Abstract

A hybrid plasmonic waveguide design is proposed that incorporates a two-dimensional transition metal dichalcogenide monolayer covered slot-rib in between a cylindrical waveguide and a metal surface. A deep optical energy confinement (mode area ranging from λ2/1000000-λ2/100000) along with a reasonable propagation length (5μm-25μm) can be realized at the working wavelength of 1550 nm. In comparison with a traditional hybrid plasmonic waveguide, the proposed waveguide structure exhibits a smaller mode area as well as a higher figure of merit. Investigation on the influence of various two-dimensional materials on modal properties reveals that a larger permittivity provides a stronger field confinement. Owing to its excellent energy field confinement with low transmission loss, the proposed waveguide can be utilized in a variety of plasmonic devices such as compact plasmonic chips, high-integration plasmonic nano-lasers and high-sensitivity plasmonic detectors.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Low-loss hybrid plasmonic waveguide with double low-index nano-slots

Daoxin Dai and Sailing He
Opt. Express 18(17) 17958-17966 (2010)

A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement

Daoxin Dai and Sailing He
Opt. Express 17(19) 16646-16653 (2009)

References

  • View by:
  • |
  • |
  • |

  1. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
    [Crossref]
  2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [Crossref] [PubMed]
  3. R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” New J. Phys. 10(10), 105018 (2008).
    [Crossref]
  4. K. Zheng, X. Zheng, and Z. Song, “Analysis of convex rib hybrid surface plasmon wave-guide with ultralong propagation distance and tight mode confinement,” J. Nanophotonics 10(1), 016005 (2016).
    [Crossref]
  5. Y. Bian, Z. Zheng, Y. Liu, J. Zhu, and T. Zhou, “Fabrication-error-tolerant, hybrid wedge plasmonpolariton waveguides for ultra-deep-subwavelength mode confinement at 1550nm wavelength,” Opt. Express 19(23), 22417–22422 (2011).
    [Crossref] [PubMed]
  6. Y. Zhang and Z. Zhang, “Ultra-subwavelength and low loss in v-shaped hybrid plasmonic waveguide,” Plasmonics 12(1), 1–5 (2016).
  7. Y. Bian and Q. Gong, “Bow-tie hybrid plasmonic waveguides,” J. Lightwave Technol. 32(23), 4504–4509 (2014).
    [Crossref]
  8. L. Ding, J. Qin, K. Xu, and L. Wang, “Long range hybrid tube-wedge plasmonic waveguide with extreme light confinement and good fabrication error tolerance,” Opt. Express 24(4), 3432–3440 (2016).
    [Crossref] [PubMed]
  9. Y. Bian and Q. Gong, “Low-loss light transport at the subwavelength scale in silicon nano-slot based symmetric hybrid plasmonic waveguiding schemes,” Opt. Express 21(20), 23907–23920 (2013).
    [Crossref] [PubMed]
  10. K. Zheng, X. Zheng, Q. Dai, and Z. Song, “Hybrid rib-slot-rib plasmonic waveguide with deep-subwavelength mode confinement and long propagation length,” AIP Adv. 6(8), 085012 (2016).
    [Crossref]
  11. X. Zhou, T. Zhang, L. Chen, W. Hong, and X. Li, “A graphene-based hybrid plasmonic waveguide with ultra-deep subwavelength confinement,” J. Lightwave Technol. 32(21), 3597–3601 (2014).
  12. X. He, T. Ning, S. Lu, J. Zheng, J. Li, R. Li, and L. Pei, “Ultralow loss graphene-based hybrid plasmonic waveguide with deep-subwavelength confinement,” Opt. Express 26(8), 10109–10118 (2018).
    [Crossref] [PubMed]
  13. R. Li, M. Imran, X. Lin, H. Wang, Z. Xu, and H. Chen, “Hybrid airy plasmons with dynamically steerable trajectories,” Nanoscale 9(4), 1449–1456 (2017).
    [Crossref] [PubMed]
  14. M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nat. Chem. 5(4), 263–275 (2013).
    [Crossref] [PubMed]
  15. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
    [Crossref]
  16. S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520(7545), 69–72 (2015).
    [Crossref] [PubMed]
  17. M. Bernardi, M. Palummo, and J. C. Grossman, “Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials,” Nano Lett. 13(8), 3664–3670 (2013).
    [Crossref] [PubMed]
  18. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer mos2 transistors,” Nat. Nanotechnol. 6(3), 147–150 (2011).
    [Crossref] [PubMed]
  19. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29(11), 1209–1211 (2004).
    [Crossref] [PubMed]
  20. Q. Ouyang, S. Zeng, L. Jiang, J. Qu, X. Q. Dinh, J. Qian, S. He, P. Coquet, and K. T. Yong, “Two-Dimensional Transition Metal Dichalcogenide Enhanced Phase-Sensitive Plasmonic Biosensors: Theoretical Insight,” J. Phys. Chem. C 121(11), 6282–6289 (2017).
    [Crossref]
  21. E. F. Schubert, J. K. Kim, and J. Q. Xi, “Low-refractive-index materials: A new class of optical thin-film materials,” Phys. Status Solidi, B Basic Res. 244(8), 3002–3008 (2007).
    [Crossref]
  22. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  23. M. Wu, Z. Han, and V. Van, “Conductor-gap-silicon plasmonic waveguides and passive components at subwavelength scale,” Opt. Express 18(11), 11728–11736 (2010).
    [Crossref] [PubMed]
  24. R. Buckley and P. Berini, “Figures of merit for 2d surface plasmon waveguides and application to metal stripes,” Opt. Express 15(19), 12174–12182 (2007).
    [Crossref] [PubMed]
  25. H. L. Liu, C. C. Shen, S. H. Su, C. L. Hsu, M.-Y. Li, and L.-J. Li, “Optical properties of monolayer transition metal dichalcogenides probed by spectroscopic ellipometry,” Appl. Phys. Lett. 105(20), 201905 (2014).
    [Crossref]
  26. O. Scholder, K. Jefimovs, I. Shorubalko, C. Hafner, U. Sennhauser, and G. L. Bona, “Helium focused ion beam fabricated plasmonic antennas with sub-5 nm gaps,” Nanotechnology 24(39), 395301 (2013).
    [Crossref] [PubMed]
  27. K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, “Two-dimensional atomic crystals,” Proc. Natl. Acad. Sci. U.S.A. 102(30), 10451–10453 (2005).
    [Crossref] [PubMed]
  28. F. Patolsky, G. Zheng, and C. M. Lieber, “Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species,” Nat. Protoc. 1(4), 1711–1724 (2006).
    [Crossref] [PubMed]

2018 (1)

2017 (2)

R. Li, M. Imran, X. Lin, H. Wang, Z. Xu, and H. Chen, “Hybrid airy plasmons with dynamically steerable trajectories,” Nanoscale 9(4), 1449–1456 (2017).
[Crossref] [PubMed]

Q. Ouyang, S. Zeng, L. Jiang, J. Qu, X. Q. Dinh, J. Qian, S. He, P. Coquet, and K. T. Yong, “Two-Dimensional Transition Metal Dichalcogenide Enhanced Phase-Sensitive Plasmonic Biosensors: Theoretical Insight,” J. Phys. Chem. C 121(11), 6282–6289 (2017).
[Crossref]

2016 (4)

K. Zheng, X. Zheng, Q. Dai, and Z. Song, “Hybrid rib-slot-rib plasmonic waveguide with deep-subwavelength mode confinement and long propagation length,” AIP Adv. 6(8), 085012 (2016).
[Crossref]

K. Zheng, X. Zheng, and Z. Song, “Analysis of convex rib hybrid surface plasmon wave-guide with ultralong propagation distance and tight mode confinement,” J. Nanophotonics 10(1), 016005 (2016).
[Crossref]

Y. Zhang and Z. Zhang, “Ultra-subwavelength and low loss in v-shaped hybrid plasmonic waveguide,” Plasmonics 12(1), 1–5 (2016).

L. Ding, J. Qin, K. Xu, and L. Wang, “Long range hybrid tube-wedge plasmonic waveguide with extreme light confinement and good fabrication error tolerance,” Opt. Express 24(4), 3432–3440 (2016).
[Crossref] [PubMed]

2015 (1)

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520(7545), 69–72 (2015).
[Crossref] [PubMed]

2014 (3)

Y. Bian and Q. Gong, “Bow-tie hybrid plasmonic waveguides,” J. Lightwave Technol. 32(23), 4504–4509 (2014).
[Crossref]

X. Zhou, T. Zhang, L. Chen, W. Hong, and X. Li, “A graphene-based hybrid plasmonic waveguide with ultra-deep subwavelength confinement,” J. Lightwave Technol. 32(21), 3597–3601 (2014).

H. L. Liu, C. C. Shen, S. H. Su, C. L. Hsu, M.-Y. Li, and L.-J. Li, “Optical properties of monolayer transition metal dichalcogenides probed by spectroscopic ellipometry,” Appl. Phys. Lett. 105(20), 201905 (2014).
[Crossref]

2013 (4)

O. Scholder, K. Jefimovs, I. Shorubalko, C. Hafner, U. Sennhauser, and G. L. Bona, “Helium focused ion beam fabricated plasmonic antennas with sub-5 nm gaps,” Nanotechnology 24(39), 395301 (2013).
[Crossref] [PubMed]

Y. Bian and Q. Gong, “Low-loss light transport at the subwavelength scale in silicon nano-slot based symmetric hybrid plasmonic waveguiding schemes,” Opt. Express 21(20), 23907–23920 (2013).
[Crossref] [PubMed]

M. Bernardi, M. Palummo, and J. C. Grossman, “Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials,” Nano Lett. 13(8), 3664–3670 (2013).
[Crossref] [PubMed]

M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nat. Chem. 5(4), 263–275 (2013).
[Crossref] [PubMed]

2011 (2)

2010 (2)

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

M. Wu, Z. Han, and V. Van, “Conductor-gap-silicon plasmonic waveguides and passive components at subwavelength scale,” Opt. Express 18(11), 11728–11736 (2010).
[Crossref] [PubMed]

2008 (2)

R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” New J. Phys. 10(10), 105018 (2008).
[Crossref]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

2007 (2)

R. Buckley and P. Berini, “Figures of merit for 2d surface plasmon waveguides and application to metal stripes,” Opt. Express 15(19), 12174–12182 (2007).
[Crossref] [PubMed]

E. F. Schubert, J. K. Kim, and J. Q. Xi, “Low-refractive-index materials: A new class of optical thin-film materials,” Phys. Status Solidi, B Basic Res. 244(8), 3002–3008 (2007).
[Crossref]

2006 (1)

F. Patolsky, G. Zheng, and C. M. Lieber, “Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species,” Nat. Protoc. 1(4), 1711–1724 (2006).
[Crossref] [PubMed]

2005 (1)

K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, “Two-dimensional atomic crystals,” Proc. Natl. Acad. Sci. U.S.A. 102(30), 10451–10453 (2005).
[Crossref] [PubMed]

2004 (1)

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Almeida, V. R.

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Barrios, C. A.

Bartal, G.

R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” New J. Phys. 10(10), 105018 (2008).
[Crossref]

Berini, P.

Bernardi, M.

M. Bernardi, M. Palummo, and J. C. Grossman, “Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials,” Nano Lett. 13(8), 3664–3670 (2013).
[Crossref] [PubMed]

Bian, Y.

Bona, G. L.

O. Scholder, K. Jefimovs, I. Shorubalko, C. Hafner, U. Sennhauser, and G. L. Bona, “Helium focused ion beam fabricated plasmonic antennas with sub-5 nm gaps,” Nanotechnology 24(39), 395301 (2013).
[Crossref] [PubMed]

Bonaccorso, F.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Booth, T. J.

K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, “Two-dimensional atomic crystals,” Proc. Natl. Acad. Sci. U.S.A. 102(30), 10451–10453 (2005).
[Crossref] [PubMed]

Brivio, J.

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer mos2 transistors,” Nat. Nanotechnol. 6(3), 147–150 (2011).
[Crossref] [PubMed]

Buckley, R.

Buckley, S.

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520(7545), 69–72 (2015).
[Crossref] [PubMed]

Chen, H.

R. Li, M. Imran, X. Lin, H. Wang, Z. Xu, and H. Chen, “Hybrid airy plasmons with dynamically steerable trajectories,” Nanoscale 9(4), 1449–1456 (2017).
[Crossref] [PubMed]

Chen, L.

Chhowalla, M.

M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nat. Chem. 5(4), 263–275 (2013).
[Crossref] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Coquet, P.

Q. Ouyang, S. Zeng, L. Jiang, J. Qu, X. Q. Dinh, J. Qian, S. He, P. Coquet, and K. T. Yong, “Two-Dimensional Transition Metal Dichalcogenide Enhanced Phase-Sensitive Plasmonic Biosensors: Theoretical Insight,” J. Phys. Chem. C 121(11), 6282–6289 (2017).
[Crossref]

Dai, Q.

K. Zheng, X. Zheng, Q. Dai, and Z. Song, “Hybrid rib-slot-rib plasmonic waveguide with deep-subwavelength mode confinement and long propagation length,” AIP Adv. 6(8), 085012 (2016).
[Crossref]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Ding, L.

Dinh, X. Q.

Q. Ouyang, S. Zeng, L. Jiang, J. Qu, X. Q. Dinh, J. Qian, S. He, P. Coquet, and K. T. Yong, “Two-Dimensional Transition Metal Dichalcogenide Enhanced Phase-Sensitive Plasmonic Biosensors: Theoretical Insight,” J. Phys. Chem. C 121(11), 6282–6289 (2017).
[Crossref]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Eda, G.

M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nat. Chem. 5(4), 263–275 (2013).
[Crossref] [PubMed]

Feng, L.

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520(7545), 69–72 (2015).
[Crossref] [PubMed]

Ferrari, A. C.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Geim, A. K.

K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, “Two-dimensional atomic crystals,” Proc. Natl. Acad. Sci. U.S.A. 102(30), 10451–10453 (2005).
[Crossref] [PubMed]

Genov, D. A.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Giacometti, V.

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer mos2 transistors,” Nat. Nanotechnol. 6(3), 147–150 (2011).
[Crossref] [PubMed]

Gong, Q.

Grossman, J. C.

M. Bernardi, M. Palummo, and J. C. Grossman, “Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials,” Nano Lett. 13(8), 3664–3670 (2013).
[Crossref] [PubMed]

Hafner, C.

O. Scholder, K. Jefimovs, I. Shorubalko, C. Hafner, U. Sennhauser, and G. L. Bona, “Helium focused ion beam fabricated plasmonic antennas with sub-5 nm gaps,” Nanotechnology 24(39), 395301 (2013).
[Crossref] [PubMed]

Han, Z.

Hasan, T.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Hatami, F.

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520(7545), 69–72 (2015).
[Crossref] [PubMed]

He, S.

Q. Ouyang, S. Zeng, L. Jiang, J. Qu, X. Q. Dinh, J. Qian, S. He, P. Coquet, and K. T. Yong, “Two-Dimensional Transition Metal Dichalcogenide Enhanced Phase-Sensitive Plasmonic Biosensors: Theoretical Insight,” J. Phys. Chem. C 121(11), 6282–6289 (2017).
[Crossref]

He, X.

Hong, W.

Hsu, C. L.

H. L. Liu, C. C. Shen, S. H. Su, C. L. Hsu, M.-Y. Li, and L.-J. Li, “Optical properties of monolayer transition metal dichalcogenides probed by spectroscopic ellipometry,” Appl. Phys. Lett. 105(20), 201905 (2014).
[Crossref]

Imran, M.

R. Li, M. Imran, X. Lin, H. Wang, Z. Xu, and H. Chen, “Hybrid airy plasmons with dynamically steerable trajectories,” Nanoscale 9(4), 1449–1456 (2017).
[Crossref] [PubMed]

Jefimovs, K.

O. Scholder, K. Jefimovs, I. Shorubalko, C. Hafner, U. Sennhauser, and G. L. Bona, “Helium focused ion beam fabricated plasmonic antennas with sub-5 nm gaps,” Nanotechnology 24(39), 395301 (2013).
[Crossref] [PubMed]

Jiang, D.

K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, “Two-dimensional atomic crystals,” Proc. Natl. Acad. Sci. U.S.A. 102(30), 10451–10453 (2005).
[Crossref] [PubMed]

Jiang, L.

Q. Ouyang, S. Zeng, L. Jiang, J. Qu, X. Q. Dinh, J. Qian, S. He, P. Coquet, and K. T. Yong, “Two-Dimensional Transition Metal Dichalcogenide Enhanced Phase-Sensitive Plasmonic Biosensors: Theoretical Insight,” J. Phys. Chem. C 121(11), 6282–6289 (2017).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Khotkevich, V. V.

K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, “Two-dimensional atomic crystals,” Proc. Natl. Acad. Sci. U.S.A. 102(30), 10451–10453 (2005).
[Crossref] [PubMed]

Kim, J. K.

E. F. Schubert, J. K. Kim, and J. Q. Xi, “Low-refractive-index materials: A new class of optical thin-film materials,” Phys. Status Solidi, B Basic Res. 244(8), 3002–3008 (2007).
[Crossref]

Kis, A.

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer mos2 transistors,” Nat. Nanotechnol. 6(3), 147–150 (2011).
[Crossref] [PubMed]

Li, J.

Li, L. J.

M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nat. Chem. 5(4), 263–275 (2013).
[Crossref] [PubMed]

Li, L.-J.

H. L. Liu, C. C. Shen, S. H. Su, C. L. Hsu, M.-Y. Li, and L.-J. Li, “Optical properties of monolayer transition metal dichalcogenides probed by spectroscopic ellipometry,” Appl. Phys. Lett. 105(20), 201905 (2014).
[Crossref]

Li, M.-Y.

H. L. Liu, C. C. Shen, S. H. Su, C. L. Hsu, M.-Y. Li, and L.-J. Li, “Optical properties of monolayer transition metal dichalcogenides probed by spectroscopic ellipometry,” Appl. Phys. Lett. 105(20), 201905 (2014).
[Crossref]

Li, R.

X. He, T. Ning, S. Lu, J. Zheng, J. Li, R. Li, and L. Pei, “Ultralow loss graphene-based hybrid plasmonic waveguide with deep-subwavelength confinement,” Opt. Express 26(8), 10109–10118 (2018).
[Crossref] [PubMed]

R. Li, M. Imran, X. Lin, H. Wang, Z. Xu, and H. Chen, “Hybrid airy plasmons with dynamically steerable trajectories,” Nanoscale 9(4), 1449–1456 (2017).
[Crossref] [PubMed]

Li, X.

Lieber, C. M.

F. Patolsky, G. Zheng, and C. M. Lieber, “Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species,” Nat. Protoc. 1(4), 1711–1724 (2006).
[Crossref] [PubMed]

Lin, X.

R. Li, M. Imran, X. Lin, H. Wang, Z. Xu, and H. Chen, “Hybrid airy plasmons with dynamically steerable trajectories,” Nanoscale 9(4), 1449–1456 (2017).
[Crossref] [PubMed]

Lipson, M.

Liu, H. L.

H. L. Liu, C. C. Shen, S. H. Su, C. L. Hsu, M.-Y. Li, and L.-J. Li, “Optical properties of monolayer transition metal dichalcogenides probed by spectroscopic ellipometry,” Appl. Phys. Lett. 105(20), 201905 (2014).
[Crossref]

Liu, Y.

Loh, K. P.

M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nat. Chem. 5(4), 263–275 (2013).
[Crossref] [PubMed]

Lu, S.

Majumdar, A.

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520(7545), 69–72 (2015).
[Crossref] [PubMed]

Mandrus, D. G.

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520(7545), 69–72 (2015).
[Crossref] [PubMed]

Morozov, S. V.

K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, “Two-dimensional atomic crystals,” Proc. Natl. Acad. Sci. U.S.A. 102(30), 10451–10453 (2005).
[Crossref] [PubMed]

Ning, T.

Novoselov, K. S.

K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, “Two-dimensional atomic crystals,” Proc. Natl. Acad. Sci. U.S.A. 102(30), 10451–10453 (2005).
[Crossref] [PubMed]

Oulton, R. F.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” New J. Phys. 10(10), 105018 (2008).
[Crossref]

Ouyang, Q.

Q. Ouyang, S. Zeng, L. Jiang, J. Qu, X. Q. Dinh, J. Qian, S. He, P. Coquet, and K. T. Yong, “Two-Dimensional Transition Metal Dichalcogenide Enhanced Phase-Sensitive Plasmonic Biosensors: Theoretical Insight,” J. Phys. Chem. C 121(11), 6282–6289 (2017).
[Crossref]

Palummo, M.

M. Bernardi, M. Palummo, and J. C. Grossman, “Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials,” Nano Lett. 13(8), 3664–3670 (2013).
[Crossref] [PubMed]

Patolsky, F.

F. Patolsky, G. Zheng, and C. M. Lieber, “Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species,” Nat. Protoc. 1(4), 1711–1724 (2006).
[Crossref] [PubMed]

Pei, L.

Pile, D. F. P.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” New J. Phys. 10(10), 105018 (2008).
[Crossref]

Qian, J.

Q. Ouyang, S. Zeng, L. Jiang, J. Qu, X. Q. Dinh, J. Qian, S. He, P. Coquet, and K. T. Yong, “Two-Dimensional Transition Metal Dichalcogenide Enhanced Phase-Sensitive Plasmonic Biosensors: Theoretical Insight,” J. Phys. Chem. C 121(11), 6282–6289 (2017).
[Crossref]

Qin, J.

Qu, J.

Q. Ouyang, S. Zeng, L. Jiang, J. Qu, X. Q. Dinh, J. Qian, S. He, P. Coquet, and K. T. Yong, “Two-Dimensional Transition Metal Dichalcogenide Enhanced Phase-Sensitive Plasmonic Biosensors: Theoretical Insight,” J. Phys. Chem. C 121(11), 6282–6289 (2017).
[Crossref]

Radenovic, A.

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer mos2 transistors,” Nat. Nanotechnol. 6(3), 147–150 (2011).
[Crossref] [PubMed]

Radisavljevic, B.

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer mos2 transistors,” Nat. Nanotechnol. 6(3), 147–150 (2011).
[Crossref] [PubMed]

Schaibley, J. R.

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520(7545), 69–72 (2015).
[Crossref] [PubMed]

Schedin, F.

K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, “Two-dimensional atomic crystals,” Proc. Natl. Acad. Sci. U.S.A. 102(30), 10451–10453 (2005).
[Crossref] [PubMed]

Scholder, O.

O. Scholder, K. Jefimovs, I. Shorubalko, C. Hafner, U. Sennhauser, and G. L. Bona, “Helium focused ion beam fabricated plasmonic antennas with sub-5 nm gaps,” Nanotechnology 24(39), 395301 (2013).
[Crossref] [PubMed]

Schubert, E. F.

E. F. Schubert, J. K. Kim, and J. Q. Xi, “Low-refractive-index materials: A new class of optical thin-film materials,” Phys. Status Solidi, B Basic Res. 244(8), 3002–3008 (2007).
[Crossref]

Sennhauser, U.

O. Scholder, K. Jefimovs, I. Shorubalko, C. Hafner, U. Sennhauser, and G. L. Bona, “Helium focused ion beam fabricated plasmonic antennas with sub-5 nm gaps,” Nanotechnology 24(39), 395301 (2013).
[Crossref] [PubMed]

Shen, C. C.

H. L. Liu, C. C. Shen, S. H. Su, C. L. Hsu, M.-Y. Li, and L.-J. Li, “Optical properties of monolayer transition metal dichalcogenides probed by spectroscopic ellipometry,” Appl. Phys. Lett. 105(20), 201905 (2014).
[Crossref]

Shin, H. S.

M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nat. Chem. 5(4), 263–275 (2013).
[Crossref] [PubMed]

Shorubalko, I.

O. Scholder, K. Jefimovs, I. Shorubalko, C. Hafner, U. Sennhauser, and G. L. Bona, “Helium focused ion beam fabricated plasmonic antennas with sub-5 nm gaps,” Nanotechnology 24(39), 395301 (2013).
[Crossref] [PubMed]

Song, Z.

K. Zheng, X. Zheng, and Z. Song, “Analysis of convex rib hybrid surface plasmon wave-guide with ultralong propagation distance and tight mode confinement,” J. Nanophotonics 10(1), 016005 (2016).
[Crossref]

K. Zheng, X. Zheng, Q. Dai, and Z. Song, “Hybrid rib-slot-rib plasmonic waveguide with deep-subwavelength mode confinement and long propagation length,” AIP Adv. 6(8), 085012 (2016).
[Crossref]

Sorger, V. J.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Su, S. H.

H. L. Liu, C. C. Shen, S. H. Su, C. L. Hsu, M.-Y. Li, and L.-J. Li, “Optical properties of monolayer transition metal dichalcogenides probed by spectroscopic ellipometry,” Appl. Phys. Lett. 105(20), 201905 (2014).
[Crossref]

Sun, Z.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Van, V.

Vuckovic, J.

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520(7545), 69–72 (2015).
[Crossref] [PubMed]

Wang, H.

R. Li, M. Imran, X. Lin, H. Wang, Z. Xu, and H. Chen, “Hybrid airy plasmons with dynamically steerable trajectories,” Nanoscale 9(4), 1449–1456 (2017).
[Crossref] [PubMed]

Wang, L.

Wu, M.

Wu, S.

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520(7545), 69–72 (2015).
[Crossref] [PubMed]

Xi, J. Q.

E. F. Schubert, J. K. Kim, and J. Q. Xi, “Low-refractive-index materials: A new class of optical thin-film materials,” Phys. Status Solidi, B Basic Res. 244(8), 3002–3008 (2007).
[Crossref]

Xu, K.

Xu, Q.

Xu, X.

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520(7545), 69–72 (2015).
[Crossref] [PubMed]

Xu, Z.

R. Li, M. Imran, X. Lin, H. Wang, Z. Xu, and H. Chen, “Hybrid airy plasmons with dynamically steerable trajectories,” Nanoscale 9(4), 1449–1456 (2017).
[Crossref] [PubMed]

Yan, J.

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520(7545), 69–72 (2015).
[Crossref] [PubMed]

Yao, W.

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520(7545), 69–72 (2015).
[Crossref] [PubMed]

Yong, K. T.

Q. Ouyang, S. Zeng, L. Jiang, J. Qu, X. Q. Dinh, J. Qian, S. He, P. Coquet, and K. T. Yong, “Two-Dimensional Transition Metal Dichalcogenide Enhanced Phase-Sensitive Plasmonic Biosensors: Theoretical Insight,” J. Phys. Chem. C 121(11), 6282–6289 (2017).
[Crossref]

Zeng, S.

Q. Ouyang, S. Zeng, L. Jiang, J. Qu, X. Q. Dinh, J. Qian, S. He, P. Coquet, and K. T. Yong, “Two-Dimensional Transition Metal Dichalcogenide Enhanced Phase-Sensitive Plasmonic Biosensors: Theoretical Insight,” J. Phys. Chem. C 121(11), 6282–6289 (2017).
[Crossref]

Zhang, H.

M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nat. Chem. 5(4), 263–275 (2013).
[Crossref] [PubMed]

Zhang, T.

Zhang, X.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” New J. Phys. 10(10), 105018 (2008).
[Crossref]

Zhang, Y.

Y. Zhang and Z. Zhang, “Ultra-subwavelength and low loss in v-shaped hybrid plasmonic waveguide,” Plasmonics 12(1), 1–5 (2016).

Zhang, Z.

Y. Zhang and Z. Zhang, “Ultra-subwavelength and low loss in v-shaped hybrid plasmonic waveguide,” Plasmonics 12(1), 1–5 (2016).

Zheng, G.

F. Patolsky, G. Zheng, and C. M. Lieber, “Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species,” Nat. Protoc. 1(4), 1711–1724 (2006).
[Crossref] [PubMed]

Zheng, J.

Zheng, K.

K. Zheng, X. Zheng, Q. Dai, and Z. Song, “Hybrid rib-slot-rib plasmonic waveguide with deep-subwavelength mode confinement and long propagation length,” AIP Adv. 6(8), 085012 (2016).
[Crossref]

K. Zheng, X. Zheng, and Z. Song, “Analysis of convex rib hybrid surface plasmon wave-guide with ultralong propagation distance and tight mode confinement,” J. Nanophotonics 10(1), 016005 (2016).
[Crossref]

Zheng, X.

K. Zheng, X. Zheng, and Z. Song, “Analysis of convex rib hybrid surface plasmon wave-guide with ultralong propagation distance and tight mode confinement,” J. Nanophotonics 10(1), 016005 (2016).
[Crossref]

K. Zheng, X. Zheng, Q. Dai, and Z. Song, “Hybrid rib-slot-rib plasmonic waveguide with deep-subwavelength mode confinement and long propagation length,” AIP Adv. 6(8), 085012 (2016).
[Crossref]

Zheng, Z.

Zhou, T.

Zhou, X.

Zhu, J.

AIP Adv. (1)

K. Zheng, X. Zheng, Q. Dai, and Z. Song, “Hybrid rib-slot-rib plasmonic waveguide with deep-subwavelength mode confinement and long propagation length,” AIP Adv. 6(8), 085012 (2016).
[Crossref]

Appl. Phys. Lett. (1)

H. L. Liu, C. C. Shen, S. H. Su, C. L. Hsu, M.-Y. Li, and L.-J. Li, “Optical properties of monolayer transition metal dichalcogenides probed by spectroscopic ellipometry,” Appl. Phys. Lett. 105(20), 201905 (2014).
[Crossref]

J. Lightwave Technol. (2)

J. Nanophotonics (1)

K. Zheng, X. Zheng, and Z. Song, “Analysis of convex rib hybrid surface plasmon wave-guide with ultralong propagation distance and tight mode confinement,” J. Nanophotonics 10(1), 016005 (2016).
[Crossref]

J. Phys. Chem. C (1)

Q. Ouyang, S. Zeng, L. Jiang, J. Qu, X. Q. Dinh, J. Qian, S. He, P. Coquet, and K. T. Yong, “Two-Dimensional Transition Metal Dichalcogenide Enhanced Phase-Sensitive Plasmonic Biosensors: Theoretical Insight,” J. Phys. Chem. C 121(11), 6282–6289 (2017).
[Crossref]

Nano Lett. (1)

M. Bernardi, M. Palummo, and J. C. Grossman, “Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials,” Nano Lett. 13(8), 3664–3670 (2013).
[Crossref] [PubMed]

Nanoscale (1)

R. Li, M. Imran, X. Lin, H. Wang, Z. Xu, and H. Chen, “Hybrid airy plasmons with dynamically steerable trajectories,” Nanoscale 9(4), 1449–1456 (2017).
[Crossref] [PubMed]

Nanotechnology (1)

O. Scholder, K. Jefimovs, I. Shorubalko, C. Hafner, U. Sennhauser, and G. L. Bona, “Helium focused ion beam fabricated plasmonic antennas with sub-5 nm gaps,” Nanotechnology 24(39), 395301 (2013).
[Crossref] [PubMed]

Nat. Chem. (1)

M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nat. Chem. 5(4), 263–275 (2013).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer mos2 transistors,” Nat. Nanotechnol. 6(3), 147–150 (2011).
[Crossref] [PubMed]

Nat. Photonics (2)

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Nat. Protoc. (1)

F. Patolsky, G. Zheng, and C. M. Lieber, “Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species,” Nat. Protoc. 1(4), 1711–1724 (2006).
[Crossref] [PubMed]

Nature (2)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520(7545), 69–72 (2015).
[Crossref] [PubMed]

New J. Phys. (1)

R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” New J. Phys. 10(10), 105018 (2008).
[Crossref]

Opt. Express (6)

Opt. Lett. (1)

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Phys. Status Solidi, B Basic Res. (1)

E. F. Schubert, J. K. Kim, and J. Q. Xi, “Low-refractive-index materials: A new class of optical thin-film materials,” Phys. Status Solidi, B Basic Res. 244(8), 3002–3008 (2007).
[Crossref]

Plasmonics (1)

Y. Zhang and Z. Zhang, “Ultra-subwavelength and low loss in v-shaped hybrid plasmonic waveguide,” Plasmonics 12(1), 1–5 (2016).

Proc. Natl. Acad. Sci. U.S.A. (1)

K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, “Two-dimensional atomic crystals,” Proc. Natl. Acad. Sci. U.S.A. 102(30), 10451–10453 (2005).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Geometry of our proposed waveguide (a) and its communication system (b).
Fig. 2
Fig. 2 Modal characteristics of proposed waveguide with monolayer WSe2 vs. d when wr = 10 nm, ws = 200 nm, and h = 5 nm, in comparison with traditional HSPWG [1], proposed waveguide without slot and WSe2, and proposed waveguide without WSe2: (a) Propagation distance. (b) Normalized mode area. (c) FoM. (d)-(g) Electromagnetic energy distribution of various kinds of waveguides when d = 200 nm: (d) Traditional HSPWG [1]. (e) Proposed waveguide without slot and WSe2. (f) Proposed waveguide without WSe2. (g) Proposed waveguide with WSe2.
Fig. 3
Fig. 3 Modal characteristics of proposed waveguide with monolayer WSe2 vs. ws under different h when wr = 10 nm and d = 200 nm, when compared to the proposed waveguide without WSe2: (a) Propagation distance. (b) Normalized mode area. (c) FoM.
Fig. 4
Fig. 4 Modal characteristics of the proposed waveguide with monolayer WSe2, WS2, and MoSe2 vs. wr when ws = 200 nm, and h = 5 nm: (a) Propagation distance. (b) Normalized mode area. (c) FoM.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

M a = W h y b max( W ( r )) = W ( r )d 2 r max( W ( r )) = d ε ( r ) ω d ω | E ( r ) | 2 + μ 0 | H ( r ) | 2 d 2 r max( d ε ( r ) ω d ω | E ( r ) | 2 + μ 0 | H ( r ) | 2 ) .
L = λ / 4 πIM( neff ) .
FoM = L / 2 M e f f / π

Metrics