Abstract

The present work gives a detailed investigation of the dependence of the real time luminescence of Eu3+-doped tin dioxide nanopowder on rare earth (RE) site symmetry and host defects. Ultrafast time-resolved analysis of both RE-doped and undoped nanocrystal powder emissions, together with electronic paramagnetic resonance studies, show that host-excited RE emission is associated with RE-induced oxygen vacancies produced by the non-isoelectronic RE-tin site substitution that are decoupled from those producing the bandgap excited emission of the SnO2 matrix. A lower limit for the host-RE energy transfer rate and a model for the excitation mechanism are given.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Luminescence of Eu3+ in the thin film heterojunction GaAs/SnO2

Cristina de Freitas Bueno, Luis Vicente de A. Scalvi, Maximo Siu Li, and Margarida J. Saeki
Opt. Mater. Express 5(1) 59-72 (2015)

Investigation of energy transfer mechanisms in rare-earth doped amorphous silica films embedded with tin oxide nanocrystals

Xiaowei Zhang, Ruowang Chen, Pengjun Wang, Zhixing Gan, Yuejun Zhang, Han Jin, Jiawen Jian, and Jun Xu
Opt. Express 27(3) 2783-2791 (2019)

New synthetic strategies for luminescent YVO4:Ln3+ (Ln = Pr, Sm, Eu, Tb, Dy, Ho, Er) with mesoporous cell-like nanostructure

Liusai Yang, Siyan Peng, Minglei Zhao, and Leshu Yu
Opt. Mater. Express 8(12) 3805-3819 (2018)

References

  • View by:
  • |
  • |
  • |

  1. L. Zur, L. T. N. Tran, M. Meneghetti, and M. Ferrari, “Sol–Gel-Derived SnO2-Based Photonic Systems,” in Handbook of Sol-Gel Science and Technology (Springer International Publishing AG, 2018).
  2. L. Zur, L. T. N. Tran, M. Meneghetti, V. T. T. Tran, A. Lukowiak, A. Chiasera, D. Zonta, M. Ferrari, and G. C. Righini, “Tin-dioxide nanocrystals as Er3+ luminescence sensitizers: formation of glass-ceramic thin films and their characterization,” Opt. Mater. 63, 95–100 (2017).
    [Crossref]
  3. G. S. Chang, J. Forrest, E. Z. Kurmaev, A. N. Morozovska, M. D. Glinchuk, J. A. McLeod, A. Moewes, T. P. Surkova, and N. H. Hong, “Oxygen-vacancy-induced ferromagnetism in undoped SnO2 thin films,” Phys. Rev. B 85(16), 165319 (2012).
    [Crossref]
  4. C. B. Fitzgerald, M. Venkatesan, L. S. Dorneles, R. Gunning, P. Stamenov, J. M. D. Coey, P. A. Stampe, R. J. Kennedy, E. C. Moreira, and U. S. Sias, “Magnetism in dilute magnetic oxide thin films based on SnO2,” Phys. Rev. B 74(11), 115307 (2006).
    [Crossref]
  5. Y. M. Xiao, G. Y. Han, J. Y. Yue, W. J. Hou, and J. H. Wu, “Multifunctional rare-earth-doped tin oxide compact layers for improving performances of photovoltaic devices,” Adv. Mater. Interfaces 3(24), 1600881 (2016).
    [Crossref]
  6. D. Jaque and F. Vetrone, “Luminescence nanothermometry,” Nanoscale 4(15), 4301–4326 (2012).
    [Crossref] [PubMed]
  7. C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millán, V. S. Amaral, F. Palacio, and L. D. Carlos, “Thermometry at the nanoscale,” Nanoscale 4(16), 4799–4829 (2012).
    [Crossref] [PubMed]
  8. R. Balda, N. Hakmeh, M. Barredo-Zuriarrain, O. Merdrignac-Conanec, S. García-Revilla, M. A. Arriandiaga, and J. Fernández, “Influence of upconversion processes in the optically-induced inhomogeneous thermal behavior of erbium-doped lanthanum oxysulfide powders,” Materials (Basel) 9(5), 353 (2016).
    [Crossref] [PubMed]
  9. X. Chen, Y. Liu, and D. Tu, Lanthanide-Doped Luminescent Nanomaterials (Springer-Verlag, 2014).
  10. Y. F. Li, W. J. Yin, R. Deng, R. Chen, J. Chen, Q. Y. Yan, B. Yao, H. D. Sun, S. H. Wei, and T. Wu, “Realizing a SnO2-based ultraviolet light-emitting diode via breaking the dipole-forbidden rule,” NPG Asia Mater. 4(11), e30 (2012).
    [Crossref]
  11. K. Binnemans, “Interpretation of europium(III) spectra,” Coord. Chem. Rev. 295, 1–45 (2015).
    [Crossref]
  12. A. C. Yanes, J. Del Castillo, M. Torres, J. Peraza, V. D. Rodríguez, and J. Méndez-Ramos, “Nanocrystal-size selective spectroscopy in SnO2: Eu3+ semiconductor quantum dots,” Appl. Phys. Lett. 85(12), 2343–2345 (2004).
    [Crossref]
  13. H. You and M. Nogami, “Local structure and persistent spectral hole burning of the Eu3+ ion in SnO2-SiO2 glass containing SnO2 nanocrystals,” J. Appl. Phys. 95(5), 2781–2785 (2004).
    [Crossref]
  14. M. Chowdhury and S. K. Sharma, “Spectroscopic behavior of Eu3+ in SnO2 for tunable red emission in solid state lighting devices,” RSC Advances 5(63), 51102–51109 (2015).
    [Crossref]
  15. J. Kong, W. Zheng, Y. Liu, R. Li, E. Ma, H. Zhu, and X. Chen, “Persistent luminescence from Eu3+ in SnO2 nanoparticles,” Nanoscale 7(25), 11048–11054 (2015).
    [Crossref] [PubMed]
  16. W. M. Yen and P. M. Selzer, High Resolution Laser Spectroscopy of Ions in Ccrystals, Laser Spectroscopy of Solids (Springer-Verlag, 1981), Vol. 49.
  17. D. F. Crabtree, “The luminescence of SnO2-Eu3+,” J. Phys. D Appl. Phys. 8(1), 107–116 (1975).
    [Crossref]
  18. G. F. Imbusch and R. Kopelman, Optical Spectroscopy of Electronic Centers in Solids, Laser Spectroscopy of Solids (Springer-Verlag, Berlin, 1981), Vol. 49.
  19. P. S. Peercy and B. Morosin, “Pressure and temperature dependences of Raman active phonons in SnO2,” Phys. Rev. B 7(6), 2779–2786 (1973).
    [Crossref]
  20. I. Gontia, M. Baibarac, and I. Baltog, “Photoluminescence and Raman studies on tin dioxide powder and tin dioxide/single-walled carbon-nanotube composites,” Phys. Status Solidi B 248(6), 1494–1498 (2011).
    [Crossref]
  21. W. M. Yen and R. T. Brundage, “Fluorescence line narrowing in inorganic glasses: linewidth measurements,” J. Lumin. 36(4-5), 209–220 (1987).
    [Crossref]
  22. X. Zhu, R. Birringer, U. Herr, and H. Gleiter, “X-ray diffraction studies of the structure of nanometer-sized crystalline materials,” Phys. Rev. B Condens. Matter 35(17), 9085–9090 (1987).
    [Crossref] [PubMed]
  23. S. Samson and C. G. Fonstad, “Defect structure and electronic donor levels in stannic oxide crystals,” J. Appl. Phys. 44(10), 4618–4621 (1973).
    [Crossref]
  24. C. Kílíç and A. Zunger, “Origins of coexistence of conductivity and transparency in SnO2.,” Phys. Rev. Lett. 88(9), 095501 (2002).
    [Crossref] [PubMed]
  25. A. K. Singh, A. Janotti, M. Scheffler, and C. G. Van de Walle, “Sources of electrical conductivity in SnO2.,” Phys. Rev. Lett. 101(5), 055502 (2008).
    [Crossref] [PubMed]
  26. P. Ágoston, K. Albe, R. M. Nieminen, and M. J. Puska, “Intrinsic n-type behavior in transparent conducting oxides: a comparative hybrid-functional study of In2O3, SnO2, and ZnO,” Phys. Rev. Lett. 103(24), 245501 (2009).
    [Crossref] [PubMed]
  27. J. Hu, Y. Bando, Q. Liu, and D. Golberg, “Laser-ablation growth and optical properties of wide and long single-crystal SnO2 ribbons,” Adv. Funct. Mater. 13(6), 493–496 (2003).
    [Crossref]
  28. S. Luo, J. Fan, W. Liu, M. Zhang, Z. Song, C. Lin, X. Wu, and P. K. Chu, “Synthesis and low-temperature photoluminescence properties of SnO2 nanowires and nanobelts,” Nanotechnology 17(6), 1695–1699 (2006).
    [Crossref] [PubMed]
  29. S. H. Luo, P. K. Chu, W. L. Liu, M. Zhang, and C. L. Lin, “Origin of low-temperature photoluminescence from SnO2 nanowires fabricated by thermal evaporation and annealed in different ambients,” Appl. Phys. Lett. 88(18), 183112 (2006).
    [Crossref]
  30. J. D. Prades, J. Arbiol, A. Cirera, J. R. Morante, M. Avella, L. Zanotti, E. Comini, G. Faglia, and G. Sberveglieri, “Defect study of SnO2 nanostructures by cathodoluminescence analysis: application to nanowires,” Sens. Actuators B Chem. 126(1), 6–12 (2007).
    [Crossref]
  31. S. Lettieri, M. Causà, A. Setaro, F. Trani, V. Barone, D. Ninno, and P. Maddalena, “Direct role of surface oxygen vacancies in visible light emission of tin dioxide nanowires,” J. Chem. Phys. 129(24), 244710 (2008).
    [Crossref] [PubMed]
  32. C. M. Freeman and C. R. A. Catlow, “A computer modeling study of defect and dopant states in SnO2,” J. Solid State Chem. 85(1), 65–75 (1990).
    [Crossref]
  33. T. S. Bush, C. R. A. Catlow, A. V. Chadwick, M. Cole, R. M. Geatches, G. N. Greaves, and S. M. Tomlinson, “Studies of cation dopant sites in metal oxides by EXAFS and computer- simulation techniques,” J. Mater. Chem. 2(3), 309–316 (1992).
    [Crossref]
  34. P. A. Tanner, “Lanthanide luminescence in solids,” in Lanthanide Luminescence Photophysical, Analytical and Biological Aspects, P. Hänninen and H. Härmä, eds. (Springer, 2011), pp. 183–233.
  35. A. Diéguez, A. Romano-Rodriguez, A. Vila, and J. R. Morante, “The complete Raman spectrum of nanometric SnO2 particles,” J. Appl. Phys. 90(3), 1550–1557 (2001).
    [Crossref]
  36. M. Ivanovskaya, E. Ovodok, and V. Golovanov, “The nature of paramagnetic defects in tin (IV) oxide,” Chem. Phys. 457, 98–105 (2015).
    [Crossref]
  37. N. Özcan, T. Kortelainen, V. Golovanov, T. T. Rantala, and J. Vaara, “Electron spin resonance parameters of bulk oxygen vacancy in semiconducting tin dioxide,” Phys. Rev. B 81(23), 235202 (2010).
    [Crossref]
  38. E. Albanese, C. Di Valentin, G. Pacchioni, F. Sauvage, S. Livraghi, and E. Giamello, “Nature of paramagnetic species in nitrogen-doped SnO2: a combined electron paramagnetic resonance and density functional theory study,” J. Phys. Chem. C 119(48), 26895–26903 (2015).
    [Crossref]

2017 (1)

L. Zur, L. T. N. Tran, M. Meneghetti, V. T. T. Tran, A. Lukowiak, A. Chiasera, D. Zonta, M. Ferrari, and G. C. Righini, “Tin-dioxide nanocrystals as Er3+ luminescence sensitizers: formation of glass-ceramic thin films and their characterization,” Opt. Mater. 63, 95–100 (2017).
[Crossref]

2016 (2)

Y. M. Xiao, G. Y. Han, J. Y. Yue, W. J. Hou, and J. H. Wu, “Multifunctional rare-earth-doped tin oxide compact layers for improving performances of photovoltaic devices,” Adv. Mater. Interfaces 3(24), 1600881 (2016).
[Crossref]

R. Balda, N. Hakmeh, M. Barredo-Zuriarrain, O. Merdrignac-Conanec, S. García-Revilla, M. A. Arriandiaga, and J. Fernández, “Influence of upconversion processes in the optically-induced inhomogeneous thermal behavior of erbium-doped lanthanum oxysulfide powders,” Materials (Basel) 9(5), 353 (2016).
[Crossref] [PubMed]

2015 (5)

K. Binnemans, “Interpretation of europium(III) spectra,” Coord. Chem. Rev. 295, 1–45 (2015).
[Crossref]

M. Chowdhury and S. K. Sharma, “Spectroscopic behavior of Eu3+ in SnO2 for tunable red emission in solid state lighting devices,” RSC Advances 5(63), 51102–51109 (2015).
[Crossref]

J. Kong, W. Zheng, Y. Liu, R. Li, E. Ma, H. Zhu, and X. Chen, “Persistent luminescence from Eu3+ in SnO2 nanoparticles,” Nanoscale 7(25), 11048–11054 (2015).
[Crossref] [PubMed]

M. Ivanovskaya, E. Ovodok, and V. Golovanov, “The nature of paramagnetic defects in tin (IV) oxide,” Chem. Phys. 457, 98–105 (2015).
[Crossref]

E. Albanese, C. Di Valentin, G. Pacchioni, F. Sauvage, S. Livraghi, and E. Giamello, “Nature of paramagnetic species in nitrogen-doped SnO2: a combined electron paramagnetic resonance and density functional theory study,” J. Phys. Chem. C 119(48), 26895–26903 (2015).
[Crossref]

2012 (4)

Y. F. Li, W. J. Yin, R. Deng, R. Chen, J. Chen, Q. Y. Yan, B. Yao, H. D. Sun, S. H. Wei, and T. Wu, “Realizing a SnO2-based ultraviolet light-emitting diode via breaking the dipole-forbidden rule,” NPG Asia Mater. 4(11), e30 (2012).
[Crossref]

D. Jaque and F. Vetrone, “Luminescence nanothermometry,” Nanoscale 4(15), 4301–4326 (2012).
[Crossref] [PubMed]

C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millán, V. S. Amaral, F. Palacio, and L. D. Carlos, “Thermometry at the nanoscale,” Nanoscale 4(16), 4799–4829 (2012).
[Crossref] [PubMed]

G. S. Chang, J. Forrest, E. Z. Kurmaev, A. N. Morozovska, M. D. Glinchuk, J. A. McLeod, A. Moewes, T. P. Surkova, and N. H. Hong, “Oxygen-vacancy-induced ferromagnetism in undoped SnO2 thin films,” Phys. Rev. B 85(16), 165319 (2012).
[Crossref]

2011 (1)

I. Gontia, M. Baibarac, and I. Baltog, “Photoluminescence and Raman studies on tin dioxide powder and tin dioxide/single-walled carbon-nanotube composites,” Phys. Status Solidi B 248(6), 1494–1498 (2011).
[Crossref]

2010 (1)

N. Özcan, T. Kortelainen, V. Golovanov, T. T. Rantala, and J. Vaara, “Electron spin resonance parameters of bulk oxygen vacancy in semiconducting tin dioxide,” Phys. Rev. B 81(23), 235202 (2010).
[Crossref]

2009 (1)

P. Ágoston, K. Albe, R. M. Nieminen, and M. J. Puska, “Intrinsic n-type behavior in transparent conducting oxides: a comparative hybrid-functional study of In2O3, SnO2, and ZnO,” Phys. Rev. Lett. 103(24), 245501 (2009).
[Crossref] [PubMed]

2008 (2)

A. K. Singh, A. Janotti, M. Scheffler, and C. G. Van de Walle, “Sources of electrical conductivity in SnO2.,” Phys. Rev. Lett. 101(5), 055502 (2008).
[Crossref] [PubMed]

S. Lettieri, M. Causà, A. Setaro, F. Trani, V. Barone, D. Ninno, and P. Maddalena, “Direct role of surface oxygen vacancies in visible light emission of tin dioxide nanowires,” J. Chem. Phys. 129(24), 244710 (2008).
[Crossref] [PubMed]

2007 (1)

J. D. Prades, J. Arbiol, A. Cirera, J. R. Morante, M. Avella, L. Zanotti, E. Comini, G. Faglia, and G. Sberveglieri, “Defect study of SnO2 nanostructures by cathodoluminescence analysis: application to nanowires,” Sens. Actuators B Chem. 126(1), 6–12 (2007).
[Crossref]

2006 (3)

S. Luo, J. Fan, W. Liu, M. Zhang, Z. Song, C. Lin, X. Wu, and P. K. Chu, “Synthesis and low-temperature photoluminescence properties of SnO2 nanowires and nanobelts,” Nanotechnology 17(6), 1695–1699 (2006).
[Crossref] [PubMed]

S. H. Luo, P. K. Chu, W. L. Liu, M. Zhang, and C. L. Lin, “Origin of low-temperature photoluminescence from SnO2 nanowires fabricated by thermal evaporation and annealed in different ambients,” Appl. Phys. Lett. 88(18), 183112 (2006).
[Crossref]

C. B. Fitzgerald, M. Venkatesan, L. S. Dorneles, R. Gunning, P. Stamenov, J. M. D. Coey, P. A. Stampe, R. J. Kennedy, E. C. Moreira, and U. S. Sias, “Magnetism in dilute magnetic oxide thin films based on SnO2,” Phys. Rev. B 74(11), 115307 (2006).
[Crossref]

2004 (2)

A. C. Yanes, J. Del Castillo, M. Torres, J. Peraza, V. D. Rodríguez, and J. Méndez-Ramos, “Nanocrystal-size selective spectroscopy in SnO2: Eu3+ semiconductor quantum dots,” Appl. Phys. Lett. 85(12), 2343–2345 (2004).
[Crossref]

H. You and M. Nogami, “Local structure and persistent spectral hole burning of the Eu3+ ion in SnO2-SiO2 glass containing SnO2 nanocrystals,” J. Appl. Phys. 95(5), 2781–2785 (2004).
[Crossref]

2003 (1)

J. Hu, Y. Bando, Q. Liu, and D. Golberg, “Laser-ablation growth and optical properties of wide and long single-crystal SnO2 ribbons,” Adv. Funct. Mater. 13(6), 493–496 (2003).
[Crossref]

2002 (1)

C. Kílíç and A. Zunger, “Origins of coexistence of conductivity and transparency in SnO2.,” Phys. Rev. Lett. 88(9), 095501 (2002).
[Crossref] [PubMed]

2001 (1)

A. Diéguez, A. Romano-Rodriguez, A. Vila, and J. R. Morante, “The complete Raman spectrum of nanometric SnO2 particles,” J. Appl. Phys. 90(3), 1550–1557 (2001).
[Crossref]

1992 (1)

T. S. Bush, C. R. A. Catlow, A. V. Chadwick, M. Cole, R. M. Geatches, G. N. Greaves, and S. M. Tomlinson, “Studies of cation dopant sites in metal oxides by EXAFS and computer- simulation techniques,” J. Mater. Chem. 2(3), 309–316 (1992).
[Crossref]

1990 (1)

C. M. Freeman and C. R. A. Catlow, “A computer modeling study of defect and dopant states in SnO2,” J. Solid State Chem. 85(1), 65–75 (1990).
[Crossref]

1987 (2)

W. M. Yen and R. T. Brundage, “Fluorescence line narrowing in inorganic glasses: linewidth measurements,” J. Lumin. 36(4-5), 209–220 (1987).
[Crossref]

X. Zhu, R. Birringer, U. Herr, and H. Gleiter, “X-ray diffraction studies of the structure of nanometer-sized crystalline materials,” Phys. Rev. B Condens. Matter 35(17), 9085–9090 (1987).
[Crossref] [PubMed]

1975 (1)

D. F. Crabtree, “The luminescence of SnO2-Eu3+,” J. Phys. D Appl. Phys. 8(1), 107–116 (1975).
[Crossref]

1973 (2)

P. S. Peercy and B. Morosin, “Pressure and temperature dependences of Raman active phonons in SnO2,” Phys. Rev. B 7(6), 2779–2786 (1973).
[Crossref]

S. Samson and C. G. Fonstad, “Defect structure and electronic donor levels in stannic oxide crystals,” J. Appl. Phys. 44(10), 4618–4621 (1973).
[Crossref]

Ágoston, P.

P. Ágoston, K. Albe, R. M. Nieminen, and M. J. Puska, “Intrinsic n-type behavior in transparent conducting oxides: a comparative hybrid-functional study of In2O3, SnO2, and ZnO,” Phys. Rev. Lett. 103(24), 245501 (2009).
[Crossref] [PubMed]

Albanese, E.

E. Albanese, C. Di Valentin, G. Pacchioni, F. Sauvage, S. Livraghi, and E. Giamello, “Nature of paramagnetic species in nitrogen-doped SnO2: a combined electron paramagnetic resonance and density functional theory study,” J. Phys. Chem. C 119(48), 26895–26903 (2015).
[Crossref]

Albe, K.

P. Ágoston, K. Albe, R. M. Nieminen, and M. J. Puska, “Intrinsic n-type behavior in transparent conducting oxides: a comparative hybrid-functional study of In2O3, SnO2, and ZnO,” Phys. Rev. Lett. 103(24), 245501 (2009).
[Crossref] [PubMed]

Amaral, V. S.

C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millán, V. S. Amaral, F. Palacio, and L. D. Carlos, “Thermometry at the nanoscale,” Nanoscale 4(16), 4799–4829 (2012).
[Crossref] [PubMed]

Arbiol, J.

J. D. Prades, J. Arbiol, A. Cirera, J. R. Morante, M. Avella, L. Zanotti, E. Comini, G. Faglia, and G. Sberveglieri, “Defect study of SnO2 nanostructures by cathodoluminescence analysis: application to nanowires,” Sens. Actuators B Chem. 126(1), 6–12 (2007).
[Crossref]

Arriandiaga, M. A.

R. Balda, N. Hakmeh, M. Barredo-Zuriarrain, O. Merdrignac-Conanec, S. García-Revilla, M. A. Arriandiaga, and J. Fernández, “Influence of upconversion processes in the optically-induced inhomogeneous thermal behavior of erbium-doped lanthanum oxysulfide powders,” Materials (Basel) 9(5), 353 (2016).
[Crossref] [PubMed]

Avella, M.

J. D. Prades, J. Arbiol, A. Cirera, J. R. Morante, M. Avella, L. Zanotti, E. Comini, G. Faglia, and G. Sberveglieri, “Defect study of SnO2 nanostructures by cathodoluminescence analysis: application to nanowires,” Sens. Actuators B Chem. 126(1), 6–12 (2007).
[Crossref]

Baibarac, M.

I. Gontia, M. Baibarac, and I. Baltog, “Photoluminescence and Raman studies on tin dioxide powder and tin dioxide/single-walled carbon-nanotube composites,” Phys. Status Solidi B 248(6), 1494–1498 (2011).
[Crossref]

Balda, R.

R. Balda, N. Hakmeh, M. Barredo-Zuriarrain, O. Merdrignac-Conanec, S. García-Revilla, M. A. Arriandiaga, and J. Fernández, “Influence of upconversion processes in the optically-induced inhomogeneous thermal behavior of erbium-doped lanthanum oxysulfide powders,” Materials (Basel) 9(5), 353 (2016).
[Crossref] [PubMed]

Baltog, I.

I. Gontia, M. Baibarac, and I. Baltog, “Photoluminescence and Raman studies on tin dioxide powder and tin dioxide/single-walled carbon-nanotube composites,” Phys. Status Solidi B 248(6), 1494–1498 (2011).
[Crossref]

Bando, Y.

J. Hu, Y. Bando, Q. Liu, and D. Golberg, “Laser-ablation growth and optical properties of wide and long single-crystal SnO2 ribbons,” Adv. Funct. Mater. 13(6), 493–496 (2003).
[Crossref]

Barone, V.

S. Lettieri, M. Causà, A. Setaro, F. Trani, V. Barone, D. Ninno, and P. Maddalena, “Direct role of surface oxygen vacancies in visible light emission of tin dioxide nanowires,” J. Chem. Phys. 129(24), 244710 (2008).
[Crossref] [PubMed]

Barredo-Zuriarrain, M.

R. Balda, N. Hakmeh, M. Barredo-Zuriarrain, O. Merdrignac-Conanec, S. García-Revilla, M. A. Arriandiaga, and J. Fernández, “Influence of upconversion processes in the optically-induced inhomogeneous thermal behavior of erbium-doped lanthanum oxysulfide powders,” Materials (Basel) 9(5), 353 (2016).
[Crossref] [PubMed]

Binnemans, K.

K. Binnemans, “Interpretation of europium(III) spectra,” Coord. Chem. Rev. 295, 1–45 (2015).
[Crossref]

Birringer, R.

X. Zhu, R. Birringer, U. Herr, and H. Gleiter, “X-ray diffraction studies of the structure of nanometer-sized crystalline materials,” Phys. Rev. B Condens. Matter 35(17), 9085–9090 (1987).
[Crossref] [PubMed]

Brites, C. D. S.

C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millán, V. S. Amaral, F. Palacio, and L. D. Carlos, “Thermometry at the nanoscale,” Nanoscale 4(16), 4799–4829 (2012).
[Crossref] [PubMed]

Brundage, R. T.

W. M. Yen and R. T. Brundage, “Fluorescence line narrowing in inorganic glasses: linewidth measurements,” J. Lumin. 36(4-5), 209–220 (1987).
[Crossref]

Bush, T. S.

T. S. Bush, C. R. A. Catlow, A. V. Chadwick, M. Cole, R. M. Geatches, G. N. Greaves, and S. M. Tomlinson, “Studies of cation dopant sites in metal oxides by EXAFS and computer- simulation techniques,” J. Mater. Chem. 2(3), 309–316 (1992).
[Crossref]

Carlos, L. D.

C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millán, V. S. Amaral, F. Palacio, and L. D. Carlos, “Thermometry at the nanoscale,” Nanoscale 4(16), 4799–4829 (2012).
[Crossref] [PubMed]

Catlow, C. R. A.

T. S. Bush, C. R. A. Catlow, A. V. Chadwick, M. Cole, R. M. Geatches, G. N. Greaves, and S. M. Tomlinson, “Studies of cation dopant sites in metal oxides by EXAFS and computer- simulation techniques,” J. Mater. Chem. 2(3), 309–316 (1992).
[Crossref]

C. M. Freeman and C. R. A. Catlow, “A computer modeling study of defect and dopant states in SnO2,” J. Solid State Chem. 85(1), 65–75 (1990).
[Crossref]

Causà, M.

S. Lettieri, M. Causà, A. Setaro, F. Trani, V. Barone, D. Ninno, and P. Maddalena, “Direct role of surface oxygen vacancies in visible light emission of tin dioxide nanowires,” J. Chem. Phys. 129(24), 244710 (2008).
[Crossref] [PubMed]

Chadwick, A. V.

T. S. Bush, C. R. A. Catlow, A. V. Chadwick, M. Cole, R. M. Geatches, G. N. Greaves, and S. M. Tomlinson, “Studies of cation dopant sites in metal oxides by EXAFS and computer- simulation techniques,” J. Mater. Chem. 2(3), 309–316 (1992).
[Crossref]

Chang, G. S.

G. S. Chang, J. Forrest, E. Z. Kurmaev, A. N. Morozovska, M. D. Glinchuk, J. A. McLeod, A. Moewes, T. P. Surkova, and N. H. Hong, “Oxygen-vacancy-induced ferromagnetism in undoped SnO2 thin films,” Phys. Rev. B 85(16), 165319 (2012).
[Crossref]

Chen, J.

Y. F. Li, W. J. Yin, R. Deng, R. Chen, J. Chen, Q. Y. Yan, B. Yao, H. D. Sun, S. H. Wei, and T. Wu, “Realizing a SnO2-based ultraviolet light-emitting diode via breaking the dipole-forbidden rule,” NPG Asia Mater. 4(11), e30 (2012).
[Crossref]

Chen, R.

Y. F. Li, W. J. Yin, R. Deng, R. Chen, J. Chen, Q. Y. Yan, B. Yao, H. D. Sun, S. H. Wei, and T. Wu, “Realizing a SnO2-based ultraviolet light-emitting diode via breaking the dipole-forbidden rule,” NPG Asia Mater. 4(11), e30 (2012).
[Crossref]

Chen, X.

J. Kong, W. Zheng, Y. Liu, R. Li, E. Ma, H. Zhu, and X. Chen, “Persistent luminescence from Eu3+ in SnO2 nanoparticles,” Nanoscale 7(25), 11048–11054 (2015).
[Crossref] [PubMed]

Chiasera, A.

L. Zur, L. T. N. Tran, M. Meneghetti, V. T. T. Tran, A. Lukowiak, A. Chiasera, D. Zonta, M. Ferrari, and G. C. Righini, “Tin-dioxide nanocrystals as Er3+ luminescence sensitizers: formation of glass-ceramic thin films and their characterization,” Opt. Mater. 63, 95–100 (2017).
[Crossref]

Chowdhury, M.

M. Chowdhury and S. K. Sharma, “Spectroscopic behavior of Eu3+ in SnO2 for tunable red emission in solid state lighting devices,” RSC Advances 5(63), 51102–51109 (2015).
[Crossref]

Chu, P. K.

S. H. Luo, P. K. Chu, W. L. Liu, M. Zhang, and C. L. Lin, “Origin of low-temperature photoluminescence from SnO2 nanowires fabricated by thermal evaporation and annealed in different ambients,” Appl. Phys. Lett. 88(18), 183112 (2006).
[Crossref]

S. Luo, J. Fan, W. Liu, M. Zhang, Z. Song, C. Lin, X. Wu, and P. K. Chu, “Synthesis and low-temperature photoluminescence properties of SnO2 nanowires and nanobelts,” Nanotechnology 17(6), 1695–1699 (2006).
[Crossref] [PubMed]

Cirera, A.

J. D. Prades, J. Arbiol, A. Cirera, J. R. Morante, M. Avella, L. Zanotti, E. Comini, G. Faglia, and G. Sberveglieri, “Defect study of SnO2 nanostructures by cathodoluminescence analysis: application to nanowires,” Sens. Actuators B Chem. 126(1), 6–12 (2007).
[Crossref]

Coey, J. M. D.

C. B. Fitzgerald, M. Venkatesan, L. S. Dorneles, R. Gunning, P. Stamenov, J. M. D. Coey, P. A. Stampe, R. J. Kennedy, E. C. Moreira, and U. S. Sias, “Magnetism in dilute magnetic oxide thin films based on SnO2,” Phys. Rev. B 74(11), 115307 (2006).
[Crossref]

Cole, M.

T. S. Bush, C. R. A. Catlow, A. V. Chadwick, M. Cole, R. M. Geatches, G. N. Greaves, and S. M. Tomlinson, “Studies of cation dopant sites in metal oxides by EXAFS and computer- simulation techniques,” J. Mater. Chem. 2(3), 309–316 (1992).
[Crossref]

Comini, E.

J. D. Prades, J. Arbiol, A. Cirera, J. R. Morante, M. Avella, L. Zanotti, E. Comini, G. Faglia, and G. Sberveglieri, “Defect study of SnO2 nanostructures by cathodoluminescence analysis: application to nanowires,” Sens. Actuators B Chem. 126(1), 6–12 (2007).
[Crossref]

Crabtree, D. F.

D. F. Crabtree, “The luminescence of SnO2-Eu3+,” J. Phys. D Appl. Phys. 8(1), 107–116 (1975).
[Crossref]

Del Castillo, J.

A. C. Yanes, J. Del Castillo, M. Torres, J. Peraza, V. D. Rodríguez, and J. Méndez-Ramos, “Nanocrystal-size selective spectroscopy in SnO2: Eu3+ semiconductor quantum dots,” Appl. Phys. Lett. 85(12), 2343–2345 (2004).
[Crossref]

Deng, R.

Y. F. Li, W. J. Yin, R. Deng, R. Chen, J. Chen, Q. Y. Yan, B. Yao, H. D. Sun, S. H. Wei, and T. Wu, “Realizing a SnO2-based ultraviolet light-emitting diode via breaking the dipole-forbidden rule,” NPG Asia Mater. 4(11), e30 (2012).
[Crossref]

Di Valentin, C.

E. Albanese, C. Di Valentin, G. Pacchioni, F. Sauvage, S. Livraghi, and E. Giamello, “Nature of paramagnetic species in nitrogen-doped SnO2: a combined electron paramagnetic resonance and density functional theory study,” J. Phys. Chem. C 119(48), 26895–26903 (2015).
[Crossref]

Diéguez, A.

A. Diéguez, A. Romano-Rodriguez, A. Vila, and J. R. Morante, “The complete Raman spectrum of nanometric SnO2 particles,” J. Appl. Phys. 90(3), 1550–1557 (2001).
[Crossref]

Dorneles, L. S.

C. B. Fitzgerald, M. Venkatesan, L. S. Dorneles, R. Gunning, P. Stamenov, J. M. D. Coey, P. A. Stampe, R. J. Kennedy, E. C. Moreira, and U. S. Sias, “Magnetism in dilute magnetic oxide thin films based on SnO2,” Phys. Rev. B 74(11), 115307 (2006).
[Crossref]

Faglia, G.

J. D. Prades, J. Arbiol, A. Cirera, J. R. Morante, M. Avella, L. Zanotti, E. Comini, G. Faglia, and G. Sberveglieri, “Defect study of SnO2 nanostructures by cathodoluminescence analysis: application to nanowires,” Sens. Actuators B Chem. 126(1), 6–12 (2007).
[Crossref]

Fan, J.

S. Luo, J. Fan, W. Liu, M. Zhang, Z. Song, C. Lin, X. Wu, and P. K. Chu, “Synthesis and low-temperature photoluminescence properties of SnO2 nanowires and nanobelts,” Nanotechnology 17(6), 1695–1699 (2006).
[Crossref] [PubMed]

Fernández, J.

R. Balda, N. Hakmeh, M. Barredo-Zuriarrain, O. Merdrignac-Conanec, S. García-Revilla, M. A. Arriandiaga, and J. Fernández, “Influence of upconversion processes in the optically-induced inhomogeneous thermal behavior of erbium-doped lanthanum oxysulfide powders,” Materials (Basel) 9(5), 353 (2016).
[Crossref] [PubMed]

Ferrari, M.

L. Zur, L. T. N. Tran, M. Meneghetti, V. T. T. Tran, A. Lukowiak, A. Chiasera, D. Zonta, M. Ferrari, and G. C. Righini, “Tin-dioxide nanocrystals as Er3+ luminescence sensitizers: formation of glass-ceramic thin films and their characterization,” Opt. Mater. 63, 95–100 (2017).
[Crossref]

Fitzgerald, C. B.

C. B. Fitzgerald, M. Venkatesan, L. S. Dorneles, R. Gunning, P. Stamenov, J. M. D. Coey, P. A. Stampe, R. J. Kennedy, E. C. Moreira, and U. S. Sias, “Magnetism in dilute magnetic oxide thin films based on SnO2,” Phys. Rev. B 74(11), 115307 (2006).
[Crossref]

Fonstad, C. G.

S. Samson and C. G. Fonstad, “Defect structure and electronic donor levels in stannic oxide crystals,” J. Appl. Phys. 44(10), 4618–4621 (1973).
[Crossref]

Forrest, J.

G. S. Chang, J. Forrest, E. Z. Kurmaev, A. N. Morozovska, M. D. Glinchuk, J. A. McLeod, A. Moewes, T. P. Surkova, and N. H. Hong, “Oxygen-vacancy-induced ferromagnetism in undoped SnO2 thin films,” Phys. Rev. B 85(16), 165319 (2012).
[Crossref]

Freeman, C. M.

C. M. Freeman and C. R. A. Catlow, “A computer modeling study of defect and dopant states in SnO2,” J. Solid State Chem. 85(1), 65–75 (1990).
[Crossref]

García-Revilla, S.

R. Balda, N. Hakmeh, M. Barredo-Zuriarrain, O. Merdrignac-Conanec, S. García-Revilla, M. A. Arriandiaga, and J. Fernández, “Influence of upconversion processes in the optically-induced inhomogeneous thermal behavior of erbium-doped lanthanum oxysulfide powders,” Materials (Basel) 9(5), 353 (2016).
[Crossref] [PubMed]

Geatches, R. M.

T. S. Bush, C. R. A. Catlow, A. V. Chadwick, M. Cole, R. M. Geatches, G. N. Greaves, and S. M. Tomlinson, “Studies of cation dopant sites in metal oxides by EXAFS and computer- simulation techniques,” J. Mater. Chem. 2(3), 309–316 (1992).
[Crossref]

Giamello, E.

E. Albanese, C. Di Valentin, G. Pacchioni, F. Sauvage, S. Livraghi, and E. Giamello, “Nature of paramagnetic species in nitrogen-doped SnO2: a combined electron paramagnetic resonance and density functional theory study,” J. Phys. Chem. C 119(48), 26895–26903 (2015).
[Crossref]

Gleiter, H.

X. Zhu, R. Birringer, U. Herr, and H. Gleiter, “X-ray diffraction studies of the structure of nanometer-sized crystalline materials,” Phys. Rev. B Condens. Matter 35(17), 9085–9090 (1987).
[Crossref] [PubMed]

Glinchuk, M. D.

G. S. Chang, J. Forrest, E. Z. Kurmaev, A. N. Morozovska, M. D. Glinchuk, J. A. McLeod, A. Moewes, T. P. Surkova, and N. H. Hong, “Oxygen-vacancy-induced ferromagnetism in undoped SnO2 thin films,” Phys. Rev. B 85(16), 165319 (2012).
[Crossref]

Golberg, D.

J. Hu, Y. Bando, Q. Liu, and D. Golberg, “Laser-ablation growth and optical properties of wide and long single-crystal SnO2 ribbons,” Adv. Funct. Mater. 13(6), 493–496 (2003).
[Crossref]

Golovanov, V.

M. Ivanovskaya, E. Ovodok, and V. Golovanov, “The nature of paramagnetic defects in tin (IV) oxide,” Chem. Phys. 457, 98–105 (2015).
[Crossref]

N. Özcan, T. Kortelainen, V. Golovanov, T. T. Rantala, and J. Vaara, “Electron spin resonance parameters of bulk oxygen vacancy in semiconducting tin dioxide,” Phys. Rev. B 81(23), 235202 (2010).
[Crossref]

Gontia, I.

I. Gontia, M. Baibarac, and I. Baltog, “Photoluminescence and Raman studies on tin dioxide powder and tin dioxide/single-walled carbon-nanotube composites,” Phys. Status Solidi B 248(6), 1494–1498 (2011).
[Crossref]

Greaves, G. N.

T. S. Bush, C. R. A. Catlow, A. V. Chadwick, M. Cole, R. M. Geatches, G. N. Greaves, and S. M. Tomlinson, “Studies of cation dopant sites in metal oxides by EXAFS and computer- simulation techniques,” J. Mater. Chem. 2(3), 309–316 (1992).
[Crossref]

Gunning, R.

C. B. Fitzgerald, M. Venkatesan, L. S. Dorneles, R. Gunning, P. Stamenov, J. M. D. Coey, P. A. Stampe, R. J. Kennedy, E. C. Moreira, and U. S. Sias, “Magnetism in dilute magnetic oxide thin films based on SnO2,” Phys. Rev. B 74(11), 115307 (2006).
[Crossref]

Hakmeh, N.

R. Balda, N. Hakmeh, M. Barredo-Zuriarrain, O. Merdrignac-Conanec, S. García-Revilla, M. A. Arriandiaga, and J. Fernández, “Influence of upconversion processes in the optically-induced inhomogeneous thermal behavior of erbium-doped lanthanum oxysulfide powders,” Materials (Basel) 9(5), 353 (2016).
[Crossref] [PubMed]

Han, G. Y.

Y. M. Xiao, G. Y. Han, J. Y. Yue, W. J. Hou, and J. H. Wu, “Multifunctional rare-earth-doped tin oxide compact layers for improving performances of photovoltaic devices,” Adv. Mater. Interfaces 3(24), 1600881 (2016).
[Crossref]

Herr, U.

X. Zhu, R. Birringer, U. Herr, and H. Gleiter, “X-ray diffraction studies of the structure of nanometer-sized crystalline materials,” Phys. Rev. B Condens. Matter 35(17), 9085–9090 (1987).
[Crossref] [PubMed]

Hong, N. H.

G. S. Chang, J. Forrest, E. Z. Kurmaev, A. N. Morozovska, M. D. Glinchuk, J. A. McLeod, A. Moewes, T. P. Surkova, and N. H. Hong, “Oxygen-vacancy-induced ferromagnetism in undoped SnO2 thin films,” Phys. Rev. B 85(16), 165319 (2012).
[Crossref]

Hou, W. J.

Y. M. Xiao, G. Y. Han, J. Y. Yue, W. J. Hou, and J. H. Wu, “Multifunctional rare-earth-doped tin oxide compact layers for improving performances of photovoltaic devices,” Adv. Mater. Interfaces 3(24), 1600881 (2016).
[Crossref]

Hu, J.

J. Hu, Y. Bando, Q. Liu, and D. Golberg, “Laser-ablation growth and optical properties of wide and long single-crystal SnO2 ribbons,” Adv. Funct. Mater. 13(6), 493–496 (2003).
[Crossref]

Ivanovskaya, M.

M. Ivanovskaya, E. Ovodok, and V. Golovanov, “The nature of paramagnetic defects in tin (IV) oxide,” Chem. Phys. 457, 98–105 (2015).
[Crossref]

Janotti, A.

A. K. Singh, A. Janotti, M. Scheffler, and C. G. Van de Walle, “Sources of electrical conductivity in SnO2.,” Phys. Rev. Lett. 101(5), 055502 (2008).
[Crossref] [PubMed]

Jaque, D.

D. Jaque and F. Vetrone, “Luminescence nanothermometry,” Nanoscale 4(15), 4301–4326 (2012).
[Crossref] [PubMed]

Kennedy, R. J.

C. B. Fitzgerald, M. Venkatesan, L. S. Dorneles, R. Gunning, P. Stamenov, J. M. D. Coey, P. A. Stampe, R. J. Kennedy, E. C. Moreira, and U. S. Sias, “Magnetism in dilute magnetic oxide thin films based on SnO2,” Phys. Rev. B 74(11), 115307 (2006).
[Crossref]

Kílíç, C.

C. Kílíç and A. Zunger, “Origins of coexistence of conductivity and transparency in SnO2.,” Phys. Rev. Lett. 88(9), 095501 (2002).
[Crossref] [PubMed]

Kong, J.

J. Kong, W. Zheng, Y. Liu, R. Li, E. Ma, H. Zhu, and X. Chen, “Persistent luminescence from Eu3+ in SnO2 nanoparticles,” Nanoscale 7(25), 11048–11054 (2015).
[Crossref] [PubMed]

Kortelainen, T.

N. Özcan, T. Kortelainen, V. Golovanov, T. T. Rantala, and J. Vaara, “Electron spin resonance parameters of bulk oxygen vacancy in semiconducting tin dioxide,” Phys. Rev. B 81(23), 235202 (2010).
[Crossref]

Kurmaev, E. Z.

G. S. Chang, J. Forrest, E. Z. Kurmaev, A. N. Morozovska, M. D. Glinchuk, J. A. McLeod, A. Moewes, T. P. Surkova, and N. H. Hong, “Oxygen-vacancy-induced ferromagnetism in undoped SnO2 thin films,” Phys. Rev. B 85(16), 165319 (2012).
[Crossref]

Lettieri, S.

S. Lettieri, M. Causà, A. Setaro, F. Trani, V. Barone, D. Ninno, and P. Maddalena, “Direct role of surface oxygen vacancies in visible light emission of tin dioxide nanowires,” J. Chem. Phys. 129(24), 244710 (2008).
[Crossref] [PubMed]

Li, R.

J. Kong, W. Zheng, Y. Liu, R. Li, E. Ma, H. Zhu, and X. Chen, “Persistent luminescence from Eu3+ in SnO2 nanoparticles,” Nanoscale 7(25), 11048–11054 (2015).
[Crossref] [PubMed]

Li, Y. F.

Y. F. Li, W. J. Yin, R. Deng, R. Chen, J. Chen, Q. Y. Yan, B. Yao, H. D. Sun, S. H. Wei, and T. Wu, “Realizing a SnO2-based ultraviolet light-emitting diode via breaking the dipole-forbidden rule,” NPG Asia Mater. 4(11), e30 (2012).
[Crossref]

Lima, P. P.

C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millán, V. S. Amaral, F. Palacio, and L. D. Carlos, “Thermometry at the nanoscale,” Nanoscale 4(16), 4799–4829 (2012).
[Crossref] [PubMed]

Lin, C.

S. Luo, J. Fan, W. Liu, M. Zhang, Z. Song, C. Lin, X. Wu, and P. K. Chu, “Synthesis and low-temperature photoluminescence properties of SnO2 nanowires and nanobelts,” Nanotechnology 17(6), 1695–1699 (2006).
[Crossref] [PubMed]

Lin, C. L.

S. H. Luo, P. K. Chu, W. L. Liu, M. Zhang, and C. L. Lin, “Origin of low-temperature photoluminescence from SnO2 nanowires fabricated by thermal evaporation and annealed in different ambients,” Appl. Phys. Lett. 88(18), 183112 (2006).
[Crossref]

Liu, Q.

J. Hu, Y. Bando, Q. Liu, and D. Golberg, “Laser-ablation growth and optical properties of wide and long single-crystal SnO2 ribbons,” Adv. Funct. Mater. 13(6), 493–496 (2003).
[Crossref]

Liu, W.

S. Luo, J. Fan, W. Liu, M. Zhang, Z. Song, C. Lin, X. Wu, and P. K. Chu, “Synthesis and low-temperature photoluminescence properties of SnO2 nanowires and nanobelts,” Nanotechnology 17(6), 1695–1699 (2006).
[Crossref] [PubMed]

Liu, W. L.

S. H. Luo, P. K. Chu, W. L. Liu, M. Zhang, and C. L. Lin, “Origin of low-temperature photoluminescence from SnO2 nanowires fabricated by thermal evaporation and annealed in different ambients,” Appl. Phys. Lett. 88(18), 183112 (2006).
[Crossref]

Liu, Y.

J. Kong, W. Zheng, Y. Liu, R. Li, E. Ma, H. Zhu, and X. Chen, “Persistent luminescence from Eu3+ in SnO2 nanoparticles,” Nanoscale 7(25), 11048–11054 (2015).
[Crossref] [PubMed]

Livraghi, S.

E. Albanese, C. Di Valentin, G. Pacchioni, F. Sauvage, S. Livraghi, and E. Giamello, “Nature of paramagnetic species in nitrogen-doped SnO2: a combined electron paramagnetic resonance and density functional theory study,” J. Phys. Chem. C 119(48), 26895–26903 (2015).
[Crossref]

Lukowiak, A.

L. Zur, L. T. N. Tran, M. Meneghetti, V. T. T. Tran, A. Lukowiak, A. Chiasera, D. Zonta, M. Ferrari, and G. C. Righini, “Tin-dioxide nanocrystals as Er3+ luminescence sensitizers: formation of glass-ceramic thin films and their characterization,” Opt. Mater. 63, 95–100 (2017).
[Crossref]

Luo, S.

S. Luo, J. Fan, W. Liu, M. Zhang, Z. Song, C. Lin, X. Wu, and P. K. Chu, “Synthesis and low-temperature photoluminescence properties of SnO2 nanowires and nanobelts,” Nanotechnology 17(6), 1695–1699 (2006).
[Crossref] [PubMed]

Luo, S. H.

S. H. Luo, P. K. Chu, W. L. Liu, M. Zhang, and C. L. Lin, “Origin of low-temperature photoluminescence from SnO2 nanowires fabricated by thermal evaporation and annealed in different ambients,” Appl. Phys. Lett. 88(18), 183112 (2006).
[Crossref]

Ma, E.

J. Kong, W. Zheng, Y. Liu, R. Li, E. Ma, H. Zhu, and X. Chen, “Persistent luminescence from Eu3+ in SnO2 nanoparticles,” Nanoscale 7(25), 11048–11054 (2015).
[Crossref] [PubMed]

Maddalena, P.

S. Lettieri, M. Causà, A. Setaro, F. Trani, V. Barone, D. Ninno, and P. Maddalena, “Direct role of surface oxygen vacancies in visible light emission of tin dioxide nanowires,” J. Chem. Phys. 129(24), 244710 (2008).
[Crossref] [PubMed]

McLeod, J. A.

G. S. Chang, J. Forrest, E. Z. Kurmaev, A. N. Morozovska, M. D. Glinchuk, J. A. McLeod, A. Moewes, T. P. Surkova, and N. H. Hong, “Oxygen-vacancy-induced ferromagnetism in undoped SnO2 thin films,” Phys. Rev. B 85(16), 165319 (2012).
[Crossref]

Méndez-Ramos, J.

A. C. Yanes, J. Del Castillo, M. Torres, J. Peraza, V. D. Rodríguez, and J. Méndez-Ramos, “Nanocrystal-size selective spectroscopy in SnO2: Eu3+ semiconductor quantum dots,” Appl. Phys. Lett. 85(12), 2343–2345 (2004).
[Crossref]

Meneghetti, M.

L. Zur, L. T. N. Tran, M. Meneghetti, V. T. T. Tran, A. Lukowiak, A. Chiasera, D. Zonta, M. Ferrari, and G. C. Righini, “Tin-dioxide nanocrystals as Er3+ luminescence sensitizers: formation of glass-ceramic thin films and their characterization,” Opt. Mater. 63, 95–100 (2017).
[Crossref]

Merdrignac-Conanec, O.

R. Balda, N. Hakmeh, M. Barredo-Zuriarrain, O. Merdrignac-Conanec, S. García-Revilla, M. A. Arriandiaga, and J. Fernández, “Influence of upconversion processes in the optically-induced inhomogeneous thermal behavior of erbium-doped lanthanum oxysulfide powders,” Materials (Basel) 9(5), 353 (2016).
[Crossref] [PubMed]

Millán, A.

C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millán, V. S. Amaral, F. Palacio, and L. D. Carlos, “Thermometry at the nanoscale,” Nanoscale 4(16), 4799–4829 (2012).
[Crossref] [PubMed]

Moewes, A.

G. S. Chang, J. Forrest, E. Z. Kurmaev, A. N. Morozovska, M. D. Glinchuk, J. A. McLeod, A. Moewes, T. P. Surkova, and N. H. Hong, “Oxygen-vacancy-induced ferromagnetism in undoped SnO2 thin films,” Phys. Rev. B 85(16), 165319 (2012).
[Crossref]

Morante, J. R.

J. D. Prades, J. Arbiol, A. Cirera, J. R. Morante, M. Avella, L. Zanotti, E. Comini, G. Faglia, and G. Sberveglieri, “Defect study of SnO2 nanostructures by cathodoluminescence analysis: application to nanowires,” Sens. Actuators B Chem. 126(1), 6–12 (2007).
[Crossref]

A. Diéguez, A. Romano-Rodriguez, A. Vila, and J. R. Morante, “The complete Raman spectrum of nanometric SnO2 particles,” J. Appl. Phys. 90(3), 1550–1557 (2001).
[Crossref]

Moreira, E. C.

C. B. Fitzgerald, M. Venkatesan, L. S. Dorneles, R. Gunning, P. Stamenov, J. M. D. Coey, P. A. Stampe, R. J. Kennedy, E. C. Moreira, and U. S. Sias, “Magnetism in dilute magnetic oxide thin films based on SnO2,” Phys. Rev. B 74(11), 115307 (2006).
[Crossref]

Morosin, B.

P. S. Peercy and B. Morosin, “Pressure and temperature dependences of Raman active phonons in SnO2,” Phys. Rev. B 7(6), 2779–2786 (1973).
[Crossref]

Morozovska, A. N.

G. S. Chang, J. Forrest, E. Z. Kurmaev, A. N. Morozovska, M. D. Glinchuk, J. A. McLeod, A. Moewes, T. P. Surkova, and N. H. Hong, “Oxygen-vacancy-induced ferromagnetism in undoped SnO2 thin films,” Phys. Rev. B 85(16), 165319 (2012).
[Crossref]

Nieminen, R. M.

P. Ágoston, K. Albe, R. M. Nieminen, and M. J. Puska, “Intrinsic n-type behavior in transparent conducting oxides: a comparative hybrid-functional study of In2O3, SnO2, and ZnO,” Phys. Rev. Lett. 103(24), 245501 (2009).
[Crossref] [PubMed]

Ninno, D.

S. Lettieri, M. Causà, A. Setaro, F. Trani, V. Barone, D. Ninno, and P. Maddalena, “Direct role of surface oxygen vacancies in visible light emission of tin dioxide nanowires,” J. Chem. Phys. 129(24), 244710 (2008).
[Crossref] [PubMed]

Nogami, M.

H. You and M. Nogami, “Local structure and persistent spectral hole burning of the Eu3+ ion in SnO2-SiO2 glass containing SnO2 nanocrystals,” J. Appl. Phys. 95(5), 2781–2785 (2004).
[Crossref]

Ovodok, E.

M. Ivanovskaya, E. Ovodok, and V. Golovanov, “The nature of paramagnetic defects in tin (IV) oxide,” Chem. Phys. 457, 98–105 (2015).
[Crossref]

Özcan, N.

N. Özcan, T. Kortelainen, V. Golovanov, T. T. Rantala, and J. Vaara, “Electron spin resonance parameters of bulk oxygen vacancy in semiconducting tin dioxide,” Phys. Rev. B 81(23), 235202 (2010).
[Crossref]

Pacchioni, G.

E. Albanese, C. Di Valentin, G. Pacchioni, F. Sauvage, S. Livraghi, and E. Giamello, “Nature of paramagnetic species in nitrogen-doped SnO2: a combined electron paramagnetic resonance and density functional theory study,” J. Phys. Chem. C 119(48), 26895–26903 (2015).
[Crossref]

Palacio, F.

C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millán, V. S. Amaral, F. Palacio, and L. D. Carlos, “Thermometry at the nanoscale,” Nanoscale 4(16), 4799–4829 (2012).
[Crossref] [PubMed]

Peercy, P. S.

P. S. Peercy and B. Morosin, “Pressure and temperature dependences of Raman active phonons in SnO2,” Phys. Rev. B 7(6), 2779–2786 (1973).
[Crossref]

Peraza, J.

A. C. Yanes, J. Del Castillo, M. Torres, J. Peraza, V. D. Rodríguez, and J. Méndez-Ramos, “Nanocrystal-size selective spectroscopy in SnO2: Eu3+ semiconductor quantum dots,” Appl. Phys. Lett. 85(12), 2343–2345 (2004).
[Crossref]

Prades, J. D.

J. D. Prades, J. Arbiol, A. Cirera, J. R. Morante, M. Avella, L. Zanotti, E. Comini, G. Faglia, and G. Sberveglieri, “Defect study of SnO2 nanostructures by cathodoluminescence analysis: application to nanowires,” Sens. Actuators B Chem. 126(1), 6–12 (2007).
[Crossref]

Puska, M. J.

P. Ágoston, K. Albe, R. M. Nieminen, and M. J. Puska, “Intrinsic n-type behavior in transparent conducting oxides: a comparative hybrid-functional study of In2O3, SnO2, and ZnO,” Phys. Rev. Lett. 103(24), 245501 (2009).
[Crossref] [PubMed]

Rantala, T. T.

N. Özcan, T. Kortelainen, V. Golovanov, T. T. Rantala, and J. Vaara, “Electron spin resonance parameters of bulk oxygen vacancy in semiconducting tin dioxide,” Phys. Rev. B 81(23), 235202 (2010).
[Crossref]

Righini, G. C.

L. Zur, L. T. N. Tran, M. Meneghetti, V. T. T. Tran, A. Lukowiak, A. Chiasera, D. Zonta, M. Ferrari, and G. C. Righini, “Tin-dioxide nanocrystals as Er3+ luminescence sensitizers: formation of glass-ceramic thin films and their characterization,” Opt. Mater. 63, 95–100 (2017).
[Crossref]

Rodríguez, V. D.

A. C. Yanes, J. Del Castillo, M. Torres, J. Peraza, V. D. Rodríguez, and J. Méndez-Ramos, “Nanocrystal-size selective spectroscopy in SnO2: Eu3+ semiconductor quantum dots,” Appl. Phys. Lett. 85(12), 2343–2345 (2004).
[Crossref]

Romano-Rodriguez, A.

A. Diéguez, A. Romano-Rodriguez, A. Vila, and J. R. Morante, “The complete Raman spectrum of nanometric SnO2 particles,” J. Appl. Phys. 90(3), 1550–1557 (2001).
[Crossref]

Samson, S.

S. Samson and C. G. Fonstad, “Defect structure and electronic donor levels in stannic oxide crystals,” J. Appl. Phys. 44(10), 4618–4621 (1973).
[Crossref]

Sauvage, F.

E. Albanese, C. Di Valentin, G. Pacchioni, F. Sauvage, S. Livraghi, and E. Giamello, “Nature of paramagnetic species in nitrogen-doped SnO2: a combined electron paramagnetic resonance and density functional theory study,” J. Phys. Chem. C 119(48), 26895–26903 (2015).
[Crossref]

Sberveglieri, G.

J. D. Prades, J. Arbiol, A. Cirera, J. R. Morante, M. Avella, L. Zanotti, E. Comini, G. Faglia, and G. Sberveglieri, “Defect study of SnO2 nanostructures by cathodoluminescence analysis: application to nanowires,” Sens. Actuators B Chem. 126(1), 6–12 (2007).
[Crossref]

Scheffler, M.

A. K. Singh, A. Janotti, M. Scheffler, and C. G. Van de Walle, “Sources of electrical conductivity in SnO2.,” Phys. Rev. Lett. 101(5), 055502 (2008).
[Crossref] [PubMed]

Setaro, A.

S. Lettieri, M. Causà, A. Setaro, F. Trani, V. Barone, D. Ninno, and P. Maddalena, “Direct role of surface oxygen vacancies in visible light emission of tin dioxide nanowires,” J. Chem. Phys. 129(24), 244710 (2008).
[Crossref] [PubMed]

Sharma, S. K.

M. Chowdhury and S. K. Sharma, “Spectroscopic behavior of Eu3+ in SnO2 for tunable red emission in solid state lighting devices,” RSC Advances 5(63), 51102–51109 (2015).
[Crossref]

Sias, U. S.

C. B. Fitzgerald, M. Venkatesan, L. S. Dorneles, R. Gunning, P. Stamenov, J. M. D. Coey, P. A. Stampe, R. J. Kennedy, E. C. Moreira, and U. S. Sias, “Magnetism in dilute magnetic oxide thin films based on SnO2,” Phys. Rev. B 74(11), 115307 (2006).
[Crossref]

Silva, N. J. O.

C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millán, V. S. Amaral, F. Palacio, and L. D. Carlos, “Thermometry at the nanoscale,” Nanoscale 4(16), 4799–4829 (2012).
[Crossref] [PubMed]

Singh, A. K.

A. K. Singh, A. Janotti, M. Scheffler, and C. G. Van de Walle, “Sources of electrical conductivity in SnO2.,” Phys. Rev. Lett. 101(5), 055502 (2008).
[Crossref] [PubMed]

Song, Z.

S. Luo, J. Fan, W. Liu, M. Zhang, Z. Song, C. Lin, X. Wu, and P. K. Chu, “Synthesis and low-temperature photoluminescence properties of SnO2 nanowires and nanobelts,” Nanotechnology 17(6), 1695–1699 (2006).
[Crossref] [PubMed]

Stamenov, P.

C. B. Fitzgerald, M. Venkatesan, L. S. Dorneles, R. Gunning, P. Stamenov, J. M. D. Coey, P. A. Stampe, R. J. Kennedy, E. C. Moreira, and U. S. Sias, “Magnetism in dilute magnetic oxide thin films based on SnO2,” Phys. Rev. B 74(11), 115307 (2006).
[Crossref]

Stampe, P. A.

C. B. Fitzgerald, M. Venkatesan, L. S. Dorneles, R. Gunning, P. Stamenov, J. M. D. Coey, P. A. Stampe, R. J. Kennedy, E. C. Moreira, and U. S. Sias, “Magnetism in dilute magnetic oxide thin films based on SnO2,” Phys. Rev. B 74(11), 115307 (2006).
[Crossref]

Sun, H. D.

Y. F. Li, W. J. Yin, R. Deng, R. Chen, J. Chen, Q. Y. Yan, B. Yao, H. D. Sun, S. H. Wei, and T. Wu, “Realizing a SnO2-based ultraviolet light-emitting diode via breaking the dipole-forbidden rule,” NPG Asia Mater. 4(11), e30 (2012).
[Crossref]

Surkova, T. P.

G. S. Chang, J. Forrest, E. Z. Kurmaev, A. N. Morozovska, M. D. Glinchuk, J. A. McLeod, A. Moewes, T. P. Surkova, and N. H. Hong, “Oxygen-vacancy-induced ferromagnetism in undoped SnO2 thin films,” Phys. Rev. B 85(16), 165319 (2012).
[Crossref]

Tomlinson, S. M.

T. S. Bush, C. R. A. Catlow, A. V. Chadwick, M. Cole, R. M. Geatches, G. N. Greaves, and S. M. Tomlinson, “Studies of cation dopant sites in metal oxides by EXAFS and computer- simulation techniques,” J. Mater. Chem. 2(3), 309–316 (1992).
[Crossref]

Torres, M.

A. C. Yanes, J. Del Castillo, M. Torres, J. Peraza, V. D. Rodríguez, and J. Méndez-Ramos, “Nanocrystal-size selective spectroscopy in SnO2: Eu3+ semiconductor quantum dots,” Appl. Phys. Lett. 85(12), 2343–2345 (2004).
[Crossref]

Tran, L. T. N.

L. Zur, L. T. N. Tran, M. Meneghetti, V. T. T. Tran, A. Lukowiak, A. Chiasera, D. Zonta, M. Ferrari, and G. C. Righini, “Tin-dioxide nanocrystals as Er3+ luminescence sensitizers: formation of glass-ceramic thin films and their characterization,” Opt. Mater. 63, 95–100 (2017).
[Crossref]

Tran, V. T. T.

L. Zur, L. T. N. Tran, M. Meneghetti, V. T. T. Tran, A. Lukowiak, A. Chiasera, D. Zonta, M. Ferrari, and G. C. Righini, “Tin-dioxide nanocrystals as Er3+ luminescence sensitizers: formation of glass-ceramic thin films and their characterization,” Opt. Mater. 63, 95–100 (2017).
[Crossref]

Trani, F.

S. Lettieri, M. Causà, A. Setaro, F. Trani, V. Barone, D. Ninno, and P. Maddalena, “Direct role of surface oxygen vacancies in visible light emission of tin dioxide nanowires,” J. Chem. Phys. 129(24), 244710 (2008).
[Crossref] [PubMed]

Vaara, J.

N. Özcan, T. Kortelainen, V. Golovanov, T. T. Rantala, and J. Vaara, “Electron spin resonance parameters of bulk oxygen vacancy in semiconducting tin dioxide,” Phys. Rev. B 81(23), 235202 (2010).
[Crossref]

Van de Walle, C. G.

A. K. Singh, A. Janotti, M. Scheffler, and C. G. Van de Walle, “Sources of electrical conductivity in SnO2.,” Phys. Rev. Lett. 101(5), 055502 (2008).
[Crossref] [PubMed]

Venkatesan, M.

C. B. Fitzgerald, M. Venkatesan, L. S. Dorneles, R. Gunning, P. Stamenov, J. M. D. Coey, P. A. Stampe, R. J. Kennedy, E. C. Moreira, and U. S. Sias, “Magnetism in dilute magnetic oxide thin films based on SnO2,” Phys. Rev. B 74(11), 115307 (2006).
[Crossref]

Vetrone, F.

D. Jaque and F. Vetrone, “Luminescence nanothermometry,” Nanoscale 4(15), 4301–4326 (2012).
[Crossref] [PubMed]

Vila, A.

A. Diéguez, A. Romano-Rodriguez, A. Vila, and J. R. Morante, “The complete Raman spectrum of nanometric SnO2 particles,” J. Appl. Phys. 90(3), 1550–1557 (2001).
[Crossref]

Wei, S. H.

Y. F. Li, W. J. Yin, R. Deng, R. Chen, J. Chen, Q. Y. Yan, B. Yao, H. D. Sun, S. H. Wei, and T. Wu, “Realizing a SnO2-based ultraviolet light-emitting diode via breaking the dipole-forbidden rule,” NPG Asia Mater. 4(11), e30 (2012).
[Crossref]

Wu, J. H.

Y. M. Xiao, G. Y. Han, J. Y. Yue, W. J. Hou, and J. H. Wu, “Multifunctional rare-earth-doped tin oxide compact layers for improving performances of photovoltaic devices,” Adv. Mater. Interfaces 3(24), 1600881 (2016).
[Crossref]

Wu, T.

Y. F. Li, W. J. Yin, R. Deng, R. Chen, J. Chen, Q. Y. Yan, B. Yao, H. D. Sun, S. H. Wei, and T. Wu, “Realizing a SnO2-based ultraviolet light-emitting diode via breaking the dipole-forbidden rule,” NPG Asia Mater. 4(11), e30 (2012).
[Crossref]

Wu, X.

S. Luo, J. Fan, W. Liu, M. Zhang, Z. Song, C. Lin, X. Wu, and P. K. Chu, “Synthesis and low-temperature photoluminescence properties of SnO2 nanowires and nanobelts,” Nanotechnology 17(6), 1695–1699 (2006).
[Crossref] [PubMed]

Xiao, Y. M.

Y. M. Xiao, G. Y. Han, J. Y. Yue, W. J. Hou, and J. H. Wu, “Multifunctional rare-earth-doped tin oxide compact layers for improving performances of photovoltaic devices,” Adv. Mater. Interfaces 3(24), 1600881 (2016).
[Crossref]

Yan, Q. Y.

Y. F. Li, W. J. Yin, R. Deng, R. Chen, J. Chen, Q. Y. Yan, B. Yao, H. D. Sun, S. H. Wei, and T. Wu, “Realizing a SnO2-based ultraviolet light-emitting diode via breaking the dipole-forbidden rule,” NPG Asia Mater. 4(11), e30 (2012).
[Crossref]

Yanes, A. C.

A. C. Yanes, J. Del Castillo, M. Torres, J. Peraza, V. D. Rodríguez, and J. Méndez-Ramos, “Nanocrystal-size selective spectroscopy in SnO2: Eu3+ semiconductor quantum dots,” Appl. Phys. Lett. 85(12), 2343–2345 (2004).
[Crossref]

Yao, B.

Y. F. Li, W. J. Yin, R. Deng, R. Chen, J. Chen, Q. Y. Yan, B. Yao, H. D. Sun, S. H. Wei, and T. Wu, “Realizing a SnO2-based ultraviolet light-emitting diode via breaking the dipole-forbidden rule,” NPG Asia Mater. 4(11), e30 (2012).
[Crossref]

Yen, W. M.

W. M. Yen and R. T. Brundage, “Fluorescence line narrowing in inorganic glasses: linewidth measurements,” J. Lumin. 36(4-5), 209–220 (1987).
[Crossref]

Yin, W. J.

Y. F. Li, W. J. Yin, R. Deng, R. Chen, J. Chen, Q. Y. Yan, B. Yao, H. D. Sun, S. H. Wei, and T. Wu, “Realizing a SnO2-based ultraviolet light-emitting diode via breaking the dipole-forbidden rule,” NPG Asia Mater. 4(11), e30 (2012).
[Crossref]

You, H.

H. You and M. Nogami, “Local structure and persistent spectral hole burning of the Eu3+ ion in SnO2-SiO2 glass containing SnO2 nanocrystals,” J. Appl. Phys. 95(5), 2781–2785 (2004).
[Crossref]

Yue, J. Y.

Y. M. Xiao, G. Y. Han, J. Y. Yue, W. J. Hou, and J. H. Wu, “Multifunctional rare-earth-doped tin oxide compact layers for improving performances of photovoltaic devices,” Adv. Mater. Interfaces 3(24), 1600881 (2016).
[Crossref]

Zanotti, L.

J. D. Prades, J. Arbiol, A. Cirera, J. R. Morante, M. Avella, L. Zanotti, E. Comini, G. Faglia, and G. Sberveglieri, “Defect study of SnO2 nanostructures by cathodoluminescence analysis: application to nanowires,” Sens. Actuators B Chem. 126(1), 6–12 (2007).
[Crossref]

Zhang, M.

S. H. Luo, P. K. Chu, W. L. Liu, M. Zhang, and C. L. Lin, “Origin of low-temperature photoluminescence from SnO2 nanowires fabricated by thermal evaporation and annealed in different ambients,” Appl. Phys. Lett. 88(18), 183112 (2006).
[Crossref]

S. Luo, J. Fan, W. Liu, M. Zhang, Z. Song, C. Lin, X. Wu, and P. K. Chu, “Synthesis and low-temperature photoluminescence properties of SnO2 nanowires and nanobelts,” Nanotechnology 17(6), 1695–1699 (2006).
[Crossref] [PubMed]

Zheng, W.

J. Kong, W. Zheng, Y. Liu, R. Li, E. Ma, H. Zhu, and X. Chen, “Persistent luminescence from Eu3+ in SnO2 nanoparticles,” Nanoscale 7(25), 11048–11054 (2015).
[Crossref] [PubMed]

Zhu, H.

J. Kong, W. Zheng, Y. Liu, R. Li, E. Ma, H. Zhu, and X. Chen, “Persistent luminescence from Eu3+ in SnO2 nanoparticles,” Nanoscale 7(25), 11048–11054 (2015).
[Crossref] [PubMed]

Zhu, X.

X. Zhu, R. Birringer, U. Herr, and H. Gleiter, “X-ray diffraction studies of the structure of nanometer-sized crystalline materials,” Phys. Rev. B Condens. Matter 35(17), 9085–9090 (1987).
[Crossref] [PubMed]

Zonta, D.

L. Zur, L. T. N. Tran, M. Meneghetti, V. T. T. Tran, A. Lukowiak, A. Chiasera, D. Zonta, M. Ferrari, and G. C. Righini, “Tin-dioxide nanocrystals as Er3+ luminescence sensitizers: formation of glass-ceramic thin films and their characterization,” Opt. Mater. 63, 95–100 (2017).
[Crossref]

Zunger, A.

C. Kílíç and A. Zunger, “Origins of coexistence of conductivity and transparency in SnO2.,” Phys. Rev. Lett. 88(9), 095501 (2002).
[Crossref] [PubMed]

Zur, L.

L. Zur, L. T. N. Tran, M. Meneghetti, V. T. T. Tran, A. Lukowiak, A. Chiasera, D. Zonta, M. Ferrari, and G. C. Righini, “Tin-dioxide nanocrystals as Er3+ luminescence sensitizers: formation of glass-ceramic thin films and their characterization,” Opt. Mater. 63, 95–100 (2017).
[Crossref]

Adv. Funct. Mater. (1)

J. Hu, Y. Bando, Q. Liu, and D. Golberg, “Laser-ablation growth and optical properties of wide and long single-crystal SnO2 ribbons,” Adv. Funct. Mater. 13(6), 493–496 (2003).
[Crossref]

Adv. Mater. Interfaces (1)

Y. M. Xiao, G. Y. Han, J. Y. Yue, W. J. Hou, and J. H. Wu, “Multifunctional rare-earth-doped tin oxide compact layers for improving performances of photovoltaic devices,” Adv. Mater. Interfaces 3(24), 1600881 (2016).
[Crossref]

Appl. Phys. Lett. (2)

A. C. Yanes, J. Del Castillo, M. Torres, J. Peraza, V. D. Rodríguez, and J. Méndez-Ramos, “Nanocrystal-size selective spectroscopy in SnO2: Eu3+ semiconductor quantum dots,” Appl. Phys. Lett. 85(12), 2343–2345 (2004).
[Crossref]

S. H. Luo, P. K. Chu, W. L. Liu, M. Zhang, and C. L. Lin, “Origin of low-temperature photoluminescence from SnO2 nanowires fabricated by thermal evaporation and annealed in different ambients,” Appl. Phys. Lett. 88(18), 183112 (2006).
[Crossref]

Chem. Phys. (1)

M. Ivanovskaya, E. Ovodok, and V. Golovanov, “The nature of paramagnetic defects in tin (IV) oxide,” Chem. Phys. 457, 98–105 (2015).
[Crossref]

Coord. Chem. Rev. (1)

K. Binnemans, “Interpretation of europium(III) spectra,” Coord. Chem. Rev. 295, 1–45 (2015).
[Crossref]

J. Appl. Phys. (3)

A. Diéguez, A. Romano-Rodriguez, A. Vila, and J. R. Morante, “The complete Raman spectrum of nanometric SnO2 particles,” J. Appl. Phys. 90(3), 1550–1557 (2001).
[Crossref]

S. Samson and C. G. Fonstad, “Defect structure and electronic donor levels in stannic oxide crystals,” J. Appl. Phys. 44(10), 4618–4621 (1973).
[Crossref]

H. You and M. Nogami, “Local structure and persistent spectral hole burning of the Eu3+ ion in SnO2-SiO2 glass containing SnO2 nanocrystals,” J. Appl. Phys. 95(5), 2781–2785 (2004).
[Crossref]

J. Chem. Phys. (1)

S. Lettieri, M. Causà, A. Setaro, F. Trani, V. Barone, D. Ninno, and P. Maddalena, “Direct role of surface oxygen vacancies in visible light emission of tin dioxide nanowires,” J. Chem. Phys. 129(24), 244710 (2008).
[Crossref] [PubMed]

J. Lumin. (1)

W. M. Yen and R. T. Brundage, “Fluorescence line narrowing in inorganic glasses: linewidth measurements,” J. Lumin. 36(4-5), 209–220 (1987).
[Crossref]

J. Mater. Chem. (1)

T. S. Bush, C. R. A. Catlow, A. V. Chadwick, M. Cole, R. M. Geatches, G. N. Greaves, and S. M. Tomlinson, “Studies of cation dopant sites in metal oxides by EXAFS and computer- simulation techniques,” J. Mater. Chem. 2(3), 309–316 (1992).
[Crossref]

J. Phys. Chem. C (1)

E. Albanese, C. Di Valentin, G. Pacchioni, F. Sauvage, S. Livraghi, and E. Giamello, “Nature of paramagnetic species in nitrogen-doped SnO2: a combined electron paramagnetic resonance and density functional theory study,” J. Phys. Chem. C 119(48), 26895–26903 (2015).
[Crossref]

J. Phys. D Appl. Phys. (1)

D. F. Crabtree, “The luminescence of SnO2-Eu3+,” J. Phys. D Appl. Phys. 8(1), 107–116 (1975).
[Crossref]

J. Solid State Chem. (1)

C. M. Freeman and C. R. A. Catlow, “A computer modeling study of defect and dopant states in SnO2,” J. Solid State Chem. 85(1), 65–75 (1990).
[Crossref]

Materials (Basel) (1)

R. Balda, N. Hakmeh, M. Barredo-Zuriarrain, O. Merdrignac-Conanec, S. García-Revilla, M. A. Arriandiaga, and J. Fernández, “Influence of upconversion processes in the optically-induced inhomogeneous thermal behavior of erbium-doped lanthanum oxysulfide powders,” Materials (Basel) 9(5), 353 (2016).
[Crossref] [PubMed]

Nanoscale (3)

D. Jaque and F. Vetrone, “Luminescence nanothermometry,” Nanoscale 4(15), 4301–4326 (2012).
[Crossref] [PubMed]

C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millán, V. S. Amaral, F. Palacio, and L. D. Carlos, “Thermometry at the nanoscale,” Nanoscale 4(16), 4799–4829 (2012).
[Crossref] [PubMed]

J. Kong, W. Zheng, Y. Liu, R. Li, E. Ma, H. Zhu, and X. Chen, “Persistent luminescence from Eu3+ in SnO2 nanoparticles,” Nanoscale 7(25), 11048–11054 (2015).
[Crossref] [PubMed]

Nanotechnology (1)

S. Luo, J. Fan, W. Liu, M. Zhang, Z. Song, C. Lin, X. Wu, and P. K. Chu, “Synthesis and low-temperature photoluminescence properties of SnO2 nanowires and nanobelts,” Nanotechnology 17(6), 1695–1699 (2006).
[Crossref] [PubMed]

NPG Asia Mater. (1)

Y. F. Li, W. J. Yin, R. Deng, R. Chen, J. Chen, Q. Y. Yan, B. Yao, H. D. Sun, S. H. Wei, and T. Wu, “Realizing a SnO2-based ultraviolet light-emitting diode via breaking the dipole-forbidden rule,” NPG Asia Mater. 4(11), e30 (2012).
[Crossref]

Opt. Mater. (1)

L. Zur, L. T. N. Tran, M. Meneghetti, V. T. T. Tran, A. Lukowiak, A. Chiasera, D. Zonta, M. Ferrari, and G. C. Righini, “Tin-dioxide nanocrystals as Er3+ luminescence sensitizers: formation of glass-ceramic thin films and their characterization,” Opt. Mater. 63, 95–100 (2017).
[Crossref]

Phys. Rev. B (4)

G. S. Chang, J. Forrest, E. Z. Kurmaev, A. N. Morozovska, M. D. Glinchuk, J. A. McLeod, A. Moewes, T. P. Surkova, and N. H. Hong, “Oxygen-vacancy-induced ferromagnetism in undoped SnO2 thin films,” Phys. Rev. B 85(16), 165319 (2012).
[Crossref]

C. B. Fitzgerald, M. Venkatesan, L. S. Dorneles, R. Gunning, P. Stamenov, J. M. D. Coey, P. A. Stampe, R. J. Kennedy, E. C. Moreira, and U. S. Sias, “Magnetism in dilute magnetic oxide thin films based on SnO2,” Phys. Rev. B 74(11), 115307 (2006).
[Crossref]

P. S. Peercy and B. Morosin, “Pressure and temperature dependences of Raman active phonons in SnO2,” Phys. Rev. B 7(6), 2779–2786 (1973).
[Crossref]

N. Özcan, T. Kortelainen, V. Golovanov, T. T. Rantala, and J. Vaara, “Electron spin resonance parameters of bulk oxygen vacancy in semiconducting tin dioxide,” Phys. Rev. B 81(23), 235202 (2010).
[Crossref]

Phys. Rev. B Condens. Matter (1)

X. Zhu, R. Birringer, U. Herr, and H. Gleiter, “X-ray diffraction studies of the structure of nanometer-sized crystalline materials,” Phys. Rev. B Condens. Matter 35(17), 9085–9090 (1987).
[Crossref] [PubMed]

Phys. Rev. Lett. (3)

C. Kílíç and A. Zunger, “Origins of coexistence of conductivity and transparency in SnO2.,” Phys. Rev. Lett. 88(9), 095501 (2002).
[Crossref] [PubMed]

A. K. Singh, A. Janotti, M. Scheffler, and C. G. Van de Walle, “Sources of electrical conductivity in SnO2.,” Phys. Rev. Lett. 101(5), 055502 (2008).
[Crossref] [PubMed]

P. Ágoston, K. Albe, R. M. Nieminen, and M. J. Puska, “Intrinsic n-type behavior in transparent conducting oxides: a comparative hybrid-functional study of In2O3, SnO2, and ZnO,” Phys. Rev. Lett. 103(24), 245501 (2009).
[Crossref] [PubMed]

Phys. Status Solidi B (1)

I. Gontia, M. Baibarac, and I. Baltog, “Photoluminescence and Raman studies on tin dioxide powder and tin dioxide/single-walled carbon-nanotube composites,” Phys. Status Solidi B 248(6), 1494–1498 (2011).
[Crossref]

RSC Advances (1)

M. Chowdhury and S. K. Sharma, “Spectroscopic behavior of Eu3+ in SnO2 for tunable red emission in solid state lighting devices,” RSC Advances 5(63), 51102–51109 (2015).
[Crossref]

Sens. Actuators B Chem. (1)

J. D. Prades, J. Arbiol, A. Cirera, J. R. Morante, M. Avella, L. Zanotti, E. Comini, G. Faglia, and G. Sberveglieri, “Defect study of SnO2 nanostructures by cathodoluminescence analysis: application to nanowires,” Sens. Actuators B Chem. 126(1), 6–12 (2007).
[Crossref]

Other (5)

P. A. Tanner, “Lanthanide luminescence in solids,” in Lanthanide Luminescence Photophysical, Analytical and Biological Aspects, P. Hänninen and H. Härmä, eds. (Springer, 2011), pp. 183–233.

W. M. Yen and P. M. Selzer, High Resolution Laser Spectroscopy of Ions in Ccrystals, Laser Spectroscopy of Solids (Springer-Verlag, 1981), Vol. 49.

G. F. Imbusch and R. Kopelman, Optical Spectroscopy of Electronic Centers in Solids, Laser Spectroscopy of Solids (Springer-Verlag, Berlin, 1981), Vol. 49.

L. Zur, L. T. N. Tran, M. Meneghetti, and M. Ferrari, “Sol–Gel-Derived SnO2-Based Photonic Systems,” in Handbook of Sol-Gel Science and Technology (Springer International Publishing AG, 2018).

X. Chen, Y. Liu, and D. Tu, Lanthanide-Doped Luminescent Nanomaterials (Springer-Verlag, 2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Low temperature TRFLN spectra corresponding to the 5D07F0-4 transitions of a tin dioxide nanopowder (average grain size 40 nm) doped with 0.5 mol % of Eu2O3 obtained with a time delay of 10 μs after the pump pulse. (b) Observed energy levels of Eu3+ in SnO2 corresponding to sites A (A*), B, and C.
Fig. 2
Fig. 2 Excitation spectrum of the 0.5 mol% Eu3+-doped SnO2 powder obtained by collecting the 5D07F2 emission at 612 nm (a). Emissions of the mentioned sample resulting from direct excitation at the 5D2 level (b). Emissions obtained by pumping this powder sample above the band gap at 300nm (c).
Fig. 3
Fig. 3 (a) X-band (9.39 GHz) EPR spectra recorded on a tin dioxide nanopowder doped with 0.5 mol % of Eu2O3. (b) Best fit obtained for the EPR signal of the most abundant VO+ center detected on this nanopowder.
Fig. 4
Fig. 4 Variety of possible two nearest neighbor substitutional Eu3+ ions clusters i(CS), ii(CS) and iii(C1- CS) compensated by an oxygen vacancy (VO++, in white). Blue, red, yellow, and white spheres represent Sn, O, Eu, and O vacancies, respectively.
Fig. 5
Fig. 5 (a) Donor-aceptor pair and UV pumping photon. (b) Excitation process of the donor-acceptor pair. Under bandgap excitation a hole is trapped by the RE center (RC-) acting as acceptor and an electron is trapped by the V0+ vacancy acting as donor. (c) The nonradiative recombination of the bound exciton produces the Eu3+ excited state. (d) The radiative relaxation of the RE center leads to the Eu3+ emission.
Fig. 6
Fig. 6 Normalized emission spectrum of the 0.5 mol% Eu3+-doped SnO2 powder pumped at 800 nm. The inset shows the power dependence of the VIS Eu3+ integrated emission intensity on a log-log scale. The straight line represents the linear fit to the logarithmic data. Within experimental accuracy, the Eu3+ VIS emission shows a slope of 2.5 up to a 0.5 mJ excitation energy.
Fig. 7
Fig. 7 (a) Emission spectral profiles extracted over the whole temporal range in the undoped (blue line) and 0.5 mol % Eu3+ doped (red line) SnO2 powder samples under excitation at 800 nm with 100 fs laser pulses (Eexc = 0.5 mJ) by setting the time window of the Streak camera at 1 ns. (b) Temporal profiles extracted over the 420-520 nm spectral range in these undoped (blue points) and doped (red points) powder samples under the above mentioned excitation conditions and time window. The continuous red and blue lines are the best fits to two-exponential functions. (c) Normalized simultaneous emissions of the 0.5 mol % Eu3+ doped SnO2 powder under three photon excitation at 800 nm extracted over the 417-484 nm spectral range (red line) and the two photon excited second harmonic generation extracted over the 395-417 nm spectral interval (blue line). The inset shows the streak camera image from where these temporal profiles where extracted.
Fig. 8
Fig. 8 Spectral (a, c) and temporal (b, d) profiles of the 0.5% mol Eu3+ doped SnO2 powder in the 570-660 nm spectral range (red lines), which mainly corresponds to the 5D07F1 emission of Eu3+. The spectral (a, c) and temporal emission profiles (b, d) of the pure SnO2 powder are shown in blue. The green profiles of Fig. 8 (b) and (d) correspond to the subtraction of the pure and doped sample temporal profiles. Figure 8(a) and (b) were obtained by using the 1 ms time window whereas (c) and (d) were obtained with the 100 µs time window.

Metrics