Abstract

We propose a method for improving the quantification of neutron imaging measurements with scintillator-camera based detectors by correcting for systematic biases introduced by scattered neutrons and other sources such as light reflections in the detector system. This method is fully experimental, using reference measurements with a grid of small black bodies (BB) to measure the bias contributions directly. Using two test samples, one made of lead alloy and having a moderate (20%) neutron transmission and one made of stainless-steel and having a very low (1%) transmission, we evaluated the improvement brought by this method in reducing both the average quantification bias and the uncertainty around this average bias after tomographic reconstruction. The results show that a reduction of the quantification bias of up to one order of magnitude can be obtained. For moderately transparent samples, little sensitivity is observed to the parameters used for the correction. For the more challenging sample with very low transmission, a correct placement of the BB grid is of utmost importance for a successful correction.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
X-ray deconvolution microscopy

Sebastian Ehn, Franz Michael Epple, Andreas Fehringer, David Pennicard, Heinz Graafsma, Peter Noël, and Franz Pfeiffer
Biomed. Opt. Express 7(4) 1227-1239 (2016)

Reconstruction strategy suited to x-ray diffraction tomography

J. A. Grant, M. J. Morgan, J. R. Davis, and P. Wells
J. Opt. Soc. Am. A 12(2) 291-300 (1995)

Joint reconstruction of x-ray fluorescence and transmission tomography

Zichao Wendy Di, Si Chen, Young Pyo Hong, Chris Jacobsen, Sven Leyffer, and Stefan M. Wild
Opt. Express 25(12) 13107-13124 (2017)

References

  • View by:
  • |
  • |
  • |

  1. M. Strobl, I. Manke, N. Kardjilov, A. Hilger, M. Dawson, and J. Banhart, “Advances in neutron radiography and tomography,” J. Phys. D Appl. Phys. 42(24), 243001 (2009).
    [Crossref]
  2. D. Mannes, F. Schmid, J. Frey, K. Schmidt-Ott, and E. Lehmann, “Combined Neutron and X-ray Imaging for Non-invasive Investigations of Cultural Heritage Objects,” Phys. Procedia 69, 653–660 (2015).
    [Crossref]
  3. C. Gruenzweig, D. Mannes, F. Schmid, and R. Rule “Neutron Imaging: A Non-Destructive Testing Method to Investigate Canned Exhaust After-Treatment System Components for the Three Dimensional Soot, Ash, Urea and Coating Distributions,” 2016.
  4. C. Grünzweig, D. Mannes, A. Kaestner, F. Schmid, P. Vontobel, J. Hovind, S. Hartmann, S. Peetermans, and E. Lehmann, “Progress in Industrial Applications using Modern Neutron Imaging Techniques,” Phys. Procedia 43, 231–242 (2013).
    [Crossref]
  5. A. Griesche, E. Dabah, T. Kannengiesser, A. Hilger, N. Kardjilov, I. Manke, and B. Schillinger, “Measuring Hydrogen Distributions in Iron and Steel Using Neutrons,” Phys. Procedia 69, 445–450 (2015).
    [Crossref]
  6. M. Große, M. Steinbrück, J. Stuckert, A. Kastner, and B. Schillinger, “Application of neutron radiography to study material processes during hypothetical severe accidents in nuclear reactors,” J. Mater. Sci. 47(18), 6505–6512 (2012).
    [Crossref]
  7. P. Boillat, P. Oberholzer, A. Kaestner, R. Siegrist, E. H. Lehmann, G. G. Scherer, and A. Wokaun, “Impact of Water on PEFC Performance Evaluated by Neutron Imaging Combined with Pulsed Helox Operation,” J. Electrochem. Soc. 159(7), F210–F218 (2012).
    [Crossref]
  8. J. P. Owejan, T. A. Trabold, J. J. Gagliardo, D. L. Jacobson, R. N. Carter, D. S. Hussey, and M. Arif, “Voltage instability in a simulated fuel cell stack correlated to cathode water accumulation,” J. Power Sources 171(2), 626–633 (2007).
    [Crossref]
  9. P. Stahl, J. Biesdorf, P. Boillat, J. Kraft, and K. A. Friedrich, “Water Distribution Analysis in the Outer Perimeter Region of Technical PEFC Based on Neutron Radiography,” J. Electrochem. Soc. 162(7), F677–F685 (2015).
    [Crossref]
  10. J. Seweryn, J. Biesdorf, T. J. Schmidt, and P. Boillat, “Communication—Neutron Radiography of the Water/Gas Distribution in the Porous Layers of an Operating Electrolyser,” J. Electrochem. Soc. 163(11), F3009–F3011 (2016).
    [Crossref]
  11. S. Lal, L. D. Poulikakos, I. Jerjen, P. Vontobel, M. N. Partl, D. Derome, and J. Carmeliet, “Investigation of Gravity-Driven Drainage and Forced Convective Drying in a Macroporous Medium Using Neutron Radiography,” Transp. Porous Media 118(1), 119–142 (2017).
    [Crossref]
  12. J. D. Schaap, P. Lehmann, A. Kaestner, P. Vontobel, R. Hassanein, G. Frei, G. H. de Rooij, E. Lehmann, and H. Flühler, “Measuring the effect of structural connectivity on the water dynamics in heterogeneous porous media using speedy neutron tomography,” Adv. Water Resour. 31(9), 1233–1241 (2008).
    [Crossref]
  13. A. Kaestner, R. Hassanein, P. Vontobel, P. Lehmann, J. Schaap, E. Lehmann, and H. Flühler, “Mapping the 3D water dynamics in heterogeneous sands using thermal neutrons,” Chem. Eng. J. 130(2-3), 79–85 (2007).
    [Crossref]
  14. P. Benard, E. Kroener, P. Vontobel, A. Kaestner, and A. Carminati, “Water percolation through the root-soil interface,” Adv. Water Resour. 95, 190–198 (2016).
    [Crossref]
  15. M. Zarebanadkouki, A. Carminati, A. Kaestner, D. Mannes, M. Morgano, S. Peetermans, E. Lehmann, and P. Trtik, “On-the-fly Neutron Tomography of Water Transport into Lupine Roots,” Phys. Procedia 69, 292–298 (2015).
    [Crossref]
  16. H. Justnes, K. Bryhn-Ingebrigtsen, and G. O. Rosvold, “Neutron radiography: an excellent method of measuring water penetration and moisture distribution in cementitious materials,” Adv. Cement Res. 6(22), 67–72 (1994).
    [Crossref]
  17. P. Trtik, B. Münch, W. J. Weiss, A. Kaestner, I. Jerjen, L. Josic, E. Lehmann, and P. Lura, “Release of internal curing water from lightweight aggregates in cement paste investigated by neutron and X-ray tomography,” Nucl. Instrum. Methods Phys. Res. A 651(1), 244–249 (2011).
    [Crossref]
  18. M. Sedighi-Gilani, M. Griffa, D. Mannes, E. Lehmann, J. Carmeliet, and D. Derome, “Visualization and quantification of liquid water transport in softwood by means of neutron radiography,” Int. J. Heat Mass Transfer 55(21-22), 6211–6221 (2012).
    [Crossref]
  19. R. Hassanein, “Correction methods for the quantitative evaluation of thermal neutron tomography,” (ETH Zürich, 2006), p. 149.
  20. D. S. Hussey, K. J. Coakley, E. Baltic, and D. L. Jacobson, “Improving quantitative neutron radiography through image restoration,” Nucl. Instrum. Methods Phys. Res. A 729, 316–321 (2013).
    [Crossref]
  21. R. Hassanein, E. Lehmann, and P. Vontobel, “Methods of scattering corrections for quantitative neutron radiography,” Nucl. Instrum. Methods Phys. Res. A 542(1-3), 353–360 (2005).
    [Crossref]
  22. N. Kardjilov, F. de Beer, R. Hassanein, E. Lehmann, and P. Vontobel, “Scattering corrections in neutron radiography using point scattered functions,” Nucl. Instrum. Methods Phys. Res. A 542(1-3), 336–341 (2005).
    [Crossref]
  23. M. H. Hassan, “Point Scattered Function (PScF) for fast neutron radiography,” Nucl. Instrum. Methods Phys. Res. B 267(15), 2545–2549 (2009).
    [Crossref]
  24. S. Liu, T. Bücherl, Y. Zou, S. Wang, Y. Lu, and Z. Guo, “Study on scattering correction in fast neutron tomography at NECTAR facility,” Sci. China Phys. Mech. Astron. 57(2), 244–250 (2014).
    [Crossref]
  25. A. S. Tremsin, N. Kardjilov, M. Dawson, M. Strobl, I. Manke, J. B. McPhate, J. V. Vallerga, O. H. W. Siegmund, and W. B. Feller, “Scatter rejection in quantitative thermal and cold neutron imaging,” Nucl. Instrum. Methods Phys. Res. A 651(1), 145–148 (2011).
    [Crossref]
  26. M. Raventos, R. P. Harti, E. Lehmann, and C. Grünzweig, “A method for neutron scattering quantification and correction applied to neutron imaging,” Phys. Procedia 88, 275–281 (2017).
    [Crossref]
  27. R. Ning, X. Tang, and D. Conover, “X-ray scatter correction algorithm for cone beam CT imaging,” Med. Phys. 31(5), 1195–1202 (2004).
    [Crossref] [PubMed]
  28. E. H. Lehmann, P. Vontobel, and L. Wiezel, “Properties of the radiography facility NEUTRA at SINQ and its potential for use as European reference facility,” Nondestruct. Test. Eval. 16(2-6), 191–202 (2001).
    [Crossref]
  29. R. Franke, “Smooth interpolation of scattered data by local thin plate splines,” Comput. Math. Appl. 8(4), 273–281 (1982).
    [Crossref]
  30. A. P. Kaestner, “MuhRec—A new tomography reconstructor,” Nucl. Instrum. Methods Phys. Res. A 651(1), 156–160 (2011).
    [Crossref]

2017 (2)

S. Lal, L. D. Poulikakos, I. Jerjen, P. Vontobel, M. N. Partl, D. Derome, and J. Carmeliet, “Investigation of Gravity-Driven Drainage and Forced Convective Drying in a Macroporous Medium Using Neutron Radiography,” Transp. Porous Media 118(1), 119–142 (2017).
[Crossref]

M. Raventos, R. P. Harti, E. Lehmann, and C. Grünzweig, “A method for neutron scattering quantification and correction applied to neutron imaging,” Phys. Procedia 88, 275–281 (2017).
[Crossref]

2016 (2)

P. Benard, E. Kroener, P. Vontobel, A. Kaestner, and A. Carminati, “Water percolation through the root-soil interface,” Adv. Water Resour. 95, 190–198 (2016).
[Crossref]

J. Seweryn, J. Biesdorf, T. J. Schmidt, and P. Boillat, “Communication—Neutron Radiography of the Water/Gas Distribution in the Porous Layers of an Operating Electrolyser,” J. Electrochem. Soc. 163(11), F3009–F3011 (2016).
[Crossref]

2015 (4)

M. Zarebanadkouki, A. Carminati, A. Kaestner, D. Mannes, M. Morgano, S. Peetermans, E. Lehmann, and P. Trtik, “On-the-fly Neutron Tomography of Water Transport into Lupine Roots,” Phys. Procedia 69, 292–298 (2015).
[Crossref]

A. Griesche, E. Dabah, T. Kannengiesser, A. Hilger, N. Kardjilov, I. Manke, and B. Schillinger, “Measuring Hydrogen Distributions in Iron and Steel Using Neutrons,” Phys. Procedia 69, 445–450 (2015).
[Crossref]

D. Mannes, F. Schmid, J. Frey, K. Schmidt-Ott, and E. Lehmann, “Combined Neutron and X-ray Imaging for Non-invasive Investigations of Cultural Heritage Objects,” Phys. Procedia 69, 653–660 (2015).
[Crossref]

P. Stahl, J. Biesdorf, P. Boillat, J. Kraft, and K. A. Friedrich, “Water Distribution Analysis in the Outer Perimeter Region of Technical PEFC Based on Neutron Radiography,” J. Electrochem. Soc. 162(7), F677–F685 (2015).
[Crossref]

2014 (1)

S. Liu, T. Bücherl, Y. Zou, S. Wang, Y. Lu, and Z. Guo, “Study on scattering correction in fast neutron tomography at NECTAR facility,” Sci. China Phys. Mech. Astron. 57(2), 244–250 (2014).
[Crossref]

2013 (2)

C. Grünzweig, D. Mannes, A. Kaestner, F. Schmid, P. Vontobel, J. Hovind, S. Hartmann, S. Peetermans, and E. Lehmann, “Progress in Industrial Applications using Modern Neutron Imaging Techniques,” Phys. Procedia 43, 231–242 (2013).
[Crossref]

D. S. Hussey, K. J. Coakley, E. Baltic, and D. L. Jacobson, “Improving quantitative neutron radiography through image restoration,” Nucl. Instrum. Methods Phys. Res. A 729, 316–321 (2013).
[Crossref]

2012 (3)

M. Große, M. Steinbrück, J. Stuckert, A. Kastner, and B. Schillinger, “Application of neutron radiography to study material processes during hypothetical severe accidents in nuclear reactors,” J. Mater. Sci. 47(18), 6505–6512 (2012).
[Crossref]

P. Boillat, P. Oberholzer, A. Kaestner, R. Siegrist, E. H. Lehmann, G. G. Scherer, and A. Wokaun, “Impact of Water on PEFC Performance Evaluated by Neutron Imaging Combined with Pulsed Helox Operation,” J. Electrochem. Soc. 159(7), F210–F218 (2012).
[Crossref]

M. Sedighi-Gilani, M. Griffa, D. Mannes, E. Lehmann, J. Carmeliet, and D. Derome, “Visualization and quantification of liquid water transport in softwood by means of neutron radiography,” Int. J. Heat Mass Transfer 55(21-22), 6211–6221 (2012).
[Crossref]

2011 (3)

A. S. Tremsin, N. Kardjilov, M. Dawson, M. Strobl, I. Manke, J. B. McPhate, J. V. Vallerga, O. H. W. Siegmund, and W. B. Feller, “Scatter rejection in quantitative thermal and cold neutron imaging,” Nucl. Instrum. Methods Phys. Res. A 651(1), 145–148 (2011).
[Crossref]

A. P. Kaestner, “MuhRec—A new tomography reconstructor,” Nucl. Instrum. Methods Phys. Res. A 651(1), 156–160 (2011).
[Crossref]

P. Trtik, B. Münch, W. J. Weiss, A. Kaestner, I. Jerjen, L. Josic, E. Lehmann, and P. Lura, “Release of internal curing water from lightweight aggregates in cement paste investigated by neutron and X-ray tomography,” Nucl. Instrum. Methods Phys. Res. A 651(1), 244–249 (2011).
[Crossref]

2009 (2)

M. Strobl, I. Manke, N. Kardjilov, A. Hilger, M. Dawson, and J. Banhart, “Advances in neutron radiography and tomography,” J. Phys. D Appl. Phys. 42(24), 243001 (2009).
[Crossref]

M. H. Hassan, “Point Scattered Function (PScF) for fast neutron radiography,” Nucl. Instrum. Methods Phys. Res. B 267(15), 2545–2549 (2009).
[Crossref]

2008 (1)

J. D. Schaap, P. Lehmann, A. Kaestner, P. Vontobel, R. Hassanein, G. Frei, G. H. de Rooij, E. Lehmann, and H. Flühler, “Measuring the effect of structural connectivity on the water dynamics in heterogeneous porous media using speedy neutron tomography,” Adv. Water Resour. 31(9), 1233–1241 (2008).
[Crossref]

2007 (2)

A. Kaestner, R. Hassanein, P. Vontobel, P. Lehmann, J. Schaap, E. Lehmann, and H. Flühler, “Mapping the 3D water dynamics in heterogeneous sands using thermal neutrons,” Chem. Eng. J. 130(2-3), 79–85 (2007).
[Crossref]

J. P. Owejan, T. A. Trabold, J. J. Gagliardo, D. L. Jacobson, R. N. Carter, D. S. Hussey, and M. Arif, “Voltage instability in a simulated fuel cell stack correlated to cathode water accumulation,” J. Power Sources 171(2), 626–633 (2007).
[Crossref]

2005 (2)

R. Hassanein, E. Lehmann, and P. Vontobel, “Methods of scattering corrections for quantitative neutron radiography,” Nucl. Instrum. Methods Phys. Res. A 542(1-3), 353–360 (2005).
[Crossref]

N. Kardjilov, F. de Beer, R. Hassanein, E. Lehmann, and P. Vontobel, “Scattering corrections in neutron radiography using point scattered functions,” Nucl. Instrum. Methods Phys. Res. A 542(1-3), 336–341 (2005).
[Crossref]

2004 (1)

R. Ning, X. Tang, and D. Conover, “X-ray scatter correction algorithm for cone beam CT imaging,” Med. Phys. 31(5), 1195–1202 (2004).
[Crossref] [PubMed]

2001 (1)

E. H. Lehmann, P. Vontobel, and L. Wiezel, “Properties of the radiography facility NEUTRA at SINQ and its potential for use as European reference facility,” Nondestruct. Test. Eval. 16(2-6), 191–202 (2001).
[Crossref]

1994 (1)

H. Justnes, K. Bryhn-Ingebrigtsen, and G. O. Rosvold, “Neutron radiography: an excellent method of measuring water penetration and moisture distribution in cementitious materials,” Adv. Cement Res. 6(22), 67–72 (1994).
[Crossref]

1982 (1)

R. Franke, “Smooth interpolation of scattered data by local thin plate splines,” Comput. Math. Appl. 8(4), 273–281 (1982).
[Crossref]

Arif, M.

J. P. Owejan, T. A. Trabold, J. J. Gagliardo, D. L. Jacobson, R. N. Carter, D. S. Hussey, and M. Arif, “Voltage instability in a simulated fuel cell stack correlated to cathode water accumulation,” J. Power Sources 171(2), 626–633 (2007).
[Crossref]

Baltic, E.

D. S. Hussey, K. J. Coakley, E. Baltic, and D. L. Jacobson, “Improving quantitative neutron radiography through image restoration,” Nucl. Instrum. Methods Phys. Res. A 729, 316–321 (2013).
[Crossref]

Banhart, J.

M. Strobl, I. Manke, N. Kardjilov, A. Hilger, M. Dawson, and J. Banhart, “Advances in neutron radiography and tomography,” J. Phys. D Appl. Phys. 42(24), 243001 (2009).
[Crossref]

Benard, P.

P. Benard, E. Kroener, P. Vontobel, A. Kaestner, and A. Carminati, “Water percolation through the root-soil interface,” Adv. Water Resour. 95, 190–198 (2016).
[Crossref]

Biesdorf, J.

J. Seweryn, J. Biesdorf, T. J. Schmidt, and P. Boillat, “Communication—Neutron Radiography of the Water/Gas Distribution in the Porous Layers of an Operating Electrolyser,” J. Electrochem. Soc. 163(11), F3009–F3011 (2016).
[Crossref]

P. Stahl, J. Biesdorf, P. Boillat, J. Kraft, and K. A. Friedrich, “Water Distribution Analysis in the Outer Perimeter Region of Technical PEFC Based on Neutron Radiography,” J. Electrochem. Soc. 162(7), F677–F685 (2015).
[Crossref]

Boillat, P.

J. Seweryn, J. Biesdorf, T. J. Schmidt, and P. Boillat, “Communication—Neutron Radiography of the Water/Gas Distribution in the Porous Layers of an Operating Electrolyser,” J. Electrochem. Soc. 163(11), F3009–F3011 (2016).
[Crossref]

P. Stahl, J. Biesdorf, P. Boillat, J. Kraft, and K. A. Friedrich, “Water Distribution Analysis in the Outer Perimeter Region of Technical PEFC Based on Neutron Radiography,” J. Electrochem. Soc. 162(7), F677–F685 (2015).
[Crossref]

P. Boillat, P. Oberholzer, A. Kaestner, R. Siegrist, E. H. Lehmann, G. G. Scherer, and A. Wokaun, “Impact of Water on PEFC Performance Evaluated by Neutron Imaging Combined with Pulsed Helox Operation,” J. Electrochem. Soc. 159(7), F210–F218 (2012).
[Crossref]

Bryhn-Ingebrigtsen, K.

H. Justnes, K. Bryhn-Ingebrigtsen, and G. O. Rosvold, “Neutron radiography: an excellent method of measuring water penetration and moisture distribution in cementitious materials,” Adv. Cement Res. 6(22), 67–72 (1994).
[Crossref]

Bücherl, T.

S. Liu, T. Bücherl, Y. Zou, S. Wang, Y. Lu, and Z. Guo, “Study on scattering correction in fast neutron tomography at NECTAR facility,” Sci. China Phys. Mech. Astron. 57(2), 244–250 (2014).
[Crossref]

Carmeliet, J.

S. Lal, L. D. Poulikakos, I. Jerjen, P. Vontobel, M. N. Partl, D. Derome, and J. Carmeliet, “Investigation of Gravity-Driven Drainage and Forced Convective Drying in a Macroporous Medium Using Neutron Radiography,” Transp. Porous Media 118(1), 119–142 (2017).
[Crossref]

M. Sedighi-Gilani, M. Griffa, D. Mannes, E. Lehmann, J. Carmeliet, and D. Derome, “Visualization and quantification of liquid water transport in softwood by means of neutron radiography,” Int. J. Heat Mass Transfer 55(21-22), 6211–6221 (2012).
[Crossref]

Carminati, A.

P. Benard, E. Kroener, P. Vontobel, A. Kaestner, and A. Carminati, “Water percolation through the root-soil interface,” Adv. Water Resour. 95, 190–198 (2016).
[Crossref]

M. Zarebanadkouki, A. Carminati, A. Kaestner, D. Mannes, M. Morgano, S. Peetermans, E. Lehmann, and P. Trtik, “On-the-fly Neutron Tomography of Water Transport into Lupine Roots,” Phys. Procedia 69, 292–298 (2015).
[Crossref]

Carter, R. N.

J. P. Owejan, T. A. Trabold, J. J. Gagliardo, D. L. Jacobson, R. N. Carter, D. S. Hussey, and M. Arif, “Voltage instability in a simulated fuel cell stack correlated to cathode water accumulation,” J. Power Sources 171(2), 626–633 (2007).
[Crossref]

Coakley, K. J.

D. S. Hussey, K. J. Coakley, E. Baltic, and D. L. Jacobson, “Improving quantitative neutron radiography through image restoration,” Nucl. Instrum. Methods Phys. Res. A 729, 316–321 (2013).
[Crossref]

Conover, D.

R. Ning, X. Tang, and D. Conover, “X-ray scatter correction algorithm for cone beam CT imaging,” Med. Phys. 31(5), 1195–1202 (2004).
[Crossref] [PubMed]

Dabah, E.

A. Griesche, E. Dabah, T. Kannengiesser, A. Hilger, N. Kardjilov, I. Manke, and B. Schillinger, “Measuring Hydrogen Distributions in Iron and Steel Using Neutrons,” Phys. Procedia 69, 445–450 (2015).
[Crossref]

Dawson, M.

A. S. Tremsin, N. Kardjilov, M. Dawson, M. Strobl, I. Manke, J. B. McPhate, J. V. Vallerga, O. H. W. Siegmund, and W. B. Feller, “Scatter rejection in quantitative thermal and cold neutron imaging,” Nucl. Instrum. Methods Phys. Res. A 651(1), 145–148 (2011).
[Crossref]

M. Strobl, I. Manke, N. Kardjilov, A. Hilger, M. Dawson, and J. Banhart, “Advances in neutron radiography and tomography,” J. Phys. D Appl. Phys. 42(24), 243001 (2009).
[Crossref]

de Beer, F.

N. Kardjilov, F. de Beer, R. Hassanein, E. Lehmann, and P. Vontobel, “Scattering corrections in neutron radiography using point scattered functions,” Nucl. Instrum. Methods Phys. Res. A 542(1-3), 336–341 (2005).
[Crossref]

de Rooij, G. H.

J. D. Schaap, P. Lehmann, A. Kaestner, P. Vontobel, R. Hassanein, G. Frei, G. H. de Rooij, E. Lehmann, and H. Flühler, “Measuring the effect of structural connectivity on the water dynamics in heterogeneous porous media using speedy neutron tomography,” Adv. Water Resour. 31(9), 1233–1241 (2008).
[Crossref]

Derome, D.

S. Lal, L. D. Poulikakos, I. Jerjen, P. Vontobel, M. N. Partl, D. Derome, and J. Carmeliet, “Investigation of Gravity-Driven Drainage and Forced Convective Drying in a Macroporous Medium Using Neutron Radiography,” Transp. Porous Media 118(1), 119–142 (2017).
[Crossref]

M. Sedighi-Gilani, M. Griffa, D. Mannes, E. Lehmann, J. Carmeliet, and D. Derome, “Visualization and quantification of liquid water transport in softwood by means of neutron radiography,” Int. J. Heat Mass Transfer 55(21-22), 6211–6221 (2012).
[Crossref]

Feller, W. B.

A. S. Tremsin, N. Kardjilov, M. Dawson, M. Strobl, I. Manke, J. B. McPhate, J. V. Vallerga, O. H. W. Siegmund, and W. B. Feller, “Scatter rejection in quantitative thermal and cold neutron imaging,” Nucl. Instrum. Methods Phys. Res. A 651(1), 145–148 (2011).
[Crossref]

Flühler, H.

J. D. Schaap, P. Lehmann, A. Kaestner, P. Vontobel, R. Hassanein, G. Frei, G. H. de Rooij, E. Lehmann, and H. Flühler, “Measuring the effect of structural connectivity on the water dynamics in heterogeneous porous media using speedy neutron tomography,” Adv. Water Resour. 31(9), 1233–1241 (2008).
[Crossref]

A. Kaestner, R. Hassanein, P. Vontobel, P. Lehmann, J. Schaap, E. Lehmann, and H. Flühler, “Mapping the 3D water dynamics in heterogeneous sands using thermal neutrons,” Chem. Eng. J. 130(2-3), 79–85 (2007).
[Crossref]

Franke, R.

R. Franke, “Smooth interpolation of scattered data by local thin plate splines,” Comput. Math. Appl. 8(4), 273–281 (1982).
[Crossref]

Frei, G.

J. D. Schaap, P. Lehmann, A. Kaestner, P. Vontobel, R. Hassanein, G. Frei, G. H. de Rooij, E. Lehmann, and H. Flühler, “Measuring the effect of structural connectivity on the water dynamics in heterogeneous porous media using speedy neutron tomography,” Adv. Water Resour. 31(9), 1233–1241 (2008).
[Crossref]

Frey, J.

D. Mannes, F. Schmid, J. Frey, K. Schmidt-Ott, and E. Lehmann, “Combined Neutron and X-ray Imaging for Non-invasive Investigations of Cultural Heritage Objects,” Phys. Procedia 69, 653–660 (2015).
[Crossref]

Friedrich, K. A.

P. Stahl, J. Biesdorf, P. Boillat, J. Kraft, and K. A. Friedrich, “Water Distribution Analysis in the Outer Perimeter Region of Technical PEFC Based on Neutron Radiography,” J. Electrochem. Soc. 162(7), F677–F685 (2015).
[Crossref]

Gagliardo, J. J.

J. P. Owejan, T. A. Trabold, J. J. Gagliardo, D. L. Jacobson, R. N. Carter, D. S. Hussey, and M. Arif, “Voltage instability in a simulated fuel cell stack correlated to cathode water accumulation,” J. Power Sources 171(2), 626–633 (2007).
[Crossref]

Griesche, A.

A. Griesche, E. Dabah, T. Kannengiesser, A. Hilger, N. Kardjilov, I. Manke, and B. Schillinger, “Measuring Hydrogen Distributions in Iron and Steel Using Neutrons,” Phys. Procedia 69, 445–450 (2015).
[Crossref]

Griffa, M.

M. Sedighi-Gilani, M. Griffa, D. Mannes, E. Lehmann, J. Carmeliet, and D. Derome, “Visualization and quantification of liquid water transport in softwood by means of neutron radiography,” Int. J. Heat Mass Transfer 55(21-22), 6211–6221 (2012).
[Crossref]

Große, M.

M. Große, M. Steinbrück, J. Stuckert, A. Kastner, and B. Schillinger, “Application of neutron radiography to study material processes during hypothetical severe accidents in nuclear reactors,” J. Mater. Sci. 47(18), 6505–6512 (2012).
[Crossref]

Grünzweig, C.

M. Raventos, R. P. Harti, E. Lehmann, and C. Grünzweig, “A method for neutron scattering quantification and correction applied to neutron imaging,” Phys. Procedia 88, 275–281 (2017).
[Crossref]

C. Grünzweig, D. Mannes, A. Kaestner, F. Schmid, P. Vontobel, J. Hovind, S. Hartmann, S. Peetermans, and E. Lehmann, “Progress in Industrial Applications using Modern Neutron Imaging Techniques,” Phys. Procedia 43, 231–242 (2013).
[Crossref]

Guo, Z.

S. Liu, T. Bücherl, Y. Zou, S. Wang, Y. Lu, and Z. Guo, “Study on scattering correction in fast neutron tomography at NECTAR facility,” Sci. China Phys. Mech. Astron. 57(2), 244–250 (2014).
[Crossref]

Harti, R. P.

M. Raventos, R. P. Harti, E. Lehmann, and C. Grünzweig, “A method for neutron scattering quantification and correction applied to neutron imaging,” Phys. Procedia 88, 275–281 (2017).
[Crossref]

Hartmann, S.

C. Grünzweig, D. Mannes, A. Kaestner, F. Schmid, P. Vontobel, J. Hovind, S. Hartmann, S. Peetermans, and E. Lehmann, “Progress in Industrial Applications using Modern Neutron Imaging Techniques,” Phys. Procedia 43, 231–242 (2013).
[Crossref]

Hassan, M. H.

M. H. Hassan, “Point Scattered Function (PScF) for fast neutron radiography,” Nucl. Instrum. Methods Phys. Res. B 267(15), 2545–2549 (2009).
[Crossref]

Hassanein, R.

J. D. Schaap, P. Lehmann, A. Kaestner, P. Vontobel, R. Hassanein, G. Frei, G. H. de Rooij, E. Lehmann, and H. Flühler, “Measuring the effect of structural connectivity on the water dynamics in heterogeneous porous media using speedy neutron tomography,” Adv. Water Resour. 31(9), 1233–1241 (2008).
[Crossref]

A. Kaestner, R. Hassanein, P. Vontobel, P. Lehmann, J. Schaap, E. Lehmann, and H. Flühler, “Mapping the 3D water dynamics in heterogeneous sands using thermal neutrons,” Chem. Eng. J. 130(2-3), 79–85 (2007).
[Crossref]

N. Kardjilov, F. de Beer, R. Hassanein, E. Lehmann, and P. Vontobel, “Scattering corrections in neutron radiography using point scattered functions,” Nucl. Instrum. Methods Phys. Res. A 542(1-3), 336–341 (2005).
[Crossref]

R. Hassanein, E. Lehmann, and P. Vontobel, “Methods of scattering corrections for quantitative neutron radiography,” Nucl. Instrum. Methods Phys. Res. A 542(1-3), 353–360 (2005).
[Crossref]

Hilger, A.

A. Griesche, E. Dabah, T. Kannengiesser, A. Hilger, N. Kardjilov, I. Manke, and B. Schillinger, “Measuring Hydrogen Distributions in Iron and Steel Using Neutrons,” Phys. Procedia 69, 445–450 (2015).
[Crossref]

M. Strobl, I. Manke, N. Kardjilov, A. Hilger, M. Dawson, and J. Banhart, “Advances in neutron radiography and tomography,” J. Phys. D Appl. Phys. 42(24), 243001 (2009).
[Crossref]

Hovind, J.

C. Grünzweig, D. Mannes, A. Kaestner, F. Schmid, P. Vontobel, J. Hovind, S. Hartmann, S. Peetermans, and E. Lehmann, “Progress in Industrial Applications using Modern Neutron Imaging Techniques,” Phys. Procedia 43, 231–242 (2013).
[Crossref]

Hussey, D. S.

D. S. Hussey, K. J. Coakley, E. Baltic, and D. L. Jacobson, “Improving quantitative neutron radiography through image restoration,” Nucl. Instrum. Methods Phys. Res. A 729, 316–321 (2013).
[Crossref]

J. P. Owejan, T. A. Trabold, J. J. Gagliardo, D. L. Jacobson, R. N. Carter, D. S. Hussey, and M. Arif, “Voltage instability in a simulated fuel cell stack correlated to cathode water accumulation,” J. Power Sources 171(2), 626–633 (2007).
[Crossref]

Jacobson, D. L.

D. S. Hussey, K. J. Coakley, E. Baltic, and D. L. Jacobson, “Improving quantitative neutron radiography through image restoration,” Nucl. Instrum. Methods Phys. Res. A 729, 316–321 (2013).
[Crossref]

J. P. Owejan, T. A. Trabold, J. J. Gagliardo, D. L. Jacobson, R. N. Carter, D. S. Hussey, and M. Arif, “Voltage instability in a simulated fuel cell stack correlated to cathode water accumulation,” J. Power Sources 171(2), 626–633 (2007).
[Crossref]

Jerjen, I.

S. Lal, L. D. Poulikakos, I. Jerjen, P. Vontobel, M. N. Partl, D. Derome, and J. Carmeliet, “Investigation of Gravity-Driven Drainage and Forced Convective Drying in a Macroporous Medium Using Neutron Radiography,” Transp. Porous Media 118(1), 119–142 (2017).
[Crossref]

P. Trtik, B. Münch, W. J. Weiss, A. Kaestner, I. Jerjen, L. Josic, E. Lehmann, and P. Lura, “Release of internal curing water from lightweight aggregates in cement paste investigated by neutron and X-ray tomography,” Nucl. Instrum. Methods Phys. Res. A 651(1), 244–249 (2011).
[Crossref]

Josic, L.

P. Trtik, B. Münch, W. J. Weiss, A. Kaestner, I. Jerjen, L. Josic, E. Lehmann, and P. Lura, “Release of internal curing water from lightweight aggregates in cement paste investigated by neutron and X-ray tomography,” Nucl. Instrum. Methods Phys. Res. A 651(1), 244–249 (2011).
[Crossref]

Justnes, H.

H. Justnes, K. Bryhn-Ingebrigtsen, and G. O. Rosvold, “Neutron radiography: an excellent method of measuring water penetration and moisture distribution in cementitious materials,” Adv. Cement Res. 6(22), 67–72 (1994).
[Crossref]

Kaestner, A.

P. Benard, E. Kroener, P. Vontobel, A. Kaestner, and A. Carminati, “Water percolation through the root-soil interface,” Adv. Water Resour. 95, 190–198 (2016).
[Crossref]

M. Zarebanadkouki, A. Carminati, A. Kaestner, D. Mannes, M. Morgano, S. Peetermans, E. Lehmann, and P. Trtik, “On-the-fly Neutron Tomography of Water Transport into Lupine Roots,” Phys. Procedia 69, 292–298 (2015).
[Crossref]

C. Grünzweig, D. Mannes, A. Kaestner, F. Schmid, P. Vontobel, J. Hovind, S. Hartmann, S. Peetermans, and E. Lehmann, “Progress in Industrial Applications using Modern Neutron Imaging Techniques,” Phys. Procedia 43, 231–242 (2013).
[Crossref]

P. Boillat, P. Oberholzer, A. Kaestner, R. Siegrist, E. H. Lehmann, G. G. Scherer, and A. Wokaun, “Impact of Water on PEFC Performance Evaluated by Neutron Imaging Combined with Pulsed Helox Operation,” J. Electrochem. Soc. 159(7), F210–F218 (2012).
[Crossref]

P. Trtik, B. Münch, W. J. Weiss, A. Kaestner, I. Jerjen, L. Josic, E. Lehmann, and P. Lura, “Release of internal curing water from lightweight aggregates in cement paste investigated by neutron and X-ray tomography,” Nucl. Instrum. Methods Phys. Res. A 651(1), 244–249 (2011).
[Crossref]

J. D. Schaap, P. Lehmann, A. Kaestner, P. Vontobel, R. Hassanein, G. Frei, G. H. de Rooij, E. Lehmann, and H. Flühler, “Measuring the effect of structural connectivity on the water dynamics in heterogeneous porous media using speedy neutron tomography,” Adv. Water Resour. 31(9), 1233–1241 (2008).
[Crossref]

A. Kaestner, R. Hassanein, P. Vontobel, P. Lehmann, J. Schaap, E. Lehmann, and H. Flühler, “Mapping the 3D water dynamics in heterogeneous sands using thermal neutrons,” Chem. Eng. J. 130(2-3), 79–85 (2007).
[Crossref]

Kaestner, A. P.

A. P. Kaestner, “MuhRec—A new tomography reconstructor,” Nucl. Instrum. Methods Phys. Res. A 651(1), 156–160 (2011).
[Crossref]

Kannengiesser, T.

A. Griesche, E. Dabah, T. Kannengiesser, A. Hilger, N. Kardjilov, I. Manke, and B. Schillinger, “Measuring Hydrogen Distributions in Iron and Steel Using Neutrons,” Phys. Procedia 69, 445–450 (2015).
[Crossref]

Kardjilov, N.

A. Griesche, E. Dabah, T. Kannengiesser, A. Hilger, N. Kardjilov, I. Manke, and B. Schillinger, “Measuring Hydrogen Distributions in Iron and Steel Using Neutrons,” Phys. Procedia 69, 445–450 (2015).
[Crossref]

A. S. Tremsin, N. Kardjilov, M. Dawson, M. Strobl, I. Manke, J. B. McPhate, J. V. Vallerga, O. H. W. Siegmund, and W. B. Feller, “Scatter rejection in quantitative thermal and cold neutron imaging,” Nucl. Instrum. Methods Phys. Res. A 651(1), 145–148 (2011).
[Crossref]

M. Strobl, I. Manke, N. Kardjilov, A. Hilger, M. Dawson, and J. Banhart, “Advances in neutron radiography and tomography,” J. Phys. D Appl. Phys. 42(24), 243001 (2009).
[Crossref]

N. Kardjilov, F. de Beer, R. Hassanein, E. Lehmann, and P. Vontobel, “Scattering corrections in neutron radiography using point scattered functions,” Nucl. Instrum. Methods Phys. Res. A 542(1-3), 336–341 (2005).
[Crossref]

Kastner, A.

M. Große, M. Steinbrück, J. Stuckert, A. Kastner, and B. Schillinger, “Application of neutron radiography to study material processes during hypothetical severe accidents in nuclear reactors,” J. Mater. Sci. 47(18), 6505–6512 (2012).
[Crossref]

Kraft, J.

P. Stahl, J. Biesdorf, P. Boillat, J. Kraft, and K. A. Friedrich, “Water Distribution Analysis in the Outer Perimeter Region of Technical PEFC Based on Neutron Radiography,” J. Electrochem. Soc. 162(7), F677–F685 (2015).
[Crossref]

Kroener, E.

P. Benard, E. Kroener, P. Vontobel, A. Kaestner, and A. Carminati, “Water percolation through the root-soil interface,” Adv. Water Resour. 95, 190–198 (2016).
[Crossref]

Lal, S.

S. Lal, L. D. Poulikakos, I. Jerjen, P. Vontobel, M. N. Partl, D. Derome, and J. Carmeliet, “Investigation of Gravity-Driven Drainage and Forced Convective Drying in a Macroporous Medium Using Neutron Radiography,” Transp. Porous Media 118(1), 119–142 (2017).
[Crossref]

Lehmann, E.

M. Raventos, R. P. Harti, E. Lehmann, and C. Grünzweig, “A method for neutron scattering quantification and correction applied to neutron imaging,” Phys. Procedia 88, 275–281 (2017).
[Crossref]

M. Zarebanadkouki, A. Carminati, A. Kaestner, D. Mannes, M. Morgano, S. Peetermans, E. Lehmann, and P. Trtik, “On-the-fly Neutron Tomography of Water Transport into Lupine Roots,” Phys. Procedia 69, 292–298 (2015).
[Crossref]

D. Mannes, F. Schmid, J. Frey, K. Schmidt-Ott, and E. Lehmann, “Combined Neutron and X-ray Imaging for Non-invasive Investigations of Cultural Heritage Objects,” Phys. Procedia 69, 653–660 (2015).
[Crossref]

C. Grünzweig, D. Mannes, A. Kaestner, F. Schmid, P. Vontobel, J. Hovind, S. Hartmann, S. Peetermans, and E. Lehmann, “Progress in Industrial Applications using Modern Neutron Imaging Techniques,” Phys. Procedia 43, 231–242 (2013).
[Crossref]

M. Sedighi-Gilani, M. Griffa, D. Mannes, E. Lehmann, J. Carmeliet, and D. Derome, “Visualization and quantification of liquid water transport in softwood by means of neutron radiography,” Int. J. Heat Mass Transfer 55(21-22), 6211–6221 (2012).
[Crossref]

P. Trtik, B. Münch, W. J. Weiss, A. Kaestner, I. Jerjen, L. Josic, E. Lehmann, and P. Lura, “Release of internal curing water from lightweight aggregates in cement paste investigated by neutron and X-ray tomography,” Nucl. Instrum. Methods Phys. Res. A 651(1), 244–249 (2011).
[Crossref]

J. D. Schaap, P. Lehmann, A. Kaestner, P. Vontobel, R. Hassanein, G. Frei, G. H. de Rooij, E. Lehmann, and H. Flühler, “Measuring the effect of structural connectivity on the water dynamics in heterogeneous porous media using speedy neutron tomography,” Adv. Water Resour. 31(9), 1233–1241 (2008).
[Crossref]

A. Kaestner, R. Hassanein, P. Vontobel, P. Lehmann, J. Schaap, E. Lehmann, and H. Flühler, “Mapping the 3D water dynamics in heterogeneous sands using thermal neutrons,” Chem. Eng. J. 130(2-3), 79–85 (2007).
[Crossref]

R. Hassanein, E. Lehmann, and P. Vontobel, “Methods of scattering corrections for quantitative neutron radiography,” Nucl. Instrum. Methods Phys. Res. A 542(1-3), 353–360 (2005).
[Crossref]

N. Kardjilov, F. de Beer, R. Hassanein, E. Lehmann, and P. Vontobel, “Scattering corrections in neutron radiography using point scattered functions,” Nucl. Instrum. Methods Phys. Res. A 542(1-3), 336–341 (2005).
[Crossref]

Lehmann, E. H.

P. Boillat, P. Oberholzer, A. Kaestner, R. Siegrist, E. H. Lehmann, G. G. Scherer, and A. Wokaun, “Impact of Water on PEFC Performance Evaluated by Neutron Imaging Combined with Pulsed Helox Operation,” J. Electrochem. Soc. 159(7), F210–F218 (2012).
[Crossref]

E. H. Lehmann, P. Vontobel, and L. Wiezel, “Properties of the radiography facility NEUTRA at SINQ and its potential for use as European reference facility,” Nondestruct. Test. Eval. 16(2-6), 191–202 (2001).
[Crossref]

Lehmann, P.

J. D. Schaap, P. Lehmann, A. Kaestner, P. Vontobel, R. Hassanein, G. Frei, G. H. de Rooij, E. Lehmann, and H. Flühler, “Measuring the effect of structural connectivity on the water dynamics in heterogeneous porous media using speedy neutron tomography,” Adv. Water Resour. 31(9), 1233–1241 (2008).
[Crossref]

A. Kaestner, R. Hassanein, P. Vontobel, P. Lehmann, J. Schaap, E. Lehmann, and H. Flühler, “Mapping the 3D water dynamics in heterogeneous sands using thermal neutrons,” Chem. Eng. J. 130(2-3), 79–85 (2007).
[Crossref]

Liu, S.

S. Liu, T. Bücherl, Y. Zou, S. Wang, Y. Lu, and Z. Guo, “Study on scattering correction in fast neutron tomography at NECTAR facility,” Sci. China Phys. Mech. Astron. 57(2), 244–250 (2014).
[Crossref]

Lu, Y.

S. Liu, T. Bücherl, Y. Zou, S. Wang, Y. Lu, and Z. Guo, “Study on scattering correction in fast neutron tomography at NECTAR facility,” Sci. China Phys. Mech. Astron. 57(2), 244–250 (2014).
[Crossref]

Lura, P.

P. Trtik, B. Münch, W. J. Weiss, A. Kaestner, I. Jerjen, L. Josic, E. Lehmann, and P. Lura, “Release of internal curing water from lightweight aggregates in cement paste investigated by neutron and X-ray tomography,” Nucl. Instrum. Methods Phys. Res. A 651(1), 244–249 (2011).
[Crossref]

Manke, I.

A. Griesche, E. Dabah, T. Kannengiesser, A. Hilger, N. Kardjilov, I. Manke, and B. Schillinger, “Measuring Hydrogen Distributions in Iron and Steel Using Neutrons,” Phys. Procedia 69, 445–450 (2015).
[Crossref]

A. S. Tremsin, N. Kardjilov, M. Dawson, M. Strobl, I. Manke, J. B. McPhate, J. V. Vallerga, O. H. W. Siegmund, and W. B. Feller, “Scatter rejection in quantitative thermal and cold neutron imaging,” Nucl. Instrum. Methods Phys. Res. A 651(1), 145–148 (2011).
[Crossref]

M. Strobl, I. Manke, N. Kardjilov, A. Hilger, M. Dawson, and J. Banhart, “Advances in neutron radiography and tomography,” J. Phys. D Appl. Phys. 42(24), 243001 (2009).
[Crossref]

Mannes, D.

D. Mannes, F. Schmid, J. Frey, K. Schmidt-Ott, and E. Lehmann, “Combined Neutron and X-ray Imaging for Non-invasive Investigations of Cultural Heritage Objects,” Phys. Procedia 69, 653–660 (2015).
[Crossref]

M. Zarebanadkouki, A. Carminati, A. Kaestner, D. Mannes, M. Morgano, S. Peetermans, E. Lehmann, and P. Trtik, “On-the-fly Neutron Tomography of Water Transport into Lupine Roots,” Phys. Procedia 69, 292–298 (2015).
[Crossref]

C. Grünzweig, D. Mannes, A. Kaestner, F. Schmid, P. Vontobel, J. Hovind, S. Hartmann, S. Peetermans, and E. Lehmann, “Progress in Industrial Applications using Modern Neutron Imaging Techniques,” Phys. Procedia 43, 231–242 (2013).
[Crossref]

M. Sedighi-Gilani, M. Griffa, D. Mannes, E. Lehmann, J. Carmeliet, and D. Derome, “Visualization and quantification of liquid water transport in softwood by means of neutron radiography,” Int. J. Heat Mass Transfer 55(21-22), 6211–6221 (2012).
[Crossref]

McPhate, J. B.

A. S. Tremsin, N. Kardjilov, M. Dawson, M. Strobl, I. Manke, J. B. McPhate, J. V. Vallerga, O. H. W. Siegmund, and W. B. Feller, “Scatter rejection in quantitative thermal and cold neutron imaging,” Nucl. Instrum. Methods Phys. Res. A 651(1), 145–148 (2011).
[Crossref]

Morgano, M.

M. Zarebanadkouki, A. Carminati, A. Kaestner, D. Mannes, M. Morgano, S. Peetermans, E. Lehmann, and P. Trtik, “On-the-fly Neutron Tomography of Water Transport into Lupine Roots,” Phys. Procedia 69, 292–298 (2015).
[Crossref]

Münch, B.

P. Trtik, B. Münch, W. J. Weiss, A. Kaestner, I. Jerjen, L. Josic, E. Lehmann, and P. Lura, “Release of internal curing water from lightweight aggregates in cement paste investigated by neutron and X-ray tomography,” Nucl. Instrum. Methods Phys. Res. A 651(1), 244–249 (2011).
[Crossref]

Ning, R.

R. Ning, X. Tang, and D. Conover, “X-ray scatter correction algorithm for cone beam CT imaging,” Med. Phys. 31(5), 1195–1202 (2004).
[Crossref] [PubMed]

Oberholzer, P.

P. Boillat, P. Oberholzer, A. Kaestner, R. Siegrist, E. H. Lehmann, G. G. Scherer, and A. Wokaun, “Impact of Water on PEFC Performance Evaluated by Neutron Imaging Combined with Pulsed Helox Operation,” J. Electrochem. Soc. 159(7), F210–F218 (2012).
[Crossref]

Owejan, J. P.

J. P. Owejan, T. A. Trabold, J. J. Gagliardo, D. L. Jacobson, R. N. Carter, D. S. Hussey, and M. Arif, “Voltage instability in a simulated fuel cell stack correlated to cathode water accumulation,” J. Power Sources 171(2), 626–633 (2007).
[Crossref]

Partl, M. N.

S. Lal, L. D. Poulikakos, I. Jerjen, P. Vontobel, M. N. Partl, D. Derome, and J. Carmeliet, “Investigation of Gravity-Driven Drainage and Forced Convective Drying in a Macroporous Medium Using Neutron Radiography,” Transp. Porous Media 118(1), 119–142 (2017).
[Crossref]

Peetermans, S.

M. Zarebanadkouki, A. Carminati, A. Kaestner, D. Mannes, M. Morgano, S. Peetermans, E. Lehmann, and P. Trtik, “On-the-fly Neutron Tomography of Water Transport into Lupine Roots,” Phys. Procedia 69, 292–298 (2015).
[Crossref]

C. Grünzweig, D. Mannes, A. Kaestner, F. Schmid, P. Vontobel, J. Hovind, S. Hartmann, S. Peetermans, and E. Lehmann, “Progress in Industrial Applications using Modern Neutron Imaging Techniques,” Phys. Procedia 43, 231–242 (2013).
[Crossref]

Poulikakos, L. D.

S. Lal, L. D. Poulikakos, I. Jerjen, P. Vontobel, M. N. Partl, D. Derome, and J. Carmeliet, “Investigation of Gravity-Driven Drainage and Forced Convective Drying in a Macroporous Medium Using Neutron Radiography,” Transp. Porous Media 118(1), 119–142 (2017).
[Crossref]

Raventos, M.

M. Raventos, R. P. Harti, E. Lehmann, and C. Grünzweig, “A method for neutron scattering quantification and correction applied to neutron imaging,” Phys. Procedia 88, 275–281 (2017).
[Crossref]

Rosvold, G. O.

H. Justnes, K. Bryhn-Ingebrigtsen, and G. O. Rosvold, “Neutron radiography: an excellent method of measuring water penetration and moisture distribution in cementitious materials,” Adv. Cement Res. 6(22), 67–72 (1994).
[Crossref]

Schaap, J.

A. Kaestner, R. Hassanein, P. Vontobel, P. Lehmann, J. Schaap, E. Lehmann, and H. Flühler, “Mapping the 3D water dynamics in heterogeneous sands using thermal neutrons,” Chem. Eng. J. 130(2-3), 79–85 (2007).
[Crossref]

Schaap, J. D.

J. D. Schaap, P. Lehmann, A. Kaestner, P. Vontobel, R. Hassanein, G. Frei, G. H. de Rooij, E. Lehmann, and H. Flühler, “Measuring the effect of structural connectivity on the water dynamics in heterogeneous porous media using speedy neutron tomography,” Adv. Water Resour. 31(9), 1233–1241 (2008).
[Crossref]

Scherer, G. G.

P. Boillat, P. Oberholzer, A. Kaestner, R. Siegrist, E. H. Lehmann, G. G. Scherer, and A. Wokaun, “Impact of Water on PEFC Performance Evaluated by Neutron Imaging Combined with Pulsed Helox Operation,” J. Electrochem. Soc. 159(7), F210–F218 (2012).
[Crossref]

Schillinger, B.

A. Griesche, E. Dabah, T. Kannengiesser, A. Hilger, N. Kardjilov, I. Manke, and B. Schillinger, “Measuring Hydrogen Distributions in Iron and Steel Using Neutrons,” Phys. Procedia 69, 445–450 (2015).
[Crossref]

M. Große, M. Steinbrück, J. Stuckert, A. Kastner, and B. Schillinger, “Application of neutron radiography to study material processes during hypothetical severe accidents in nuclear reactors,” J. Mater. Sci. 47(18), 6505–6512 (2012).
[Crossref]

Schmid, F.

D. Mannes, F. Schmid, J. Frey, K. Schmidt-Ott, and E. Lehmann, “Combined Neutron and X-ray Imaging for Non-invasive Investigations of Cultural Heritage Objects,” Phys. Procedia 69, 653–660 (2015).
[Crossref]

C. Grünzweig, D. Mannes, A. Kaestner, F. Schmid, P. Vontobel, J. Hovind, S. Hartmann, S. Peetermans, and E. Lehmann, “Progress in Industrial Applications using Modern Neutron Imaging Techniques,” Phys. Procedia 43, 231–242 (2013).
[Crossref]

Schmidt, T. J.

J. Seweryn, J. Biesdorf, T. J. Schmidt, and P. Boillat, “Communication—Neutron Radiography of the Water/Gas Distribution in the Porous Layers of an Operating Electrolyser,” J. Electrochem. Soc. 163(11), F3009–F3011 (2016).
[Crossref]

Schmidt-Ott, K.

D. Mannes, F. Schmid, J. Frey, K. Schmidt-Ott, and E. Lehmann, “Combined Neutron and X-ray Imaging for Non-invasive Investigations of Cultural Heritage Objects,” Phys. Procedia 69, 653–660 (2015).
[Crossref]

Sedighi-Gilani, M.

M. Sedighi-Gilani, M. Griffa, D. Mannes, E. Lehmann, J. Carmeliet, and D. Derome, “Visualization and quantification of liquid water transport in softwood by means of neutron radiography,” Int. J. Heat Mass Transfer 55(21-22), 6211–6221 (2012).
[Crossref]

Seweryn, J.

J. Seweryn, J. Biesdorf, T. J. Schmidt, and P. Boillat, “Communication—Neutron Radiography of the Water/Gas Distribution in the Porous Layers of an Operating Electrolyser,” J. Electrochem. Soc. 163(11), F3009–F3011 (2016).
[Crossref]

Siegmund, O. H. W.

A. S. Tremsin, N. Kardjilov, M. Dawson, M. Strobl, I. Manke, J. B. McPhate, J. V. Vallerga, O. H. W. Siegmund, and W. B. Feller, “Scatter rejection in quantitative thermal and cold neutron imaging,” Nucl. Instrum. Methods Phys. Res. A 651(1), 145–148 (2011).
[Crossref]

Siegrist, R.

P. Boillat, P. Oberholzer, A. Kaestner, R. Siegrist, E. H. Lehmann, G. G. Scherer, and A. Wokaun, “Impact of Water on PEFC Performance Evaluated by Neutron Imaging Combined with Pulsed Helox Operation,” J. Electrochem. Soc. 159(7), F210–F218 (2012).
[Crossref]

Stahl, P.

P. Stahl, J. Biesdorf, P. Boillat, J. Kraft, and K. A. Friedrich, “Water Distribution Analysis in the Outer Perimeter Region of Technical PEFC Based on Neutron Radiography,” J. Electrochem. Soc. 162(7), F677–F685 (2015).
[Crossref]

Steinbrück, M.

M. Große, M. Steinbrück, J. Stuckert, A. Kastner, and B. Schillinger, “Application of neutron radiography to study material processes during hypothetical severe accidents in nuclear reactors,” J. Mater. Sci. 47(18), 6505–6512 (2012).
[Crossref]

Strobl, M.

A. S. Tremsin, N. Kardjilov, M. Dawson, M. Strobl, I. Manke, J. B. McPhate, J. V. Vallerga, O. H. W. Siegmund, and W. B. Feller, “Scatter rejection in quantitative thermal and cold neutron imaging,” Nucl. Instrum. Methods Phys. Res. A 651(1), 145–148 (2011).
[Crossref]

M. Strobl, I. Manke, N. Kardjilov, A. Hilger, M. Dawson, and J. Banhart, “Advances in neutron radiography and tomography,” J. Phys. D Appl. Phys. 42(24), 243001 (2009).
[Crossref]

Stuckert, J.

M. Große, M. Steinbrück, J. Stuckert, A. Kastner, and B. Schillinger, “Application of neutron radiography to study material processes during hypothetical severe accidents in nuclear reactors,” J. Mater. Sci. 47(18), 6505–6512 (2012).
[Crossref]

Tang, X.

R. Ning, X. Tang, and D. Conover, “X-ray scatter correction algorithm for cone beam CT imaging,” Med. Phys. 31(5), 1195–1202 (2004).
[Crossref] [PubMed]

Trabold, T. A.

J. P. Owejan, T. A. Trabold, J. J. Gagliardo, D. L. Jacobson, R. N. Carter, D. S. Hussey, and M. Arif, “Voltage instability in a simulated fuel cell stack correlated to cathode water accumulation,” J. Power Sources 171(2), 626–633 (2007).
[Crossref]

Tremsin, A. S.

A. S. Tremsin, N. Kardjilov, M. Dawson, M. Strobl, I. Manke, J. B. McPhate, J. V. Vallerga, O. H. W. Siegmund, and W. B. Feller, “Scatter rejection in quantitative thermal and cold neutron imaging,” Nucl. Instrum. Methods Phys. Res. A 651(1), 145–148 (2011).
[Crossref]

Trtik, P.

M. Zarebanadkouki, A. Carminati, A. Kaestner, D. Mannes, M. Morgano, S. Peetermans, E. Lehmann, and P. Trtik, “On-the-fly Neutron Tomography of Water Transport into Lupine Roots,” Phys. Procedia 69, 292–298 (2015).
[Crossref]

P. Trtik, B. Münch, W. J. Weiss, A. Kaestner, I. Jerjen, L. Josic, E. Lehmann, and P. Lura, “Release of internal curing water from lightweight aggregates in cement paste investigated by neutron and X-ray tomography,” Nucl. Instrum. Methods Phys. Res. A 651(1), 244–249 (2011).
[Crossref]

Vallerga, J. V.

A. S. Tremsin, N. Kardjilov, M. Dawson, M. Strobl, I. Manke, J. B. McPhate, J. V. Vallerga, O. H. W. Siegmund, and W. B. Feller, “Scatter rejection in quantitative thermal and cold neutron imaging,” Nucl. Instrum. Methods Phys. Res. A 651(1), 145–148 (2011).
[Crossref]

Vontobel, P.

S. Lal, L. D. Poulikakos, I. Jerjen, P. Vontobel, M. N. Partl, D. Derome, and J. Carmeliet, “Investigation of Gravity-Driven Drainage and Forced Convective Drying in a Macroporous Medium Using Neutron Radiography,” Transp. Porous Media 118(1), 119–142 (2017).
[Crossref]

P. Benard, E. Kroener, P. Vontobel, A. Kaestner, and A. Carminati, “Water percolation through the root-soil interface,” Adv. Water Resour. 95, 190–198 (2016).
[Crossref]

C. Grünzweig, D. Mannes, A. Kaestner, F. Schmid, P. Vontobel, J. Hovind, S. Hartmann, S. Peetermans, and E. Lehmann, “Progress in Industrial Applications using Modern Neutron Imaging Techniques,” Phys. Procedia 43, 231–242 (2013).
[Crossref]

J. D. Schaap, P. Lehmann, A. Kaestner, P. Vontobel, R. Hassanein, G. Frei, G. H. de Rooij, E. Lehmann, and H. Flühler, “Measuring the effect of structural connectivity on the water dynamics in heterogeneous porous media using speedy neutron tomography,” Adv. Water Resour. 31(9), 1233–1241 (2008).
[Crossref]

A. Kaestner, R. Hassanein, P. Vontobel, P. Lehmann, J. Schaap, E. Lehmann, and H. Flühler, “Mapping the 3D water dynamics in heterogeneous sands using thermal neutrons,” Chem. Eng. J. 130(2-3), 79–85 (2007).
[Crossref]

N. Kardjilov, F. de Beer, R. Hassanein, E. Lehmann, and P. Vontobel, “Scattering corrections in neutron radiography using point scattered functions,” Nucl. Instrum. Methods Phys. Res. A 542(1-3), 336–341 (2005).
[Crossref]

R. Hassanein, E. Lehmann, and P. Vontobel, “Methods of scattering corrections for quantitative neutron radiography,” Nucl. Instrum. Methods Phys. Res. A 542(1-3), 353–360 (2005).
[Crossref]

E. H. Lehmann, P. Vontobel, and L. Wiezel, “Properties of the radiography facility NEUTRA at SINQ and its potential for use as European reference facility,” Nondestruct. Test. Eval. 16(2-6), 191–202 (2001).
[Crossref]

Wang, S.

S. Liu, T. Bücherl, Y. Zou, S. Wang, Y. Lu, and Z. Guo, “Study on scattering correction in fast neutron tomography at NECTAR facility,” Sci. China Phys. Mech. Astron. 57(2), 244–250 (2014).
[Crossref]

Weiss, W. J.

P. Trtik, B. Münch, W. J. Weiss, A. Kaestner, I. Jerjen, L. Josic, E. Lehmann, and P. Lura, “Release of internal curing water from lightweight aggregates in cement paste investigated by neutron and X-ray tomography,” Nucl. Instrum. Methods Phys. Res. A 651(1), 244–249 (2011).
[Crossref]

Wiezel, L.

E. H. Lehmann, P. Vontobel, and L. Wiezel, “Properties of the radiography facility NEUTRA at SINQ and its potential for use as European reference facility,” Nondestruct. Test. Eval. 16(2-6), 191–202 (2001).
[Crossref]

Wokaun, A.

P. Boillat, P. Oberholzer, A. Kaestner, R. Siegrist, E. H. Lehmann, G. G. Scherer, and A. Wokaun, “Impact of Water on PEFC Performance Evaluated by Neutron Imaging Combined with Pulsed Helox Operation,” J. Electrochem. Soc. 159(7), F210–F218 (2012).
[Crossref]

Zarebanadkouki, M.

M. Zarebanadkouki, A. Carminati, A. Kaestner, D. Mannes, M. Morgano, S. Peetermans, E. Lehmann, and P. Trtik, “On-the-fly Neutron Tomography of Water Transport into Lupine Roots,” Phys. Procedia 69, 292–298 (2015).
[Crossref]

Zou, Y.

S. Liu, T. Bücherl, Y. Zou, S. Wang, Y. Lu, and Z. Guo, “Study on scattering correction in fast neutron tomography at NECTAR facility,” Sci. China Phys. Mech. Astron. 57(2), 244–250 (2014).
[Crossref]

Adv. Cement Res. (1)

H. Justnes, K. Bryhn-Ingebrigtsen, and G. O. Rosvold, “Neutron radiography: an excellent method of measuring water penetration and moisture distribution in cementitious materials,” Adv. Cement Res. 6(22), 67–72 (1994).
[Crossref]

Adv. Water Resour. (2)

J. D. Schaap, P. Lehmann, A. Kaestner, P. Vontobel, R. Hassanein, G. Frei, G. H. de Rooij, E. Lehmann, and H. Flühler, “Measuring the effect of structural connectivity on the water dynamics in heterogeneous porous media using speedy neutron tomography,” Adv. Water Resour. 31(9), 1233–1241 (2008).
[Crossref]

P. Benard, E. Kroener, P. Vontobel, A. Kaestner, and A. Carminati, “Water percolation through the root-soil interface,” Adv. Water Resour. 95, 190–198 (2016).
[Crossref]

Chem. Eng. J. (1)

A. Kaestner, R. Hassanein, P. Vontobel, P. Lehmann, J. Schaap, E. Lehmann, and H. Flühler, “Mapping the 3D water dynamics in heterogeneous sands using thermal neutrons,” Chem. Eng. J. 130(2-3), 79–85 (2007).
[Crossref]

Comput. Math. Appl. (1)

R. Franke, “Smooth interpolation of scattered data by local thin plate splines,” Comput. Math. Appl. 8(4), 273–281 (1982).
[Crossref]

Int. J. Heat Mass Transfer (1)

M. Sedighi-Gilani, M. Griffa, D. Mannes, E. Lehmann, J. Carmeliet, and D. Derome, “Visualization and quantification of liquid water transport in softwood by means of neutron radiography,” Int. J. Heat Mass Transfer 55(21-22), 6211–6221 (2012).
[Crossref]

J. Electrochem. Soc. (3)

P. Boillat, P. Oberholzer, A. Kaestner, R. Siegrist, E. H. Lehmann, G. G. Scherer, and A. Wokaun, “Impact of Water on PEFC Performance Evaluated by Neutron Imaging Combined with Pulsed Helox Operation,” J. Electrochem. Soc. 159(7), F210–F218 (2012).
[Crossref]

P. Stahl, J. Biesdorf, P. Boillat, J. Kraft, and K. A. Friedrich, “Water Distribution Analysis in the Outer Perimeter Region of Technical PEFC Based on Neutron Radiography,” J. Electrochem. Soc. 162(7), F677–F685 (2015).
[Crossref]

J. Seweryn, J. Biesdorf, T. J. Schmidt, and P. Boillat, “Communication—Neutron Radiography of the Water/Gas Distribution in the Porous Layers of an Operating Electrolyser,” J. Electrochem. Soc. 163(11), F3009–F3011 (2016).
[Crossref]

J. Mater. Sci. (1)

M. Große, M. Steinbrück, J. Stuckert, A. Kastner, and B. Schillinger, “Application of neutron radiography to study material processes during hypothetical severe accidents in nuclear reactors,” J. Mater. Sci. 47(18), 6505–6512 (2012).
[Crossref]

J. Phys. D Appl. Phys. (1)

M. Strobl, I. Manke, N. Kardjilov, A. Hilger, M. Dawson, and J. Banhart, “Advances in neutron radiography and tomography,” J. Phys. D Appl. Phys. 42(24), 243001 (2009).
[Crossref]

J. Power Sources (1)

J. P. Owejan, T. A. Trabold, J. J. Gagliardo, D. L. Jacobson, R. N. Carter, D. S. Hussey, and M. Arif, “Voltage instability in a simulated fuel cell stack correlated to cathode water accumulation,” J. Power Sources 171(2), 626–633 (2007).
[Crossref]

Med. Phys. (1)

R. Ning, X. Tang, and D. Conover, “X-ray scatter correction algorithm for cone beam CT imaging,” Med. Phys. 31(5), 1195–1202 (2004).
[Crossref] [PubMed]

Nondestruct. Test. Eval. (1)

E. H. Lehmann, P. Vontobel, and L. Wiezel, “Properties of the radiography facility NEUTRA at SINQ and its potential for use as European reference facility,” Nondestruct. Test. Eval. 16(2-6), 191–202 (2001).
[Crossref]

Nucl. Instrum. Methods Phys. Res. A (6)

A. S. Tremsin, N. Kardjilov, M. Dawson, M. Strobl, I. Manke, J. B. McPhate, J. V. Vallerga, O. H. W. Siegmund, and W. B. Feller, “Scatter rejection in quantitative thermal and cold neutron imaging,” Nucl. Instrum. Methods Phys. Res. A 651(1), 145–148 (2011).
[Crossref]

D. S. Hussey, K. J. Coakley, E. Baltic, and D. L. Jacobson, “Improving quantitative neutron radiography through image restoration,” Nucl. Instrum. Methods Phys. Res. A 729, 316–321 (2013).
[Crossref]

R. Hassanein, E. Lehmann, and P. Vontobel, “Methods of scattering corrections for quantitative neutron radiography,” Nucl. Instrum. Methods Phys. Res. A 542(1-3), 353–360 (2005).
[Crossref]

N. Kardjilov, F. de Beer, R. Hassanein, E. Lehmann, and P. Vontobel, “Scattering corrections in neutron radiography using point scattered functions,” Nucl. Instrum. Methods Phys. Res. A 542(1-3), 336–341 (2005).
[Crossref]

A. P. Kaestner, “MuhRec—A new tomography reconstructor,” Nucl. Instrum. Methods Phys. Res. A 651(1), 156–160 (2011).
[Crossref]

P. Trtik, B. Münch, W. J. Weiss, A. Kaestner, I. Jerjen, L. Josic, E. Lehmann, and P. Lura, “Release of internal curing water from lightweight aggregates in cement paste investigated by neutron and X-ray tomography,” Nucl. Instrum. Methods Phys. Res. A 651(1), 244–249 (2011).
[Crossref]

Nucl. Instrum. Methods Phys. Res. B (1)

M. H. Hassan, “Point Scattered Function (PScF) for fast neutron radiography,” Nucl. Instrum. Methods Phys. Res. B 267(15), 2545–2549 (2009).
[Crossref]

Phys. Procedia (5)

M. Raventos, R. P. Harti, E. Lehmann, and C. Grünzweig, “A method for neutron scattering quantification and correction applied to neutron imaging,” Phys. Procedia 88, 275–281 (2017).
[Crossref]

M. Zarebanadkouki, A. Carminati, A. Kaestner, D. Mannes, M. Morgano, S. Peetermans, E. Lehmann, and P. Trtik, “On-the-fly Neutron Tomography of Water Transport into Lupine Roots,” Phys. Procedia 69, 292–298 (2015).
[Crossref]

D. Mannes, F. Schmid, J. Frey, K. Schmidt-Ott, and E. Lehmann, “Combined Neutron and X-ray Imaging for Non-invasive Investigations of Cultural Heritage Objects,” Phys. Procedia 69, 653–660 (2015).
[Crossref]

C. Grünzweig, D. Mannes, A. Kaestner, F. Schmid, P. Vontobel, J. Hovind, S. Hartmann, S. Peetermans, and E. Lehmann, “Progress in Industrial Applications using Modern Neutron Imaging Techniques,” Phys. Procedia 43, 231–242 (2013).
[Crossref]

A. Griesche, E. Dabah, T. Kannengiesser, A. Hilger, N. Kardjilov, I. Manke, and B. Schillinger, “Measuring Hydrogen Distributions in Iron and Steel Using Neutrons,” Phys. Procedia 69, 445–450 (2015).
[Crossref]

Sci. China Phys. Mech. Astron. (1)

S. Liu, T. Bücherl, Y. Zou, S. Wang, Y. Lu, and Z. Guo, “Study on scattering correction in fast neutron tomography at NECTAR facility,” Sci. China Phys. Mech. Astron. 57(2), 244–250 (2014).
[Crossref]

Transp. Porous Media (1)

S. Lal, L. D. Poulikakos, I. Jerjen, P. Vontobel, M. N. Partl, D. Derome, and J. Carmeliet, “Investigation of Gravity-Driven Drainage and Forced Convective Drying in a Macroporous Medium Using Neutron Radiography,” Transp. Porous Media 118(1), 119–142 (2017).
[Crossref]

Other (2)

C. Gruenzweig, D. Mannes, F. Schmid, and R. Rule “Neutron Imaging: A Non-Destructive Testing Method to Investigate Canned Exhaust After-Treatment System Components for the Three Dimensional Soot, Ash, Urea and Coating Distributions,” 2016.

R. Hassanein, “Correction methods for the quantitative evaluation of thermal neutron tomography,” (ETH Zürich, 2006), p. 149.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 (a) Illustration of the measurement setup showing the position of the black body grid (BB grid). (b) Detail showing two examples of bias contributions, namely the scattering contribution from the sample and the mirror.
Fig. 2
Fig. 2 Simplified data flow diagram of the background correction process. The initial correction steps (filtering, deconvolution, camera offset and intensity correction) are not shown for the sake of clarity.
Fig. 3
Fig. 3 (a-b) images of the pencil beam measurements (two different sizes with the blue line showing the beam boundaries). (c) Horizontal intensity profile of the small pencil beam with Lorentzian and Gaussian fit. (d-f) Illustration of the background contributions occurring in the detector: Neutron scattering by the mirror (d), light reflection on the mirror (e) and neutron scattering by the scintillator substrate.
Fig. 4
Fig. 4 (a) Example measurement of the open beam with BB grid. (e) Resulting interpolated background image using the BB grid at 16 different positions. (f) Vertical intensity profile of the measured background. Fine grid corresponds to 16 different BB grid positions and coarse grid to one single position.
Fig. 5
Fig. 5 (a) Radiographs of the lead sample at different orientations. (b) Total scattering images interpolated from the 16 positions BB grid scanning (”fine grid” measurements). (c) Horizontal profiles of the total scattering at the middle of the image (only the lowest values of the sample transmission are shown). (d) Measured thickness after correcting for the scattering. Abbreviations: CC = coarse grid, centered on sample. CS = coarse grid, shifted. F = Fine grid.
Fig. 6
Fig. 6 (a) Radiographs of the stainless-steel sample at different orientations. (b) Total scattering interpolated from the 16 positions BB grid scanning (”fine grid” measurements). (c) Horizontal profiles of the total scattering at the middle of the image (only the lowest values of the sample transmission are shown). (d) Measured thickness after correcting for the scattering. Abbreviations: CC = coarse grid, centered on sample. CS = coarse grid, shifted. F = Fine grid.
Fig. 7
Fig. 7 Measured total scattering as a function of the sample orientation (superimposed measurements for the full 625 projections measurements and the limited 25 projections measurements). (a) Lead alloy sample (b) Stainless-steel sample (insert showing the detail of the interpolation error at 90°).
Fig. 8
Fig. 8 Result of tomographic reconstruction for the lead sample without (a) and with (b) the corrections (base case). The grayscale intensity shows the deviations from the average attenuation coefficient measured for the entire sample. (c) Horizontal profiles over the region marked with dashed lines.
Fig. 9
Fig. 9 Result of tomographic reconstruction for the stainless-steel sample without (a) and with (b) the corrections (base case). The grayscale intensity shows the deviations to the average attenuation coefficient measured for the entire sample. (c) Horizontal profiles over the region marked with dashed lines.
Fig. 10
Fig. 10 Average measured attenuation coefficient (top) and relative variations (bottom) of lead sample for all correction methods presented in Table 1. The baseline for the attenuation coefficient corresponds to the real attenuation coefficient of 0.335 cm−1 for this sample. The error bars and relative variations are based on a 99% confidence interval on the average value of all 8x8x8 voxel cubes (equivalent to volumes of 0.54 x 0.54 x 0.54 mm3) contained in the sample.
Fig. 11
Fig. 11 Average measured attenuation coefficient (top) and relative variations (bottom) of stainless-steel sample for all correction methods presented in Table 1. The baseline for the attenuation coefficient corresponds to the real attenuation coefficient of 1.08 cm−1 for this sample. The error bars and relative variations are based on a 99% confidence interval on the average value of all 8x8x8 voxel cubes (equivalent to volumes of 0.54 x 0.54 x 0.54 mm3) contained in the sample.

Tables (1)

Tables Icon

Table 1 List of parameters used for the different cases of tomographic reconstruction.

Metrics