Abstract

Materials such as W, TiN, and SrRuO3 (SRO) have been suggested as promising alternatives to Au and Ag in plasmonic applications owing to their stability at high operational temperatures. However, investigation of the reproducibility of the optical properties after thermal cycling between room and elevated temperatures is so far lacking. Here, thin films of W, Mo, Ti, TiN, TiON, Ag, Au, SrRuO3 and SrNbO3 are investigated to assess their viability for robust refractory plasmonic applications. These results are further compared to the performance of SrMoO3 reported in literature. Films ranging in thickness from 50 to 105 nm are deposited on MgO, SrTiO3 and Si substrates by e-beam evaporation, RF magnetron sputtering and pulsed laser deposition, prior to characterisation by means of AFM, XRD, spectroscopic ellipsometry, and DC resistivity. Measurements are conducted before and after annealing in air at temperatures ranging from 300 to 1000° C for one hour, to establish the maximum cycling temperature and potential longevity at elevated temperatures for each material. It is found that SrRuO3 retains metallic behaviour after annealing at 800° C, while SrNbO3 undergoes a phase transition resulting in a loss of metallic behaviour after annealing at 400° C. Importantly, the optical properties of TiN and TiON are degraded as a result of oxidation and show a loss of metallic behaviour after annealing at 500° C, while the same is not observed in Au until annealing at 600° C. Nevertheless, both TiN and TiON may be better suited than Au or SRO for high temperature applications operating under vacuum conditions.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Multiphase strontium molybdate thin films for plasmonic local heating applications

Matthew P. Wells, Bin Zou, Andrei P. Mihai, Ryan Bower, Brock Doiron, Anna Regoutz, Sarah Fearn, Stefan A. Maier, Neil McN. Alford, and Peter K. Petrov
Opt. Mater. Express 8(7) 1806-1817 (2018)

Fluorine-doped tin oxide films grown by pulsed direct current magnetron sputtering with an Sn target

Bo-Huei Liao, Chien-Cheng Kuo, Pin-Jen Chen, and Cheng-Chung Lee
Appl. Opt. 50(9) C106-C110 (2011)

Room temperature fabrication of titanium nitride thin films as plasmonic materials by high-power impulse magnetron sputtering

Zih-Ying Yang, Yi-Hsun Chen, Bo-Huei Liao, and Kuo-Ping Chen
Opt. Mater. Express 6(2) 540-551 (2016)

References

  • View by:
  • |
  • |
  • |

  1. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
    [Crossref]
  2. U. Guler, V. M. Shalaev, and A. Boltasseva, “Nanoparticle plasmonics: going practical with transition metal nitrides,” Mater. Today 18(4), 227–237 (2015).
    [Crossref]
  3. A. V. Krasavin and A. V. Zayats, “Active Nanophotonic Circuitry Based on Dielectric‐loaded Plasmonic Waveguides,” Adv. Opt. Mat. 3(12), 1662–1690 (2015).
    [Crossref]
  4. K. F. MacDonald and N. I. Zheludev, “Active plasmonics: current status,” Laser Photonics Rev. 4(4), 562–567 (2010).
    [Crossref]
  5. S. Pillai and M. A. Green, “Plasmonics for photovoltaic applications,” Sol. Energy Mater. Sol. Cells 94(9), 1481–1486 (2010).
    [Crossref]
  6. G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
    [Crossref] [PubMed]
  7. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  8. A. Boltasseva, “Empowering plasmonics and metamaterials technology with new material platforms,” MRS Bull. 39(5), 461–468 (2014).
    [Crossref]
  9. G. Albrecht, S. Kaiser, H. Giessen, and M. Hentschel, “Refractory Plasmonics without Refractory Materials,” Nano Lett. 17(10), 6402–6408 (2017).
    [Crossref] [PubMed]
  10. H. Reddy, U. Guler, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Temperature dependent optical properties of gold thin films,” Opt. Mater. Express 6(9), 2776–2802 (2016).
    [Crossref]
  11. N. P. Harder and P. Würfel, “Theoretical limits of thermophotovoltaic solar energy conversion,” Semicond. Sci. Technol. 18(5), S151–S157 (2003).
    [Crossref]
  12. S. Molesky, C. J. Dewalt, and Z. Jacob, “High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics,” Opt. Express 21(S1), A96–A110 (2013).
    [Crossref] [PubMed]
  13. Y. Nam, Y. X. Yeng, A. Lenert, P. Bermel, I. Celanovic, M. Soljačić, and E. N. Wang, “Solar thermophotovoltaic energy conversion systems with two-dimensional tantalum photonic crystal absorbers and emitters,” Sol. Energy Mater. Sol. Cells 122, 287–296 (2014).
    [Crossref]
  14. D. O’Connor and A. V. Zayats, “The third plasmonic revolution,” Nat. Nanotechnol. 5(7), 482–483 (2010).
    [Crossref] [PubMed]
  15. N. Zhou, X. Xu, A. T. Hammack, B. C. Stipe, K. Gao, W. Scholz, and E. C. Gage, “Plasmonic near-field transducer for heat-assisted magnetic recording,” Nanophotonics 3(3), 141–155 (2014).
    [Crossref]
  16. S. T. Sundari, S. Chandra, and A. K. Tyagi, “Temperature dependent optical properties of silver from spectroscopic ellip-sometry and density functional theory calculations,” J. Appl. Phys. 114(3), 033515 (2013).
    [Crossref]
  17. H. Reddy, U. Guler, K. Chaudhuri, A. Dutta, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Temperature-dependent optical properties of single crystalline and polycrystalline silver thin films,” ACS Photonics 4(5), 1083–1091 (2017).
    [Crossref]
  18. W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
    [Crossref] [PubMed]
  19. L. Braic, N. Vasilantonakis, B. Zou, S. A. Maier, N. M. Alford, A. V. Zayats, and P. K. Petrov, “Optimizing strontium ruthenate thin films for near-infrared plasmonic applications,” Sci. Rep. 5(1), 9118 (2015).
    [Crossref] [PubMed]
  20. J. A. Briggs, G. V. Naik, Y. Zhao, T. A. Petach, K. Sahasrabuddhe, D. Goldhaber-Gordon, N. A. Melosh, and J. A. Dionne, “Temperature dependent optical properties of titanium nitride,” Appl. Phys. Lett. 110(10), 101901 (2017).
    [Crossref]
  21. M. P. Wells, B. Zou, B. G. Doiron, R. Kilmurray, A. P. Mihai, R. F. M. Oulton, P. Gubeljak, K. L. Ormandy, G. Mallia, N. M. Harrison, L. F. Cohen, S. A. Maier, N. McN. Alford, and P. K. Petrov, “Tunable, low optical loss strontium molybdate thin films for plasmonic applications,” Adv. Opt. Mater. 5(22), 1700622 (2017).
    [Crossref]
  22. D. Y. Wan, Y. L. Zhao, Y. Cai, T. C. Asmara, Z. Huang, J. Q. Chen, J. Hong, S. M. Yin, C. T. Nelson, M. R. Motapothula, B. X. Yan, D. Xiang, X. Chi, H. Zheng, W. Chen, R. Xu, A. Ariando, A. Rusydi, A. M. Minor, M. B. H. Breese, M. Sherburne, M. Asta, Q.-H. Xu, and T. Venkatesan, “Electron transport and visible light absorption in a plasmonic photocatalyst based on strontium niobate,” Nat. Commun. 8, 15070 (2017).
    [Crossref]
  23. M. P. Wells, B. Zou, A. P. Mihai, R. Bower, A. Regoutz, S. Fearn, S. A. Maier, N. McN. Alford, and P. K. Petrov, “Multiphase strontium molybdate thin films for plasmonic local heating applications,” https://arxiv.org/abs/1803.03131 , Date of access: 09 March 2018.
  24. P. Patsalas, N. Kalfagiannis, and S. Kassavetis, “Optical properties and plasmonic performance of titanium nitride,” Materials (Basel) 8(6), 3128–3154 (2015).
    [Crossref]
  25. L. Braic, N. Vasilantonakis, A. Mihai, I. J. Villar Garcia, S. Fearn, B. Zou, N. McN. Alford, B. Doiron, R. F. Oulton, S. A. Maier, A. V. Zayats, and P. K. Petrov, “Titanium Oxynitride Thin Films with Tunable Double Epsilon-Near-Zero Behavior for Nanophotonic Applications,” ACS Appl. Mater. Interfaces 9(35), 29857–29862 (2017).
    [Crossref] [PubMed]
  26. G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2(4), 478–489 (2012).
    [Crossref]
  27. M. A. Ordal, R. J. Bell, R. W. Alexander, L. A. Newquist, and M. R. Querry, “Optical properties of Al, Fe, Ti, Ta, W, and Mo at submillimeter wavelengths,” Appl. Opt. 27(6), 1203–1209 (1988).
    [Crossref] [PubMed]
  28. P. B. Johnson and R. W. Christy, “Optical constants of transition metals: Ti, v, cr, mn, fe, co, ni, and pd,” Phys. Rev. B 9(12), 5056–5070 (1974).
    [Crossref]
  29. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical properties of the metals al, co, cu, au, fe, pb, ni, pd, pt, ag, ti, and w in the infrared and far infrared,” Appl. Opt. 22(7), 1099–1120 (1983).
    [Crossref] [PubMed]
  30. H. C. Kim, T. L. Alford, and D. R. Allee, “Thickness dependence on the thermal stability of silver thin films,” Appl. Phys. Lett. 81(22), 4287–4289 (2002).
    [Crossref]
  31. G. G. Paulson and A. L. Friedberg, “Coalescence and agglomeration of gold films,” Thin Solid Films 5(1), 47–52 (1970).
    [Crossref]
  32. H. G. Tompkins, “The initial stages of the oxidation of titanium nitride,” J. Appl. Phys. 71(2), 980–983 (1992).
    [Crossref]
  33. W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
    [Crossref] [PubMed]
  34. D. Adams, B. A. Julies, J. W. Mayer, and T. L. Alford, “Corrosion of titanium-nitride encapsulated silver films exposed to a H2S ambient,” Thin Solid Films 332(1–2), 235–239 (1998).
    [Crossref]
  35. M. A. Ordal, R. J. Bell, R. W. Alexander, L. L. Long, and M. R. Querry, “Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W,” Appl. Opt. 24(24), 4493–4499 (1985).
    [Crossref] [PubMed]

2017 (6)

G. Albrecht, S. Kaiser, H. Giessen, and M. Hentschel, “Refractory Plasmonics without Refractory Materials,” Nano Lett. 17(10), 6402–6408 (2017).
[Crossref] [PubMed]

J. A. Briggs, G. V. Naik, Y. Zhao, T. A. Petach, K. Sahasrabuddhe, D. Goldhaber-Gordon, N. A. Melosh, and J. A. Dionne, “Temperature dependent optical properties of titanium nitride,” Appl. Phys. Lett. 110(10), 101901 (2017).
[Crossref]

M. P. Wells, B. Zou, B. G. Doiron, R. Kilmurray, A. P. Mihai, R. F. M. Oulton, P. Gubeljak, K. L. Ormandy, G. Mallia, N. M. Harrison, L. F. Cohen, S. A. Maier, N. McN. Alford, and P. K. Petrov, “Tunable, low optical loss strontium molybdate thin films for plasmonic applications,” Adv. Opt. Mater. 5(22), 1700622 (2017).
[Crossref]

D. Y. Wan, Y. L. Zhao, Y. Cai, T. C. Asmara, Z. Huang, J. Q. Chen, J. Hong, S. M. Yin, C. T. Nelson, M. R. Motapothula, B. X. Yan, D. Xiang, X. Chi, H. Zheng, W. Chen, R. Xu, A. Ariando, A. Rusydi, A. M. Minor, M. B. H. Breese, M. Sherburne, M. Asta, Q.-H. Xu, and T. Venkatesan, “Electron transport and visible light absorption in a plasmonic photocatalyst based on strontium niobate,” Nat. Commun. 8, 15070 (2017).
[Crossref]

H. Reddy, U. Guler, K. Chaudhuri, A. Dutta, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Temperature-dependent optical properties of single crystalline and polycrystalline silver thin films,” ACS Photonics 4(5), 1083–1091 (2017).
[Crossref]

L. Braic, N. Vasilantonakis, A. Mihai, I. J. Villar Garcia, S. Fearn, B. Zou, N. McN. Alford, B. Doiron, R. F. Oulton, S. A. Maier, A. V. Zayats, and P. K. Petrov, “Titanium Oxynitride Thin Films with Tunable Double Epsilon-Near-Zero Behavior for Nanophotonic Applications,” ACS Appl. Mater. Interfaces 9(35), 29857–29862 (2017).
[Crossref] [PubMed]

2016 (1)

2015 (4)

L. Braic, N. Vasilantonakis, B. Zou, S. A. Maier, N. M. Alford, A. V. Zayats, and P. K. Petrov, “Optimizing strontium ruthenate thin films for near-infrared plasmonic applications,” Sci. Rep. 5(1), 9118 (2015).
[Crossref] [PubMed]

P. Patsalas, N. Kalfagiannis, and S. Kassavetis, “Optical properties and plasmonic performance of titanium nitride,” Materials (Basel) 8(6), 3128–3154 (2015).
[Crossref]

U. Guler, V. M. Shalaev, and A. Boltasseva, “Nanoparticle plasmonics: going practical with transition metal nitrides,” Mater. Today 18(4), 227–237 (2015).
[Crossref]

A. V. Krasavin and A. V. Zayats, “Active Nanophotonic Circuitry Based on Dielectric‐loaded Plasmonic Waveguides,” Adv. Opt. Mat. 3(12), 1662–1690 (2015).
[Crossref]

2014 (5)

A. Boltasseva, “Empowering plasmonics and metamaterials technology with new material platforms,” MRS Bull. 39(5), 461–468 (2014).
[Crossref]

Y. Nam, Y. X. Yeng, A. Lenert, P. Bermel, I. Celanovic, M. Soljačić, and E. N. Wang, “Solar thermophotovoltaic energy conversion systems with two-dimensional tantalum photonic crystal absorbers and emitters,” Sol. Energy Mater. Sol. Cells 122, 287–296 (2014).
[Crossref]

N. Zhou, X. Xu, A. T. Hammack, B. C. Stipe, K. Gao, W. Scholz, and E. C. Gage, “Plasmonic near-field transducer for heat-assisted magnetic recording,” Nanophotonics 3(3), 141–155 (2014).
[Crossref]

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

2013 (3)

S. Molesky, C. J. Dewalt, and Z. Jacob, “High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics,” Opt. Express 21(S1), A96–A110 (2013).
[Crossref] [PubMed]

S. T. Sundari, S. Chandra, and A. K. Tyagi, “Temperature dependent optical properties of silver from spectroscopic ellip-sometry and density functional theory calculations,” J. Appl. Phys. 114(3), 033515 (2013).
[Crossref]

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

2012 (1)

2010 (4)

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

K. F. MacDonald and N. I. Zheludev, “Active plasmonics: current status,” Laser Photonics Rev. 4(4), 562–567 (2010).
[Crossref]

S. Pillai and M. A. Green, “Plasmonics for photovoltaic applications,” Sol. Energy Mater. Sol. Cells 94(9), 1481–1486 (2010).
[Crossref]

D. O’Connor and A. V. Zayats, “The third plasmonic revolution,” Nat. Nanotechnol. 5(7), 482–483 (2010).
[Crossref] [PubMed]

2003 (1)

N. P. Harder and P. Würfel, “Theoretical limits of thermophotovoltaic solar energy conversion,” Semicond. Sci. Technol. 18(5), S151–S157 (2003).
[Crossref]

2002 (1)

H. C. Kim, T. L. Alford, and D. R. Allee, “Thickness dependence on the thermal stability of silver thin films,” Appl. Phys. Lett. 81(22), 4287–4289 (2002).
[Crossref]

1998 (1)

D. Adams, B. A. Julies, J. W. Mayer, and T. L. Alford, “Corrosion of titanium-nitride encapsulated silver films exposed to a H2S ambient,” Thin Solid Films 332(1–2), 235–239 (1998).
[Crossref]

1992 (1)

H. G. Tompkins, “The initial stages of the oxidation of titanium nitride,” J. Appl. Phys. 71(2), 980–983 (1992).
[Crossref]

1988 (1)

1985 (1)

1983 (1)

1974 (1)

P. B. Johnson and R. W. Christy, “Optical constants of transition metals: Ti, v, cr, mn, fe, co, ni, and pd,” Phys. Rev. B 9(12), 5056–5070 (1974).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

1970 (1)

G. G. Paulson and A. L. Friedberg, “Coalescence and agglomeration of gold films,” Thin Solid Films 5(1), 47–52 (1970).
[Crossref]

Adams, D.

D. Adams, B. A. Julies, J. W. Mayer, and T. L. Alford, “Corrosion of titanium-nitride encapsulated silver films exposed to a H2S ambient,” Thin Solid Films 332(1–2), 235–239 (1998).
[Crossref]

Albrecht, G.

G. Albrecht, S. Kaiser, H. Giessen, and M. Hentschel, “Refractory Plasmonics without Refractory Materials,” Nano Lett. 17(10), 6402–6408 (2017).
[Crossref] [PubMed]

Alexander, R. W.

Alford, N. M.

L. Braic, N. Vasilantonakis, B. Zou, S. A. Maier, N. M. Alford, A. V. Zayats, and P. K. Petrov, “Optimizing strontium ruthenate thin films for near-infrared plasmonic applications,” Sci. Rep. 5(1), 9118 (2015).
[Crossref] [PubMed]

Alford, N. McN.

M. P. Wells, B. Zou, B. G. Doiron, R. Kilmurray, A. P. Mihai, R. F. M. Oulton, P. Gubeljak, K. L. Ormandy, G. Mallia, N. M. Harrison, L. F. Cohen, S. A. Maier, N. McN. Alford, and P. K. Petrov, “Tunable, low optical loss strontium molybdate thin films for plasmonic applications,” Adv. Opt. Mater. 5(22), 1700622 (2017).
[Crossref]

L. Braic, N. Vasilantonakis, A. Mihai, I. J. Villar Garcia, S. Fearn, B. Zou, N. McN. Alford, B. Doiron, R. F. Oulton, S. A. Maier, A. V. Zayats, and P. K. Petrov, “Titanium Oxynitride Thin Films with Tunable Double Epsilon-Near-Zero Behavior for Nanophotonic Applications,” ACS Appl. Mater. Interfaces 9(35), 29857–29862 (2017).
[Crossref] [PubMed]

Alford, T. L.

H. C. Kim, T. L. Alford, and D. R. Allee, “Thickness dependence on the thermal stability of silver thin films,” Appl. Phys. Lett. 81(22), 4287–4289 (2002).
[Crossref]

D. Adams, B. A. Julies, J. W. Mayer, and T. L. Alford, “Corrosion of titanium-nitride encapsulated silver films exposed to a H2S ambient,” Thin Solid Films 332(1–2), 235–239 (1998).
[Crossref]

Allee, D. R.

H. C. Kim, T. L. Alford, and D. R. Allee, “Thickness dependence on the thermal stability of silver thin films,” Appl. Phys. Lett. 81(22), 4287–4289 (2002).
[Crossref]

Ariando, A.

D. Y. Wan, Y. L. Zhao, Y. Cai, T. C. Asmara, Z. Huang, J. Q. Chen, J. Hong, S. M. Yin, C. T. Nelson, M. R. Motapothula, B. X. Yan, D. Xiang, X. Chi, H. Zheng, W. Chen, R. Xu, A. Ariando, A. Rusydi, A. M. Minor, M. B. H. Breese, M. Sherburne, M. Asta, Q.-H. Xu, and T. Venkatesan, “Electron transport and visible light absorption in a plasmonic photocatalyst based on strontium niobate,” Nat. Commun. 8, 15070 (2017).
[Crossref]

Asmara, T. C.

D. Y. Wan, Y. L. Zhao, Y. Cai, T. C. Asmara, Z. Huang, J. Q. Chen, J. Hong, S. M. Yin, C. T. Nelson, M. R. Motapothula, B. X. Yan, D. Xiang, X. Chi, H. Zheng, W. Chen, R. Xu, A. Ariando, A. Rusydi, A. M. Minor, M. B. H. Breese, M. Sherburne, M. Asta, Q.-H. Xu, and T. Venkatesan, “Electron transport and visible light absorption in a plasmonic photocatalyst based on strontium niobate,” Nat. Commun. 8, 15070 (2017).
[Crossref]

Asta, M.

D. Y. Wan, Y. L. Zhao, Y. Cai, T. C. Asmara, Z. Huang, J. Q. Chen, J. Hong, S. M. Yin, C. T. Nelson, M. R. Motapothula, B. X. Yan, D. Xiang, X. Chi, H. Zheng, W. Chen, R. Xu, A. Ariando, A. Rusydi, A. M. Minor, M. B. H. Breese, M. Sherburne, M. Asta, Q.-H. Xu, and T. Venkatesan, “Electron transport and visible light absorption in a plasmonic photocatalyst based on strontium niobate,” Nat. Commun. 8, 15070 (2017).
[Crossref]

Bell, R. J.

Bell, R. R.

Bell, S. E.

Bermel, P.

Y. Nam, Y. X. Yeng, A. Lenert, P. Bermel, I. Celanovic, M. Soljačić, and E. N. Wang, “Solar thermophotovoltaic energy conversion systems with two-dimensional tantalum photonic crystal absorbers and emitters,” Sol. Energy Mater. Sol. Cells 122, 287–296 (2014).
[Crossref]

Boltasseva, A.

H. Reddy, U. Guler, K. Chaudhuri, A. Dutta, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Temperature-dependent optical properties of single crystalline and polycrystalline silver thin films,” ACS Photonics 4(5), 1083–1091 (2017).
[Crossref]

H. Reddy, U. Guler, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Temperature dependent optical properties of gold thin films,” Opt. Mater. Express 6(9), 2776–2802 (2016).
[Crossref]

U. Guler, V. M. Shalaev, and A. Boltasseva, “Nanoparticle plasmonics: going practical with transition metal nitrides,” Mater. Today 18(4), 227–237 (2015).
[Crossref]

A. Boltasseva, “Empowering plasmonics and metamaterials technology with new material platforms,” MRS Bull. 39(5), 461–468 (2014).
[Crossref]

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2(4), 478–489 (2012).
[Crossref]

Bozhevolnyi, S. I.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

Braic, L.

L. Braic, N. Vasilantonakis, A. Mihai, I. J. Villar Garcia, S. Fearn, B. Zou, N. McN. Alford, B. Doiron, R. F. Oulton, S. A. Maier, A. V. Zayats, and P. K. Petrov, “Titanium Oxynitride Thin Films with Tunable Double Epsilon-Near-Zero Behavior for Nanophotonic Applications,” ACS Appl. Mater. Interfaces 9(35), 29857–29862 (2017).
[Crossref] [PubMed]

L. Braic, N. Vasilantonakis, B. Zou, S. A. Maier, N. M. Alford, A. V. Zayats, and P. K. Petrov, “Optimizing strontium ruthenate thin films for near-infrared plasmonic applications,” Sci. Rep. 5(1), 9118 (2015).
[Crossref] [PubMed]

Breese, M. B. H.

D. Y. Wan, Y. L. Zhao, Y. Cai, T. C. Asmara, Z. Huang, J. Q. Chen, J. Hong, S. M. Yin, C. T. Nelson, M. R. Motapothula, B. X. Yan, D. Xiang, X. Chi, H. Zheng, W. Chen, R. Xu, A. Ariando, A. Rusydi, A. M. Minor, M. B. H. Breese, M. Sherburne, M. Asta, Q.-H. Xu, and T. Venkatesan, “Electron transport and visible light absorption in a plasmonic photocatalyst based on strontium niobate,” Nat. Commun. 8, 15070 (2017).
[Crossref]

Briggs, J. A.

J. A. Briggs, G. V. Naik, Y. Zhao, T. A. Petach, K. Sahasrabuddhe, D. Goldhaber-Gordon, N. A. Melosh, and J. A. Dionne, “Temperature dependent optical properties of titanium nitride,” Appl. Phys. Lett. 110(10), 101901 (2017).
[Crossref]

Cai, Y.

D. Y. Wan, Y. L. Zhao, Y. Cai, T. C. Asmara, Z. Huang, J. Q. Chen, J. Hong, S. M. Yin, C. T. Nelson, M. R. Motapothula, B. X. Yan, D. Xiang, X. Chi, H. Zheng, W. Chen, R. Xu, A. Ariando, A. Rusydi, A. M. Minor, M. B. H. Breese, M. Sherburne, M. Asta, Q.-H. Xu, and T. Venkatesan, “Electron transport and visible light absorption in a plasmonic photocatalyst based on strontium niobate,” Nat. Commun. 8, 15070 (2017).
[Crossref]

Celanovic, I.

Y. Nam, Y. X. Yeng, A. Lenert, P. Bermel, I. Celanovic, M. Soljačić, and E. N. Wang, “Solar thermophotovoltaic energy conversion systems with two-dimensional tantalum photonic crystal absorbers and emitters,” Sol. Energy Mater. Sol. Cells 122, 287–296 (2014).
[Crossref]

Chandra, S.

S. T. Sundari, S. Chandra, and A. K. Tyagi, “Temperature dependent optical properties of silver from spectroscopic ellip-sometry and density functional theory calculations,” J. Appl. Phys. 114(3), 033515 (2013).
[Crossref]

Chaudhuri, K.

H. Reddy, U. Guler, K. Chaudhuri, A. Dutta, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Temperature-dependent optical properties of single crystalline and polycrystalline silver thin films,” ACS Photonics 4(5), 1083–1091 (2017).
[Crossref]

Chen, J. Q.

D. Y. Wan, Y. L. Zhao, Y. Cai, T. C. Asmara, Z. Huang, J. Q. Chen, J. Hong, S. M. Yin, C. T. Nelson, M. R. Motapothula, B. X. Yan, D. Xiang, X. Chi, H. Zheng, W. Chen, R. Xu, A. Ariando, A. Rusydi, A. M. Minor, M. B. H. Breese, M. Sherburne, M. Asta, Q.-H. Xu, and T. Venkatesan, “Electron transport and visible light absorption in a plasmonic photocatalyst based on strontium niobate,” Nat. Commun. 8, 15070 (2017).
[Crossref]

Chen, W.

D. Y. Wan, Y. L. Zhao, Y. Cai, T. C. Asmara, Z. Huang, J. Q. Chen, J. Hong, S. M. Yin, C. T. Nelson, M. R. Motapothula, B. X. Yan, D. Xiang, X. Chi, H. Zheng, W. Chen, R. Xu, A. Ariando, A. Rusydi, A. M. Minor, M. B. H. Breese, M. Sherburne, M. Asta, Q.-H. Xu, and T. Venkatesan, “Electron transport and visible light absorption in a plasmonic photocatalyst based on strontium niobate,” Nat. Commun. 8, 15070 (2017).
[Crossref]

Chi, X.

D. Y. Wan, Y. L. Zhao, Y. Cai, T. C. Asmara, Z. Huang, J. Q. Chen, J. Hong, S. M. Yin, C. T. Nelson, M. R. Motapothula, B. X. Yan, D. Xiang, X. Chi, H. Zheng, W. Chen, R. Xu, A. Ariando, A. Rusydi, A. M. Minor, M. B. H. Breese, M. Sherburne, M. Asta, Q.-H. Xu, and T. Venkatesan, “Electron transport and visible light absorption in a plasmonic photocatalyst based on strontium niobate,” Nat. Commun. 8, 15070 (2017).
[Crossref]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of transition metals: Ti, v, cr, mn, fe, co, ni, and pd,” Phys. Rev. B 9(12), 5056–5070 (1974).
[Crossref]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Cohen, L. F.

M. P. Wells, B. Zou, B. G. Doiron, R. Kilmurray, A. P. Mihai, R. F. M. Oulton, P. Gubeljak, K. L. Ormandy, G. Mallia, N. M. Harrison, L. F. Cohen, S. A. Maier, N. McN. Alford, and P. K. Petrov, “Tunable, low optical loss strontium molybdate thin films for plasmonic applications,” Adv. Opt. Mater. 5(22), 1700622 (2017).
[Crossref]

Dewalt, C. J.

Dionne, J. A.

J. A. Briggs, G. V. Naik, Y. Zhao, T. A. Petach, K. Sahasrabuddhe, D. Goldhaber-Gordon, N. A. Melosh, and J. A. Dionne, “Temperature dependent optical properties of titanium nitride,” Appl. Phys. Lett. 110(10), 101901 (2017).
[Crossref]

Doiron, B.

L. Braic, N. Vasilantonakis, A. Mihai, I. J. Villar Garcia, S. Fearn, B. Zou, N. McN. Alford, B. Doiron, R. F. Oulton, S. A. Maier, A. V. Zayats, and P. K. Petrov, “Titanium Oxynitride Thin Films with Tunable Double Epsilon-Near-Zero Behavior for Nanophotonic Applications,” ACS Appl. Mater. Interfaces 9(35), 29857–29862 (2017).
[Crossref] [PubMed]

Doiron, B. G.

M. P. Wells, B. Zou, B. G. Doiron, R. Kilmurray, A. P. Mihai, R. F. M. Oulton, P. Gubeljak, K. L. Ormandy, G. Mallia, N. M. Harrison, L. F. Cohen, S. A. Maier, N. McN. Alford, and P. K. Petrov, “Tunable, low optical loss strontium molybdate thin films for plasmonic applications,” Adv. Opt. Mater. 5(22), 1700622 (2017).
[Crossref]

Dutta, A.

H. Reddy, U. Guler, K. Chaudhuri, A. Dutta, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Temperature-dependent optical properties of single crystalline and polycrystalline silver thin films,” ACS Photonics 4(5), 1083–1091 (2017).
[Crossref]

Fearn, S.

L. Braic, N. Vasilantonakis, A. Mihai, I. J. Villar Garcia, S. Fearn, B. Zou, N. McN. Alford, B. Doiron, R. F. Oulton, S. A. Maier, A. V. Zayats, and P. K. Petrov, “Titanium Oxynitride Thin Films with Tunable Double Epsilon-Near-Zero Behavior for Nanophotonic Applications,” ACS Appl. Mater. Interfaces 9(35), 29857–29862 (2017).
[Crossref] [PubMed]

Friedberg, A. L.

G. G. Paulson and A. L. Friedberg, “Coalescence and agglomeration of gold films,” Thin Solid Films 5(1), 47–52 (1970).
[Crossref]

Gage, E. C.

N. Zhou, X. Xu, A. T. Hammack, B. C. Stipe, K. Gao, W. Scholz, and E. C. Gage, “Plasmonic near-field transducer for heat-assisted magnetic recording,” Nanophotonics 3(3), 141–155 (2014).
[Crossref]

Gao, K.

N. Zhou, X. Xu, A. T. Hammack, B. C. Stipe, K. Gao, W. Scholz, and E. C. Gage, “Plasmonic near-field transducer for heat-assisted magnetic recording,” Nanophotonics 3(3), 141–155 (2014).
[Crossref]

Giessen, H.

G. Albrecht, S. Kaiser, H. Giessen, and M. Hentschel, “Refractory Plasmonics without Refractory Materials,” Nano Lett. 17(10), 6402–6408 (2017).
[Crossref] [PubMed]

Goldhaber-Gordon, D.

J. A. Briggs, G. V. Naik, Y. Zhao, T. A. Petach, K. Sahasrabuddhe, D. Goldhaber-Gordon, N. A. Melosh, and J. A. Dionne, “Temperature dependent optical properties of titanium nitride,” Appl. Phys. Lett. 110(10), 101901 (2017).
[Crossref]

Gramotnev, D. K.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

Green, M. A.

S. Pillai and M. A. Green, “Plasmonics for photovoltaic applications,” Sol. Energy Mater. Sol. Cells 94(9), 1481–1486 (2010).
[Crossref]

Guan, J.

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

Gubeljak, P.

M. P. Wells, B. Zou, B. G. Doiron, R. Kilmurray, A. P. Mihai, R. F. M. Oulton, P. Gubeljak, K. L. Ormandy, G. Mallia, N. M. Harrison, L. F. Cohen, S. A. Maier, N. McN. Alford, and P. K. Petrov, “Tunable, low optical loss strontium molybdate thin films for plasmonic applications,” Adv. Opt. Mater. 5(22), 1700622 (2017).
[Crossref]

Guler, U.

H. Reddy, U. Guler, K. Chaudhuri, A. Dutta, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Temperature-dependent optical properties of single crystalline and polycrystalline silver thin films,” ACS Photonics 4(5), 1083–1091 (2017).
[Crossref]

H. Reddy, U. Guler, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Temperature dependent optical properties of gold thin films,” Opt. Mater. Express 6(9), 2776–2802 (2016).
[Crossref]

U. Guler, V. M. Shalaev, and A. Boltasseva, “Nanoparticle plasmonics: going practical with transition metal nitrides,” Mater. Today 18(4), 227–237 (2015).
[Crossref]

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

Hammack, A. T.

N. Zhou, X. Xu, A. T. Hammack, B. C. Stipe, K. Gao, W. Scholz, and E. C. Gage, “Plasmonic near-field transducer for heat-assisted magnetic recording,” Nanophotonics 3(3), 141–155 (2014).
[Crossref]

Harder, N. P.

N. P. Harder and P. Würfel, “Theoretical limits of thermophotovoltaic solar energy conversion,” Semicond. Sci. Technol. 18(5), S151–S157 (2003).
[Crossref]

Harrison, N. M.

M. P. Wells, B. Zou, B. G. Doiron, R. Kilmurray, A. P. Mihai, R. F. M. Oulton, P. Gubeljak, K. L. Ormandy, G. Mallia, N. M. Harrison, L. F. Cohen, S. A. Maier, N. McN. Alford, and P. K. Petrov, “Tunable, low optical loss strontium molybdate thin films for plasmonic applications,” Adv. Opt. Mater. 5(22), 1700622 (2017).
[Crossref]

Hentschel, M.

G. Albrecht, S. Kaiser, H. Giessen, and M. Hentschel, “Refractory Plasmonics without Refractory Materials,” Nano Lett. 17(10), 6402–6408 (2017).
[Crossref] [PubMed]

Hong, J.

D. Y. Wan, Y. L. Zhao, Y. Cai, T. C. Asmara, Z. Huang, J. Q. Chen, J. Hong, S. M. Yin, C. T. Nelson, M. R. Motapothula, B. X. Yan, D. Xiang, X. Chi, H. Zheng, W. Chen, R. Xu, A. Ariando, A. Rusydi, A. M. Minor, M. B. H. Breese, M. Sherburne, M. Asta, Q.-H. Xu, and T. Venkatesan, “Electron transport and visible light absorption in a plasmonic photocatalyst based on strontium niobate,” Nat. Commun. 8, 15070 (2017).
[Crossref]

Huang, Z.

D. Y. Wan, Y. L. Zhao, Y. Cai, T. C. Asmara, Z. Huang, J. Q. Chen, J. Hong, S. M. Yin, C. T. Nelson, M. R. Motapothula, B. X. Yan, D. Xiang, X. Chi, H. Zheng, W. Chen, R. Xu, A. Ariando, A. Rusydi, A. M. Minor, M. B. H. Breese, M. Sherburne, M. Asta, Q.-H. Xu, and T. Venkatesan, “Electron transport and visible light absorption in a plasmonic photocatalyst based on strontium niobate,” Nat. Commun. 8, 15070 (2017).
[Crossref]

Jacob, Z.

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of transition metals: Ti, v, cr, mn, fe, co, ni, and pd,” Phys. Rev. B 9(12), 5056–5070 (1974).
[Crossref]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Julies, B. A.

D. Adams, B. A. Julies, J. W. Mayer, and T. L. Alford, “Corrosion of titanium-nitride encapsulated silver films exposed to a H2S ambient,” Thin Solid Films 332(1–2), 235–239 (1998).
[Crossref]

Kaiser, S.

G. Albrecht, S. Kaiser, H. Giessen, and M. Hentschel, “Refractory Plasmonics without Refractory Materials,” Nano Lett. 17(10), 6402–6408 (2017).
[Crossref] [PubMed]

Kalfagiannis, N.

P. Patsalas, N. Kalfagiannis, and S. Kassavetis, “Optical properties and plasmonic performance of titanium nitride,” Materials (Basel) 8(6), 3128–3154 (2015).
[Crossref]

Kassavetis, S.

P. Patsalas, N. Kalfagiannis, and S. Kassavetis, “Optical properties and plasmonic performance of titanium nitride,” Materials (Basel) 8(6), 3128–3154 (2015).
[Crossref]

Kildishev, A. V.

H. Reddy, U. Guler, K. Chaudhuri, A. Dutta, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Temperature-dependent optical properties of single crystalline and polycrystalline silver thin films,” ACS Photonics 4(5), 1083–1091 (2017).
[Crossref]

H. Reddy, U. Guler, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Temperature dependent optical properties of gold thin films,” Opt. Mater. Express 6(9), 2776–2802 (2016).
[Crossref]

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2(4), 478–489 (2012).
[Crossref]

Kilmurray, R.

M. P. Wells, B. Zou, B. G. Doiron, R. Kilmurray, A. P. Mihai, R. F. M. Oulton, P. Gubeljak, K. L. Ormandy, G. Mallia, N. M. Harrison, L. F. Cohen, S. A. Maier, N. McN. Alford, and P. K. Petrov, “Tunable, low optical loss strontium molybdate thin films for plasmonic applications,” Adv. Opt. Mater. 5(22), 1700622 (2017).
[Crossref]

Kim, H. C.

H. C. Kim, T. L. Alford, and D. R. Allee, “Thickness dependence on the thermal stability of silver thin films,” Appl. Phys. Lett. 81(22), 4287–4289 (2002).
[Crossref]

Kinsey, N.

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

Krasavin, A. V.

A. V. Krasavin and A. V. Zayats, “Active Nanophotonic Circuitry Based on Dielectric‐loaded Plasmonic Waveguides,” Adv. Opt. Mat. 3(12), 1662–1690 (2015).
[Crossref]

Lenert, A.

Y. Nam, Y. X. Yeng, A. Lenert, P. Bermel, I. Celanovic, M. Soljačić, and E. N. Wang, “Solar thermophotovoltaic energy conversion systems with two-dimensional tantalum photonic crystal absorbers and emitters,” Sol. Energy Mater. Sol. Cells 122, 287–296 (2014).
[Crossref]

Li, W.

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

Long, L. L.

MacDonald, K. F.

K. F. MacDonald and N. I. Zheludev, “Active plasmonics: current status,” Laser Photonics Rev. 4(4), 562–567 (2010).
[Crossref]

Maier, S. A.

M. P. Wells, B. Zou, B. G. Doiron, R. Kilmurray, A. P. Mihai, R. F. M. Oulton, P. Gubeljak, K. L. Ormandy, G. Mallia, N. M. Harrison, L. F. Cohen, S. A. Maier, N. McN. Alford, and P. K. Petrov, “Tunable, low optical loss strontium molybdate thin films for plasmonic applications,” Adv. Opt. Mater. 5(22), 1700622 (2017).
[Crossref]

L. Braic, N. Vasilantonakis, A. Mihai, I. J. Villar Garcia, S. Fearn, B. Zou, N. McN. Alford, B. Doiron, R. F. Oulton, S. A. Maier, A. V. Zayats, and P. K. Petrov, “Titanium Oxynitride Thin Films with Tunable Double Epsilon-Near-Zero Behavior for Nanophotonic Applications,” ACS Appl. Mater. Interfaces 9(35), 29857–29862 (2017).
[Crossref] [PubMed]

L. Braic, N. Vasilantonakis, B. Zou, S. A. Maier, N. M. Alford, A. V. Zayats, and P. K. Petrov, “Optimizing strontium ruthenate thin films for near-infrared plasmonic applications,” Sci. Rep. 5(1), 9118 (2015).
[Crossref] [PubMed]

Mallia, G.

M. P. Wells, B. Zou, B. G. Doiron, R. Kilmurray, A. P. Mihai, R. F. M. Oulton, P. Gubeljak, K. L. Ormandy, G. Mallia, N. M. Harrison, L. F. Cohen, S. A. Maier, N. McN. Alford, and P. K. Petrov, “Tunable, low optical loss strontium molybdate thin films for plasmonic applications,” Adv. Opt. Mater. 5(22), 1700622 (2017).
[Crossref]

Mayer, J. W.

D. Adams, B. A. Julies, J. W. Mayer, and T. L. Alford, “Corrosion of titanium-nitride encapsulated silver films exposed to a H2S ambient,” Thin Solid Films 332(1–2), 235–239 (1998).
[Crossref]

Melosh, N. A.

J. A. Briggs, G. V. Naik, Y. Zhao, T. A. Petach, K. Sahasrabuddhe, D. Goldhaber-Gordon, N. A. Melosh, and J. A. Dionne, “Temperature dependent optical properties of titanium nitride,” Appl. Phys. Lett. 110(10), 101901 (2017).
[Crossref]

Mihai, A.

L. Braic, N. Vasilantonakis, A. Mihai, I. J. Villar Garcia, S. Fearn, B. Zou, N. McN. Alford, B. Doiron, R. F. Oulton, S. A. Maier, A. V. Zayats, and P. K. Petrov, “Titanium Oxynitride Thin Films with Tunable Double Epsilon-Near-Zero Behavior for Nanophotonic Applications,” ACS Appl. Mater. Interfaces 9(35), 29857–29862 (2017).
[Crossref] [PubMed]

Mihai, A. P.

M. P. Wells, B. Zou, B. G. Doiron, R. Kilmurray, A. P. Mihai, R. F. M. Oulton, P. Gubeljak, K. L. Ormandy, G. Mallia, N. M. Harrison, L. F. Cohen, S. A. Maier, N. McN. Alford, and P. K. Petrov, “Tunable, low optical loss strontium molybdate thin films for plasmonic applications,” Adv. Opt. Mater. 5(22), 1700622 (2017).
[Crossref]

Minor, A. M.

D. Y. Wan, Y. L. Zhao, Y. Cai, T. C. Asmara, Z. Huang, J. Q. Chen, J. Hong, S. M. Yin, C. T. Nelson, M. R. Motapothula, B. X. Yan, D. Xiang, X. Chi, H. Zheng, W. Chen, R. Xu, A. Ariando, A. Rusydi, A. M. Minor, M. B. H. Breese, M. Sherburne, M. Asta, Q.-H. Xu, and T. Venkatesan, “Electron transport and visible light absorption in a plasmonic photocatalyst based on strontium niobate,” Nat. Commun. 8, 15070 (2017).
[Crossref]

Molesky, S.

Motapothula, M. R.

D. Y. Wan, Y. L. Zhao, Y. Cai, T. C. Asmara, Z. Huang, J. Q. Chen, J. Hong, S. M. Yin, C. T. Nelson, M. R. Motapothula, B. X. Yan, D. Xiang, X. Chi, H. Zheng, W. Chen, R. Xu, A. Ariando, A. Rusydi, A. M. Minor, M. B. H. Breese, M. Sherburne, M. Asta, Q.-H. Xu, and T. Venkatesan, “Electron transport and visible light absorption in a plasmonic photocatalyst based on strontium niobate,” Nat. Commun. 8, 15070 (2017).
[Crossref]

Naik, G. V.

J. A. Briggs, G. V. Naik, Y. Zhao, T. A. Petach, K. Sahasrabuddhe, D. Goldhaber-Gordon, N. A. Melosh, and J. A. Dionne, “Temperature dependent optical properties of titanium nitride,” Appl. Phys. Lett. 110(10), 101901 (2017).
[Crossref]

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2(4), 478–489 (2012).
[Crossref]

Nam, Y.

Y. Nam, Y. X. Yeng, A. Lenert, P. Bermel, I. Celanovic, M. Soljačić, and E. N. Wang, “Solar thermophotovoltaic energy conversion systems with two-dimensional tantalum photonic crystal absorbers and emitters,” Sol. Energy Mater. Sol. Cells 122, 287–296 (2014).
[Crossref]

Nelson, C. T.

D. Y. Wan, Y. L. Zhao, Y. Cai, T. C. Asmara, Z. Huang, J. Q. Chen, J. Hong, S. M. Yin, C. T. Nelson, M. R. Motapothula, B. X. Yan, D. Xiang, X. Chi, H. Zheng, W. Chen, R. Xu, A. Ariando, A. Rusydi, A. M. Minor, M. B. H. Breese, M. Sherburne, M. Asta, Q.-H. Xu, and T. Venkatesan, “Electron transport and visible light absorption in a plasmonic photocatalyst based on strontium niobate,” Nat. Commun. 8, 15070 (2017).
[Crossref]

Newquist, L. A.

Ni, X.

O’Connor, D.

D. O’Connor and A. V. Zayats, “The third plasmonic revolution,” Nat. Nanotechnol. 5(7), 482–483 (2010).
[Crossref] [PubMed]

Ordal, M. A.

Ormandy, K. L.

M. P. Wells, B. Zou, B. G. Doiron, R. Kilmurray, A. P. Mihai, R. F. M. Oulton, P. Gubeljak, K. L. Ormandy, G. Mallia, N. M. Harrison, L. F. Cohen, S. A. Maier, N. McN. Alford, and P. K. Petrov, “Tunable, low optical loss strontium molybdate thin films for plasmonic applications,” Adv. Opt. Mater. 5(22), 1700622 (2017).
[Crossref]

Oulton, R. F.

L. Braic, N. Vasilantonakis, A. Mihai, I. J. Villar Garcia, S. Fearn, B. Zou, N. McN. Alford, B. Doiron, R. F. Oulton, S. A. Maier, A. V. Zayats, and P. K. Petrov, “Titanium Oxynitride Thin Films with Tunable Double Epsilon-Near-Zero Behavior for Nanophotonic Applications,” ACS Appl. Mater. Interfaces 9(35), 29857–29862 (2017).
[Crossref] [PubMed]

Oulton, R. F. M.

M. P. Wells, B. Zou, B. G. Doiron, R. Kilmurray, A. P. Mihai, R. F. M. Oulton, P. Gubeljak, K. L. Ormandy, G. Mallia, N. M. Harrison, L. F. Cohen, S. A. Maier, N. McN. Alford, and P. K. Petrov, “Tunable, low optical loss strontium molybdate thin films for plasmonic applications,” Adv. Opt. Mater. 5(22), 1700622 (2017).
[Crossref]

Patsalas, P.

P. Patsalas, N. Kalfagiannis, and S. Kassavetis, “Optical properties and plasmonic performance of titanium nitride,” Materials (Basel) 8(6), 3128–3154 (2015).
[Crossref]

Paulson, G. G.

G. G. Paulson and A. L. Friedberg, “Coalescence and agglomeration of gold films,” Thin Solid Films 5(1), 47–52 (1970).
[Crossref]

Petach, T. A.

J. A. Briggs, G. V. Naik, Y. Zhao, T. A. Petach, K. Sahasrabuddhe, D. Goldhaber-Gordon, N. A. Melosh, and J. A. Dionne, “Temperature dependent optical properties of titanium nitride,” Appl. Phys. Lett. 110(10), 101901 (2017).
[Crossref]

Petrov, P. K.

M. P. Wells, B. Zou, B. G. Doiron, R. Kilmurray, A. P. Mihai, R. F. M. Oulton, P. Gubeljak, K. L. Ormandy, G. Mallia, N. M. Harrison, L. F. Cohen, S. A. Maier, N. McN. Alford, and P. K. Petrov, “Tunable, low optical loss strontium molybdate thin films for plasmonic applications,” Adv. Opt. Mater. 5(22), 1700622 (2017).
[Crossref]

L. Braic, N. Vasilantonakis, A. Mihai, I. J. Villar Garcia, S. Fearn, B. Zou, N. McN. Alford, B. Doiron, R. F. Oulton, S. A. Maier, A. V. Zayats, and P. K. Petrov, “Titanium Oxynitride Thin Films with Tunable Double Epsilon-Near-Zero Behavior for Nanophotonic Applications,” ACS Appl. Mater. Interfaces 9(35), 29857–29862 (2017).
[Crossref] [PubMed]

L. Braic, N. Vasilantonakis, B. Zou, S. A. Maier, N. M. Alford, A. V. Zayats, and P. K. Petrov, “Optimizing strontium ruthenate thin films for near-infrared plasmonic applications,” Sci. Rep. 5(1), 9118 (2015).
[Crossref] [PubMed]

Pillai, S.

S. Pillai and M. A. Green, “Plasmonics for photovoltaic applications,” Sol. Energy Mater. Sol. Cells 94(9), 1481–1486 (2010).
[Crossref]

Querry, M. R.

Reddy, H.

H. Reddy, U. Guler, K. Chaudhuri, A. Dutta, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Temperature-dependent optical properties of single crystalline and polycrystalline silver thin films,” ACS Photonics 4(5), 1083–1091 (2017).
[Crossref]

H. Reddy, U. Guler, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Temperature dependent optical properties of gold thin films,” Opt. Mater. Express 6(9), 2776–2802 (2016).
[Crossref]

Rusydi, A.

D. Y. Wan, Y. L. Zhao, Y. Cai, T. C. Asmara, Z. Huang, J. Q. Chen, J. Hong, S. M. Yin, C. T. Nelson, M. R. Motapothula, B. X. Yan, D. Xiang, X. Chi, H. Zheng, W. Chen, R. Xu, A. Ariando, A. Rusydi, A. M. Minor, M. B. H. Breese, M. Sherburne, M. Asta, Q.-H. Xu, and T. Venkatesan, “Electron transport and visible light absorption in a plasmonic photocatalyst based on strontium niobate,” Nat. Commun. 8, 15070 (2017).
[Crossref]

Sahasrabuddhe, K.

J. A. Briggs, G. V. Naik, Y. Zhao, T. A. Petach, K. Sahasrabuddhe, D. Goldhaber-Gordon, N. A. Melosh, and J. A. Dionne, “Temperature dependent optical properties of titanium nitride,” Appl. Phys. Lett. 110(10), 101901 (2017).
[Crossref]

Sands, T. D.

Scholz, W.

N. Zhou, X. Xu, A. T. Hammack, B. C. Stipe, K. Gao, W. Scholz, and E. C. Gage, “Plasmonic near-field transducer for heat-assisted magnetic recording,” Nanophotonics 3(3), 141–155 (2014).
[Crossref]

Schroeder, J. L.

Shalaev, V. M.

H. Reddy, U. Guler, K. Chaudhuri, A. Dutta, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Temperature-dependent optical properties of single crystalline and polycrystalline silver thin films,” ACS Photonics 4(5), 1083–1091 (2017).
[Crossref]

H. Reddy, U. Guler, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Temperature dependent optical properties of gold thin films,” Opt. Mater. Express 6(9), 2776–2802 (2016).
[Crossref]

U. Guler, V. M. Shalaev, and A. Boltasseva, “Nanoparticle plasmonics: going practical with transition metal nitrides,” Mater. Today 18(4), 227–237 (2015).
[Crossref]

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

Sherburne, M.

D. Y. Wan, Y. L. Zhao, Y. Cai, T. C. Asmara, Z. Huang, J. Q. Chen, J. Hong, S. M. Yin, C. T. Nelson, M. R. Motapothula, B. X. Yan, D. Xiang, X. Chi, H. Zheng, W. Chen, R. Xu, A. Ariando, A. Rusydi, A. M. Minor, M. B. H. Breese, M. Sherburne, M. Asta, Q.-H. Xu, and T. Venkatesan, “Electron transport and visible light absorption in a plasmonic photocatalyst based on strontium niobate,” Nat. Commun. 8, 15070 (2017).
[Crossref]

Soljacic, M.

Y. Nam, Y. X. Yeng, A. Lenert, P. Bermel, I. Celanovic, M. Soljačić, and E. N. Wang, “Solar thermophotovoltaic energy conversion systems with two-dimensional tantalum photonic crystal absorbers and emitters,” Sol. Energy Mater. Sol. Cells 122, 287–296 (2014).
[Crossref]

Stipe, B. C.

N. Zhou, X. Xu, A. T. Hammack, B. C. Stipe, K. Gao, W. Scholz, and E. C. Gage, “Plasmonic near-field transducer for heat-assisted magnetic recording,” Nanophotonics 3(3), 141–155 (2014).
[Crossref]

Sundari, S. T.

S. T. Sundari, S. Chandra, and A. K. Tyagi, “Temperature dependent optical properties of silver from spectroscopic ellip-sometry and density functional theory calculations,” J. Appl. Phys. 114(3), 033515 (2013).
[Crossref]

Tompkins, H. G.

H. G. Tompkins, “The initial stages of the oxidation of titanium nitride,” J. Appl. Phys. 71(2), 980–983 (1992).
[Crossref]

Tyagi, A. K.

S. T. Sundari, S. Chandra, and A. K. Tyagi, “Temperature dependent optical properties of silver from spectroscopic ellip-sometry and density functional theory calculations,” J. Appl. Phys. 114(3), 033515 (2013).
[Crossref]

Vasilantonakis, N.

L. Braic, N. Vasilantonakis, A. Mihai, I. J. Villar Garcia, S. Fearn, B. Zou, N. McN. Alford, B. Doiron, R. F. Oulton, S. A. Maier, A. V. Zayats, and P. K. Petrov, “Titanium Oxynitride Thin Films with Tunable Double Epsilon-Near-Zero Behavior for Nanophotonic Applications,” ACS Appl. Mater. Interfaces 9(35), 29857–29862 (2017).
[Crossref] [PubMed]

L. Braic, N. Vasilantonakis, B. Zou, S. A. Maier, N. M. Alford, A. V. Zayats, and P. K. Petrov, “Optimizing strontium ruthenate thin films for near-infrared plasmonic applications,” Sci. Rep. 5(1), 9118 (2015).
[Crossref] [PubMed]

Venkatesan, T.

D. Y. Wan, Y. L. Zhao, Y. Cai, T. C. Asmara, Z. Huang, J. Q. Chen, J. Hong, S. M. Yin, C. T. Nelson, M. R. Motapothula, B. X. Yan, D. Xiang, X. Chi, H. Zheng, W. Chen, R. Xu, A. Ariando, A. Rusydi, A. M. Minor, M. B. H. Breese, M. Sherburne, M. Asta, Q.-H. Xu, and T. Venkatesan, “Electron transport and visible light absorption in a plasmonic photocatalyst based on strontium niobate,” Nat. Commun. 8, 15070 (2017).
[Crossref]

Villar Garcia, I. J.

L. Braic, N. Vasilantonakis, A. Mihai, I. J. Villar Garcia, S. Fearn, B. Zou, N. McN. Alford, B. Doiron, R. F. Oulton, S. A. Maier, A. V. Zayats, and P. K. Petrov, “Titanium Oxynitride Thin Films with Tunable Double Epsilon-Near-Zero Behavior for Nanophotonic Applications,” ACS Appl. Mater. Interfaces 9(35), 29857–29862 (2017).
[Crossref] [PubMed]

Wan, D. Y.

D. Y. Wan, Y. L. Zhao, Y. Cai, T. C. Asmara, Z. Huang, J. Q. Chen, J. Hong, S. M. Yin, C. T. Nelson, M. R. Motapothula, B. X. Yan, D. Xiang, X. Chi, H. Zheng, W. Chen, R. Xu, A. Ariando, A. Rusydi, A. M. Minor, M. B. H. Breese, M. Sherburne, M. Asta, Q.-H. Xu, and T. Venkatesan, “Electron transport and visible light absorption in a plasmonic photocatalyst based on strontium niobate,” Nat. Commun. 8, 15070 (2017).
[Crossref]

Wang, E. N.

Y. Nam, Y. X. Yeng, A. Lenert, P. Bermel, I. Celanovic, M. Soljačić, and E. N. Wang, “Solar thermophotovoltaic energy conversion systems with two-dimensional tantalum photonic crystal absorbers and emitters,” Sol. Energy Mater. Sol. Cells 122, 287–296 (2014).
[Crossref]

Ward, C. A.

Wells, M. P.

M. P. Wells, B. Zou, B. G. Doiron, R. Kilmurray, A. P. Mihai, R. F. M. Oulton, P. Gubeljak, K. L. Ormandy, G. Mallia, N. M. Harrison, L. F. Cohen, S. A. Maier, N. McN. Alford, and P. K. Petrov, “Tunable, low optical loss strontium molybdate thin films for plasmonic applications,” Adv. Opt. Mater. 5(22), 1700622 (2017).
[Crossref]

Würfel, P.

N. P. Harder and P. Würfel, “Theoretical limits of thermophotovoltaic solar energy conversion,” Semicond. Sci. Technol. 18(5), S151–S157 (2003).
[Crossref]

Xiang, D.

D. Y. Wan, Y. L. Zhao, Y. Cai, T. C. Asmara, Z. Huang, J. Q. Chen, J. Hong, S. M. Yin, C. T. Nelson, M. R. Motapothula, B. X. Yan, D. Xiang, X. Chi, H. Zheng, W. Chen, R. Xu, A. Ariando, A. Rusydi, A. M. Minor, M. B. H. Breese, M. Sherburne, M. Asta, Q.-H. Xu, and T. Venkatesan, “Electron transport and visible light absorption in a plasmonic photocatalyst based on strontium niobate,” Nat. Commun. 8, 15070 (2017).
[Crossref]

Xu, Q.-H.

D. Y. Wan, Y. L. Zhao, Y. Cai, T. C. Asmara, Z. Huang, J. Q. Chen, J. Hong, S. M. Yin, C. T. Nelson, M. R. Motapothula, B. X. Yan, D. Xiang, X. Chi, H. Zheng, W. Chen, R. Xu, A. Ariando, A. Rusydi, A. M. Minor, M. B. H. Breese, M. Sherburne, M. Asta, Q.-H. Xu, and T. Venkatesan, “Electron transport and visible light absorption in a plasmonic photocatalyst based on strontium niobate,” Nat. Commun. 8, 15070 (2017).
[Crossref]

Xu, R.

D. Y. Wan, Y. L. Zhao, Y. Cai, T. C. Asmara, Z. Huang, J. Q. Chen, J. Hong, S. M. Yin, C. T. Nelson, M. R. Motapothula, B. X. Yan, D. Xiang, X. Chi, H. Zheng, W. Chen, R. Xu, A. Ariando, A. Rusydi, A. M. Minor, M. B. H. Breese, M. Sherburne, M. Asta, Q.-H. Xu, and T. Venkatesan, “Electron transport and visible light absorption in a plasmonic photocatalyst based on strontium niobate,” Nat. Commun. 8, 15070 (2017).
[Crossref]

Xu, X.

N. Zhou, X. Xu, A. T. Hammack, B. C. Stipe, K. Gao, W. Scholz, and E. C. Gage, “Plasmonic near-field transducer for heat-assisted magnetic recording,” Nanophotonics 3(3), 141–155 (2014).
[Crossref]

Yan, B. X.

D. Y. Wan, Y. L. Zhao, Y. Cai, T. C. Asmara, Z. Huang, J. Q. Chen, J. Hong, S. M. Yin, C. T. Nelson, M. R. Motapothula, B. X. Yan, D. Xiang, X. Chi, H. Zheng, W. Chen, R. Xu, A. Ariando, A. Rusydi, A. M. Minor, M. B. H. Breese, M. Sherburne, M. Asta, Q.-H. Xu, and T. Venkatesan, “Electron transport and visible light absorption in a plasmonic photocatalyst based on strontium niobate,” Nat. Commun. 8, 15070 (2017).
[Crossref]

Yeng, Y. X.

Y. Nam, Y. X. Yeng, A. Lenert, P. Bermel, I. Celanovic, M. Soljačić, and E. N. Wang, “Solar thermophotovoltaic energy conversion systems with two-dimensional tantalum photonic crystal absorbers and emitters,” Sol. Energy Mater. Sol. Cells 122, 287–296 (2014).
[Crossref]

Yin, S. M.

D. Y. Wan, Y. L. Zhao, Y. Cai, T. C. Asmara, Z. Huang, J. Q. Chen, J. Hong, S. M. Yin, C. T. Nelson, M. R. Motapothula, B. X. Yan, D. Xiang, X. Chi, H. Zheng, W. Chen, R. Xu, A. Ariando, A. Rusydi, A. M. Minor, M. B. H. Breese, M. Sherburne, M. Asta, Q.-H. Xu, and T. Venkatesan, “Electron transport and visible light absorption in a plasmonic photocatalyst based on strontium niobate,” Nat. Commun. 8, 15070 (2017).
[Crossref]

Zayats, A. V.

L. Braic, N. Vasilantonakis, A. Mihai, I. J. Villar Garcia, S. Fearn, B. Zou, N. McN. Alford, B. Doiron, R. F. Oulton, S. A. Maier, A. V. Zayats, and P. K. Petrov, “Titanium Oxynitride Thin Films with Tunable Double Epsilon-Near-Zero Behavior for Nanophotonic Applications,” ACS Appl. Mater. Interfaces 9(35), 29857–29862 (2017).
[Crossref] [PubMed]

A. V. Krasavin and A. V. Zayats, “Active Nanophotonic Circuitry Based on Dielectric‐loaded Plasmonic Waveguides,” Adv. Opt. Mat. 3(12), 1662–1690 (2015).
[Crossref]

L. Braic, N. Vasilantonakis, B. Zou, S. A. Maier, N. M. Alford, A. V. Zayats, and P. K. Petrov, “Optimizing strontium ruthenate thin films for near-infrared plasmonic applications,” Sci. Rep. 5(1), 9118 (2015).
[Crossref] [PubMed]

D. O’Connor and A. V. Zayats, “The third plasmonic revolution,” Nat. Nanotechnol. 5(7), 482–483 (2010).
[Crossref] [PubMed]

Zhao, Y.

J. A. Briggs, G. V. Naik, Y. Zhao, T. A. Petach, K. Sahasrabuddhe, D. Goldhaber-Gordon, N. A. Melosh, and J. A. Dionne, “Temperature dependent optical properties of titanium nitride,” Appl. Phys. Lett. 110(10), 101901 (2017).
[Crossref]

Zhao, Y. L.

D. Y. Wan, Y. L. Zhao, Y. Cai, T. C. Asmara, Z. Huang, J. Q. Chen, J. Hong, S. M. Yin, C. T. Nelson, M. R. Motapothula, B. X. Yan, D. Xiang, X. Chi, H. Zheng, W. Chen, R. Xu, A. Ariando, A. Rusydi, A. M. Minor, M. B. H. Breese, M. Sherburne, M. Asta, Q.-H. Xu, and T. Venkatesan, “Electron transport and visible light absorption in a plasmonic photocatalyst based on strontium niobate,” Nat. Commun. 8, 15070 (2017).
[Crossref]

Zheludev, N. I.

K. F. MacDonald and N. I. Zheludev, “Active plasmonics: current status,” Laser Photonics Rev. 4(4), 562–567 (2010).
[Crossref]

Zheng, H.

D. Y. Wan, Y. L. Zhao, Y. Cai, T. C. Asmara, Z. Huang, J. Q. Chen, J. Hong, S. M. Yin, C. T. Nelson, M. R. Motapothula, B. X. Yan, D. Xiang, X. Chi, H. Zheng, W. Chen, R. Xu, A. Ariando, A. Rusydi, A. M. Minor, M. B. H. Breese, M. Sherburne, M. Asta, Q.-H. Xu, and T. Venkatesan, “Electron transport and visible light absorption in a plasmonic photocatalyst based on strontium niobate,” Nat. Commun. 8, 15070 (2017).
[Crossref]

Zhou, N.

N. Zhou, X. Xu, A. T. Hammack, B. C. Stipe, K. Gao, W. Scholz, and E. C. Gage, “Plasmonic near-field transducer for heat-assisted magnetic recording,” Nanophotonics 3(3), 141–155 (2014).
[Crossref]

Zou, B.

M. P. Wells, B. Zou, B. G. Doiron, R. Kilmurray, A. P. Mihai, R. F. M. Oulton, P. Gubeljak, K. L. Ormandy, G. Mallia, N. M. Harrison, L. F. Cohen, S. A. Maier, N. McN. Alford, and P. K. Petrov, “Tunable, low optical loss strontium molybdate thin films for plasmonic applications,” Adv. Opt. Mater. 5(22), 1700622 (2017).
[Crossref]

L. Braic, N. Vasilantonakis, A. Mihai, I. J. Villar Garcia, S. Fearn, B. Zou, N. McN. Alford, B. Doiron, R. F. Oulton, S. A. Maier, A. V. Zayats, and P. K. Petrov, “Titanium Oxynitride Thin Films with Tunable Double Epsilon-Near-Zero Behavior for Nanophotonic Applications,” ACS Appl. Mater. Interfaces 9(35), 29857–29862 (2017).
[Crossref] [PubMed]

L. Braic, N. Vasilantonakis, B. Zou, S. A. Maier, N. M. Alford, A. V. Zayats, and P. K. Petrov, “Optimizing strontium ruthenate thin films for near-infrared plasmonic applications,” Sci. Rep. 5(1), 9118 (2015).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (1)

L. Braic, N. Vasilantonakis, A. Mihai, I. J. Villar Garcia, S. Fearn, B. Zou, N. McN. Alford, B. Doiron, R. F. Oulton, S. A. Maier, A. V. Zayats, and P. K. Petrov, “Titanium Oxynitride Thin Films with Tunable Double Epsilon-Near-Zero Behavior for Nanophotonic Applications,” ACS Appl. Mater. Interfaces 9(35), 29857–29862 (2017).
[Crossref] [PubMed]

ACS Photonics (1)

H. Reddy, U. Guler, K. Chaudhuri, A. Dutta, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Temperature-dependent optical properties of single crystalline and polycrystalline silver thin films,” ACS Photonics 4(5), 1083–1091 (2017).
[Crossref]

Adv. Mater. (3)

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

Adv. Opt. Mat. (1)

A. V. Krasavin and A. V. Zayats, “Active Nanophotonic Circuitry Based on Dielectric‐loaded Plasmonic Waveguides,” Adv. Opt. Mat. 3(12), 1662–1690 (2015).
[Crossref]

Adv. Opt. Mater. (1)

M. P. Wells, B. Zou, B. G. Doiron, R. Kilmurray, A. P. Mihai, R. F. M. Oulton, P. Gubeljak, K. L. Ormandy, G. Mallia, N. M. Harrison, L. F. Cohen, S. A. Maier, N. McN. Alford, and P. K. Petrov, “Tunable, low optical loss strontium molybdate thin films for plasmonic applications,” Adv. Opt. Mater. 5(22), 1700622 (2017).
[Crossref]

Appl. Opt. (3)

Appl. Phys. Lett. (2)

H. C. Kim, T. L. Alford, and D. R. Allee, “Thickness dependence on the thermal stability of silver thin films,” Appl. Phys. Lett. 81(22), 4287–4289 (2002).
[Crossref]

J. A. Briggs, G. V. Naik, Y. Zhao, T. A. Petach, K. Sahasrabuddhe, D. Goldhaber-Gordon, N. A. Melosh, and J. A. Dionne, “Temperature dependent optical properties of titanium nitride,” Appl. Phys. Lett. 110(10), 101901 (2017).
[Crossref]

J. Appl. Phys. (2)

S. T. Sundari, S. Chandra, and A. K. Tyagi, “Temperature dependent optical properties of silver from spectroscopic ellip-sometry and density functional theory calculations,” J. Appl. Phys. 114(3), 033515 (2013).
[Crossref]

H. G. Tompkins, “The initial stages of the oxidation of titanium nitride,” J. Appl. Phys. 71(2), 980–983 (1992).
[Crossref]

Laser Photonics Rev. (1)

K. F. MacDonald and N. I. Zheludev, “Active plasmonics: current status,” Laser Photonics Rev. 4(4), 562–567 (2010).
[Crossref]

Mater. Today (1)

U. Guler, V. M. Shalaev, and A. Boltasseva, “Nanoparticle plasmonics: going practical with transition metal nitrides,” Mater. Today 18(4), 227–237 (2015).
[Crossref]

Materials (Basel) (1)

P. Patsalas, N. Kalfagiannis, and S. Kassavetis, “Optical properties and plasmonic performance of titanium nitride,” Materials (Basel) 8(6), 3128–3154 (2015).
[Crossref]

MRS Bull. (1)

A. Boltasseva, “Empowering plasmonics and metamaterials technology with new material platforms,” MRS Bull. 39(5), 461–468 (2014).
[Crossref]

Nano Lett. (1)

G. Albrecht, S. Kaiser, H. Giessen, and M. Hentschel, “Refractory Plasmonics without Refractory Materials,” Nano Lett. 17(10), 6402–6408 (2017).
[Crossref] [PubMed]

Nanophotonics (1)

N. Zhou, X. Xu, A. T. Hammack, B. C. Stipe, K. Gao, W. Scholz, and E. C. Gage, “Plasmonic near-field transducer for heat-assisted magnetic recording,” Nanophotonics 3(3), 141–155 (2014).
[Crossref]

Nat. Commun. (1)

D. Y. Wan, Y. L. Zhao, Y. Cai, T. C. Asmara, Z. Huang, J. Q. Chen, J. Hong, S. M. Yin, C. T. Nelson, M. R. Motapothula, B. X. Yan, D. Xiang, X. Chi, H. Zheng, W. Chen, R. Xu, A. Ariando, A. Rusydi, A. M. Minor, M. B. H. Breese, M. Sherburne, M. Asta, Q.-H. Xu, and T. Venkatesan, “Electron transport and visible light absorption in a plasmonic photocatalyst based on strontium niobate,” Nat. Commun. 8, 15070 (2017).
[Crossref]

Nat. Nanotechnol. (1)

D. O’Connor and A. V. Zayats, “The third plasmonic revolution,” Nat. Nanotechnol. 5(7), 482–483 (2010).
[Crossref] [PubMed]

Nat. Photonics (1)

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

Opt. Express (1)

Opt. Mater. Express (2)

Phys. Rev. B (2)

P. B. Johnson and R. W. Christy, “Optical constants of transition metals: Ti, v, cr, mn, fe, co, ni, and pd,” Phys. Rev. B 9(12), 5056–5070 (1974).
[Crossref]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Sci. Rep. (1)

L. Braic, N. Vasilantonakis, B. Zou, S. A. Maier, N. M. Alford, A. V. Zayats, and P. K. Petrov, “Optimizing strontium ruthenate thin films for near-infrared plasmonic applications,” Sci. Rep. 5(1), 9118 (2015).
[Crossref] [PubMed]

Semicond. Sci. Technol. (1)

N. P. Harder and P. Würfel, “Theoretical limits of thermophotovoltaic solar energy conversion,” Semicond. Sci. Technol. 18(5), S151–S157 (2003).
[Crossref]

Sol. Energy Mater. Sol. Cells (2)

S. Pillai and M. A. Green, “Plasmonics for photovoltaic applications,” Sol. Energy Mater. Sol. Cells 94(9), 1481–1486 (2010).
[Crossref]

Y. Nam, Y. X. Yeng, A. Lenert, P. Bermel, I. Celanovic, M. Soljačić, and E. N. Wang, “Solar thermophotovoltaic energy conversion systems with two-dimensional tantalum photonic crystal absorbers and emitters,” Sol. Energy Mater. Sol. Cells 122, 287–296 (2014).
[Crossref]

Thin Solid Films (2)

G. G. Paulson and A. L. Friedberg, “Coalescence and agglomeration of gold films,” Thin Solid Films 5(1), 47–52 (1970).
[Crossref]

D. Adams, B. A. Julies, J. W. Mayer, and T. L. Alford, “Corrosion of titanium-nitride encapsulated silver films exposed to a H2S ambient,” Thin Solid Films 332(1–2), 235–239 (1998).
[Crossref]

Other (1)

M. P. Wells, B. Zou, A. P. Mihai, R. Bower, A. Regoutz, S. Fearn, S. A. Maier, N. McN. Alford, and P. K. Petrov, “Multiphase strontium molybdate thin films for plasmonic local heating applications,” https://arxiv.org/abs/1803.03131 , Date of access: 09 March 2018.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (24)

Fig. 1
Fig. 1 AFM images showing (a) Au before annealing, (b) Au after annealing at 600° C, (c) TiON before annealing, (d) TiON after annealing at 500° C, (e) W before annealing, (f) W after annealing at 500° C
Fig. 2
Fig. 2 Ellipsometry data showing real and imaginary parts of the dielectric permittivity for samples of Ag and Au after annealing at temperatures from 300 - 600° C
Fig. 3
Fig. 3 Ellipsometry data showing real and imaginary parts of the dielectric permittivity for samples of Mo, W, and Ti after annealing at temperatures from 300 - 500° C
Fig. 4
Fig. 4 Ellipsometry data showing real and imaginary parts of the dielectric permittivity for samples of TiN, TiON and SRO after annealing at temperatures from 300 - 500° C
Fig. 5
Fig. 5 Ellipsometry data showing real and imaginary parts of the dielectric permittivity for samples of SMO (from [23]), SNO and SRO after annealing at temperatures from 300 - 1000° C
Fig. 6
Fig. 6 Figure showing the proposed operating regimes for the materials under study. The temperature at which each material is found to lose metallic behavior due to annealing in air is plotted against the plasma frequencies previously reported for Au [35], Ag [35], TiN [24], SMO [21,23], SNO [22], SRO [19], W [35], Mo [35] and Ti [35].
Fig. 7
Fig. 7 XRD patterns of Mo sample as deposited on Si and after annealing at 500° C
Fig. 8
Fig. 8 XRD patterns of W sample as deposited on Si and after annealing at 500° C
Fig. 9
Fig. 9 XRD patterns of Ti sample as deposited on Si and after annealing at 500° C
Fig. 10
Fig. 10 XRD patterns of Ag sample as deposited on Si and after annealing at 300° C
Fig. 11
Fig. 11 XRD patterns of Au sample as deposited on Si and after annealing at 300° C
Fig. 12
Fig. 12 XRD patterns of Au sample as deposited on MgO and after annealing at 300° C
Fig. 13
Fig. 13 XRD patterns of TiON sample as deposited on Si and after annealing at 300° C
Fig. 14
Fig. 14 XRD patterns of TiN sample as deposited on Si and after annealing at 300° C
Fig. 15
Fig. 15 XRD patterns of SNO sample as deposited on STO and after annealing at 400° C
Fig. 16
Fig. 16 XRD patterns of SRO sample as deposited on MgO and after annealing at 1000° C
Fig. 17
Fig. 17 AFM images of Mo at (a) room temperature and (b) after annealing at 500° C
Fig. 18
Fig. 18 AFM images of W at (a) room temperature and (b) after annealing at 500° C
Fig. 19
Fig. 19 AFM images of Ti at (a) room temperature and (b) after annealing at 500° C
Fig. 20
Fig. 20 AFM images of TiON at (a) room temperature and (b) after annealing at 400° C
Fig. 21
Fig. 21 AFM images of TiN at (a) room temperature and (b) after annealing at 400° C
Fig. 22
Fig. 22 AFM images of Au at (a) room temperature and (b) after annealing at 600° C
Fig. 23
Fig. 23 AFM images of SNO at (a) room temperature and (b) after annealing at 300° C
Fig. 24
Fig. 24 AFM images of SRO after annealing at (a) 300 and (b) 1000° C

Tables (4)

Tables Icon

Table 1 Changes in surface roughness with annealing temperature (Au, Ag, TiN and TiON measured over a 10 x 10 µm2 area, Ti, Mo, W, SRO and SNO were measured over a 1 x 1µm2 area)

Tables Icon

Table 2 Changes in DC resistivity with annealing temperature

Tables Icon

Table 3 Changes in charge carrier dynamics due to annealing

Tables Icon

Table 4 Drude-Lorentz fitting parameters

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ε(ω)+iε(ω)= ε ω pu 2 ω 2 i Γ D ω + j=1 m f j ω 0j 2 ω 0j 2 ω 2 +iγω
ε(ω)+iε(ω)= ε ω p 2 ω 2 +i Γ D ω
ε(ω)1 ω p 2 Γ D 2 + ω 2
ε(ω) Γ D ω p 2 ω 3

Metrics