Abstract

In this paper, a transparent metamaterial absorber (MA) loaded with water substrate is presented, which can simultaneously achieve enhanced broadband microwave absorption and tunable infrared radiation. As a proof, the indium tin oxide (ITO) films are first introduced here as a frequency selective surface (FSS) on the top layer and reflective backplane on the ground layer. Next the distilled water combined with the polymethyl methacrylate (PMMA) substrate is employed as a hybrid substrate in the middle. Simulation and experimental measurements show that the transparent water-substrate MA can achieve broadband microwave absorption with efficiency over 90% in the frequency band of 6.4-23.7GHz, and the proposed hybrid substrate has almost no influence on its original transmittance. Moreover, owing to the available water circulation system, the infrared radiation of the proposed MA is also demonstrated to be controlled by the temperature of the injected water. Based on its multifunction and high performance, it is expected that the proposed design may find potential applications, such as glass window of stealth equipment, electromagnetic compatible buildings/facilities, etc.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Transparent and broadband absorption-diffusion-integrated low-scattering metamaterial by standing-up lattice

Yang Shen, Jieqiu Zhang, Lihao Shen, Sai Sui, Yongqiang Pang, Jiafu Wang, Hua Ma, and Shaobo Qo
Opt. Express 26(22) 28363-28375 (2018)

Multi-band terahertz absorber exploiting graphene metamaterial

Qihui Zhou, Peiguo Liu, Li-an Bian, Xin Cai, and Hanqing Liu
Opt. Mater. Express 8(9) 2928-2940 (2018)

Cylindrical-water-resonator-based ultra-broadband microwave absorber

Jian Ren and Jia Yuan Yin
Opt. Mater. Express 8(8) 2060-2071 (2018)

References

  • View by:
  • |
  • |
  • |

  1. E. F. Knott, J. F. Shaeffer, and M. T. Tuley, Radar Cross Section. 2nd ed (SciTech Publishing, Inc., 2004).
  2. H. W. Ott, Electromagnetic Compatibility Engineering (Wiley, 2009).
  3. D. D. L. Chung, “Electromagnetic interference shielding effectiveness of carbon materials,” Carbon 39(2), 279–285 (2001).
    [Crossref]
  4. X. Zhang, H. Liu, and L. Li, “Tri-band miniaturized wide-angle and polarization-insensitive metasurface for ambient energy harvesting,” Appl. Phys. Lett. 111(7), 1902–1904 (2017).
    [Crossref]
  5. T. S. Almoneef, F. Erkmen, and O. M. Ramahi, “Harvesting the energy of multi-polarized electromagnetic waves,” Sci. Rep. 7(1), 14656–14669 (2017).
    [Crossref] [PubMed]
  6. Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A. 109(7), 2280–2285 (2012).
    [Crossref] [PubMed]
  7. Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5(6), 4641–4647 (2011).
    [Crossref] [PubMed]
  8. A. K. Moridani, R. Zando, W. Xie, I. Howell, J. J. Watkins, and J. H. Lee, “Plasmonic thermal emitters for dynamically tunable infrared radiation,” Adv. Opt. Mater. 5(10), 993–998 (2017).
  9. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
    [Crossref] [PubMed]
  10. N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 5104–5109 (2008).
  11. A. Tuniz, K. J. Kaltenecker, B. M. Fischer, M. Walther, S. C. Fleming, A. Argyros, and B. T. Kuhlmey, “Metamaterial fibres for subdiffraction imaging and focusing at terahertz frequencies over optically long distances,” Nat. Commun. 4(4), 2706–2713 (2013).
    [Crossref] [PubMed]
  12. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
    [Crossref] [PubMed]
  13. Y. Yuan, C. Bingham, T. Tyler, S. Palit, T. H. Hand, W. J. Padilla, D. R. Smith, N. M. Jokerst, and S. A. Cummer, “Dual-band planar electric metamaterial in the terahertz regime,” Opt. Express 16(13), 9746–9752 (2008).
    [Crossref] [PubMed]
  14. H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D Appl. Phys. 43(22), 5102–5105 (2010).
    [Crossref]
  15. X. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. Cui, “Triple-band terahertz metamaterial absorber: design, experiment, and physical interpretation,” Appl. Phys. Lett. 101(15), 4102–4105 (2012).
    [Crossref]
  16. X. Huang, H. Yang, S. Yu, J. Wang, M. Li, and Q. Ye, “Triple-band polarization-insensitive wide-angle ultra-thin planar spiral metamaterial absorber,” J. Appl. Phys. 113(21), 3516–3520 (2013).
    [Crossref]
  17. J. W. Park, P. V. Tuong, J. Y. Rhee, K. W. Kim, W. H. Jang, E. H. Choi, L. Y. Chen, and Y. Lee, “Multi-band metamaterial absorber based on the arrangement of donut-type resonators,” Opt. Express 21(8), 9691–9702 (2013).
    [Crossref] [PubMed]
  18. Y. Z. Cheng, Z. Z. Cheng, X. S. Mao, and R. Z. Gong, “Ultra-thin multi-band polarization-insensitive microwave metamaterial absorber based on multiple-order responses using a single resonator structure,” Materials (Basel) 10(11), 1241–1252 (2017).
    [Crossref] [PubMed]
  19. L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S. N. Luo, A. J. Taylor, and H. T. Chen, “Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band,” Opt. Lett. 37(2), 154–156 (2012).
    [Crossref] [PubMed]
  20. Y. Liu, S. Gu, C. Luo, and X. Zhao, “Ultra-thin broadband metamaterial absorber,” Appl. Phys., A Mater. Sci. Process. 108(1), 19–24 (2012).
    [Crossref]
  21. F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 3506–3509 (2011).
  22. C. Long, S. Yin, W. Wang, W. Li, J. Zhu, and J. Guan, “Broadening the absorption bandwidth of metamaterial absorbers by transverse magnetic harmonics of 210 mode,” Sci. Rep. 6(1), 21431–21439 (2016).
    [Crossref] [PubMed]
  23. W. Jiang, Y. Ma, J. Yuan, G. Yin, W. Wu, and S. He, “Deformable broadband metamaterial absorbers engineered with an analytical spatial kramers-kronig permittivity profile,” Laser Photonics Rev. 11(1), 253–259 (2017).
    [Crossref]
  24. J. Yang and Z. Shen, “A thin and broadband absorber using double-square loops,” IEEE Antennas Wirel. Propag. Lett. 6(11), 388–391 (2007).
    [Crossref]
  25. D. Ye, Z. Wang, K. Xu, H. Li, J. Huangfu, Z. Wang, and L. Ran, “Ultrawideband dispersion control of a metamaterial surface for perfectly-matched-layer-like absorption,” Phys. Rev. Lett. 111(18), 187402 (2013).
    [Crossref] [PubMed]
  26. L. Zhang, P. Zhou, H. Zhang, L. Lu, G. Zhang, H. Chen, H. Lu, J. Xie, and L. Deng, “A broadband radar absorber based on perforated magnetic polymer composites embedded with FSS,” IEEE Trans. Magn. 50(5), 1–5 (2014).
    [Crossref]
  27. W. Li, T. Wu, W. Wang, P. Zhai, and J. Guan, “Broadband patterned magnetic microwave absorber,” J. Appl. Phys. 116(4), 4110–4116 (2014).
    [Crossref]
  28. W. Li, T. Wu, W. Wang, J. Guan, and P. Zhai, “Integrating non-planar metamaterials with magnetic absorbing materials to yield ultra-broadband microwave hybrid absorbers,” Appl. Phys. Lett. 104(2), 2903–2907 (2014).
    [Crossref]
  29. Y. J. Yoo, S. Ju, S. Y. Park, Y. Ju Kim, J. Bong, T. Lim, K. W. Kim, J. Y. Rhee, and Y. Lee, “Metamaterial absorber for electromagnetic waves in periodic water droplets,” Sci. Rep. 5(1), 14018–14025 (2015).
    [Crossref] [PubMed]
  30. Q. Song, W. Zhang, P. C. Wu, W. Zhu, Z. X. Shen, P. H. J. Chong, Q. X. Liang, Z. C. Yang, Y. L. Hao, H. Cai, H. F. Zhou, Y. Gu, G. Lo, D. P. Tsai, T. Bourouina, Y. Leprince-Wang, and A. Liu, “Water-resonator-based metasurface: an ultrabroadband and near-unity absorption,” Adv. Opt. Mater. 5(8), 1103–1110 (2017).
  31. X. Huang, H. L. Yang, Z. Shen, J. Chen, H. Lin, and Z. Yu, “Water-injected all-dielectric ultra-wideband and prominent oblique incidence metamaterial absorber in microwave regime,” J. Phys. D Appl. Phys. 50(38), 5304–5319 (2017).
    [Crossref]
  32. T. Jang, H. Youn, Y. J. Shin, and L. J. Guo, “Transparent and flexible polarization-independent microwave broadband absorber,” ACS Photonics 1(3), 279–284 (2014).
    [Crossref]
  33. C. Zhang, Q. Cheng, J. Yang, J. Zhao, and T. J. Cui, “Broadband metamaterial for optical transparency and microwave absorption,” Appl. Phys. Lett. 110(14), 3511–3515 (2017).
    [Crossref]
  34. D. Hu, J. Cao, W. Li, C. Zhang, T. Wu, Q. Li, Z. Chen, Y. Wang, and J. Guan, “Optically transparent broadband microwave absorption metamaterial by standing-up closed-ring resonators,” Adv. Opt. Mater. 5(13), 109–116 (2017).
    [Crossref]
  35. H. Sheokand, S. Ghosh, G. Singh, M. Saikia, K. V. Srivastava, J. Ramkumar, and S. Anantha Ramakrishna, “Transparent broadband metamaterial absorber based on resistive films,” J. Appl. Phys. 122(10), 5105–5111 (2017).
    [Crossref]
  36. M. A. Kats, R. Blanchard, S. Zhang, P. Genevet, C. Ko, S. Ramanathan, and F. Capasso, “Vanadium Dioxide as a Natural Disordered Metamaterial: Perfect Thermal Emission and Large Broadband Negative Differential Thermal Emittance,” Phys. Rev. X 3(4), 1004–1010 (2013).
    [Crossref]
  37. T. Inoue, M. D. Zoysa, T. Asano, and S. Noda, “Realization of dynamic thermal emission control,” Nat. Mater. 13(10), 928–931 (2014).
    [Crossref] [PubMed]
  38. X. Liu and W. J. Padilla, “Reconfigurable room temperature metamaterial infrared emitter,” Opticas 4(4), 430–433 (2017).
    [Crossref]

2017 (11)

W. Jiang, Y. Ma, J. Yuan, G. Yin, W. Wu, and S. He, “Deformable broadband metamaterial absorbers engineered with an analytical spatial kramers-kronig permittivity profile,” Laser Photonics Rev. 11(1), 253–259 (2017).
[Crossref]

C. Zhang, Q. Cheng, J. Yang, J. Zhao, and T. J. Cui, “Broadband metamaterial for optical transparency and microwave absorption,” Appl. Phys. Lett. 110(14), 3511–3515 (2017).
[Crossref]

D. Hu, J. Cao, W. Li, C. Zhang, T. Wu, Q. Li, Z. Chen, Y. Wang, and J. Guan, “Optically transparent broadband microwave absorption metamaterial by standing-up closed-ring resonators,” Adv. Opt. Mater. 5(13), 109–116 (2017).
[Crossref]

H. Sheokand, S. Ghosh, G. Singh, M. Saikia, K. V. Srivastava, J. Ramkumar, and S. Anantha Ramakrishna, “Transparent broadband metamaterial absorber based on resistive films,” J. Appl. Phys. 122(10), 5105–5111 (2017).
[Crossref]

Q. Song, W. Zhang, P. C. Wu, W. Zhu, Z. X. Shen, P. H. J. Chong, Q. X. Liang, Z. C. Yang, Y. L. Hao, H. Cai, H. F. Zhou, Y. Gu, G. Lo, D. P. Tsai, T. Bourouina, Y. Leprince-Wang, and A. Liu, “Water-resonator-based metasurface: an ultrabroadband and near-unity absorption,” Adv. Opt. Mater. 5(8), 1103–1110 (2017).

X. Huang, H. L. Yang, Z. Shen, J. Chen, H. Lin, and Z. Yu, “Water-injected all-dielectric ultra-wideband and prominent oblique incidence metamaterial absorber in microwave regime,” J. Phys. D Appl. Phys. 50(38), 5304–5319 (2017).
[Crossref]

X. Zhang, H. Liu, and L. Li, “Tri-band miniaturized wide-angle and polarization-insensitive metasurface for ambient energy harvesting,” Appl. Phys. Lett. 111(7), 1902–1904 (2017).
[Crossref]

T. S. Almoneef, F. Erkmen, and O. M. Ramahi, “Harvesting the energy of multi-polarized electromagnetic waves,” Sci. Rep. 7(1), 14656–14669 (2017).
[Crossref] [PubMed]

X. Liu and W. J. Padilla, “Reconfigurable room temperature metamaterial infrared emitter,” Opticas 4(4), 430–433 (2017).
[Crossref]

A. K. Moridani, R. Zando, W. Xie, I. Howell, J. J. Watkins, and J. H. Lee, “Plasmonic thermal emitters for dynamically tunable infrared radiation,” Adv. Opt. Mater. 5(10), 993–998 (2017).

Y. Z. Cheng, Z. Z. Cheng, X. S. Mao, and R. Z. Gong, “Ultra-thin multi-band polarization-insensitive microwave metamaterial absorber based on multiple-order responses using a single resonator structure,” Materials (Basel) 10(11), 1241–1252 (2017).
[Crossref] [PubMed]

2016 (1)

C. Long, S. Yin, W. Wang, W. Li, J. Zhu, and J. Guan, “Broadening the absorption bandwidth of metamaterial absorbers by transverse magnetic harmonics of 210 mode,” Sci. Rep. 6(1), 21431–21439 (2016).
[Crossref] [PubMed]

2015 (1)

Y. J. Yoo, S. Ju, S. Y. Park, Y. Ju Kim, J. Bong, T. Lim, K. W. Kim, J. Y. Rhee, and Y. Lee, “Metamaterial absorber for electromagnetic waves in periodic water droplets,” Sci. Rep. 5(1), 14018–14025 (2015).
[Crossref] [PubMed]

2014 (5)

T. Inoue, M. D. Zoysa, T. Asano, and S. Noda, “Realization of dynamic thermal emission control,” Nat. Mater. 13(10), 928–931 (2014).
[Crossref] [PubMed]

T. Jang, H. Youn, Y. J. Shin, and L. J. Guo, “Transparent and flexible polarization-independent microwave broadband absorber,” ACS Photonics 1(3), 279–284 (2014).
[Crossref]

L. Zhang, P. Zhou, H. Zhang, L. Lu, G. Zhang, H. Chen, H. Lu, J. Xie, and L. Deng, “A broadband radar absorber based on perforated magnetic polymer composites embedded with FSS,” IEEE Trans. Magn. 50(5), 1–5 (2014).
[Crossref]

W. Li, T. Wu, W. Wang, P. Zhai, and J. Guan, “Broadband patterned magnetic microwave absorber,” J. Appl. Phys. 116(4), 4110–4116 (2014).
[Crossref]

W. Li, T. Wu, W. Wang, J. Guan, and P. Zhai, “Integrating non-planar metamaterials with magnetic absorbing materials to yield ultra-broadband microwave hybrid absorbers,” Appl. Phys. Lett. 104(2), 2903–2907 (2014).
[Crossref]

2013 (5)

D. Ye, Z. Wang, K. Xu, H. Li, J. Huangfu, Z. Wang, and L. Ran, “Ultrawideband dispersion control of a metamaterial surface for perfectly-matched-layer-like absorption,” Phys. Rev. Lett. 111(18), 187402 (2013).
[Crossref] [PubMed]

M. A. Kats, R. Blanchard, S. Zhang, P. Genevet, C. Ko, S. Ramanathan, and F. Capasso, “Vanadium Dioxide as a Natural Disordered Metamaterial: Perfect Thermal Emission and Large Broadband Negative Differential Thermal Emittance,” Phys. Rev. X 3(4), 1004–1010 (2013).
[Crossref]

X. Huang, H. Yang, S. Yu, J. Wang, M. Li, and Q. Ye, “Triple-band polarization-insensitive wide-angle ultra-thin planar spiral metamaterial absorber,” J. Appl. Phys. 113(21), 3516–3520 (2013).
[Crossref]

A. Tuniz, K. J. Kaltenecker, B. M. Fischer, M. Walther, S. C. Fleming, A. Argyros, and B. T. Kuhlmey, “Metamaterial fibres for subdiffraction imaging and focusing at terahertz frequencies over optically long distances,” Nat. Commun. 4(4), 2706–2713 (2013).
[Crossref] [PubMed]

J. W. Park, P. V. Tuong, J. Y. Rhee, K. W. Kim, W. H. Jang, E. H. Choi, L. Y. Chen, and Y. Lee, “Multi-band metamaterial absorber based on the arrangement of donut-type resonators,” Opt. Express 21(8), 9691–9702 (2013).
[Crossref] [PubMed]

2012 (4)

L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S. N. Luo, A. J. Taylor, and H. T. Chen, “Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band,” Opt. Lett. 37(2), 154–156 (2012).
[Crossref] [PubMed]

X. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. Cui, “Triple-band terahertz metamaterial absorber: design, experiment, and physical interpretation,” Appl. Phys. Lett. 101(15), 4102–4105 (2012).
[Crossref]

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A. 109(7), 2280–2285 (2012).
[Crossref] [PubMed]

Y. Liu, S. Gu, C. Luo, and X. Zhao, “Ultra-thin broadband metamaterial absorber,” Appl. Phys., A Mater. Sci. Process. 108(1), 19–24 (2012).
[Crossref]

2011 (2)

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 3506–3509 (2011).

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5(6), 4641–4647 (2011).
[Crossref] [PubMed]

2010 (1)

H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D Appl. Phys. 43(22), 5102–5105 (2010).
[Crossref]

2008 (3)

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 5104–5109 (2008).

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Y. Yuan, C. Bingham, T. Tyler, S. Palit, T. H. Hand, W. J. Padilla, D. R. Smith, N. M. Jokerst, and S. A. Cummer, “Dual-band planar electric metamaterial in the terahertz regime,” Opt. Express 16(13), 9746–9752 (2008).
[Crossref] [PubMed]

2007 (1)

J. Yang and Z. Shen, “A thin and broadband absorber using double-square loops,” IEEE Antennas Wirel. Propag. Lett. 6(11), 388–391 (2007).
[Crossref]

2005 (1)

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

2001 (1)

D. D. L. Chung, “Electromagnetic interference shielding effectiveness of carbon materials,” Carbon 39(2), 279–285 (2001).
[Crossref]

Almoneef, T. S.

T. S. Almoneef, F. Erkmen, and O. M. Ramahi, “Harvesting the energy of multi-polarized electromagnetic waves,” Sci. Rep. 7(1), 14656–14669 (2017).
[Crossref] [PubMed]

Anantha Ramakrishna, S.

H. Sheokand, S. Ghosh, G. Singh, M. Saikia, K. V. Srivastava, J. Ramkumar, and S. Anantha Ramakrishna, “Transparent broadband metamaterial absorber based on resistive films,” J. Appl. Phys. 122(10), 5105–5111 (2017).
[Crossref]

Argyros, A.

A. Tuniz, K. J. Kaltenecker, B. M. Fischer, M. Walther, S. C. Fleming, A. Argyros, and B. T. Kuhlmey, “Metamaterial fibres for subdiffraction imaging and focusing at terahertz frequencies over optically long distances,” Nat. Commun. 4(4), 2706–2713 (2013).
[Crossref] [PubMed]

Asano, T.

T. Inoue, M. D. Zoysa, T. Asano, and S. Noda, “Realization of dynamic thermal emission control,” Nat. Mater. 13(10), 928–931 (2014).
[Crossref] [PubMed]

Averitt, R. D.

H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D Appl. Phys. 43(22), 5102–5105 (2010).
[Crossref]

Bermel, P.

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A. 109(7), 2280–2285 (2012).
[Crossref] [PubMed]

Bingham, C.

Bingham, C. M.

H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D Appl. Phys. 43(22), 5102–5105 (2010).
[Crossref]

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 5104–5109 (2008).

Blanchard, R.

M. A. Kats, R. Blanchard, S. Zhang, P. Genevet, C. Ko, S. Ramanathan, and F. Capasso, “Vanadium Dioxide as a Natural Disordered Metamaterial: Perfect Thermal Emission and Large Broadband Negative Differential Thermal Emittance,” Phys. Rev. X 3(4), 1004–1010 (2013).
[Crossref]

Bong, J.

Y. J. Yoo, S. Ju, S. Y. Park, Y. Ju Kim, J. Bong, T. Lim, K. W. Kim, J. Y. Rhee, and Y. Lee, “Metamaterial absorber for electromagnetic waves in periodic water droplets,” Sci. Rep. 5(1), 14018–14025 (2015).
[Crossref] [PubMed]

Bourouina, T.

Q. Song, W. Zhang, P. C. Wu, W. Zhu, Z. X. Shen, P. H. J. Chong, Q. X. Liang, Z. C. Yang, Y. L. Hao, H. Cai, H. F. Zhou, Y. Gu, G. Lo, D. P. Tsai, T. Bourouina, Y. Leprince-Wang, and A. Liu, “Water-resonator-based metasurface: an ultrabroadband and near-unity absorption,” Adv. Opt. Mater. 5(8), 1103–1110 (2017).

Cai, H.

Q. Song, W. Zhang, P. C. Wu, W. Zhu, Z. X. Shen, P. H. J. Chong, Q. X. Liang, Z. C. Yang, Y. L. Hao, H. Cai, H. F. Zhou, Y. Gu, G. Lo, D. P. Tsai, T. Bourouina, Y. Leprince-Wang, and A. Liu, “Water-resonator-based metasurface: an ultrabroadband and near-unity absorption,” Adv. Opt. Mater. 5(8), 1103–1110 (2017).

Cao, J.

D. Hu, J. Cao, W. Li, C. Zhang, T. Wu, Q. Li, Z. Chen, Y. Wang, and J. Guan, “Optically transparent broadband microwave absorption metamaterial by standing-up closed-ring resonators,” Adv. Opt. Mater. 5(13), 109–116 (2017).
[Crossref]

Capasso, F.

M. A. Kats, R. Blanchard, S. Zhang, P. Genevet, C. Ko, S. Ramanathan, and F. Capasso, “Vanadium Dioxide as a Natural Disordered Metamaterial: Perfect Thermal Emission and Large Broadband Negative Differential Thermal Emittance,” Phys. Rev. X 3(4), 1004–1010 (2013).
[Crossref]

Celanovic, I.

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A. 109(7), 2280–2285 (2012).
[Crossref] [PubMed]

Chan, W. R.

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A. 109(7), 2280–2285 (2012).
[Crossref] [PubMed]

Chen, H.

L. Zhang, P. Zhou, H. Zhang, L. Lu, G. Zhang, H. Chen, H. Lu, J. Xie, and L. Deng, “A broadband radar absorber based on perforated magnetic polymer composites embedded with FSS,” IEEE Trans. Magn. 50(5), 1–5 (2014).
[Crossref]

Chen, H. T.

Chen, J.

X. Huang, H. L. Yang, Z. Shen, J. Chen, H. Lin, and Z. Yu, “Water-injected all-dielectric ultra-wideband and prominent oblique incidence metamaterial absorber in microwave regime,” J. Phys. D Appl. Phys. 50(38), 5304–5319 (2017).
[Crossref]

Chen, L. Y.

Chen, Z.

D. Hu, J. Cao, W. Li, C. Zhang, T. Wu, Q. Li, Z. Chen, Y. Wang, and J. Guan, “Optically transparent broadband microwave absorption metamaterial by standing-up closed-ring resonators,” Adv. Opt. Mater. 5(13), 109–116 (2017).
[Crossref]

Cheng, Q.

C. Zhang, Q. Cheng, J. Yang, J. Zhao, and T. J. Cui, “Broadband metamaterial for optical transparency and microwave absorption,” Appl. Phys. Lett. 110(14), 3511–3515 (2017).
[Crossref]

Cheng, Y. Z.

Y. Z. Cheng, Z. Z. Cheng, X. S. Mao, and R. Z. Gong, “Ultra-thin multi-band polarization-insensitive microwave metamaterial absorber based on multiple-order responses using a single resonator structure,” Materials (Basel) 10(11), 1241–1252 (2017).
[Crossref] [PubMed]

Cheng, Z. Z.

Y. Z. Cheng, Z. Z. Cheng, X. S. Mao, and R. Z. Gong, “Ultra-thin multi-band polarization-insensitive microwave metamaterial absorber based on multiple-order responses using a single resonator structure,” Materials (Basel) 10(11), 1241–1252 (2017).
[Crossref] [PubMed]

Choi, E. H.

Chong, P. H. J.

Q. Song, W. Zhang, P. C. Wu, W. Zhu, Z. X. Shen, P. H. J. Chong, Q. X. Liang, Z. C. Yang, Y. L. Hao, H. Cai, H. F. Zhou, Y. Gu, G. Lo, D. P. Tsai, T. Bourouina, Y. Leprince-Wang, and A. Liu, “Water-resonator-based metasurface: an ultrabroadband and near-unity absorption,” Adv. Opt. Mater. 5(8), 1103–1110 (2017).

Chowdhury, D. R.

Chung, D. D. L.

D. D. L. Chung, “Electromagnetic interference shielding effectiveness of carbon materials,” Carbon 39(2), 279–285 (2001).
[Crossref]

Cui, T.

X. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. Cui, “Triple-band terahertz metamaterial absorber: design, experiment, and physical interpretation,” Appl. Phys. Lett. 101(15), 4102–4105 (2012).
[Crossref]

Cui, T. J.

C. Zhang, Q. Cheng, J. Yang, J. Zhao, and T. J. Cui, “Broadband metamaterial for optical transparency and microwave absorption,” Appl. Phys. Lett. 110(14), 3511–3515 (2017).
[Crossref]

Cui, Y.

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 3506–3509 (2011).

Cummer, S. A.

Deng, L.

L. Zhang, P. Zhou, H. Zhang, L. Lu, G. Zhang, H. Chen, H. Lu, J. Xie, and L. Deng, “A broadband radar absorber based on perforated magnetic polymer composites embedded with FSS,” IEEE Trans. Magn. 50(5), 1–5 (2014).
[Crossref]

Ding, F.

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 3506–3509 (2011).

Erkmen, F.

T. S. Almoneef, F. Erkmen, and O. M. Ramahi, “Harvesting the energy of multi-polarized electromagnetic waves,” Sci. Rep. 7(1), 14656–14669 (2017).
[Crossref] [PubMed]

Fan, K.

H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D Appl. Phys. 43(22), 5102–5105 (2010).
[Crossref]

Fang, N.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Fischer, B. M.

A. Tuniz, K. J. Kaltenecker, B. M. Fischer, M. Walther, S. C. Fleming, A. Argyros, and B. T. Kuhlmey, “Metamaterial fibres for subdiffraction imaging and focusing at terahertz frequencies over optically long distances,” Nat. Commun. 4(4), 2706–2713 (2013).
[Crossref] [PubMed]

Fleming, S. C.

A. Tuniz, K. J. Kaltenecker, B. M. Fischer, M. Walther, S. C. Fleming, A. Argyros, and B. T. Kuhlmey, “Metamaterial fibres for subdiffraction imaging and focusing at terahertz frequencies over optically long distances,” Nat. Commun. 4(4), 2706–2713 (2013).
[Crossref] [PubMed]

Ge, X.

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 3506–3509 (2011).

Genevet, P.

M. A. Kats, R. Blanchard, S. Zhang, P. Genevet, C. Ko, S. Ramanathan, and F. Capasso, “Vanadium Dioxide as a Natural Disordered Metamaterial: Perfect Thermal Emission and Large Broadband Negative Differential Thermal Emittance,” Phys. Rev. X 3(4), 1004–1010 (2013).
[Crossref]

Ghebrebrhan, M.

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A. 109(7), 2280–2285 (2012).
[Crossref] [PubMed]

Ghosh, S.

H. Sheokand, S. Ghosh, G. Singh, M. Saikia, K. V. Srivastava, J. Ramkumar, and S. Anantha Ramakrishna, “Transparent broadband metamaterial absorber based on resistive films,” J. Appl. Phys. 122(10), 5105–5111 (2017).
[Crossref]

Gong, R. Z.

Y. Z. Cheng, Z. Z. Cheng, X. S. Mao, and R. Z. Gong, “Ultra-thin multi-band polarization-insensitive microwave metamaterial absorber based on multiple-order responses using a single resonator structure,” Materials (Basel) 10(11), 1241–1252 (2017).
[Crossref] [PubMed]

Gu, J.

X. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. Cui, “Triple-band terahertz metamaterial absorber: design, experiment, and physical interpretation,” Appl. Phys. Lett. 101(15), 4102–4105 (2012).
[Crossref]

Gu, S.

Y. Liu, S. Gu, C. Luo, and X. Zhao, “Ultra-thin broadband metamaterial absorber,” Appl. Phys., A Mater. Sci. Process. 108(1), 19–24 (2012).
[Crossref]

Gu, Y.

Q. Song, W. Zhang, P. C. Wu, W. Zhu, Z. X. Shen, P. H. J. Chong, Q. X. Liang, Z. C. Yang, Y. L. Hao, H. Cai, H. F. Zhou, Y. Gu, G. Lo, D. P. Tsai, T. Bourouina, Y. Leprince-Wang, and A. Liu, “Water-resonator-based metasurface: an ultrabroadband and near-unity absorption,” Adv. Opt. Mater. 5(8), 1103–1110 (2017).

Guan, J.

D. Hu, J. Cao, W. Li, C. Zhang, T. Wu, Q. Li, Z. Chen, Y. Wang, and J. Guan, “Optically transparent broadband microwave absorption metamaterial by standing-up closed-ring resonators,” Adv. Opt. Mater. 5(13), 109–116 (2017).
[Crossref]

C. Long, S. Yin, W. Wang, W. Li, J. Zhu, and J. Guan, “Broadening the absorption bandwidth of metamaterial absorbers by transverse magnetic harmonics of 210 mode,” Sci. Rep. 6(1), 21431–21439 (2016).
[Crossref] [PubMed]

W. Li, T. Wu, W. Wang, P. Zhai, and J. Guan, “Broadband patterned magnetic microwave absorber,” J. Appl. Phys. 116(4), 4110–4116 (2014).
[Crossref]

W. Li, T. Wu, W. Wang, J. Guan, and P. Zhai, “Integrating non-planar metamaterials with magnetic absorbing materials to yield ultra-broadband microwave hybrid absorbers,” Appl. Phys. Lett. 104(2), 2903–2907 (2014).
[Crossref]

Guo, L. J.

T. Jang, H. Youn, Y. J. Shin, and L. J. Guo, “Transparent and flexible polarization-independent microwave broadband absorber,” ACS Photonics 1(3), 279–284 (2014).
[Crossref]

Han, J.

X. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. Cui, “Triple-band terahertz metamaterial absorber: design, experiment, and physical interpretation,” Appl. Phys. Lett. 101(15), 4102–4105 (2012).
[Crossref]

Hand, T. H.

Hao, Y. L.

Q. Song, W. Zhang, P. C. Wu, W. Zhu, Z. X. Shen, P. H. J. Chong, Q. X. Liang, Z. C. Yang, Y. L. Hao, H. Cai, H. F. Zhou, Y. Gu, G. Lo, D. P. Tsai, T. Bourouina, Y. Leprince-Wang, and A. Liu, “Water-resonator-based metasurface: an ultrabroadband and near-unity absorption,” Adv. Opt. Mater. 5(8), 1103–1110 (2017).

He, S.

W. Jiang, Y. Ma, J. Yuan, G. Yin, W. Wu, and S. He, “Deformable broadband metamaterial absorbers engineered with an analytical spatial kramers-kronig permittivity profile,” Laser Photonics Rev. 11(1), 253–259 (2017).
[Crossref]

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 3506–3509 (2011).

Howell, I.

A. K. Moridani, R. Zando, W. Xie, I. Howell, J. J. Watkins, and J. H. Lee, “Plasmonic thermal emitters for dynamically tunable infrared radiation,” Adv. Opt. Mater. 5(10), 993–998 (2017).

Hu, D.

D. Hu, J. Cao, W. Li, C. Zhang, T. Wu, Q. Li, Z. Chen, Y. Wang, and J. Guan, “Optically transparent broadband microwave absorption metamaterial by standing-up closed-ring resonators,” Adv. Opt. Mater. 5(13), 109–116 (2017).
[Crossref]

Huang, L.

Huang, X.

X. Huang, H. L. Yang, Z. Shen, J. Chen, H. Lin, and Z. Yu, “Water-injected all-dielectric ultra-wideband and prominent oblique incidence metamaterial absorber in microwave regime,” J. Phys. D Appl. Phys. 50(38), 5304–5319 (2017).
[Crossref]

X. Huang, H. Yang, S. Yu, J. Wang, M. Li, and Q. Ye, “Triple-band polarization-insensitive wide-angle ultra-thin planar spiral metamaterial absorber,” J. Appl. Phys. 113(21), 3516–3520 (2013).
[Crossref]

Huangfu, J.

D. Ye, Z. Wang, K. Xu, H. Li, J. Huangfu, Z. Wang, and L. Ran, “Ultrawideband dispersion control of a metamaterial surface for perfectly-matched-layer-like absorption,” Phys. Rev. Lett. 111(18), 187402 (2013).
[Crossref] [PubMed]

Inoue, T.

T. Inoue, M. D. Zoysa, T. Asano, and S. Noda, “Realization of dynamic thermal emission control,” Nat. Mater. 13(10), 928–931 (2014).
[Crossref] [PubMed]

Jang, T.

T. Jang, H. Youn, Y. J. Shin, and L. J. Guo, “Transparent and flexible polarization-independent microwave broadband absorber,” ACS Photonics 1(3), 279–284 (2014).
[Crossref]

Jang, W. H.

Jiang, W.

W. Jiang, Y. Ma, J. Yuan, G. Yin, W. Wu, and S. He, “Deformable broadband metamaterial absorbers engineered with an analytical spatial kramers-kronig permittivity profile,” Laser Photonics Rev. 11(1), 253–259 (2017).
[Crossref]

Jiang, Z. H.

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5(6), 4641–4647 (2011).
[Crossref] [PubMed]

Jin, Y.

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 3506–3509 (2011).

Joannopoulos, J. D.

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A. 109(7), 2280–2285 (2012).
[Crossref] [PubMed]

Jokerst, N.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 5104–5109 (2008).

Jokerst, N. M.

Ju, S.

Y. J. Yoo, S. Ju, S. Y. Park, Y. Ju Kim, J. Bong, T. Lim, K. W. Kim, J. Y. Rhee, and Y. Lee, “Metamaterial absorber for electromagnetic waves in periodic water droplets,” Sci. Rep. 5(1), 14018–14025 (2015).
[Crossref] [PubMed]

Ju Kim, Y.

Y. J. Yoo, S. Ju, S. Y. Park, Y. Ju Kim, J. Bong, T. Lim, K. W. Kim, J. Y. Rhee, and Y. Lee, “Metamaterial absorber for electromagnetic waves in periodic water droplets,” Sci. Rep. 5(1), 14018–14025 (2015).
[Crossref] [PubMed]

Kaltenecker, K. J.

A. Tuniz, K. J. Kaltenecker, B. M. Fischer, M. Walther, S. C. Fleming, A. Argyros, and B. T. Kuhlmey, “Metamaterial fibres for subdiffraction imaging and focusing at terahertz frequencies over optically long distances,” Nat. Commun. 4(4), 2706–2713 (2013).
[Crossref] [PubMed]

Kats, M. A.

M. A. Kats, R. Blanchard, S. Zhang, P. Genevet, C. Ko, S. Ramanathan, and F. Capasso, “Vanadium Dioxide as a Natural Disordered Metamaterial: Perfect Thermal Emission and Large Broadband Negative Differential Thermal Emittance,” Phys. Rev. X 3(4), 1004–1010 (2013).
[Crossref]

Kim, K. W.

Y. J. Yoo, S. Ju, S. Y. Park, Y. Ju Kim, J. Bong, T. Lim, K. W. Kim, J. Y. Rhee, and Y. Lee, “Metamaterial absorber for electromagnetic waves in periodic water droplets,” Sci. Rep. 5(1), 14018–14025 (2015).
[Crossref] [PubMed]

J. W. Park, P. V. Tuong, J. Y. Rhee, K. W. Kim, W. H. Jang, E. H. Choi, L. Y. Chen, and Y. Lee, “Multi-band metamaterial absorber based on the arrangement of donut-type resonators,” Opt. Express 21(8), 9691–9702 (2013).
[Crossref] [PubMed]

Ko, C.

M. A. Kats, R. Blanchard, S. Zhang, P. Genevet, C. Ko, S. Ramanathan, and F. Capasso, “Vanadium Dioxide as a Natural Disordered Metamaterial: Perfect Thermal Emission and Large Broadband Negative Differential Thermal Emittance,” Phys. Rev. X 3(4), 1004–1010 (2013).
[Crossref]

Kuhlmey, B. T.

A. Tuniz, K. J. Kaltenecker, B. M. Fischer, M. Walther, S. C. Fleming, A. Argyros, and B. T. Kuhlmey, “Metamaterial fibres for subdiffraction imaging and focusing at terahertz frequencies over optically long distances,” Nat. Commun. 4(4), 2706–2713 (2013).
[Crossref] [PubMed]

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 5104–5109 (2008).

Lee, H.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Lee, J. H.

A. K. Moridani, R. Zando, W. Xie, I. Howell, J. J. Watkins, and J. H. Lee, “Plasmonic thermal emitters for dynamically tunable infrared radiation,” Adv. Opt. Mater. 5(10), 993–998 (2017).

Lee, Y.

Y. J. Yoo, S. Ju, S. Y. Park, Y. Ju Kim, J. Bong, T. Lim, K. W. Kim, J. Y. Rhee, and Y. Lee, “Metamaterial absorber for electromagnetic waves in periodic water droplets,” Sci. Rep. 5(1), 14018–14025 (2015).
[Crossref] [PubMed]

J. W. Park, P. V. Tuong, J. Y. Rhee, K. W. Kim, W. H. Jang, E. H. Choi, L. Y. Chen, and Y. Lee, “Multi-band metamaterial absorber based on the arrangement of donut-type resonators,” Opt. Express 21(8), 9691–9702 (2013).
[Crossref] [PubMed]

Leprince-Wang, Y.

Q. Song, W. Zhang, P. C. Wu, W. Zhu, Z. X. Shen, P. H. J. Chong, Q. X. Liang, Z. C. Yang, Y. L. Hao, H. Cai, H. F. Zhou, Y. Gu, G. Lo, D. P. Tsai, T. Bourouina, Y. Leprince-Wang, and A. Liu, “Water-resonator-based metasurface: an ultrabroadband and near-unity absorption,” Adv. Opt. Mater. 5(8), 1103–1110 (2017).

Li, H.

D. Ye, Z. Wang, K. Xu, H. Li, J. Huangfu, Z. Wang, and L. Ran, “Ultrawideband dispersion control of a metamaterial surface for perfectly-matched-layer-like absorption,” Phys. Rev. Lett. 111(18), 187402 (2013).
[Crossref] [PubMed]

Li, L.

X. Zhang, H. Liu, and L. Li, “Tri-band miniaturized wide-angle and polarization-insensitive metasurface for ambient energy harvesting,” Appl. Phys. Lett. 111(7), 1902–1904 (2017).
[Crossref]

Li, M.

X. Huang, H. Yang, S. Yu, J. Wang, M. Li, and Q. Ye, “Triple-band polarization-insensitive wide-angle ultra-thin planar spiral metamaterial absorber,” J. Appl. Phys. 113(21), 3516–3520 (2013).
[Crossref]

Li, Q.

D. Hu, J. Cao, W. Li, C. Zhang, T. Wu, Q. Li, Z. Chen, Y. Wang, and J. Guan, “Optically transparent broadband microwave absorption metamaterial by standing-up closed-ring resonators,” Adv. Opt. Mater. 5(13), 109–116 (2017).
[Crossref]

Li, W.

D. Hu, J. Cao, W. Li, C. Zhang, T. Wu, Q. Li, Z. Chen, Y. Wang, and J. Guan, “Optically transparent broadband microwave absorption metamaterial by standing-up closed-ring resonators,” Adv. Opt. Mater. 5(13), 109–116 (2017).
[Crossref]

C. Long, S. Yin, W. Wang, W. Li, J. Zhu, and J. Guan, “Broadening the absorption bandwidth of metamaterial absorbers by transverse magnetic harmonics of 210 mode,” Sci. Rep. 6(1), 21431–21439 (2016).
[Crossref] [PubMed]

W. Li, T. Wu, W. Wang, J. Guan, and P. Zhai, “Integrating non-planar metamaterials with magnetic absorbing materials to yield ultra-broadband microwave hybrid absorbers,” Appl. Phys. Lett. 104(2), 2903–2907 (2014).
[Crossref]

W. Li, T. Wu, W. Wang, P. Zhai, and J. Guan, “Broadband patterned magnetic microwave absorber,” J. Appl. Phys. 116(4), 4110–4116 (2014).
[Crossref]

Liang, Q. X.

Q. Song, W. Zhang, P. C. Wu, W. Zhu, Z. X. Shen, P. H. J. Chong, Q. X. Liang, Z. C. Yang, Y. L. Hao, H. Cai, H. F. Zhou, Y. Gu, G. Lo, D. P. Tsai, T. Bourouina, Y. Leprince-Wang, and A. Liu, “Water-resonator-based metasurface: an ultrabroadband and near-unity absorption,” Adv. Opt. Mater. 5(8), 1103–1110 (2017).

Lim, T.

Y. J. Yoo, S. Ju, S. Y. Park, Y. Ju Kim, J. Bong, T. Lim, K. W. Kim, J. Y. Rhee, and Y. Lee, “Metamaterial absorber for electromagnetic waves in periodic water droplets,” Sci. Rep. 5(1), 14018–14025 (2015).
[Crossref] [PubMed]

Lin, H.

X. Huang, H. L. Yang, Z. Shen, J. Chen, H. Lin, and Z. Yu, “Water-injected all-dielectric ultra-wideband and prominent oblique incidence metamaterial absorber in microwave regime,” J. Phys. D Appl. Phys. 50(38), 5304–5319 (2017).
[Crossref]

Liu, A.

Q. Song, W. Zhang, P. C. Wu, W. Zhu, Z. X. Shen, P. H. J. Chong, Q. X. Liang, Z. C. Yang, Y. L. Hao, H. Cai, H. F. Zhou, Y. Gu, G. Lo, D. P. Tsai, T. Bourouina, Y. Leprince-Wang, and A. Liu, “Water-resonator-based metasurface: an ultrabroadband and near-unity absorption,” Adv. Opt. Mater. 5(8), 1103–1110 (2017).

Liu, H.

X. Zhang, H. Liu, and L. Li, “Tri-band miniaturized wide-angle and polarization-insensitive metasurface for ambient energy harvesting,” Appl. Phys. Lett. 111(7), 1902–1904 (2017).
[Crossref]

Liu, X.

X. Liu and W. J. Padilla, “Reconfigurable room temperature metamaterial infrared emitter,” Opticas 4(4), 430–433 (2017).
[Crossref]

Liu, Y.

Y. Liu, S. Gu, C. Luo, and X. Zhao, “Ultra-thin broadband metamaterial absorber,” Appl. Phys., A Mater. Sci. Process. 108(1), 19–24 (2012).
[Crossref]

Lo, G.

Q. Song, W. Zhang, P. C. Wu, W. Zhu, Z. X. Shen, P. H. J. Chong, Q. X. Liang, Z. C. Yang, Y. L. Hao, H. Cai, H. F. Zhou, Y. Gu, G. Lo, D. P. Tsai, T. Bourouina, Y. Leprince-Wang, and A. Liu, “Water-resonator-based metasurface: an ultrabroadband and near-unity absorption,” Adv. Opt. Mater. 5(8), 1103–1110 (2017).

Long, C.

C. Long, S. Yin, W. Wang, W. Li, J. Zhu, and J. Guan, “Broadening the absorption bandwidth of metamaterial absorbers by transverse magnetic harmonics of 210 mode,” Sci. Rep. 6(1), 21431–21439 (2016).
[Crossref] [PubMed]

Lu, H.

L. Zhang, P. Zhou, H. Zhang, L. Lu, G. Zhang, H. Chen, H. Lu, J. Xie, and L. Deng, “A broadband radar absorber based on perforated magnetic polymer composites embedded with FSS,” IEEE Trans. Magn. 50(5), 1–5 (2014).
[Crossref]

Lu, L.

L. Zhang, P. Zhou, H. Zhang, L. Lu, G. Zhang, H. Chen, H. Lu, J. Xie, and L. Deng, “A broadband radar absorber based on perforated magnetic polymer composites embedded with FSS,” IEEE Trans. Magn. 50(5), 1–5 (2014).
[Crossref]

Luo, C.

Y. Liu, S. Gu, C. Luo, and X. Zhao, “Ultra-thin broadband metamaterial absorber,” Appl. Phys., A Mater. Sci. Process. 108(1), 19–24 (2012).
[Crossref]

Luo, S. N.

Ma, Y.

W. Jiang, Y. Ma, J. Yuan, G. Yin, W. Wu, and S. He, “Deformable broadband metamaterial absorbers engineered with an analytical spatial kramers-kronig permittivity profile,” Laser Photonics Rev. 11(1), 253–259 (2017).
[Crossref]

Mao, X. S.

Y. Z. Cheng, Z. Z. Cheng, X. S. Mao, and R. Z. Gong, “Ultra-thin multi-band polarization-insensitive microwave metamaterial absorber based on multiple-order responses using a single resonator structure,” Materials (Basel) 10(11), 1241–1252 (2017).
[Crossref] [PubMed]

Mayer, T. S.

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5(6), 4641–4647 (2011).
[Crossref] [PubMed]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Moridani, A. K.

A. K. Moridani, R. Zando, W. Xie, I. Howell, J. J. Watkins, and J. H. Lee, “Plasmonic thermal emitters for dynamically tunable infrared radiation,” Adv. Opt. Mater. 5(10), 993–998 (2017).

Noda, S.

T. Inoue, M. D. Zoysa, T. Asano, and S. Noda, “Realization of dynamic thermal emission control,” Nat. Mater. 13(10), 928–931 (2014).
[Crossref] [PubMed]

Padilla, W. J.

X. Liu and W. J. Padilla, “Reconfigurable room temperature metamaterial infrared emitter,” Opticas 4(4), 430–433 (2017).
[Crossref]

H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D Appl. Phys. 43(22), 5102–5105 (2010).
[Crossref]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 5104–5109 (2008).

Y. Yuan, C. Bingham, T. Tyler, S. Palit, T. H. Hand, W. J. Padilla, D. R. Smith, N. M. Jokerst, and S. A. Cummer, “Dual-band planar electric metamaterial in the terahertz regime,” Opt. Express 16(13), 9746–9752 (2008).
[Crossref] [PubMed]

Palit, S.

Park, J. W.

Park, S. Y.

Y. J. Yoo, S. Ju, S. Y. Park, Y. Ju Kim, J. Bong, T. Lim, K. W. Kim, J. Y. Rhee, and Y. Lee, “Metamaterial absorber for electromagnetic waves in periodic water droplets,” Sci. Rep. 5(1), 14018–14025 (2015).
[Crossref] [PubMed]

Pilon, D.

H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D Appl. Phys. 43(22), 5102–5105 (2010).
[Crossref]

Ramahi, O. M.

T. S. Almoneef, F. Erkmen, and O. M. Ramahi, “Harvesting the energy of multi-polarized electromagnetic waves,” Sci. Rep. 7(1), 14656–14669 (2017).
[Crossref] [PubMed]

Ramanathan, S.

M. A. Kats, R. Blanchard, S. Zhang, P. Genevet, C. Ko, S. Ramanathan, and F. Capasso, “Vanadium Dioxide as a Natural Disordered Metamaterial: Perfect Thermal Emission and Large Broadband Negative Differential Thermal Emittance,” Phys. Rev. X 3(4), 1004–1010 (2013).
[Crossref]

Ramani, S.

Ramkumar, J.

H. Sheokand, S. Ghosh, G. Singh, M. Saikia, K. V. Srivastava, J. Ramkumar, and S. Anantha Ramakrishna, “Transparent broadband metamaterial absorber based on resistive films,” J. Appl. Phys. 122(10), 5105–5111 (2017).
[Crossref]

Ran, L.

D. Ye, Z. Wang, K. Xu, H. Li, J. Huangfu, Z. Wang, and L. Ran, “Ultrawideband dispersion control of a metamaterial surface for perfectly-matched-layer-like absorption,” Phys. Rev. Lett. 111(18), 187402 (2013).
[Crossref] [PubMed]

Reiten, M. T.

Rhee, J. Y.

Y. J. Yoo, S. Ju, S. Y. Park, Y. Ju Kim, J. Bong, T. Lim, K. W. Kim, J. Y. Rhee, and Y. Lee, “Metamaterial absorber for electromagnetic waves in periodic water droplets,” Sci. Rep. 5(1), 14018–14025 (2015).
[Crossref] [PubMed]

J. W. Park, P. V. Tuong, J. Y. Rhee, K. W. Kim, W. H. Jang, E. H. Choi, L. Y. Chen, and Y. Lee, “Multi-band metamaterial absorber based on the arrangement of donut-type resonators,” Opt. Express 21(8), 9691–9702 (2013).
[Crossref] [PubMed]

Saikia, M.

H. Sheokand, S. Ghosh, G. Singh, M. Saikia, K. V. Srivastava, J. Ramkumar, and S. Anantha Ramakrishna, “Transparent broadband metamaterial absorber based on resistive films,” J. Appl. Phys. 122(10), 5105–5111 (2017).
[Crossref]

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Shen, X.

X. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. Cui, “Triple-band terahertz metamaterial absorber: design, experiment, and physical interpretation,” Appl. Phys. Lett. 101(15), 4102–4105 (2012).
[Crossref]

Shen, Z.

X. Huang, H. L. Yang, Z. Shen, J. Chen, H. Lin, and Z. Yu, “Water-injected all-dielectric ultra-wideband and prominent oblique incidence metamaterial absorber in microwave regime,” J. Phys. D Appl. Phys. 50(38), 5304–5319 (2017).
[Crossref]

J. Yang and Z. Shen, “A thin and broadband absorber using double-square loops,” IEEE Antennas Wirel. Propag. Lett. 6(11), 388–391 (2007).
[Crossref]

Shen, Z. X.

Q. Song, W. Zhang, P. C. Wu, W. Zhu, Z. X. Shen, P. H. J. Chong, Q. X. Liang, Z. C. Yang, Y. L. Hao, H. Cai, H. F. Zhou, Y. Gu, G. Lo, D. P. Tsai, T. Bourouina, Y. Leprince-Wang, and A. Liu, “Water-resonator-based metasurface: an ultrabroadband and near-unity absorption,” Adv. Opt. Mater. 5(8), 1103–1110 (2017).

Sheokand, H.

H. Sheokand, S. Ghosh, G. Singh, M. Saikia, K. V. Srivastava, J. Ramkumar, and S. Anantha Ramakrishna, “Transparent broadband metamaterial absorber based on resistive films,” J. Appl. Phys. 122(10), 5105–5111 (2017).
[Crossref]

Shin, Y. J.

T. Jang, H. Youn, Y. J. Shin, and L. J. Guo, “Transparent and flexible polarization-independent microwave broadband absorber,” ACS Photonics 1(3), 279–284 (2014).
[Crossref]

Shrekenhamer, D.

H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D Appl. Phys. 43(22), 5102–5105 (2010).
[Crossref]

Singh, G.

H. Sheokand, S. Ghosh, G. Singh, M. Saikia, K. V. Srivastava, J. Ramkumar, and S. Anantha Ramakrishna, “Transparent broadband metamaterial absorber based on resistive films,” J. Appl. Phys. 122(10), 5105–5111 (2017).
[Crossref]

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 5104–5109 (2008).

Y. Yuan, C. Bingham, T. Tyler, S. Palit, T. H. Hand, W. J. Padilla, D. R. Smith, N. M. Jokerst, and S. A. Cummer, “Dual-band planar electric metamaterial in the terahertz regime,” Opt. Express 16(13), 9746–9752 (2008).
[Crossref] [PubMed]

Soljacic, M.

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A. 109(7), 2280–2285 (2012).
[Crossref] [PubMed]

Song, Q.

Q. Song, W. Zhang, P. C. Wu, W. Zhu, Z. X. Shen, P. H. J. Chong, Q. X. Liang, Z. C. Yang, Y. L. Hao, H. Cai, H. F. Zhou, Y. Gu, G. Lo, D. P. Tsai, T. Bourouina, Y. Leprince-Wang, and A. Liu, “Water-resonator-based metasurface: an ultrabroadband and near-unity absorption,” Adv. Opt. Mater. 5(8), 1103–1110 (2017).

Srivastava, K. V.

H. Sheokand, S. Ghosh, G. Singh, M. Saikia, K. V. Srivastava, J. Ramkumar, and S. Anantha Ramakrishna, “Transparent broadband metamaterial absorber based on resistive films,” J. Appl. Phys. 122(10), 5105–5111 (2017).
[Crossref]

Strikwerda, A. C.

H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D Appl. Phys. 43(22), 5102–5105 (2010).
[Crossref]

Sun, C.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Tao, H.

H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D Appl. Phys. 43(22), 5102–5105 (2010).
[Crossref]

Taylor, A. J.

Toor, F.

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5(6), 4641–4647 (2011).
[Crossref] [PubMed]

Tsai, D. P.

Q. Song, W. Zhang, P. C. Wu, W. Zhu, Z. X. Shen, P. H. J. Chong, Q. X. Liang, Z. C. Yang, Y. L. Hao, H. Cai, H. F. Zhou, Y. Gu, G. Lo, D. P. Tsai, T. Bourouina, Y. Leprince-Wang, and A. Liu, “Water-resonator-based metasurface: an ultrabroadband and near-unity absorption,” Adv. Opt. Mater. 5(8), 1103–1110 (2017).

Tuniz, A.

A. Tuniz, K. J. Kaltenecker, B. M. Fischer, M. Walther, S. C. Fleming, A. Argyros, and B. T. Kuhlmey, “Metamaterial fibres for subdiffraction imaging and focusing at terahertz frequencies over optically long distances,” Nat. Commun. 4(4), 2706–2713 (2013).
[Crossref] [PubMed]

Tuong, P. V.

Tyler, T.

Y. Yuan, C. Bingham, T. Tyler, S. Palit, T. H. Hand, W. J. Padilla, D. R. Smith, N. M. Jokerst, and S. A. Cummer, “Dual-band planar electric metamaterial in the terahertz regime,” Opt. Express 16(13), 9746–9752 (2008).
[Crossref] [PubMed]

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 5104–5109 (2008).

Walther, M.

A. Tuniz, K. J. Kaltenecker, B. M. Fischer, M. Walther, S. C. Fleming, A. Argyros, and B. T. Kuhlmey, “Metamaterial fibres for subdiffraction imaging and focusing at terahertz frequencies over optically long distances,” Nat. Commun. 4(4), 2706–2713 (2013).
[Crossref] [PubMed]

Wang, J.

X. Huang, H. Yang, S. Yu, J. Wang, M. Li, and Q. Ye, “Triple-band polarization-insensitive wide-angle ultra-thin planar spiral metamaterial absorber,” J. Appl. Phys. 113(21), 3516–3520 (2013).
[Crossref]

Wang, W.

C. Long, S. Yin, W. Wang, W. Li, J. Zhu, and J. Guan, “Broadening the absorption bandwidth of metamaterial absorbers by transverse magnetic harmonics of 210 mode,” Sci. Rep. 6(1), 21431–21439 (2016).
[Crossref] [PubMed]

W. Li, T. Wu, W. Wang, P. Zhai, and J. Guan, “Broadband patterned magnetic microwave absorber,” J. Appl. Phys. 116(4), 4110–4116 (2014).
[Crossref]

W. Li, T. Wu, W. Wang, J. Guan, and P. Zhai, “Integrating non-planar metamaterials with magnetic absorbing materials to yield ultra-broadband microwave hybrid absorbers,” Appl. Phys. Lett. 104(2), 2903–2907 (2014).
[Crossref]

Wang, Y.

D. Hu, J. Cao, W. Li, C. Zhang, T. Wu, Q. Li, Z. Chen, Y. Wang, and J. Guan, “Optically transparent broadband microwave absorption metamaterial by standing-up closed-ring resonators,” Adv. Opt. Mater. 5(13), 109–116 (2017).
[Crossref]

Wang, Z.

D. Ye, Z. Wang, K. Xu, H. Li, J. Huangfu, Z. Wang, and L. Ran, “Ultrawideband dispersion control of a metamaterial surface for perfectly-matched-layer-like absorption,” Phys. Rev. Lett. 111(18), 187402 (2013).
[Crossref] [PubMed]

D. Ye, Z. Wang, K. Xu, H. Li, J. Huangfu, Z. Wang, and L. Ran, “Ultrawideband dispersion control of a metamaterial surface for perfectly-matched-layer-like absorption,” Phys. Rev. Lett. 111(18), 187402 (2013).
[Crossref] [PubMed]

Watkins, J. J.

A. K. Moridani, R. Zando, W. Xie, I. Howell, J. J. Watkins, and J. H. Lee, “Plasmonic thermal emitters for dynamically tunable infrared radiation,” Adv. Opt. Mater. 5(10), 993–998 (2017).

Werner, D. H.

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5(6), 4641–4647 (2011).
[Crossref] [PubMed]

Wu, P. C.

Q. Song, W. Zhang, P. C. Wu, W. Zhu, Z. X. Shen, P. H. J. Chong, Q. X. Liang, Z. C. Yang, Y. L. Hao, H. Cai, H. F. Zhou, Y. Gu, G. Lo, D. P. Tsai, T. Bourouina, Y. Leprince-Wang, and A. Liu, “Water-resonator-based metasurface: an ultrabroadband and near-unity absorption,” Adv. Opt. Mater. 5(8), 1103–1110 (2017).

Wu, T.

D. Hu, J. Cao, W. Li, C. Zhang, T. Wu, Q. Li, Z. Chen, Y. Wang, and J. Guan, “Optically transparent broadband microwave absorption metamaterial by standing-up closed-ring resonators,” Adv. Opt. Mater. 5(13), 109–116 (2017).
[Crossref]

W. Li, T. Wu, W. Wang, J. Guan, and P. Zhai, “Integrating non-planar metamaterials with magnetic absorbing materials to yield ultra-broadband microwave hybrid absorbers,” Appl. Phys. Lett. 104(2), 2903–2907 (2014).
[Crossref]

W. Li, T. Wu, W. Wang, P. Zhai, and J. Guan, “Broadband patterned magnetic microwave absorber,” J. Appl. Phys. 116(4), 4110–4116 (2014).
[Crossref]

Wu, W.

W. Jiang, Y. Ma, J. Yuan, G. Yin, W. Wu, and S. He, “Deformable broadband metamaterial absorbers engineered with an analytical spatial kramers-kronig permittivity profile,” Laser Photonics Rev. 11(1), 253–259 (2017).
[Crossref]

Xie, J.

L. Zhang, P. Zhou, H. Zhang, L. Lu, G. Zhang, H. Chen, H. Lu, J. Xie, and L. Deng, “A broadband radar absorber based on perforated magnetic polymer composites embedded with FSS,” IEEE Trans. Magn. 50(5), 1–5 (2014).
[Crossref]

Xie, W.

A. K. Moridani, R. Zando, W. Xie, I. Howell, J. J. Watkins, and J. H. Lee, “Plasmonic thermal emitters for dynamically tunable infrared radiation,” Adv. Opt. Mater. 5(10), 993–998 (2017).

Xu, K.

D. Ye, Z. Wang, K. Xu, H. Li, J. Huangfu, Z. Wang, and L. Ran, “Ultrawideband dispersion control of a metamaterial surface for perfectly-matched-layer-like absorption,” Phys. Rev. Lett. 111(18), 187402 (2013).
[Crossref] [PubMed]

Yang, H.

X. Huang, H. Yang, S. Yu, J. Wang, M. Li, and Q. Ye, “Triple-band polarization-insensitive wide-angle ultra-thin planar spiral metamaterial absorber,” J. Appl. Phys. 113(21), 3516–3520 (2013).
[Crossref]

Yang, H. L.

X. Huang, H. L. Yang, Z. Shen, J. Chen, H. Lin, and Z. Yu, “Water-injected all-dielectric ultra-wideband and prominent oblique incidence metamaterial absorber in microwave regime,” J. Phys. D Appl. Phys. 50(38), 5304–5319 (2017).
[Crossref]

Yang, J.

C. Zhang, Q. Cheng, J. Yang, J. Zhao, and T. J. Cui, “Broadband metamaterial for optical transparency and microwave absorption,” Appl. Phys. Lett. 110(14), 3511–3515 (2017).
[Crossref]

J. Yang and Z. Shen, “A thin and broadband absorber using double-square loops,” IEEE Antennas Wirel. Propag. Lett. 6(11), 388–391 (2007).
[Crossref]

Yang, Y.

X. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. Cui, “Triple-band terahertz metamaterial absorber: design, experiment, and physical interpretation,” Appl. Phys. Lett. 101(15), 4102–4105 (2012).
[Crossref]

Yang, Z. C.

Q. Song, W. Zhang, P. C. Wu, W. Zhu, Z. X. Shen, P. H. J. Chong, Q. X. Liang, Z. C. Yang, Y. L. Hao, H. Cai, H. F. Zhou, Y. Gu, G. Lo, D. P. Tsai, T. Bourouina, Y. Leprince-Wang, and A. Liu, “Water-resonator-based metasurface: an ultrabroadband and near-unity absorption,” Adv. Opt. Mater. 5(8), 1103–1110 (2017).

Ye, D.

D. Ye, Z. Wang, K. Xu, H. Li, J. Huangfu, Z. Wang, and L. Ran, “Ultrawideband dispersion control of a metamaterial surface for perfectly-matched-layer-like absorption,” Phys. Rev. Lett. 111(18), 187402 (2013).
[Crossref] [PubMed]

Ye, Q.

X. Huang, H. Yang, S. Yu, J. Wang, M. Li, and Q. Ye, “Triple-band polarization-insensitive wide-angle ultra-thin planar spiral metamaterial absorber,” J. Appl. Phys. 113(21), 3516–3520 (2013).
[Crossref]

Yeng, Y. X.

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A. 109(7), 2280–2285 (2012).
[Crossref] [PubMed]

Yin, G.

W. Jiang, Y. Ma, J. Yuan, G. Yin, W. Wu, and S. He, “Deformable broadband metamaterial absorbers engineered with an analytical spatial kramers-kronig permittivity profile,” Laser Photonics Rev. 11(1), 253–259 (2017).
[Crossref]

Yin, S.

C. Long, S. Yin, W. Wang, W. Li, J. Zhu, and J. Guan, “Broadening the absorption bandwidth of metamaterial absorbers by transverse magnetic harmonics of 210 mode,” Sci. Rep. 6(1), 21431–21439 (2016).
[Crossref] [PubMed]

Yoo, Y. J.

Y. J. Yoo, S. Ju, S. Y. Park, Y. Ju Kim, J. Bong, T. Lim, K. W. Kim, J. Y. Rhee, and Y. Lee, “Metamaterial absorber for electromagnetic waves in periodic water droplets,” Sci. Rep. 5(1), 14018–14025 (2015).
[Crossref] [PubMed]

Youn, H.

T. Jang, H. Youn, Y. J. Shin, and L. J. Guo, “Transparent and flexible polarization-independent microwave broadband absorber,” ACS Photonics 1(3), 279–284 (2014).
[Crossref]

Yu, S.

X. Huang, H. Yang, S. Yu, J. Wang, M. Li, and Q. Ye, “Triple-band polarization-insensitive wide-angle ultra-thin planar spiral metamaterial absorber,” J. Appl. Phys. 113(21), 3516–3520 (2013).
[Crossref]

Yu, Z.

X. Huang, H. L. Yang, Z. Shen, J. Chen, H. Lin, and Z. Yu, “Water-injected all-dielectric ultra-wideband and prominent oblique incidence metamaterial absorber in microwave regime,” J. Phys. D Appl. Phys. 50(38), 5304–5319 (2017).
[Crossref]

Yuan, J.

W. Jiang, Y. Ma, J. Yuan, G. Yin, W. Wu, and S. He, “Deformable broadband metamaterial absorbers engineered with an analytical spatial kramers-kronig permittivity profile,” Laser Photonics Rev. 11(1), 253–259 (2017).
[Crossref]

Yuan, Y.

Yun, S.

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5(6), 4641–4647 (2011).
[Crossref] [PubMed]

Zando, R.

A. K. Moridani, R. Zando, W. Xie, I. Howell, J. J. Watkins, and J. H. Lee, “Plasmonic thermal emitters for dynamically tunable infrared radiation,” Adv. Opt. Mater. 5(10), 993–998 (2017).

Zang, Y.

X. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. Cui, “Triple-band terahertz metamaterial absorber: design, experiment, and physical interpretation,” Appl. Phys. Lett. 101(15), 4102–4105 (2012).
[Crossref]

Zhai, P.

W. Li, T. Wu, W. Wang, J. Guan, and P. Zhai, “Integrating non-planar metamaterials with magnetic absorbing materials to yield ultra-broadband microwave hybrid absorbers,” Appl. Phys. Lett. 104(2), 2903–2907 (2014).
[Crossref]

W. Li, T. Wu, W. Wang, P. Zhai, and J. Guan, “Broadband patterned magnetic microwave absorber,” J. Appl. Phys. 116(4), 4110–4116 (2014).
[Crossref]

Zhang, C.

C. Zhang, Q. Cheng, J. Yang, J. Zhao, and T. J. Cui, “Broadband metamaterial for optical transparency and microwave absorption,” Appl. Phys. Lett. 110(14), 3511–3515 (2017).
[Crossref]

D. Hu, J. Cao, W. Li, C. Zhang, T. Wu, Q. Li, Z. Chen, Y. Wang, and J. Guan, “Optically transparent broadband microwave absorption metamaterial by standing-up closed-ring resonators,” Adv. Opt. Mater. 5(13), 109–116 (2017).
[Crossref]

Zhang, G.

L. Zhang, P. Zhou, H. Zhang, L. Lu, G. Zhang, H. Chen, H. Lu, J. Xie, and L. Deng, “A broadband radar absorber based on perforated magnetic polymer composites embedded with FSS,” IEEE Trans. Magn. 50(5), 1–5 (2014).
[Crossref]

Zhang, H.

L. Zhang, P. Zhou, H. Zhang, L. Lu, G. Zhang, H. Chen, H. Lu, J. Xie, and L. Deng, “A broadband radar absorber based on perforated magnetic polymer composites embedded with FSS,” IEEE Trans. Magn. 50(5), 1–5 (2014).
[Crossref]

Zhang, L.

L. Zhang, P. Zhou, H. Zhang, L. Lu, G. Zhang, H. Chen, H. Lu, J. Xie, and L. Deng, “A broadband radar absorber based on perforated magnetic polymer composites embedded with FSS,” IEEE Trans. Magn. 50(5), 1–5 (2014).
[Crossref]

Zhang, S.

M. A. Kats, R. Blanchard, S. Zhang, P. Genevet, C. Ko, S. Ramanathan, and F. Capasso, “Vanadium Dioxide as a Natural Disordered Metamaterial: Perfect Thermal Emission and Large Broadband Negative Differential Thermal Emittance,” Phys. Rev. X 3(4), 1004–1010 (2013).
[Crossref]

Zhang, W.

Q. Song, W. Zhang, P. C. Wu, W. Zhu, Z. X. Shen, P. H. J. Chong, Q. X. Liang, Z. C. Yang, Y. L. Hao, H. Cai, H. F. Zhou, Y. Gu, G. Lo, D. P. Tsai, T. Bourouina, Y. Leprince-Wang, and A. Liu, “Water-resonator-based metasurface: an ultrabroadband and near-unity absorption,” Adv. Opt. Mater. 5(8), 1103–1110 (2017).

X. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. Cui, “Triple-band terahertz metamaterial absorber: design, experiment, and physical interpretation,” Appl. Phys. Lett. 101(15), 4102–4105 (2012).
[Crossref]

Zhang, X.

X. Zhang, H. Liu, and L. Li, “Tri-band miniaturized wide-angle and polarization-insensitive metasurface for ambient energy harvesting,” Appl. Phys. Lett. 111(7), 1902–1904 (2017).
[Crossref]

H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D Appl. Phys. 43(22), 5102–5105 (2010).
[Crossref]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Zhao, J.

C. Zhang, Q. Cheng, J. Yang, J. Zhao, and T. J. Cui, “Broadband metamaterial for optical transparency and microwave absorption,” Appl. Phys. Lett. 110(14), 3511–3515 (2017).
[Crossref]

Zhao, X.

Y. Liu, S. Gu, C. Luo, and X. Zhao, “Ultra-thin broadband metamaterial absorber,” Appl. Phys., A Mater. Sci. Process. 108(1), 19–24 (2012).
[Crossref]

Zhou, H. F.

Q. Song, W. Zhang, P. C. Wu, W. Zhu, Z. X. Shen, P. H. J. Chong, Q. X. Liang, Z. C. Yang, Y. L. Hao, H. Cai, H. F. Zhou, Y. Gu, G. Lo, D. P. Tsai, T. Bourouina, Y. Leprince-Wang, and A. Liu, “Water-resonator-based metasurface: an ultrabroadband and near-unity absorption,” Adv. Opt. Mater. 5(8), 1103–1110 (2017).

Zhou, P.

L. Zhang, P. Zhou, H. Zhang, L. Lu, G. Zhang, H. Chen, H. Lu, J. Xie, and L. Deng, “A broadband radar absorber based on perforated magnetic polymer composites embedded with FSS,” IEEE Trans. Magn. 50(5), 1–5 (2014).
[Crossref]

Zhu, J.

C. Long, S. Yin, W. Wang, W. Li, J. Zhu, and J. Guan, “Broadening the absorption bandwidth of metamaterial absorbers by transverse magnetic harmonics of 210 mode,” Sci. Rep. 6(1), 21431–21439 (2016).
[Crossref] [PubMed]

Zhu, W.

Q. Song, W. Zhang, P. C. Wu, W. Zhu, Z. X. Shen, P. H. J. Chong, Q. X. Liang, Z. C. Yang, Y. L. Hao, H. Cai, H. F. Zhou, Y. Gu, G. Lo, D. P. Tsai, T. Bourouina, Y. Leprince-Wang, and A. Liu, “Water-resonator-based metasurface: an ultrabroadband and near-unity absorption,” Adv. Opt. Mater. 5(8), 1103–1110 (2017).

Zoysa, M. D.

T. Inoue, M. D. Zoysa, T. Asano, and S. Noda, “Realization of dynamic thermal emission control,” Nat. Mater. 13(10), 928–931 (2014).
[Crossref] [PubMed]

ACS Nano (1)

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5(6), 4641–4647 (2011).
[Crossref] [PubMed]

ACS Photonics (1)

T. Jang, H. Youn, Y. J. Shin, and L. J. Guo, “Transparent and flexible polarization-independent microwave broadband absorber,” ACS Photonics 1(3), 279–284 (2014).
[Crossref]

Adv. Opt. Mater. (3)

D. Hu, J. Cao, W. Li, C. Zhang, T. Wu, Q. Li, Z. Chen, Y. Wang, and J. Guan, “Optically transparent broadband microwave absorption metamaterial by standing-up closed-ring resonators,” Adv. Opt. Mater. 5(13), 109–116 (2017).
[Crossref]

Q. Song, W. Zhang, P. C. Wu, W. Zhu, Z. X. Shen, P. H. J. Chong, Q. X. Liang, Z. C. Yang, Y. L. Hao, H. Cai, H. F. Zhou, Y. Gu, G. Lo, D. P. Tsai, T. Bourouina, Y. Leprince-Wang, and A. Liu, “Water-resonator-based metasurface: an ultrabroadband and near-unity absorption,” Adv. Opt. Mater. 5(8), 1103–1110 (2017).

A. K. Moridani, R. Zando, W. Xie, I. Howell, J. J. Watkins, and J. H. Lee, “Plasmonic thermal emitters for dynamically tunable infrared radiation,” Adv. Opt. Mater. 5(10), 993–998 (2017).

Appl. Phys. Lett. (5)

X. Zhang, H. Liu, and L. Li, “Tri-band miniaturized wide-angle and polarization-insensitive metasurface for ambient energy harvesting,” Appl. Phys. Lett. 111(7), 1902–1904 (2017).
[Crossref]

X. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. Cui, “Triple-band terahertz metamaterial absorber: design, experiment, and physical interpretation,” Appl. Phys. Lett. 101(15), 4102–4105 (2012).
[Crossref]

W. Li, T. Wu, W. Wang, J. Guan, and P. Zhai, “Integrating non-planar metamaterials with magnetic absorbing materials to yield ultra-broadband microwave hybrid absorbers,” Appl. Phys. Lett. 104(2), 2903–2907 (2014).
[Crossref]

C. Zhang, Q. Cheng, J. Yang, J. Zhao, and T. J. Cui, “Broadband metamaterial for optical transparency and microwave absorption,” Appl. Phys. Lett. 110(14), 3511–3515 (2017).
[Crossref]

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 3506–3509 (2011).

Appl. Phys., A Mater. Sci. Process. (1)

Y. Liu, S. Gu, C. Luo, and X. Zhao, “Ultra-thin broadband metamaterial absorber,” Appl. Phys., A Mater. Sci. Process. 108(1), 19–24 (2012).
[Crossref]

Carbon (1)

D. D. L. Chung, “Electromagnetic interference shielding effectiveness of carbon materials,” Carbon 39(2), 279–285 (2001).
[Crossref]

IEEE Antennas Wirel. Propag. Lett. (1)

J. Yang and Z. Shen, “A thin and broadband absorber using double-square loops,” IEEE Antennas Wirel. Propag. Lett. 6(11), 388–391 (2007).
[Crossref]

IEEE Trans. Magn. (1)

L. Zhang, P. Zhou, H. Zhang, L. Lu, G. Zhang, H. Chen, H. Lu, J. Xie, and L. Deng, “A broadband radar absorber based on perforated magnetic polymer composites embedded with FSS,” IEEE Trans. Magn. 50(5), 1–5 (2014).
[Crossref]

J. Appl. Phys. (3)

W. Li, T. Wu, W. Wang, P. Zhai, and J. Guan, “Broadband patterned magnetic microwave absorber,” J. Appl. Phys. 116(4), 4110–4116 (2014).
[Crossref]

H. Sheokand, S. Ghosh, G. Singh, M. Saikia, K. V. Srivastava, J. Ramkumar, and S. Anantha Ramakrishna, “Transparent broadband metamaterial absorber based on resistive films,” J. Appl. Phys. 122(10), 5105–5111 (2017).
[Crossref]

X. Huang, H. Yang, S. Yu, J. Wang, M. Li, and Q. Ye, “Triple-band polarization-insensitive wide-angle ultra-thin planar spiral metamaterial absorber,” J. Appl. Phys. 113(21), 3516–3520 (2013).
[Crossref]

J. Phys. D Appl. Phys. (2)

X. Huang, H. L. Yang, Z. Shen, J. Chen, H. Lin, and Z. Yu, “Water-injected all-dielectric ultra-wideband and prominent oblique incidence metamaterial absorber in microwave regime,” J. Phys. D Appl. Phys. 50(38), 5304–5319 (2017).
[Crossref]

H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D Appl. Phys. 43(22), 5102–5105 (2010).
[Crossref]

Laser Photonics Rev. (1)

W. Jiang, Y. Ma, J. Yuan, G. Yin, W. Wu, and S. He, “Deformable broadband metamaterial absorbers engineered with an analytical spatial kramers-kronig permittivity profile,” Laser Photonics Rev. 11(1), 253–259 (2017).
[Crossref]

Materials (Basel) (1)

Y. Z. Cheng, Z. Z. Cheng, X. S. Mao, and R. Z. Gong, “Ultra-thin multi-band polarization-insensitive microwave metamaterial absorber based on multiple-order responses using a single resonator structure,” Materials (Basel) 10(11), 1241–1252 (2017).
[Crossref] [PubMed]

Nat. Commun. (1)

A. Tuniz, K. J. Kaltenecker, B. M. Fischer, M. Walther, S. C. Fleming, A. Argyros, and B. T. Kuhlmey, “Metamaterial fibres for subdiffraction imaging and focusing at terahertz frequencies over optically long distances,” Nat. Commun. 4(4), 2706–2713 (2013).
[Crossref] [PubMed]

Nat. Mater. (1)

T. Inoue, M. D. Zoysa, T. Asano, and S. Noda, “Realization of dynamic thermal emission control,” Nat. Mater. 13(10), 928–931 (2014).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Opticas (1)

X. Liu and W. J. Padilla, “Reconfigurable room temperature metamaterial infrared emitter,” Opticas 4(4), 430–433 (2017).
[Crossref]

Phys. Rev. B (1)

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 5104–5109 (2008).

Phys. Rev. Lett. (2)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

D. Ye, Z. Wang, K. Xu, H. Li, J. Huangfu, Z. Wang, and L. Ran, “Ultrawideband dispersion control of a metamaterial surface for perfectly-matched-layer-like absorption,” Phys. Rev. Lett. 111(18), 187402 (2013).
[Crossref] [PubMed]

Phys. Rev. X (1)

M. A. Kats, R. Blanchard, S. Zhang, P. Genevet, C. Ko, S. Ramanathan, and F. Capasso, “Vanadium Dioxide as a Natural Disordered Metamaterial: Perfect Thermal Emission and Large Broadband Negative Differential Thermal Emittance,” Phys. Rev. X 3(4), 1004–1010 (2013).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A. 109(7), 2280–2285 (2012).
[Crossref] [PubMed]

Sci. Rep. (3)

T. S. Almoneef, F. Erkmen, and O. M. Ramahi, “Harvesting the energy of multi-polarized electromagnetic waves,” Sci. Rep. 7(1), 14656–14669 (2017).
[Crossref] [PubMed]

Y. J. Yoo, S. Ju, S. Y. Park, Y. Ju Kim, J. Bong, T. Lim, K. W. Kim, J. Y. Rhee, and Y. Lee, “Metamaterial absorber for electromagnetic waves in periodic water droplets,” Sci. Rep. 5(1), 14018–14025 (2015).
[Crossref] [PubMed]

C. Long, S. Yin, W. Wang, W. Li, J. Zhu, and J. Guan, “Broadening the absorption bandwidth of metamaterial absorbers by transverse magnetic harmonics of 210 mode,” Sci. Rep. 6(1), 21431–21439 (2016).
[Crossref] [PubMed]

Science (1)

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Other (2)

E. F. Knott, J. F. Shaeffer, and M. T. Tuley, Radar Cross Section. 2nd ed (SciTech Publishing, Inc., 2004).

H. W. Ott, Electromagnetic Compatibility Engineering (Wiley, 2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Transparent water-substrate MA consists of ITO FSS, PMMA substrate, water substrate and ITO backplane. (a) Basic composition schematic, front view and side view of a single unit cell, (b) Perspective view of the transparent water-substrate MA.
Fig. 2
Fig. 2 (a) The simulated absorbance, reflectivity and transmissivity of the transparent water-substrate MA under the normal incidence, (b) The simulated power loss of the constitutive components in the transparent water-substrate MA.
Fig. 3
Fig. 3 Simulated absorption spectra of the transparent water-substrate MA under the different oblique incidences of (a) TE polarization and (b) TM polarization.
Fig. 4
Fig. 4 Schematics of (a) Model 1, (b) Model 2, (c) Model 3 and (d) the corresponding simulated absorption spectra under the normal incidence. Simulated absorption spectra of the transparent water-substrate MA with different thickness of (e) dp and (f) dw under the normal incidence.
Fig. 5
Fig. 5 Top view and cross-sectional view of the surface current distributions in the transparent water-substrate MA at the absorption peak frequencies of (a) 7.3GHz, (b) 18.0GHz, and (c) 23.0GHz.
Fig. 6
Fig. 6 (a) Simulated absorption spectra of the transparent water-substrate MA with different sheet resistance R1 under the normal incidence, (b) The comparison of simulated and measured absorption spectra of the transparent water-substrate MA.
Fig. 7
Fig. 7 (a) Photographs of near and distant views through the fabricated sample, (b) Measured averaged optical transmittance of the original PMMA-substrate MA and the proposed water-substrate MA.
Fig. 8
Fig. 8 (a) Photograph of the fabricated samples and the experimental environment, (b) Measured infrared radiation imaging of the water-substrate MA and PMMA-substrate MA placed in the oven with the environmental temperature of 45°C after 1 minute, 3 minutes, and 5 minutes.

Metrics