solitons in an extended Su-Schrieffer-Heeger model,” New. J. Phys. 17, 013017 (2015).

[Crossref]

X. H. Wang, T. T. Liu, Y. Xiong, and P. Q. Tong, “Spontaneous 𝒫𝒯-symmetry breaking in non-Hermitian Kitaev and extended Kitaev models,” Phys. Rev. A 92, 012116 (2015).

[Crossref]

A. M. Turner, F. Pollmann, and E. Berg, “Topological phases of one-dimensional fermions: An entanglement point of view,” Phys. Rev. B 83, 075102 (2011).

[Crossref]

T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321, 1172–1176 (2008).

[Crossref]
[PubMed]

D. Vitali, S. Gigan, A. Ferreira, H. R. Böhm, P. Tombesi, A. Guerreiro, V. Vedral, A. Zeilinger, and M. Aspelmeyer, “Optomechanical entanglement between a movable mirror and a cavity field,” Phys. Rev. Lett. 98, 030405 (2007).

[Crossref]
[PubMed]

C. Genes, D. Vitali, P. Tombesi, S. Gigan, and M. Aspelmeyer, “Ground-state cooling of a micromechanical oscillator: Comparing cold damping and cavity-assisted cooling schemes,” Phys. Rev. A 77, 033804 (2008).

[Crossref]

D. Vitali, S. Gigan, A. Ferreira, H. R. Böhm, P. Tombesi, A. Guerreiro, V. Vedral, A. Zeilinger, and M. Aspelmeyer, “Optomechanical entanglement between a movable mirror and a cavity field,” Phys. Rev. Lett. 98, 030405 (2007).

[Crossref]
[PubMed]

Y. Oreg, G. Refael, and F. von Oppen, “Helical liquids and Majorana bound states in quantum wires,” Phys. Rev. Lett. 105, 177002 (2010).

[Crossref]

R. Wakatsuki, M. Ezawa, Y. Tanaka, and N. Nagaosa, “Fermion fractionalization to Majorana fermions in a dimerized Kitaev superconductor,” Phys. Rev. B 90, 014505 (2014).

[Crossref]

Y. P. Gao, C. Cao, T. J. Wang, Y. Zhang, and C. Wang, “Cavity-mediated coupling of phonons and magnons,” Phys. Rev. A 96, 023826 (2017).

[Crossref]

C. Cao, X. Chen, Y. W. Duan, L. Fan, R. Zhang, T. J. Wang, and C. Wang, “Concentrating partially entangled W-class states on nonlocal atoms using low-Q optical cavity and linear optical elements,” Sci. China-Phys. Mech. Astron. 59, 100315 (2016).

[Crossref]

Y. M. Liu, C. H. Bai, D. Y. Wang, T. Wang, M. H. Zheng, H. F. Wang, A. D. Zhu, and S. Zhang, “Ground-state cooling of rotating mirror in double-laguerre-gaussian-cavity with atomic ensemble,” Opt. Express 26, 6143–6157 (2018).

[Crossref]
[PubMed]

J. Cao, Y. Xing, L. Qi, D. Y. Wang, C. H. Bai, A. D. Zhu, S. Zhang, and H. F. Wang, “Simulating and studying the topological properties of generalized commensurate Aubry-André-Harper model with microresonator array,” Laser Phys. Lett. 15, 015211 (2018).

[Crossref]

C. H. Bai, D. Y. Wang, H. F. Wang, A. D. Zhu, and S. Zhang, “Classical-to-quantum transition behavior between two oscillators separated in space under the action of optomechanical interaction,” Sci. Rep. 7, 2545 (2017).

[Crossref]
[PubMed]

Y. Xing, L. Qi, J. Cao, D. Y. Wang, C. H. Bai, H. F. Wang, A. D. Zhu, and S. Zhang, “Spontaneous 𝒫𝒯-symmetry breaking in non-Hermitian coupled-cavity array,” Phys. Rev. A 96, 043810 (2017).

[Crossref]

C. H. Bai, D. Y. Wang, H. F. Wang, A. D. Zhu, and S. Zhang, “Robust entanglement between a movable mirror and atomic ensemble and entanglement transfer in coupled optomechanical system,” Sci. Rep. 6, 33404 (2016).

[Crossref]
[PubMed]

D. Y. Wang, C. H. Bai, H. F. Wang, A. D. Zhu, and S. Zhang, “Steady-state mechanical squeezing in a hybrid atom-optomechanical system with a highly dissipative cavity,” Sci. Rep. 6, 24421 (2016).

[Crossref]
[PubMed]

D. Y. Wang, C. H. Bai, H. F. Wang, A. D. Zhu, and S. Zhang, “Steady-state mechanical squeezing in a double-cavity optomechanical system,” Sci. Rep. 6, 38559 (2016).

[Crossref]
[PubMed]

Y. S. Park and H. Wang, “Resolved-sideband and cryogenic cooling of an optomechanical resonator,” Nat. Physics 5, 489–493 (2009).

[Crossref]

J. Cao, Y. Xing, L. Qi, D. Y. Wang, C. H. Bai, A. D. Zhu, S. Zhang, and H. F. Wang, “Simulating and studying the topological properties of generalized commensurate Aubry-André-Harper model with microresonator array,” Laser Phys. Lett. 15, 015211 (2018).

[Crossref]

Y. M. Liu, C. H. Bai, D. Y. Wang, T. Wang, M. H. Zheng, H. F. Wang, A. D. Zhu, and S. Zhang, “Ground-state cooling of rotating mirror in double-laguerre-gaussian-cavity with atomic ensemble,” Opt. Express 26, 6143–6157 (2018).

[Crossref]
[PubMed]

L. Qi, Y. Xing, J. Cao, X. X. Jiang, C. S. An, A. D. Zhu, S. Zhang, and H. F. Wang, “Simulating and detecting the topological properties of modulated Rice-Mele model in one-dimensional circuit-QED lattice,” Sci. China-Phys. Mech. Astron. 61, 080313 (2018).

[Crossref]

L. Qi, Y. Xing, H. F. Wang, A. D. Zhu, and S. Zhang, “Simulating Z2 topological insulators via a one-dimensional cavity optomechanical cells array,” Opt. Express 25, 17948–17959 (2017).

[Crossref]
[PubMed]

Y. Xing, L. Qi, J. Cao, D. Y. Wang, C. H. Bai, H. F. Wang, A. D. Zhu, and S. Zhang, “Spontaneous 𝒫𝒯-symmetry breaking in non-Hermitian coupled-cavity array,” Phys. Rev. A 96, 043810 (2017).

[Crossref]

C. H. Bai, D. Y. Wang, H. F. Wang, A. D. Zhu, and S. Zhang, “Classical-to-quantum transition behavior between two oscillators separated in space under the action of optomechanical interaction,” Sci. Rep. 7, 2545 (2017).

[Crossref]
[PubMed]

D. Y. Wang, C. H. Bai, H. F. Wang, A. D. Zhu, and S. Zhang, “Steady-state mechanical squeezing in a double-cavity optomechanical system,” Sci. Rep. 6, 38559 (2016).

[Crossref]
[PubMed]

D. Y. Wang, C. H. Bai, H. F. Wang, A. D. Zhu, and S. Zhang, “Steady-state mechanical squeezing in a hybrid atom-optomechanical system with a highly dissipative cavity,” Sci. Rep. 6, 24421 (2016).

[Crossref]
[PubMed]

C. H. Bai, D. Y. Wang, H. F. Wang, A. D. Zhu, and S. Zhang, “Robust entanglement between a movable mirror and atomic ensemble and entanglement transfer in coupled optomechanical system,” Sci. Rep. 6, 33404 (2016).

[Crossref]
[PubMed]

H. Q. Wang, M. N. Chen, R. W. Bomantara, J. B. Gong, and D. Y. Xing, “Line nodes and surface Majorana flat bands in static and kicked p-wave superconducting Harper model,” Phys. Rev. B 95, 075136 (2017).

[Crossref]

M. N. Chen, F. Mei, W Su, H. Q. Wang, S. L. Zhu, L. Sheng, and D. Y. Xing, “Topological phases of the kicked Harper–Kitaev model with ultracold atoms,” J. Phys. Condens. Matter 29, 035601 (2017).

[Crossref]

Y. M. Liu, C. H. Bai, D. Y. Wang, T. Wang, M. H. Zheng, H. F. Wang, A. D. Zhu, and S. Zhang, “Ground-state cooling of rotating mirror in double-laguerre-gaussian-cavity with atomic ensemble,” Opt. Express 26, 6143–6157 (2018).

[Crossref]
[PubMed]

Y. P. Gao, C. Cao, T. J. Wang, Y. Zhang, and C. Wang, “Cavity-mediated coupling of phonons and magnons,” Phys. Rev. A 96, 023826 (2017).

[Crossref]

C. Cao, X. Chen, Y. W. Duan, L. Fan, R. Zhang, T. J. Wang, and C. Wang, “Concentrating partially entangled W-class states on nonlocal atoms using low-Q optical cavity and linear optical elements,” Sci. China-Phys. Mech. Astron. 59, 100315 (2016).

[Crossref]

X. H. Wang, T. T. Liu, Y. Xiong, and P. Q. Tong, “Spontaneous 𝒫𝒯-symmetry breaking in non-Hermitian Kitaev and extended Kitaev models,” Phys. Rev. A 92, 012116 (2015).

[Crossref]

Y. C. Wang, J. J. Miao, H. K. Jin, and S. Chen, “Characterization of topological phases of dimerized Kitaev chain via edge correlation functions,” Phys. Rev. B 96, 205428 (2017).

[Crossref]

F. Wilczek, “Majorana returns,” Nat. Phys. 5, 614–618 (2009).

[Crossref]

I. Wilson-Rae, N. Nooshi, W. Zwerger, and T. J. Kippenberg, “Theory of ground state cooling of a mechanical oscillator using dynamical backaction,” Phys. Rev. Lett. 99, 093901 (2007).

[Crossref]
[PubMed]

Q. Wu, Y. Xiao, and Z. M. Zhang, “Entanglements in a coupled cavity-array with one oscillating end-mirror,” Chin. Phys. B 24, 104208 (2015).

[Crossref]

C. Kong, H. Xiong, and Y. Wu, “Coulomb-interaction-dependent effect of high-order sideband generation in an optomechanical system,” Phys. Rev. A 95, 033820 (2017).

[Crossref]

L. L. Wan, X. Y. Lü, J. H. Gao, and Y. Wu, “Controllable photon and phonon localization in optomechanical Lieb lattices,” Opt. Express 25, 17364–17374 (2017).

[Crossref]
[PubMed]

M. Klett, H. Cartarius, D. Dast, J. Main, and G. Wunner, “Relation between 𝒫𝒯-symmetry breaking and topologically nontrivial phases in the Su-Schrieffer-Heeger and Kitaev models,” Phys. Rev. A 95, 053626 (2017).

[Crossref]

Q. Wu, Y. Xiao, and Z. M. Zhang, “Entanglements in a coupled cavity-array with one oscillating end-mirror,” Chin. Phys. B 24, 104208 (2015).

[Crossref]

P. C. Ma, J. Q. Zhang, Y. Xiao, M. Feng, and Z. M. Zhang, “Tunable double optomechanically induced transparency in an optomechanical system,” Phys. Rev. A 90, 043825 (2014).

[Crossref]

H. Q. Wang, M. N. Chen, R. W. Bomantara, J. B. Gong, and D. Y. Xing, “Line nodes and surface Majorana flat bands in static and kicked p-wave superconducting Harper model,” Phys. Rev. B 95, 075136 (2017).

[Crossref]

M. N. Chen, F. Mei, W Su, H. Q. Wang, S. L. Zhu, L. Sheng, and D. Y. Xing, “Topological phases of the kicked Harper–Kitaev model with ultracold atoms,” J. Phys. Condens. Matter 29, 035601 (2017).

[Crossref]

J. Cao, Y. Xing, L. Qi, D. Y. Wang, C. H. Bai, A. D. Zhu, S. Zhang, and H. F. Wang, “Simulating and studying the topological properties of generalized commensurate Aubry-André-Harper model with microresonator array,” Laser Phys. Lett. 15, 015211 (2018).

[Crossref]

L. Qi, Y. Xing, J. Cao, X. X. Jiang, C. S. An, A. D. Zhu, S. Zhang, and H. F. Wang, “Simulating and detecting the topological properties of modulated Rice-Mele model in one-dimensional circuit-QED lattice,” Sci. China-Phys. Mech. Astron. 61, 080313 (2018).

[Crossref]

Y. Xing, L. Qi, J. Cao, D. Y. Wang, C. H. Bai, H. F. Wang, A. D. Zhu, and S. Zhang, “Spontaneous 𝒫𝒯-symmetry breaking in non-Hermitian coupled-cavity array,” Phys. Rev. A 96, 043810 (2017).

[Crossref]

L. Qi, Y. Xing, H. F. Wang, A. D. Zhu, and S. Zhang, “Simulating Z2 topological insulators via a one-dimensional cavity optomechanical cells array,” Opt. Express 25, 17948–17959 (2017).

[Crossref]
[PubMed]

C. Kong, H. Xiong, and Y. Wu, “Coulomb-interaction-dependent effect of high-order sideband generation in an optomechanical system,” Phys. Rev. A 95, 033820 (2017).

[Crossref]

Y. Xiong and P. Q. Tong, “A NOT operation on Majorana qubits with mobilizable solitons in an extended Su-Schrieffer-Heeger model,” New. J. Phys. 17, 013017 (2015).

[Crossref]

X. H. Wang, T. T. Liu, Y. Xiong, and P. Q. Tong, “Spontaneous 𝒫𝒯-symmetry breaking in non-Hermitian Kitaev and extended Kitaev models,” Phys. Rev. A 92, 012116 (2015).

[Crossref]

Q. B. Zeng, B. G. Zhu, S. Chen, L. You, and R. Lü, “Non-Hermitian Kitaev chain with complex on-site potentials,” Phys. Rev. A 94, 022119 (2016).

[Crossref]

C. Yuce, “Majorana edge modes with gain and loss,” Phys. Rev. A 93, 062130 (2016).

[Crossref]

D. Vitali, S. Gigan, A. Ferreira, H. R. Böhm, P. Tombesi, A. Guerreiro, V. Vedral, A. Zeilinger, and M. Aspelmeyer, “Optomechanical entanglement between a movable mirror and a cavity field,” Phys. Rev. Lett. 98, 030405 (2007).

[Crossref]
[PubMed]

Q. B. Zeng, S. Chen, and R. Lü, “Anderson localization in the non-Hermitian Aubry-André-Harper model with physical gain and loss,” Phys. Rev. A 95, 062118 (2017).

[Crossref]

Q. B. Zeng, B. G. Zhu, S. Chen, L. You, and R. Lü, “Non-Hermitian Kitaev chain with complex on-site potentials,” Phys. Rev. A 94, 022119 (2016).

[Crossref]

Q. B. Zeng, S. Chen, and R. Lü, “Generalized Aubry-André-Harper model with p-wave superconducting pairing,” Phys. Rev. B 94, 125408 (2016).

[Crossref]

J. J. Miao, H. K. Jin, F. C. Zhang, and Y. Zhou, “Exact solution for the interacting Kitaev chain at the symmetric point,” Phys. Rev. Lett. 118, 267701 (2017).

[Crossref]
[PubMed]

P. C. Ma, J. Q. Zhang, Y. Xiao, M. Feng, and Z. M. Zhang, “Tunable double optomechanically induced transparency in an optomechanical system,” Phys. Rev. A 90, 043825 (2014).

[Crossref]

C. Cao, X. Chen, Y. W. Duan, L. Fan, R. Zhang, T. J. Wang, and C. Wang, “Concentrating partially entangled W-class states on nonlocal atoms using low-Q optical cavity and linear optical elements,” Sci. China-Phys. Mech. Astron. 59, 100315 (2016).

[Crossref]

J. Cao, Y. Xing, L. Qi, D. Y. Wang, C. H. Bai, A. D. Zhu, S. Zhang, and H. F. Wang, “Simulating and studying the topological properties of generalized commensurate Aubry-André-Harper model with microresonator array,” Laser Phys. Lett. 15, 015211 (2018).

[Crossref]

Y. M. Liu, C. H. Bai, D. Y. Wang, T. Wang, M. H. Zheng, H. F. Wang, A. D. Zhu, and S. Zhang, “Ground-state cooling of rotating mirror in double-laguerre-gaussian-cavity with atomic ensemble,” Opt. Express 26, 6143–6157 (2018).

[Crossref]
[PubMed]

L. Qi, Y. Xing, J. Cao, X. X. Jiang, C. S. An, A. D. Zhu, S. Zhang, and H. F. Wang, “Simulating and detecting the topological properties of modulated Rice-Mele model in one-dimensional circuit-QED lattice,” Sci. China-Phys. Mech. Astron. 61, 080313 (2018).

[Crossref]

L. Qi, Y. Xing, H. F. Wang, A. D. Zhu, and S. Zhang, “Simulating Z2 topological insulators via a one-dimensional cavity optomechanical cells array,” Opt. Express 25, 17948–17959 (2017).

[Crossref]
[PubMed]

C. H. Bai, D. Y. Wang, H. F. Wang, A. D. Zhu, and S. Zhang, “Classical-to-quantum transition behavior between two oscillators separated in space under the action of optomechanical interaction,” Sci. Rep. 7, 2545 (2017).

[Crossref]
[PubMed]

Y. Xing, L. Qi, J. Cao, D. Y. Wang, C. H. Bai, H. F. Wang, A. D. Zhu, and S. Zhang, “Spontaneous 𝒫𝒯-symmetry breaking in non-Hermitian coupled-cavity array,” Phys. Rev. A 96, 043810 (2017).

[Crossref]

C. H. Bai, D. Y. Wang, H. F. Wang, A. D. Zhu, and S. Zhang, “Robust entanglement between a movable mirror and atomic ensemble and entanglement transfer in coupled optomechanical system,” Sci. Rep. 6, 33404 (2016).

[Crossref]
[PubMed]

D. Y. Wang, C. H. Bai, H. F. Wang, A. D. Zhu, and S. Zhang, “Steady-state mechanical squeezing in a hybrid atom-optomechanical system with a highly dissipative cavity,” Sci. Rep. 6, 24421 (2016).

[Crossref]
[PubMed]

D. Y. Wang, C. H. Bai, H. F. Wang, A. D. Zhu, and S. Zhang, “Steady-state mechanical squeezing in a double-cavity optomechanical system,” Sci. Rep. 6, 38559 (2016).

[Crossref]
[PubMed]

Y. P. Gao, C. Cao, T. J. Wang, Y. Zhang, and C. Wang, “Cavity-mediated coupling of phonons and magnons,” Phys. Rev. A 96, 023826 (2017).

[Crossref]

Q. Wu, Y. Xiao, and Z. M. Zhang, “Entanglements in a coupled cavity-array with one oscillating end-mirror,” Chin. Phys. B 24, 104208 (2015).

[Crossref]

P. C. Ma, J. Q. Zhang, Y. Xiao, M. Feng, and Z. M. Zhang, “Tunable double optomechanically induced transparency in an optomechanical system,” Phys. Rev. A 90, 043825 (2014).

[Crossref]

F. Mei, S. L. Zhu, Z. M. Zhang, C. H. Oh, and N. Goldman, “Simulating Z2 topological insulators with cold atoms in a one-dimensional optical lattice,” Phys. Rev. A 85, 013638 (2012).

[Crossref]

Y. M. Liu, C. H. Bai, D. Y. Wang, T. Wang, M. H. Zheng, H. F. Wang, A. D. Zhu, and S. Zhang, “Ground-state cooling of rotating mirror in double-laguerre-gaussian-cavity with atomic ensemble,” Opt. Express 26, 6143–6157 (2018).

[Crossref]
[PubMed]

J. J. Miao, H. K. Jin, F. C. Zhang, and Y. Zhou, “Exact solution for the interacting Kitaev chain at the symmetric point,” Phys. Rev. Lett. 118, 267701 (2017).

[Crossref]
[PubMed]

Y. M. Liu, C. H. Bai, D. Y. Wang, T. Wang, M. H. Zheng, H. F. Wang, A. D. Zhu, and S. Zhang, “Ground-state cooling of rotating mirror in double-laguerre-gaussian-cavity with atomic ensemble,” Opt. Express 26, 6143–6157 (2018).

[Crossref]
[PubMed]

L. Qi, Y. Xing, J. Cao, X. X. Jiang, C. S. An, A. D. Zhu, S. Zhang, and H. F. Wang, “Simulating and detecting the topological properties of modulated Rice-Mele model in one-dimensional circuit-QED lattice,” Sci. China-Phys. Mech. Astron. 61, 080313 (2018).

[Crossref]

J. Cao, Y. Xing, L. Qi, D. Y. Wang, C. H. Bai, A. D. Zhu, S. Zhang, and H. F. Wang, “Simulating and studying the topological properties of generalized commensurate Aubry-André-Harper model with microresonator array,” Laser Phys. Lett. 15, 015211 (2018).

[Crossref]

Y. Xing, L. Qi, J. Cao, D. Y. Wang, C. H. Bai, H. F. Wang, A. D. Zhu, and S. Zhang, “Spontaneous 𝒫𝒯-symmetry breaking in non-Hermitian coupled-cavity array,” Phys. Rev. A 96, 043810 (2017).

[Crossref]

C. H. Bai, D. Y. Wang, H. F. Wang, A. D. Zhu, and S. Zhang, “Classical-to-quantum transition behavior between two oscillators separated in space under the action of optomechanical interaction,” Sci. Rep. 7, 2545 (2017).

[Crossref]
[PubMed]

L. Qi, Y. Xing, H. F. Wang, A. D. Zhu, and S. Zhang, “Simulating Z2 topological insulators via a one-dimensional cavity optomechanical cells array,” Opt. Express 25, 17948–17959 (2017).

[Crossref]
[PubMed]

C. H. Bai, D. Y. Wang, H. F. Wang, A. D. Zhu, and S. Zhang, “Robust entanglement between a movable mirror and atomic ensemble and entanglement transfer in coupled optomechanical system,” Sci. Rep. 6, 33404 (2016).

[Crossref]
[PubMed]

D. Y. Wang, C. H. Bai, H. F. Wang, A. D. Zhu, and S. Zhang, “Steady-state mechanical squeezing in a double-cavity optomechanical system,” Sci. Rep. 6, 38559 (2016).

[Crossref]
[PubMed]

D. Y. Wang, C. H. Bai, H. F. Wang, A. D. Zhu, and S. Zhang, “Steady-state mechanical squeezing in a hybrid atom-optomechanical system with a highly dissipative cavity,” Sci. Rep. 6, 24421 (2016).

[Crossref]
[PubMed]

Q. B. Zeng, B. G. Zhu, S. Chen, L. You, and R. Lü, “Non-Hermitian Kitaev chain with complex on-site potentials,” Phys. Rev. A 94, 022119 (2016).

[Crossref]

M. N. Chen, F. Mei, W Su, H. Q. Wang, S. L. Zhu, L. Sheng, and D. Y. Xing, “Topological phases of the kicked Harper–Kitaev model with ultracold atoms,” J. Phys. Condens. Matter 29, 035601 (2017).

[Crossref]

F. Mei, S. L. Zhu, Z. M. Zhang, C. H. Oh, and N. Goldman, “Simulating Z2 topological insulators with cold atoms in a one-dimensional optical lattice,” Phys. Rev. A 85, 013638 (2012).

[Crossref]

I. Wilson-Rae, N. Nooshi, W. Zwerger, and T. J. Kippenberg, “Theory of ground state cooling of a mechanical oscillator using dynamical backaction,” Phys. Rev. Lett. 99, 093901 (2007).

[Crossref]
[PubMed]

C. W. J. Beenakker, “Search for Majorana fermions in superconductors,” Annu. Rev. Condens. Matter Phys. 4, 113–136 (2013).

[Crossref]

D. P. Liu, “Topological phase boundary in a generalized Kitaev model,” Chin. Phys. B 25, 057101 (2016).

[Crossref]

Q. Wu, Y. Xiao, and Z. M. Zhang, “Entanglements in a coupled cavity-array with one oscillating end-mirror,” Chin. Phys. B 24, 104208 (2015).

[Crossref]

M. N. Chen, F. Mei, W Su, H. Q. Wang, S. L. Zhu, L. Sheng, and D. Y. Xing, “Topological phases of the kicked Harper–Kitaev model with ultracold atoms,” J. Phys. Condens. Matter 29, 035601 (2017).

[Crossref]

J. Cao, Y. Xing, L. Qi, D. Y. Wang, C. H. Bai, A. D. Zhu, S. Zhang, and H. F. Wang, “Simulating and studying the topological properties of generalized commensurate Aubry-André-Harper model with microresonator array,” Laser Phys. Lett. 15, 015211 (2018).

[Crossref]

I. Favero and K. Karrai, “Optomechanics of deformable optical cavities,” Nat. Photonics 3, 201–205 (2009).

[Crossref]

F. Wilczek, “Majorana returns,” Nat. Phys. 5, 614–618 (2009).

[Crossref]

Y. S. Park and H. Wang, “Resolved-sideband and cryogenic cooling of an optomechanical resonator,” Nat. Physics 5, 489–493 (2009).

[Crossref]

D. Kleckner and D. Bouwmeester, “Sub-kelvin optical cooling of a micromechanical resonator,” Nature (London) 444, 75–78 (2006).

[Crossref]

Y. Xiong and P. Q. Tong, “A NOT operation on Majorana qubits with mobilizable solitons in an extended Su-Schrieffer-Heeger model,” New. J. Phys. 17, 013017 (2015).

[Crossref]

Y. M. Liu, C. H. Bai, D. Y. Wang, T. Wang, M. H. Zheng, H. F. Wang, A. D. Zhu, and S. Zhang, “Ground-state cooling of rotating mirror in double-laguerre-gaussian-cavity with atomic ensemble,” Opt. Express 26, 6143–6157 (2018).

[Crossref]
[PubMed]

L. Qi, Y. Xing, H. F. Wang, A. D. Zhu, and S. Zhang, “Simulating Z2 topological insulators via a one-dimensional cavity optomechanical cells array,” Opt. Express 25, 17948–17959 (2017).

[Crossref]
[PubMed]

L. L. Wan, X. Y. Lü, J. H. Gao, and Y. Wu, “Controllable photon and phonon localization in optomechanical Lieb lattices,” Opt. Express 25, 17364–17374 (2017).

[Crossref]
[PubMed]

Y. Xing, L. Qi, J. Cao, D. Y. Wang, C. H. Bai, H. F. Wang, A. D. Zhu, and S. Zhang, “Spontaneous 𝒫𝒯-symmetry breaking in non-Hermitian coupled-cavity array,” Phys. Rev. A 96, 043810 (2017).

[Crossref]

P. C. Ma, J. Q. Zhang, Y. Xiao, M. Feng, and Z. M. Zhang, “Tunable double optomechanically induced transparency in an optomechanical system,” Phys. Rev. A 90, 043825 (2014).

[Crossref]

C. Kong, H. Xiong, and Y. Wu, “Coulomb-interaction-dependent effect of high-order sideband generation in an optomechanical system,” Phys. Rev. A 95, 033820 (2017).

[Crossref]

F. Mei, S. L. Zhu, Z. M. Zhang, C. H. Oh, and N. Goldman, “Simulating Z2 topological insulators with cold atoms in a one-dimensional optical lattice,” Phys. Rev. A 85, 013638 (2012).

[Crossref]

J. Q. Liao and C. K. Law, “Parametric generation of quadrature squeezing of mirrors in cavity optomechanics,” Phys. Rev. A 83, 033820 (2011).

[Crossref]

H. Shi and M. Bhattacharya, “Quantum mechanical study of a generic quadratically coupled optomechanical system,” Phys. Rev. A 87, 043829 (2013).

[Crossref]

G. S. Agarwal and S. M. Huang, “Strong mechanical squeezing and its detection,” Phys. Rev. A 93, 043844 (2016).

[Crossref]

Y. J. Guo, K. Li, W. J. Nie, and Y. Li, “Electromagnetically-induced-transparency-like ground-state cooling in a double-cavity optomechanical system,” Phys. Rev. A 90, 053841 (2014).

[Crossref]

C. Genes, D. Vitali, P. Tombesi, S. Gigan, and M. Aspelmeyer, “Ground-state cooling of a micromechanical oscillator: Comparing cold damping and cavity-assisted cooling schemes,” Phys. Rev. A 77, 033804 (2008).

[Crossref]

Y. P. Gao, C. Cao, T. J. Wang, Y. Zhang, and C. Wang, “Cavity-mediated coupling of phonons and magnons,” Phys. Rev. A 96, 023826 (2017).

[Crossref]

X. H. Wang, T. T. Liu, Y. Xiong, and P. Q. Tong, “Spontaneous 𝒫𝒯-symmetry breaking in non-Hermitian Kitaev and extended Kitaev models,” Phys. Rev. A 92, 012116 (2015).

[Crossref]

C. Yuce, “Majorana edge modes with gain and loss,” Phys. Rev. A 93, 062130 (2016).

[Crossref]

Q. B. Zeng, B. G. Zhu, S. Chen, L. You, and R. Lü, “Non-Hermitian Kitaev chain with complex on-site potentials,” Phys. Rev. A 94, 022119 (2016).

[Crossref]

Q. B. Zeng, S. Chen, and R. Lü, “Anderson localization in the non-Hermitian Aubry-André-Harper model with physical gain and loss,” Phys. Rev. A 95, 062118 (2017).

[Crossref]

M. Klett, H. Cartarius, D. Dast, J. Main, and G. Wunner, “Relation between 𝒫𝒯-symmetry breaking and topologically nontrivial phases in the Su-Schrieffer-Heeger and Kitaev models,” Phys. Rev. A 95, 053626 (2017).

[Crossref]

R. Wakatsuki, M. Ezawa, Y. Tanaka, and N. Nagaosa, “Fermion fractionalization to Majorana fermions in a dimerized Kitaev superconductor,” Phys. Rev. B 90, 014505 (2014).

[Crossref]

Y. C. Wang, J. J. Miao, H. K. Jin, and S. Chen, “Characterization of topological phases of dimerized Kitaev chain via edge correlation functions,” Phys. Rev. B 96, 205428 (2017).

[Crossref]

L. J. Lang and S. Chen, “Majorana fermions in density-modulated p-wave superconducting wires,” Phys. Rev. B 86, 205135 (2012).

[Crossref]

T. D. Stanescu, R. M. Lutchyn, and S. Das Sarma, “Majorana fermions in semiconductor nanowires,” Phys. Rev. B 84, 144522 (2011).

[Crossref]

H. Q. Wang, M. N. Chen, R. W. Bomantara, J. B. Gong, and D. Y. Xing, “Line nodes and surface Majorana flat bands in static and kicked p-wave superconducting Harper model,” Phys. Rev. B 95, 075136 (2017).

[Crossref]

L. Fidkowski and A. Kitaev, “Topological phases of fermions in one dimension,” Phys. Rev. B 83, 075103 (2011).

[Crossref]

A. M. Turner, F. Pollmann, and E. Berg, “Topological phases of one-dimensional fermions: An entanglement point of view,” Phys. Rev. B 83, 075102 (2011).

[Crossref]

G. Goldstein and C. Chamon, “Exact zero modes in closed systems of interacting fermions,” Phys. Rev. B 86, 115122 (2012).

[Crossref]

G. Kells, “Many-body Majorana operators and the equivalence of parity sectors,” Phys. Rev. B 92, 081401 (2015).

[Crossref]

Y. H. Chan, C. K. Chiu, and K. Sun, “Multiple signatures of topological transitions for interacting fermions in chain lattices,” Phys. Rev. B 92, 104514 (2015).

[Crossref]

E. Sela, A. Altland, and A. Rosch, “Majorana fermions in strongly interacting helical liquids,” Phys. Rev. B 84, 085114 (2011).

[Crossref]

E. M. Stoudenmire, J. Alicea, O. A. Starykh, and M. P. A. Fisher, “Interaction effects in topological superconducting wires supporting Majorana fermions,” Phys. Rev. B 84, 014503 (2011).

[Crossref]

R. M. Lutchyn and M. P. A. Fisher, “Interacting topological phases in multiband nanowires,” Phys. Rev. B 84, 214528 (2011).

[Crossref]

J. Alicea, “Majorana fermions in a tunable semiconductor device,” Phys. Rev. B 81, 125318 (2010).

[Crossref]

M. Sato, Y. Takahashi, and S. Fujimoto, “Non-Abelian topological orders and Majorana fermions in spin-singlet superconductors,” Phys. Rev. B 82, 134521 (2010).

[Crossref]

Q. B. Zeng, S. Chen, and R. Lü, “Generalized Aubry-André-Harper model with p-wave superconducting pairing,” Phys. Rev. B 94, 125408 (2016).

[Crossref]

I. Wilson-Rae, N. Nooshi, W. Zwerger, and T. J. Kippenberg, “Theory of ground state cooling of a mechanical oscillator using dynamical backaction,” Phys. Rev. Lett. 99, 093901 (2007).

[Crossref]
[PubMed]

F. Marquardt, J. P. Chen, A. A. Clerk, and S. M. Girvin, “Quantum theory of cavity-assisted sideband cooling of mechanical motion,” Phys. Rev. Lett. 99, 093902 (2007).

[Crossref]
[PubMed]

D. Vitali, S. Gigan, A. Ferreira, H. R. Böhm, P. Tombesi, A. Guerreiro, V. Vedral, A. Zeilinger, and M. Aspelmeyer, “Optomechanical entanglement between a movable mirror and a cavity field,” Phys. Rev. Lett. 98, 030405 (2007).

[Crossref]
[PubMed]

S. Ganeshan, K. Sun, and S. D. Sarma, “Topological zero-energy modes in gapless commensurate Aubry-André-Harper models,” Phys. Rev. Lett. 110, 180403 (2013).

[Crossref]

R. M. Lutchyn, J. D. Sau, and S. Das Sarma, “Majorana fermions and a topological phase transition in semiconductor-superconductor heterostructures,” Phys. Rev. Lett. 105, 077001 (2010).

[Crossref]
[PubMed]

Y. Oreg, G. Refael, and F. von Oppen, “Helical liquids and Majorana bound states in quantum wires,” Phys. Rev. Lett. 105, 177002 (2010).

[Crossref]

L. Fu and C. L. Kane, “Superconducting proximity effect and Majorana fermions at the surface of a topological insulator,” Phys. Rev. Lett. 100, 096407 (2008).

[Crossref]
[PubMed]

J. D. Sau, R. M. Lutchyn, S. Tewari, and S. Das Sarma, “Generic new platform for topological quantum computation using semiconductor heterostructures,” Phys. Rev. Lett. 104, 040502 (2010).

[Crossref]
[PubMed]

S. Gangadharaiah, B. Braunecker, P. Simon, and D. Loss, “Majorana edge states in interacting one-dimensional systems,” Phys. Rev. Lett. 107, 036801 (2011).

[Crossref]
[PubMed]

J. J. Miao, H. K. Jin, F. C. Zhang, and Y. Zhou, “Exact solution for the interacting Kitaev chain at the symmetric point,” Phys. Rev. Lett. 118, 267701 (2017).

[Crossref]
[PubMed]

A. Y. Kitaev, “Unpaired Majorana fermions in quantum wires,” Phys.-Usp. 44, 131–136 (2001).

[Crossref]

F. Marquardt and S. M. Girvin, “Trend: Optomechanics,” Physics 2, 40 (2009).

[Crossref]

J. Alicea, “New directions in the pursuit of Majorana fermions in solid state systems,” Rep. Prog. Phys. 75, 076501 (2012).

[Crossref]
[PubMed]

C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das Sarma, “Non-Abelian anyons and topological quantum computation,” Rev. Mod. Phys. 80, 1083 (2008).

[Crossref]

S. R. Elliott and M. Franz, “Majorana fermions in nuclear, particle, and solid-state physics,” Rev. Mod. Phys. 87, 137 (2015).

[Crossref]

C. Cao, X. Chen, Y. W. Duan, L. Fan, R. Zhang, T. J. Wang, and C. Wang, “Concentrating partially entangled W-class states on nonlocal atoms using low-Q optical cavity and linear optical elements,” Sci. China-Phys. Mech. Astron. 59, 100315 (2016).

[Crossref]

L. Qi, Y. Xing, J. Cao, X. X. Jiang, C. S. An, A. D. Zhu, S. Zhang, and H. F. Wang, “Simulating and detecting the topological properties of modulated Rice-Mele model in one-dimensional circuit-QED lattice,” Sci. China-Phys. Mech. Astron. 61, 080313 (2018).

[Crossref]

C. H. Bai, D. Y. Wang, H. F. Wang, A. D. Zhu, and S. Zhang, “Classical-to-quantum transition behavior between two oscillators separated in space under the action of optomechanical interaction,” Sci. Rep. 7, 2545 (2017).

[Crossref]
[PubMed]

C. H. Bai, D. Y. Wang, H. F. Wang, A. D. Zhu, and S. Zhang, “Robust entanglement between a movable mirror and atomic ensemble and entanglement transfer in coupled optomechanical system,” Sci. Rep. 6, 33404 (2016).

[Crossref]
[PubMed]

D. Y. Wang, C. H. Bai, H. F. Wang, A. D. Zhu, and S. Zhang, “Steady-state mechanical squeezing in a hybrid atom-optomechanical system with a highly dissipative cavity,” Sci. Rep. 6, 24421 (2016).

[Crossref]
[PubMed]

D. Y. Wang, C. H. Bai, H. F. Wang, A. D. Zhu, and S. Zhang, “Steady-state mechanical squeezing in a double-cavity optomechanical system,” Sci. Rep. 6, 38559 (2016).

[Crossref]
[PubMed]

T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321, 1172–1176 (2008).

[Crossref]
[PubMed]

M. Leijnse and K. Flensberg, “Introduction to topological superconductivity and Majorana fermions,” Semicond. Sci. Technol. 27, 124003 (2012).

[Crossref]