Abstract

Enhancement of sub-wavelength optical fields using sub-micron plasmonic probes has found many applications in chemical, material, biological and medical sciences. The enhancement is via localised surface-plasmon resonance (LSPR) which enables the highly sensitive vibrational-spectroscopy technique of surface-enhanced Raman scattering (SERS). Combining SERS with optical fibres can allow the monitoring of biochemical reactions in situ with high resolution. Here, we study the electromagnetic-field enhancement of a tapered optical fibre-tip coated with gold nanoparticles (AuNPs) using finite-element simulations. We investigate the electric-field enhancement associated with metallic NPs and study the effect of parameters such as tip-aperture radius, cone angle, nanoparticle size and gaps between them. Our study provides an understanding of the design and application of metal-nanoparticle-coated optical-fibre-tip probes for SERS. The approach of using fibre-coupled delivery adds flexibility and simplifies the system requirements in SERS, making it suitable for cellular imaging and mapping bio-interfaces.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Effects of a silicon probe on gold nanoparticles on glass under evanescent illumination

Gazi M. Huda, Eugenii U. Donev, M. Pinar Mengüç, and J. Todd Hastings
Opt. Express 19(13) 12679-12687 (2011)

Gold nanorod/nanosphere clustering by split-GFP fragment assembly for tunable near-infrared SERS detections

Taerin Chung, Tugba Koker, and Fabien Pinaud
Opt. Mater. Express 7(9) 3270-3283 (2017)

References

  • View by:
  • |
  • |
  • |

  1. R. Boitor, F. Sinjab, S. Strohbuecker, V. Sottile, and I. Notingher, “Towards quantitative molecular mapping of cells by Raman microscopy: using AFM for decoupling molecular concentration and cell topography,” Faraday Discuss. 187, 199–212 (2016).
    [Crossref] [PubMed]
  2. G. Kostovski, D. J. White, A. Mitchell, M. W. Austin, and P. R. Stoddart, “Nanoimprinted optical fibres: Biotemplated nanostructures for SERS sensing,” Biosens. Bioelectron. 24(5), 1531–1535 (2009).
    [Crossref] [PubMed]
  3. D. J. White, A. P. Mazzolini, and P. R. Stoddart, “Fabrication of a range of SERS substrates on nanostructured multicore optical fibres,” J. Raman Spectrosc. 38(4), 377–382 (2007).
    [Crossref]
  4. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
    [Crossref]
  5. S. Nie and S. R. Emory, “Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering,” Science 275(5303), 1102–1106 (1997).
    [Crossref] [PubMed]
  6. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
    [Crossref]
  7. E. C. Le Ru, M. Meyer, and P. G. Etchegoin, “Proof of Single-Molecule Sensitivity in Surface Enhanced Raman Scattering (SERS) by Means of a Two-Analyte Technique,” J. Phys. Chem. B 110(4), 1944–1948 (2006).
    [Crossref] [PubMed]
  8. J. Taylor, A. Huefner, L. Li, J. Wingfield, and S. Mahajan, “Nanoparticles and intracellular applications of surface-enhanced Raman spectroscopy,” Analyst (Lond.) 141(17), 5037–5055 (2016).
    [Crossref] [PubMed]
  9. J. Kneipp, H. Kneipp, B. Wittig, and K. Kneipp, “Novel optical nanosensors for probing and imaging live cells,” Nanomedicine (Lond.) 6(2), 214–226 (2010).
    [Crossref] [PubMed]
  10. Y. C. Cao, R. Jin, J. M. Nam, C. S. Thaxton, and C. A. Mirkin, “Raman dye-labeled nanoparticle probes for proteins,” J. Am. Chem. Soc. 125(48), 14676–14677 (2003).
    [Crossref] [PubMed]
  11. Y. C. Cao, R. Jin, and C. A. Mirkin, “Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection,” Science 297(5586), 1536–1540 (2002).
    [Crossref] [PubMed]
  12. A. Huefner, W. L. Kuan, K. H. Müller, J. N. Skepper, R. A. Barker, and S. Mahajan, “Characterization and Visualization of Vesicles in the Endo-Lysosomal Pathway with Surface-Enhanced Raman Spectroscopy and Chemometrics,” ACS Nano 10(1), 307–316 (2016).
    [Crossref] [PubMed]
  13. D. C. Rodrigues, M. L. de Souza, K. S. Souza, D. P. dos Santos, G. F. S. Andrade, and M. L. A. Temperini, “Critical assessment of enhancement factor measurements in surface-enhanced Raman scattering on different substrates,” Phys. Chem. Chem. Phys. 17(33), 21294–21301 (2015).
    [Crossref] [PubMed]
  14. F. Latorre, S. Kupfer, T. Bocklitz, D. Kinzel, S. Trautmann, S. Gräfe, and V. Deckert, “Spatial resolution of tip-enhanced Raman spectroscopy - DFT assessment of the chemical effect,” Nanoscale 8(19), 10229–10239 (2016).
    [Crossref] [PubMed]
  15. F. I. Baida, D. Van Labeke, and Y. Pagani, “Body-of-revolution FDTD simulations of improved tip performance for scanning near-field optical microscopes,” Opt. Commun. 225(4-6), 241–252 (2003).
    [Crossref]
  16. G. Louarn, S. Taleb, and S. Cuenot, “Prediction of the Transmitted Light Through a Nano-Aperture of SNOM Probes,” in Proceedings of the COMSOL Users Conference Paris (2006).
  17. A. S. Lapchuk, S. K. Yun, V. Yurlov, J. H. Song, S. An, and I. Nevirkovets, “Numerical simulation of characteristics of near-field microstrip probe having pyramidal shape,” J. Opt. Soc. Am. A 24(8), 2407–2417 (2007).
    [Crossref] [PubMed]
  18. A. Drezet, M. J. Nasse, S. Huant, and J. C. Woehl, “The optical near-field of an aperture tip,” Europhys. Lett. 66(1), 41–47 (2004).
    [Crossref]
  19. R. Müller and C. Lienau, “Propagation of femtosecond optical pulses through uncoated and metal-coated near-field fiber probes,” Appl. Phys. Lett. 76(23), 3367–3369 (2000).
    [Crossref]
  20. T. J. Antosiewicz and T. Szoplik, “Description of near- and far-field light emitted from a metal-coated tapered fiber tip,” Opt. Express 15(12), 7845–7852 (2007).
    [Crossref] [PubMed]
  21. M. I. Bakunov, S. B. Bodrov, and M. Hangyo, “Intermode conversion in a near-field optical fiber probe,” J. Appl. Phys. 96(4), 1775–1780 (2004).
    [Crossref]
  22. L. Liu and S. He, “Design of metal-cladded near-field fiber probes with a dispersive body-of-revolution finite-difference time-domain method,” Appl. Opt. 44(17), 3429–3437 (2005).
    [Crossref] [PubMed]
  23. A. Drezet, J. C. Woehl, and S. Huant, “Diffraction by a small aperture in conical geometry: Application to metal-coated tips used in near-field scanning optical microscopy,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(44 Pt 2B), 046611 (2002).
    [Crossref] [PubMed]
  24. Y. Zhang, A. Dhawan, and T. Vo-Dinh, “Design and Fabrication of Fiber-Optic Nanoprobes for Optical Sensing,” Nanoscale Res. Lett. 6(1), 18 (2011).
    [PubMed]
  25. T. J. Antosiewicz, P. Wróbel, and T. Szoplik, “Nanofocusing of radially polarized light with dielectric-metal-dielectric probe,” Opt. Express 17(11), 9191–9196 (2009).
    [Crossref] [PubMed]
  26. A. Bouhelier, J. Renger, M. R. Beversluis, and L. Novotny, “Plasmon-Coupled Tip-enhanced Near-Field Optical Microscopy,” J. Microsc. 210(3), 220–224 (2003).
    [Crossref] [PubMed]
  27. N. A. Janunts, K. S. Baghdasaryan, K. Nerkararyan, and B. Hecht, “Excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip,” Opt. Commun. 253(1-3), 118–124 (2005).
    [Crossref]
  28. W. Ding, S. R. Andrews, and S. A. Maier, “Internal excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip,” Phys. Rev. A 75(6), 063822 (2007).
    [Crossref]
  29. K. Kato, A. Ono, W. Inami, and Y. Kawata, “Plasmonic nanofocusing using a metal-coated axicon prism,” Opt. Express 18(13), 13580–13585 (2010).
    [Crossref] [PubMed]
  30. E. A. Vitol, Z. Orynbayeva, M. J. Bouchard, J. Azizkhan-Clifford, G. Friedman, and Y. Gogotsi, “In Situ Intracellular Spectroscopy with Surface Enhanced Raman Spectroscopy (SERS)-Enabled Nanopipettes,” ACS Nano 3(11), 3529–3536 (2009).
    [Crossref] [PubMed]
  31. Y. B. Tan, J. M. Zou, and N. Gu, “Preparation of Stabilizer-Free Silver Nanoparticle-Coated Micropipettes as Surface-Enhanced Raman Scattering Substrate for Single Cell Detection,” Nanoscale Res. Lett. 10(1), 417 (2015).
    [Crossref] [PubMed]
  32. J. P. Scaffidi, M. K. Gregas, V. Seewaldt, and T. Vo-Dinh, “SERS-based plasmonic nanobiosensing in single living cells,” Anal. Bioanal. Chem. 393(4), 1135–1141 (2009).
    [Crossref] [PubMed]
  33. Z. Chen, Z. Dai, N. Chen, S. Liu, F. Pang, B. Lu, and T. Wang, “Gold Nanoparticles-Modified Tapered Fiber Nanoprobe for Remote SERS Detection,” IEEE Photonics Technol. Lett. 26(8), 777–780 (2014).
    [Crossref]
  34. J. Cao and Q. Mao, “Tapered Optical Fiber Probe with a Double–substrate Strategy for Surface–enhanced Raman Scattering Detection,” ChemistrySelect 1(8), 1784–1788 (2016).
    [Crossref]
  35. D. Jin, Y. Bai, H. Chen, S. Liu, N. Chen, J. Huang, S. Huang, and Z. Chen, “SERS detection of expired tetracycline hydrochloride with an optical fiber nano-probe,” Anal. Methods 7(4), 1307–1312 (2015).
    [Crossref]
  36. J. Cao and J. Wang, “Development of Ag nanopolyhedra based fiber-optic probes for high performance SERS detection,” New J. Chem. 39(4), 2421–2424 (2015).
    [Crossref]
  37. W. Xu, Z. Chen, N. Chen, H. Zhang, S. Liu, X. Hu, J. Wen, and T. Wang, “SERS Taper-Fiber Nanoprobe Modified by Gold Nanoparticles Wrapped with Ultrathin Alumina Film by Atomic Layer Deposition,” Sensors (Basel) 17(3), 467 (2017).
    [Crossref] [PubMed]
  38. P. Savaliya and A. Dhawan, “Tapered fiber nanoprobes: plasmonic nanopillars on tapered optical fiber tips for large EM enhancement,” Opt. Lett. 41(19), 4582–4585 (2016).
    [Crossref] [PubMed]
  39. J. D. Driskell, R. J. Lipert, and M. D. Porter, “Labeled Gold Nanoparticles Immobilized at Smooth Metallic Substrates: Systematic Investigation of Surface Plasmon Resonance and Surface-Enhanced Raman Scattering,” J. Phys. Chem. B 110(35), 17444–17451 (2006).
    [Crossref] [PubMed]
  40. C. E. Talley, L. Jusinski, C. W. Hollars, S. M. Lane, and T. Huser, “Intracellular pH Sensors Based on Surface-Enhanced Raman Scattering,” Anal. Chem. 76(23), 7064–7068 (2004).
    [Crossref] [PubMed]
  41. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2011).
  42. X. Ni, Z. Liu, and A. V. Kildishev, “PhotonicsDB: Optical Constants” (2010), http://nanohub.org/resources/PhotonicsDB .
  43. T. Hutter, S. R. Elliott, and S. Mahajan, “Interaction of metallic nanoparticles with dielectric substrates: effect of optical constants,” Nanotechnology 24(3), 035201 (2013).
    [Crossref] [PubMed]

2017 (1)

W. Xu, Z. Chen, N. Chen, H. Zhang, S. Liu, X. Hu, J. Wen, and T. Wang, “SERS Taper-Fiber Nanoprobe Modified by Gold Nanoparticles Wrapped with Ultrathin Alumina Film by Atomic Layer Deposition,” Sensors (Basel) 17(3), 467 (2017).
[Crossref] [PubMed]

2016 (6)

J. Cao and Q. Mao, “Tapered Optical Fiber Probe with a Double–substrate Strategy for Surface–enhanced Raman Scattering Detection,” ChemistrySelect 1(8), 1784–1788 (2016).
[Crossref]

R. Boitor, F. Sinjab, S. Strohbuecker, V. Sottile, and I. Notingher, “Towards quantitative molecular mapping of cells by Raman microscopy: using AFM for decoupling molecular concentration and cell topography,” Faraday Discuss. 187, 199–212 (2016).
[Crossref] [PubMed]

J. Taylor, A. Huefner, L. Li, J. Wingfield, and S. Mahajan, “Nanoparticles and intracellular applications of surface-enhanced Raman spectroscopy,” Analyst (Lond.) 141(17), 5037–5055 (2016).
[Crossref] [PubMed]

A. Huefner, W. L. Kuan, K. H. Müller, J. N. Skepper, R. A. Barker, and S. Mahajan, “Characterization and Visualization of Vesicles in the Endo-Lysosomal Pathway with Surface-Enhanced Raman Spectroscopy and Chemometrics,” ACS Nano 10(1), 307–316 (2016).
[Crossref] [PubMed]

F. Latorre, S. Kupfer, T. Bocklitz, D. Kinzel, S. Trautmann, S. Gräfe, and V. Deckert, “Spatial resolution of tip-enhanced Raman spectroscopy - DFT assessment of the chemical effect,” Nanoscale 8(19), 10229–10239 (2016).
[Crossref] [PubMed]

P. Savaliya and A. Dhawan, “Tapered fiber nanoprobes: plasmonic nanopillars on tapered optical fiber tips for large EM enhancement,” Opt. Lett. 41(19), 4582–4585 (2016).
[Crossref] [PubMed]

2015 (4)

D. C. Rodrigues, M. L. de Souza, K. S. Souza, D. P. dos Santos, G. F. S. Andrade, and M. L. A. Temperini, “Critical assessment of enhancement factor measurements in surface-enhanced Raman scattering on different substrates,” Phys. Chem. Chem. Phys. 17(33), 21294–21301 (2015).
[Crossref] [PubMed]

D. Jin, Y. Bai, H. Chen, S. Liu, N. Chen, J. Huang, S. Huang, and Z. Chen, “SERS detection of expired tetracycline hydrochloride with an optical fiber nano-probe,” Anal. Methods 7(4), 1307–1312 (2015).
[Crossref]

J. Cao and J. Wang, “Development of Ag nanopolyhedra based fiber-optic probes for high performance SERS detection,” New J. Chem. 39(4), 2421–2424 (2015).
[Crossref]

Y. B. Tan, J. M. Zou, and N. Gu, “Preparation of Stabilizer-Free Silver Nanoparticle-Coated Micropipettes as Surface-Enhanced Raman Scattering Substrate for Single Cell Detection,” Nanoscale Res. Lett. 10(1), 417 (2015).
[Crossref] [PubMed]

2014 (1)

Z. Chen, Z. Dai, N. Chen, S. Liu, F. Pang, B. Lu, and T. Wang, “Gold Nanoparticles-Modified Tapered Fiber Nanoprobe for Remote SERS Detection,” IEEE Photonics Technol. Lett. 26(8), 777–780 (2014).
[Crossref]

2013 (1)

T. Hutter, S. R. Elliott, and S. Mahajan, “Interaction of metallic nanoparticles with dielectric substrates: effect of optical constants,” Nanotechnology 24(3), 035201 (2013).
[Crossref] [PubMed]

2011 (1)

Y. Zhang, A. Dhawan, and T. Vo-Dinh, “Design and Fabrication of Fiber-Optic Nanoprobes for Optical Sensing,” Nanoscale Res. Lett. 6(1), 18 (2011).
[PubMed]

2010 (3)

J. Kneipp, H. Kneipp, B. Wittig, and K. Kneipp, “Novel optical nanosensors for probing and imaging live cells,” Nanomedicine (Lond.) 6(2), 214–226 (2010).
[Crossref] [PubMed]

K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

K. Kato, A. Ono, W. Inami, and Y. Kawata, “Plasmonic nanofocusing using a metal-coated axicon prism,” Opt. Express 18(13), 13580–13585 (2010).
[Crossref] [PubMed]

2009 (4)

T. J. Antosiewicz, P. Wróbel, and T. Szoplik, “Nanofocusing of radially polarized light with dielectric-metal-dielectric probe,” Opt. Express 17(11), 9191–9196 (2009).
[Crossref] [PubMed]

G. Kostovski, D. J. White, A. Mitchell, M. W. Austin, and P. R. Stoddart, “Nanoimprinted optical fibres: Biotemplated nanostructures for SERS sensing,” Biosens. Bioelectron. 24(5), 1531–1535 (2009).
[Crossref] [PubMed]

J. P. Scaffidi, M. K. Gregas, V. Seewaldt, and T. Vo-Dinh, “SERS-based plasmonic nanobiosensing in single living cells,” Anal. Bioanal. Chem. 393(4), 1135–1141 (2009).
[Crossref] [PubMed]

E. A. Vitol, Z. Orynbayeva, M. J. Bouchard, J. Azizkhan-Clifford, G. Friedman, and Y. Gogotsi, “In Situ Intracellular Spectroscopy with Surface Enhanced Raman Spectroscopy (SERS)-Enabled Nanopipettes,” ACS Nano 3(11), 3529–3536 (2009).
[Crossref] [PubMed]

2007 (4)

W. Ding, S. R. Andrews, and S. A. Maier, “Internal excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip,” Phys. Rev. A 75(6), 063822 (2007).
[Crossref]

T. J. Antosiewicz and T. Szoplik, “Description of near- and far-field light emitted from a metal-coated tapered fiber tip,” Opt. Express 15(12), 7845–7852 (2007).
[Crossref] [PubMed]

A. S. Lapchuk, S. K. Yun, V. Yurlov, J. H. Song, S. An, and I. Nevirkovets, “Numerical simulation of characteristics of near-field microstrip probe having pyramidal shape,” J. Opt. Soc. Am. A 24(8), 2407–2417 (2007).
[Crossref] [PubMed]

D. J. White, A. P. Mazzolini, and P. R. Stoddart, “Fabrication of a range of SERS substrates on nanostructured multicore optical fibres,” J. Raman Spectrosc. 38(4), 377–382 (2007).
[Crossref]

2006 (2)

J. D. Driskell, R. J. Lipert, and M. D. Porter, “Labeled Gold Nanoparticles Immobilized at Smooth Metallic Substrates: Systematic Investigation of Surface Plasmon Resonance and Surface-Enhanced Raman Scattering,” J. Phys. Chem. B 110(35), 17444–17451 (2006).
[Crossref] [PubMed]

E. C. Le Ru, M. Meyer, and P. G. Etchegoin, “Proof of Single-Molecule Sensitivity in Surface Enhanced Raman Scattering (SERS) by Means of a Two-Analyte Technique,” J. Phys. Chem. B 110(4), 1944–1948 (2006).
[Crossref] [PubMed]

2005 (2)

N. A. Janunts, K. S. Baghdasaryan, K. Nerkararyan, and B. Hecht, “Excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip,” Opt. Commun. 253(1-3), 118–124 (2005).
[Crossref]

L. Liu and S. He, “Design of metal-cladded near-field fiber probes with a dispersive body-of-revolution finite-difference time-domain method,” Appl. Opt. 44(17), 3429–3437 (2005).
[Crossref] [PubMed]

2004 (3)

C. E. Talley, L. Jusinski, C. W. Hollars, S. M. Lane, and T. Huser, “Intracellular pH Sensors Based on Surface-Enhanced Raman Scattering,” Anal. Chem. 76(23), 7064–7068 (2004).
[Crossref] [PubMed]

A. Drezet, M. J. Nasse, S. Huant, and J. C. Woehl, “The optical near-field of an aperture tip,” Europhys. Lett. 66(1), 41–47 (2004).
[Crossref]

M. I. Bakunov, S. B. Bodrov, and M. Hangyo, “Intermode conversion in a near-field optical fiber probe,” J. Appl. Phys. 96(4), 1775–1780 (2004).
[Crossref]

2003 (3)

A. Bouhelier, J. Renger, M. R. Beversluis, and L. Novotny, “Plasmon-Coupled Tip-enhanced Near-Field Optical Microscopy,” J. Microsc. 210(3), 220–224 (2003).
[Crossref] [PubMed]

F. I. Baida, D. Van Labeke, and Y. Pagani, “Body-of-revolution FDTD simulations of improved tip performance for scanning near-field optical microscopes,” Opt. Commun. 225(4-6), 241–252 (2003).
[Crossref]

Y. C. Cao, R. Jin, J. M. Nam, C. S. Thaxton, and C. A. Mirkin, “Raman dye-labeled nanoparticle probes for proteins,” J. Am. Chem. Soc. 125(48), 14676–14677 (2003).
[Crossref] [PubMed]

2002 (2)

Y. C. Cao, R. Jin, and C. A. Mirkin, “Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection,” Science 297(5586), 1536–1540 (2002).
[Crossref] [PubMed]

A. Drezet, J. C. Woehl, and S. Huant, “Diffraction by a small aperture in conical geometry: Application to metal-coated tips used in near-field scanning optical microscopy,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(44 Pt 2B), 046611 (2002).
[Crossref] [PubMed]

2000 (1)

R. Müller and C. Lienau, “Propagation of femtosecond optical pulses through uncoated and metal-coated near-field fiber probes,” Appl. Phys. Lett. 76(23), 3367–3369 (2000).
[Crossref]

1997 (2)

S. Nie and S. R. Emory, “Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

An, S.

Andrade, G. F. S.

D. C. Rodrigues, M. L. de Souza, K. S. Souza, D. P. dos Santos, G. F. S. Andrade, and M. L. A. Temperini, “Critical assessment of enhancement factor measurements in surface-enhanced Raman scattering on different substrates,” Phys. Chem. Chem. Phys. 17(33), 21294–21301 (2015).
[Crossref] [PubMed]

Andrews, S. R.

W. Ding, S. R. Andrews, and S. A. Maier, “Internal excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip,” Phys. Rev. A 75(6), 063822 (2007).
[Crossref]

Antosiewicz, T. J.

Austin, M. W.

G. Kostovski, D. J. White, A. Mitchell, M. W. Austin, and P. R. Stoddart, “Nanoimprinted optical fibres: Biotemplated nanostructures for SERS sensing,” Biosens. Bioelectron. 24(5), 1531–1535 (2009).
[Crossref] [PubMed]

Azizkhan-Clifford, J.

E. A. Vitol, Z. Orynbayeva, M. J. Bouchard, J. Azizkhan-Clifford, G. Friedman, and Y. Gogotsi, “In Situ Intracellular Spectroscopy with Surface Enhanced Raman Spectroscopy (SERS)-Enabled Nanopipettes,” ACS Nano 3(11), 3529–3536 (2009).
[Crossref] [PubMed]

Baghdasaryan, K. S.

N. A. Janunts, K. S. Baghdasaryan, K. Nerkararyan, and B. Hecht, “Excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip,” Opt. Commun. 253(1-3), 118–124 (2005).
[Crossref]

Bai, Y.

D. Jin, Y. Bai, H. Chen, S. Liu, N. Chen, J. Huang, S. Huang, and Z. Chen, “SERS detection of expired tetracycline hydrochloride with an optical fiber nano-probe,” Anal. Methods 7(4), 1307–1312 (2015).
[Crossref]

Baida, F. I.

F. I. Baida, D. Van Labeke, and Y. Pagani, “Body-of-revolution FDTD simulations of improved tip performance for scanning near-field optical microscopes,” Opt. Commun. 225(4-6), 241–252 (2003).
[Crossref]

Bakunov, M. I.

M. I. Bakunov, S. B. Bodrov, and M. Hangyo, “Intermode conversion in a near-field optical fiber probe,” J. Appl. Phys. 96(4), 1775–1780 (2004).
[Crossref]

Barker, R. A.

A. Huefner, W. L. Kuan, K. H. Müller, J. N. Skepper, R. A. Barker, and S. Mahajan, “Characterization and Visualization of Vesicles in the Endo-Lysosomal Pathway with Surface-Enhanced Raman Spectroscopy and Chemometrics,” ACS Nano 10(1), 307–316 (2016).
[Crossref] [PubMed]

Beversluis, M. R.

A. Bouhelier, J. Renger, M. R. Beversluis, and L. Novotny, “Plasmon-Coupled Tip-enhanced Near-Field Optical Microscopy,” J. Microsc. 210(3), 220–224 (2003).
[Crossref] [PubMed]

Bocklitz, T.

F. Latorre, S. Kupfer, T. Bocklitz, D. Kinzel, S. Trautmann, S. Gräfe, and V. Deckert, “Spatial resolution of tip-enhanced Raman spectroscopy - DFT assessment of the chemical effect,” Nanoscale 8(19), 10229–10239 (2016).
[Crossref] [PubMed]

Bodrov, S. B.

M. I. Bakunov, S. B. Bodrov, and M. Hangyo, “Intermode conversion in a near-field optical fiber probe,” J. Appl. Phys. 96(4), 1775–1780 (2004).
[Crossref]

Boitor, R.

R. Boitor, F. Sinjab, S. Strohbuecker, V. Sottile, and I. Notingher, “Towards quantitative molecular mapping of cells by Raman microscopy: using AFM for decoupling molecular concentration and cell topography,” Faraday Discuss. 187, 199–212 (2016).
[Crossref] [PubMed]

Bouchard, M. J.

E. A. Vitol, Z. Orynbayeva, M. J. Bouchard, J. Azizkhan-Clifford, G. Friedman, and Y. Gogotsi, “In Situ Intracellular Spectroscopy with Surface Enhanced Raman Spectroscopy (SERS)-Enabled Nanopipettes,” ACS Nano 3(11), 3529–3536 (2009).
[Crossref] [PubMed]

Bouhelier, A.

A. Bouhelier, J. Renger, M. R. Beversluis, and L. Novotny, “Plasmon-Coupled Tip-enhanced Near-Field Optical Microscopy,” J. Microsc. 210(3), 220–224 (2003).
[Crossref] [PubMed]

Bozhevolnyi, S. I.

K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

Cao, J.

J. Cao and Q. Mao, “Tapered Optical Fiber Probe with a Double–substrate Strategy for Surface–enhanced Raman Scattering Detection,” ChemistrySelect 1(8), 1784–1788 (2016).
[Crossref]

J. Cao and J. Wang, “Development of Ag nanopolyhedra based fiber-optic probes for high performance SERS detection,” New J. Chem. 39(4), 2421–2424 (2015).
[Crossref]

Cao, Y. C.

Y. C. Cao, R. Jin, J. M. Nam, C. S. Thaxton, and C. A. Mirkin, “Raman dye-labeled nanoparticle probes for proteins,” J. Am. Chem. Soc. 125(48), 14676–14677 (2003).
[Crossref] [PubMed]

Y. C. Cao, R. Jin, and C. A. Mirkin, “Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection,” Science 297(5586), 1536–1540 (2002).
[Crossref] [PubMed]

Chen, H.

D. Jin, Y. Bai, H. Chen, S. Liu, N. Chen, J. Huang, S. Huang, and Z. Chen, “SERS detection of expired tetracycline hydrochloride with an optical fiber nano-probe,” Anal. Methods 7(4), 1307–1312 (2015).
[Crossref]

Chen, N.

W. Xu, Z. Chen, N. Chen, H. Zhang, S. Liu, X. Hu, J. Wen, and T. Wang, “SERS Taper-Fiber Nanoprobe Modified by Gold Nanoparticles Wrapped with Ultrathin Alumina Film by Atomic Layer Deposition,” Sensors (Basel) 17(3), 467 (2017).
[Crossref] [PubMed]

D. Jin, Y. Bai, H. Chen, S. Liu, N. Chen, J. Huang, S. Huang, and Z. Chen, “SERS detection of expired tetracycline hydrochloride with an optical fiber nano-probe,” Anal. Methods 7(4), 1307–1312 (2015).
[Crossref]

Z. Chen, Z. Dai, N. Chen, S. Liu, F. Pang, B. Lu, and T. Wang, “Gold Nanoparticles-Modified Tapered Fiber Nanoprobe for Remote SERS Detection,” IEEE Photonics Technol. Lett. 26(8), 777–780 (2014).
[Crossref]

Chen, Z.

W. Xu, Z. Chen, N. Chen, H. Zhang, S. Liu, X. Hu, J. Wen, and T. Wang, “SERS Taper-Fiber Nanoprobe Modified by Gold Nanoparticles Wrapped with Ultrathin Alumina Film by Atomic Layer Deposition,” Sensors (Basel) 17(3), 467 (2017).
[Crossref] [PubMed]

D. Jin, Y. Bai, H. Chen, S. Liu, N. Chen, J. Huang, S. Huang, and Z. Chen, “SERS detection of expired tetracycline hydrochloride with an optical fiber nano-probe,” Anal. Methods 7(4), 1307–1312 (2015).
[Crossref]

Z. Chen, Z. Dai, N. Chen, S. Liu, F. Pang, B. Lu, and T. Wang, “Gold Nanoparticles-Modified Tapered Fiber Nanoprobe for Remote SERS Detection,” IEEE Photonics Technol. Lett. 26(8), 777–780 (2014).
[Crossref]

Cuenot, S.

G. Louarn, S. Taleb, and S. Cuenot, “Prediction of the Transmitted Light Through a Nano-Aperture of SNOM Probes,” in Proceedings of the COMSOL Users Conference Paris (2006).

Dai, Z.

Z. Chen, Z. Dai, N. Chen, S. Liu, F. Pang, B. Lu, and T. Wang, “Gold Nanoparticles-Modified Tapered Fiber Nanoprobe for Remote SERS Detection,” IEEE Photonics Technol. Lett. 26(8), 777–780 (2014).
[Crossref]

Dasari, R. R.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

de Souza, M. L.

D. C. Rodrigues, M. L. de Souza, K. S. Souza, D. P. dos Santos, G. F. S. Andrade, and M. L. A. Temperini, “Critical assessment of enhancement factor measurements in surface-enhanced Raman scattering on different substrates,” Phys. Chem. Chem. Phys. 17(33), 21294–21301 (2015).
[Crossref] [PubMed]

Deckert, V.

F. Latorre, S. Kupfer, T. Bocklitz, D. Kinzel, S. Trautmann, S. Gräfe, and V. Deckert, “Spatial resolution of tip-enhanced Raman spectroscopy - DFT assessment of the chemical effect,” Nanoscale 8(19), 10229–10239 (2016).
[Crossref] [PubMed]

Dhawan, A.

P. Savaliya and A. Dhawan, “Tapered fiber nanoprobes: plasmonic nanopillars on tapered optical fiber tips for large EM enhancement,” Opt. Lett. 41(19), 4582–4585 (2016).
[Crossref] [PubMed]

Y. Zhang, A. Dhawan, and T. Vo-Dinh, “Design and Fabrication of Fiber-Optic Nanoprobes for Optical Sensing,” Nanoscale Res. Lett. 6(1), 18 (2011).
[PubMed]

Ding, W.

W. Ding, S. R. Andrews, and S. A. Maier, “Internal excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip,” Phys. Rev. A 75(6), 063822 (2007).
[Crossref]

dos Santos, D. P.

D. C. Rodrigues, M. L. de Souza, K. S. Souza, D. P. dos Santos, G. F. S. Andrade, and M. L. A. Temperini, “Critical assessment of enhancement factor measurements in surface-enhanced Raman scattering on different substrates,” Phys. Chem. Chem. Phys. 17(33), 21294–21301 (2015).
[Crossref] [PubMed]

Drezet, A.

A. Drezet, M. J. Nasse, S. Huant, and J. C. Woehl, “The optical near-field of an aperture tip,” Europhys. Lett. 66(1), 41–47 (2004).
[Crossref]

A. Drezet, J. C. Woehl, and S. Huant, “Diffraction by a small aperture in conical geometry: Application to metal-coated tips used in near-field scanning optical microscopy,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(44 Pt 2B), 046611 (2002).
[Crossref] [PubMed]

Driskell, J. D.

J. D. Driskell, R. J. Lipert, and M. D. Porter, “Labeled Gold Nanoparticles Immobilized at Smooth Metallic Substrates: Systematic Investigation of Surface Plasmon Resonance and Surface-Enhanced Raman Scattering,” J. Phys. Chem. B 110(35), 17444–17451 (2006).
[Crossref] [PubMed]

Elliott, S. R.

T. Hutter, S. R. Elliott, and S. Mahajan, “Interaction of metallic nanoparticles with dielectric substrates: effect of optical constants,” Nanotechnology 24(3), 035201 (2013).
[Crossref] [PubMed]

Emory, S. R.

S. Nie and S. R. Emory, “Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

Etchegoin, P. G.

E. C. Le Ru, M. Meyer, and P. G. Etchegoin, “Proof of Single-Molecule Sensitivity in Surface Enhanced Raman Scattering (SERS) by Means of a Two-Analyte Technique,” J. Phys. Chem. B 110(4), 1944–1948 (2006).
[Crossref] [PubMed]

Feld, M. S.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Friedman, G.

E. A. Vitol, Z. Orynbayeva, M. J. Bouchard, J. Azizkhan-Clifford, G. Friedman, and Y. Gogotsi, “In Situ Intracellular Spectroscopy with Surface Enhanced Raman Spectroscopy (SERS)-Enabled Nanopipettes,” ACS Nano 3(11), 3529–3536 (2009).
[Crossref] [PubMed]

Gogotsi, Y.

E. A. Vitol, Z. Orynbayeva, M. J. Bouchard, J. Azizkhan-Clifford, G. Friedman, and Y. Gogotsi, “In Situ Intracellular Spectroscopy with Surface Enhanced Raman Spectroscopy (SERS)-Enabled Nanopipettes,” ACS Nano 3(11), 3529–3536 (2009).
[Crossref] [PubMed]

Gräfe, S.

F. Latorre, S. Kupfer, T. Bocklitz, D. Kinzel, S. Trautmann, S. Gräfe, and V. Deckert, “Spatial resolution of tip-enhanced Raman spectroscopy - DFT assessment of the chemical effect,” Nanoscale 8(19), 10229–10239 (2016).
[Crossref] [PubMed]

Gramotnev, K.

K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

Gregas, M. K.

J. P. Scaffidi, M. K. Gregas, V. Seewaldt, and T. Vo-Dinh, “SERS-based plasmonic nanobiosensing in single living cells,” Anal. Bioanal. Chem. 393(4), 1135–1141 (2009).
[Crossref] [PubMed]

Gu, N.

Y. B. Tan, J. M. Zou, and N. Gu, “Preparation of Stabilizer-Free Silver Nanoparticle-Coated Micropipettes as Surface-Enhanced Raman Scattering Substrate for Single Cell Detection,” Nanoscale Res. Lett. 10(1), 417 (2015).
[Crossref] [PubMed]

Hangyo, M.

M. I. Bakunov, S. B. Bodrov, and M. Hangyo, “Intermode conversion in a near-field optical fiber probe,” J. Appl. Phys. 96(4), 1775–1780 (2004).
[Crossref]

He, S.

Hecht, B.

N. A. Janunts, K. S. Baghdasaryan, K. Nerkararyan, and B. Hecht, “Excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip,” Opt. Commun. 253(1-3), 118–124 (2005).
[Crossref]

Hollars, C. W.

C. E. Talley, L. Jusinski, C. W. Hollars, S. M. Lane, and T. Huser, “Intracellular pH Sensors Based on Surface-Enhanced Raman Scattering,” Anal. Chem. 76(23), 7064–7068 (2004).
[Crossref] [PubMed]

Hu, X.

W. Xu, Z. Chen, N. Chen, H. Zhang, S. Liu, X. Hu, J. Wen, and T. Wang, “SERS Taper-Fiber Nanoprobe Modified by Gold Nanoparticles Wrapped with Ultrathin Alumina Film by Atomic Layer Deposition,” Sensors (Basel) 17(3), 467 (2017).
[Crossref] [PubMed]

Huang, J.

D. Jin, Y. Bai, H. Chen, S. Liu, N. Chen, J. Huang, S. Huang, and Z. Chen, “SERS detection of expired tetracycline hydrochloride with an optical fiber nano-probe,” Anal. Methods 7(4), 1307–1312 (2015).
[Crossref]

Huang, S.

D. Jin, Y. Bai, H. Chen, S. Liu, N. Chen, J. Huang, S. Huang, and Z. Chen, “SERS detection of expired tetracycline hydrochloride with an optical fiber nano-probe,” Anal. Methods 7(4), 1307–1312 (2015).
[Crossref]

Huant, S.

A. Drezet, M. J. Nasse, S. Huant, and J. C. Woehl, “The optical near-field of an aperture tip,” Europhys. Lett. 66(1), 41–47 (2004).
[Crossref]

A. Drezet, J. C. Woehl, and S. Huant, “Diffraction by a small aperture in conical geometry: Application to metal-coated tips used in near-field scanning optical microscopy,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(44 Pt 2B), 046611 (2002).
[Crossref] [PubMed]

Huefner, A.

J. Taylor, A. Huefner, L. Li, J. Wingfield, and S. Mahajan, “Nanoparticles and intracellular applications of surface-enhanced Raman spectroscopy,” Analyst (Lond.) 141(17), 5037–5055 (2016).
[Crossref] [PubMed]

A. Huefner, W. L. Kuan, K. H. Müller, J. N. Skepper, R. A. Barker, and S. Mahajan, “Characterization and Visualization of Vesicles in the Endo-Lysosomal Pathway with Surface-Enhanced Raman Spectroscopy and Chemometrics,” ACS Nano 10(1), 307–316 (2016).
[Crossref] [PubMed]

Huser, T.

C. E. Talley, L. Jusinski, C. W. Hollars, S. M. Lane, and T. Huser, “Intracellular pH Sensors Based on Surface-Enhanced Raman Scattering,” Anal. Chem. 76(23), 7064–7068 (2004).
[Crossref] [PubMed]

Hutter, T.

T. Hutter, S. R. Elliott, and S. Mahajan, “Interaction of metallic nanoparticles with dielectric substrates: effect of optical constants,” Nanotechnology 24(3), 035201 (2013).
[Crossref] [PubMed]

Inami, W.

Itzkan, I.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Janunts, N. A.

N. A. Janunts, K. S. Baghdasaryan, K. Nerkararyan, and B. Hecht, “Excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip,” Opt. Commun. 253(1-3), 118–124 (2005).
[Crossref]

Jin, D.

D. Jin, Y. Bai, H. Chen, S. Liu, N. Chen, J. Huang, S. Huang, and Z. Chen, “SERS detection of expired tetracycline hydrochloride with an optical fiber nano-probe,” Anal. Methods 7(4), 1307–1312 (2015).
[Crossref]

Jin, R.

Y. C. Cao, R. Jin, J. M. Nam, C. S. Thaxton, and C. A. Mirkin, “Raman dye-labeled nanoparticle probes for proteins,” J. Am. Chem. Soc. 125(48), 14676–14677 (2003).
[Crossref] [PubMed]

Y. C. Cao, R. Jin, and C. A. Mirkin, “Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection,” Science 297(5586), 1536–1540 (2002).
[Crossref] [PubMed]

Jusinski, L.

C. E. Talley, L. Jusinski, C. W. Hollars, S. M. Lane, and T. Huser, “Intracellular pH Sensors Based on Surface-Enhanced Raman Scattering,” Anal. Chem. 76(23), 7064–7068 (2004).
[Crossref] [PubMed]

Kato, K.

Kawata, Y.

Kinzel, D.

F. Latorre, S. Kupfer, T. Bocklitz, D. Kinzel, S. Trautmann, S. Gräfe, and V. Deckert, “Spatial resolution of tip-enhanced Raman spectroscopy - DFT assessment of the chemical effect,” Nanoscale 8(19), 10229–10239 (2016).
[Crossref] [PubMed]

Kneipp, H.

J. Kneipp, H. Kneipp, B. Wittig, and K. Kneipp, “Novel optical nanosensors for probing and imaging live cells,” Nanomedicine (Lond.) 6(2), 214–226 (2010).
[Crossref] [PubMed]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Kneipp, J.

J. Kneipp, H. Kneipp, B. Wittig, and K. Kneipp, “Novel optical nanosensors for probing and imaging live cells,” Nanomedicine (Lond.) 6(2), 214–226 (2010).
[Crossref] [PubMed]

Kneipp, K.

J. Kneipp, H. Kneipp, B. Wittig, and K. Kneipp, “Novel optical nanosensors for probing and imaging live cells,” Nanomedicine (Lond.) 6(2), 214–226 (2010).
[Crossref] [PubMed]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Kostovski, G.

G. Kostovski, D. J. White, A. Mitchell, M. W. Austin, and P. R. Stoddart, “Nanoimprinted optical fibres: Biotemplated nanostructures for SERS sensing,” Biosens. Bioelectron. 24(5), 1531–1535 (2009).
[Crossref] [PubMed]

Kuan, W. L.

A. Huefner, W. L. Kuan, K. H. Müller, J. N. Skepper, R. A. Barker, and S. Mahajan, “Characterization and Visualization of Vesicles in the Endo-Lysosomal Pathway with Surface-Enhanced Raman Spectroscopy and Chemometrics,” ACS Nano 10(1), 307–316 (2016).
[Crossref] [PubMed]

Kupfer, S.

F. Latorre, S. Kupfer, T. Bocklitz, D. Kinzel, S. Trautmann, S. Gräfe, and V. Deckert, “Spatial resolution of tip-enhanced Raman spectroscopy - DFT assessment of the chemical effect,” Nanoscale 8(19), 10229–10239 (2016).
[Crossref] [PubMed]

Lane, S. M.

C. E. Talley, L. Jusinski, C. W. Hollars, S. M. Lane, and T. Huser, “Intracellular pH Sensors Based on Surface-Enhanced Raman Scattering,” Anal. Chem. 76(23), 7064–7068 (2004).
[Crossref] [PubMed]

Lapchuk, A. S.

Latorre, F.

F. Latorre, S. Kupfer, T. Bocklitz, D. Kinzel, S. Trautmann, S. Gräfe, and V. Deckert, “Spatial resolution of tip-enhanced Raman spectroscopy - DFT assessment of the chemical effect,” Nanoscale 8(19), 10229–10239 (2016).
[Crossref] [PubMed]

Le Ru, E. C.

E. C. Le Ru, M. Meyer, and P. G. Etchegoin, “Proof of Single-Molecule Sensitivity in Surface Enhanced Raman Scattering (SERS) by Means of a Two-Analyte Technique,” J. Phys. Chem. B 110(4), 1944–1948 (2006).
[Crossref] [PubMed]

Li, L.

J. Taylor, A. Huefner, L. Li, J. Wingfield, and S. Mahajan, “Nanoparticles and intracellular applications of surface-enhanced Raman spectroscopy,” Analyst (Lond.) 141(17), 5037–5055 (2016).
[Crossref] [PubMed]

Lienau, C.

R. Müller and C. Lienau, “Propagation of femtosecond optical pulses through uncoated and metal-coated near-field fiber probes,” Appl. Phys. Lett. 76(23), 3367–3369 (2000).
[Crossref]

Lipert, R. J.

J. D. Driskell, R. J. Lipert, and M. D. Porter, “Labeled Gold Nanoparticles Immobilized at Smooth Metallic Substrates: Systematic Investigation of Surface Plasmon Resonance and Surface-Enhanced Raman Scattering,” J. Phys. Chem. B 110(35), 17444–17451 (2006).
[Crossref] [PubMed]

Liu, L.

Liu, S.

W. Xu, Z. Chen, N. Chen, H. Zhang, S. Liu, X. Hu, J. Wen, and T. Wang, “SERS Taper-Fiber Nanoprobe Modified by Gold Nanoparticles Wrapped with Ultrathin Alumina Film by Atomic Layer Deposition,” Sensors (Basel) 17(3), 467 (2017).
[Crossref] [PubMed]

D. Jin, Y. Bai, H. Chen, S. Liu, N. Chen, J. Huang, S. Huang, and Z. Chen, “SERS detection of expired tetracycline hydrochloride with an optical fiber nano-probe,” Anal. Methods 7(4), 1307–1312 (2015).
[Crossref]

Z. Chen, Z. Dai, N. Chen, S. Liu, F. Pang, B. Lu, and T. Wang, “Gold Nanoparticles-Modified Tapered Fiber Nanoprobe for Remote SERS Detection,” IEEE Photonics Technol. Lett. 26(8), 777–780 (2014).
[Crossref]

Louarn, G.

G. Louarn, S. Taleb, and S. Cuenot, “Prediction of the Transmitted Light Through a Nano-Aperture of SNOM Probes,” in Proceedings of the COMSOL Users Conference Paris (2006).

Lu, B.

Z. Chen, Z. Dai, N. Chen, S. Liu, F. Pang, B. Lu, and T. Wang, “Gold Nanoparticles-Modified Tapered Fiber Nanoprobe for Remote SERS Detection,” IEEE Photonics Technol. Lett. 26(8), 777–780 (2014).
[Crossref]

Mahajan, S.

A. Huefner, W. L. Kuan, K. H. Müller, J. N. Skepper, R. A. Barker, and S. Mahajan, “Characterization and Visualization of Vesicles in the Endo-Lysosomal Pathway with Surface-Enhanced Raman Spectroscopy and Chemometrics,” ACS Nano 10(1), 307–316 (2016).
[Crossref] [PubMed]

J. Taylor, A. Huefner, L. Li, J. Wingfield, and S. Mahajan, “Nanoparticles and intracellular applications of surface-enhanced Raman spectroscopy,” Analyst (Lond.) 141(17), 5037–5055 (2016).
[Crossref] [PubMed]

T. Hutter, S. R. Elliott, and S. Mahajan, “Interaction of metallic nanoparticles with dielectric substrates: effect of optical constants,” Nanotechnology 24(3), 035201 (2013).
[Crossref] [PubMed]

Maier, S. A.

W. Ding, S. R. Andrews, and S. A. Maier, “Internal excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip,” Phys. Rev. A 75(6), 063822 (2007).
[Crossref]

Mao, Q.

J. Cao and Q. Mao, “Tapered Optical Fiber Probe with a Double–substrate Strategy for Surface–enhanced Raman Scattering Detection,” ChemistrySelect 1(8), 1784–1788 (2016).
[Crossref]

Mazzolini, A. P.

D. J. White, A. P. Mazzolini, and P. R. Stoddart, “Fabrication of a range of SERS substrates on nanostructured multicore optical fibres,” J. Raman Spectrosc. 38(4), 377–382 (2007).
[Crossref]

Meyer, M.

E. C. Le Ru, M. Meyer, and P. G. Etchegoin, “Proof of Single-Molecule Sensitivity in Surface Enhanced Raman Scattering (SERS) by Means of a Two-Analyte Technique,” J. Phys. Chem. B 110(4), 1944–1948 (2006).
[Crossref] [PubMed]

Mirkin, C. A.

Y. C. Cao, R. Jin, J. M. Nam, C. S. Thaxton, and C. A. Mirkin, “Raman dye-labeled nanoparticle probes for proteins,” J. Am. Chem. Soc. 125(48), 14676–14677 (2003).
[Crossref] [PubMed]

Y. C. Cao, R. Jin, and C. A. Mirkin, “Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection,” Science 297(5586), 1536–1540 (2002).
[Crossref] [PubMed]

Mitchell, A.

G. Kostovski, D. J. White, A. Mitchell, M. W. Austin, and P. R. Stoddart, “Nanoimprinted optical fibres: Biotemplated nanostructures for SERS sensing,” Biosens. Bioelectron. 24(5), 1531–1535 (2009).
[Crossref] [PubMed]

Müller, K. H.

A. Huefner, W. L. Kuan, K. H. Müller, J. N. Skepper, R. A. Barker, and S. Mahajan, “Characterization and Visualization of Vesicles in the Endo-Lysosomal Pathway with Surface-Enhanced Raman Spectroscopy and Chemometrics,” ACS Nano 10(1), 307–316 (2016).
[Crossref] [PubMed]

Müller, R.

R. Müller and C. Lienau, “Propagation of femtosecond optical pulses through uncoated and metal-coated near-field fiber probes,” Appl. Phys. Lett. 76(23), 3367–3369 (2000).
[Crossref]

Nam, J. M.

Y. C. Cao, R. Jin, J. M. Nam, C. S. Thaxton, and C. A. Mirkin, “Raman dye-labeled nanoparticle probes for proteins,” J. Am. Chem. Soc. 125(48), 14676–14677 (2003).
[Crossref] [PubMed]

Nasse, M. J.

A. Drezet, M. J. Nasse, S. Huant, and J. C. Woehl, “The optical near-field of an aperture tip,” Europhys. Lett. 66(1), 41–47 (2004).
[Crossref]

Nerkararyan, K.

N. A. Janunts, K. S. Baghdasaryan, K. Nerkararyan, and B. Hecht, “Excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip,” Opt. Commun. 253(1-3), 118–124 (2005).
[Crossref]

Nevirkovets, I.

Nie, S.

S. Nie and S. R. Emory, “Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

Notingher, I.

R. Boitor, F. Sinjab, S. Strohbuecker, V. Sottile, and I. Notingher, “Towards quantitative molecular mapping of cells by Raman microscopy: using AFM for decoupling molecular concentration and cell topography,” Faraday Discuss. 187, 199–212 (2016).
[Crossref] [PubMed]

Novotny, L.

A. Bouhelier, J. Renger, M. R. Beversluis, and L. Novotny, “Plasmon-Coupled Tip-enhanced Near-Field Optical Microscopy,” J. Microsc. 210(3), 220–224 (2003).
[Crossref] [PubMed]

Ono, A.

Orynbayeva, Z.

E. A. Vitol, Z. Orynbayeva, M. J. Bouchard, J. Azizkhan-Clifford, G. Friedman, and Y. Gogotsi, “In Situ Intracellular Spectroscopy with Surface Enhanced Raman Spectroscopy (SERS)-Enabled Nanopipettes,” ACS Nano 3(11), 3529–3536 (2009).
[Crossref] [PubMed]

Pagani, Y.

F. I. Baida, D. Van Labeke, and Y. Pagani, “Body-of-revolution FDTD simulations of improved tip performance for scanning near-field optical microscopes,” Opt. Commun. 225(4-6), 241–252 (2003).
[Crossref]

Pang, F.

Z. Chen, Z. Dai, N. Chen, S. Liu, F. Pang, B. Lu, and T. Wang, “Gold Nanoparticles-Modified Tapered Fiber Nanoprobe for Remote SERS Detection,” IEEE Photonics Technol. Lett. 26(8), 777–780 (2014).
[Crossref]

Perelman, L. T.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Porter, M. D.

J. D. Driskell, R. J. Lipert, and M. D. Porter, “Labeled Gold Nanoparticles Immobilized at Smooth Metallic Substrates: Systematic Investigation of Surface Plasmon Resonance and Surface-Enhanced Raman Scattering,” J. Phys. Chem. B 110(35), 17444–17451 (2006).
[Crossref] [PubMed]

Renger, J.

A. Bouhelier, J. Renger, M. R. Beversluis, and L. Novotny, “Plasmon-Coupled Tip-enhanced Near-Field Optical Microscopy,” J. Microsc. 210(3), 220–224 (2003).
[Crossref] [PubMed]

Rodrigues, D. C.

D. C. Rodrigues, M. L. de Souza, K. S. Souza, D. P. dos Santos, G. F. S. Andrade, and M. L. A. Temperini, “Critical assessment of enhancement factor measurements in surface-enhanced Raman scattering on different substrates,” Phys. Chem. Chem. Phys. 17(33), 21294–21301 (2015).
[Crossref] [PubMed]

Savaliya, P.

Scaffidi, J. P.

J. P. Scaffidi, M. K. Gregas, V. Seewaldt, and T. Vo-Dinh, “SERS-based plasmonic nanobiosensing in single living cells,” Anal. Bioanal. Chem. 393(4), 1135–1141 (2009).
[Crossref] [PubMed]

Seewaldt, V.

J. P. Scaffidi, M. K. Gregas, V. Seewaldt, and T. Vo-Dinh, “SERS-based plasmonic nanobiosensing in single living cells,” Anal. Bioanal. Chem. 393(4), 1135–1141 (2009).
[Crossref] [PubMed]

Sinjab, F.

R. Boitor, F. Sinjab, S. Strohbuecker, V. Sottile, and I. Notingher, “Towards quantitative molecular mapping of cells by Raman microscopy: using AFM for decoupling molecular concentration and cell topography,” Faraday Discuss. 187, 199–212 (2016).
[Crossref] [PubMed]

Skepper, J. N.

A. Huefner, W. L. Kuan, K. H. Müller, J. N. Skepper, R. A. Barker, and S. Mahajan, “Characterization and Visualization of Vesicles in the Endo-Lysosomal Pathway with Surface-Enhanced Raman Spectroscopy and Chemometrics,” ACS Nano 10(1), 307–316 (2016).
[Crossref] [PubMed]

Song, J. H.

Sottile, V.

R. Boitor, F. Sinjab, S. Strohbuecker, V. Sottile, and I. Notingher, “Towards quantitative molecular mapping of cells by Raman microscopy: using AFM for decoupling molecular concentration and cell topography,” Faraday Discuss. 187, 199–212 (2016).
[Crossref] [PubMed]

Souza, K. S.

D. C. Rodrigues, M. L. de Souza, K. S. Souza, D. P. dos Santos, G. F. S. Andrade, and M. L. A. Temperini, “Critical assessment of enhancement factor measurements in surface-enhanced Raman scattering on different substrates,” Phys. Chem. Chem. Phys. 17(33), 21294–21301 (2015).
[Crossref] [PubMed]

Stoddart, P. R.

G. Kostovski, D. J. White, A. Mitchell, M. W. Austin, and P. R. Stoddart, “Nanoimprinted optical fibres: Biotemplated nanostructures for SERS sensing,” Biosens. Bioelectron. 24(5), 1531–1535 (2009).
[Crossref] [PubMed]

D. J. White, A. P. Mazzolini, and P. R. Stoddart, “Fabrication of a range of SERS substrates on nanostructured multicore optical fibres,” J. Raman Spectrosc. 38(4), 377–382 (2007).
[Crossref]

Strohbuecker, S.

R. Boitor, F. Sinjab, S. Strohbuecker, V. Sottile, and I. Notingher, “Towards quantitative molecular mapping of cells by Raman microscopy: using AFM for decoupling molecular concentration and cell topography,” Faraday Discuss. 187, 199–212 (2016).
[Crossref] [PubMed]

Szoplik, T.

Taleb, S.

G. Louarn, S. Taleb, and S. Cuenot, “Prediction of the Transmitted Light Through a Nano-Aperture of SNOM Probes,” in Proceedings of the COMSOL Users Conference Paris (2006).

Talley, C. E.

C. E. Talley, L. Jusinski, C. W. Hollars, S. M. Lane, and T. Huser, “Intracellular pH Sensors Based on Surface-Enhanced Raman Scattering,” Anal. Chem. 76(23), 7064–7068 (2004).
[Crossref] [PubMed]

Tan, Y. B.

Y. B. Tan, J. M. Zou, and N. Gu, “Preparation of Stabilizer-Free Silver Nanoparticle-Coated Micropipettes as Surface-Enhanced Raman Scattering Substrate for Single Cell Detection,” Nanoscale Res. Lett. 10(1), 417 (2015).
[Crossref] [PubMed]

Taylor, J.

J. Taylor, A. Huefner, L. Li, J. Wingfield, and S. Mahajan, “Nanoparticles and intracellular applications of surface-enhanced Raman spectroscopy,” Analyst (Lond.) 141(17), 5037–5055 (2016).
[Crossref] [PubMed]

Temperini, M. L. A.

D. C. Rodrigues, M. L. de Souza, K. S. Souza, D. P. dos Santos, G. F. S. Andrade, and M. L. A. Temperini, “Critical assessment of enhancement factor measurements in surface-enhanced Raman scattering on different substrates,” Phys. Chem. Chem. Phys. 17(33), 21294–21301 (2015).
[Crossref] [PubMed]

Thaxton, C. S.

Y. C. Cao, R. Jin, J. M. Nam, C. S. Thaxton, and C. A. Mirkin, “Raman dye-labeled nanoparticle probes for proteins,” J. Am. Chem. Soc. 125(48), 14676–14677 (2003).
[Crossref] [PubMed]

Trautmann, S.

F. Latorre, S. Kupfer, T. Bocklitz, D. Kinzel, S. Trautmann, S. Gräfe, and V. Deckert, “Spatial resolution of tip-enhanced Raman spectroscopy - DFT assessment of the chemical effect,” Nanoscale 8(19), 10229–10239 (2016).
[Crossref] [PubMed]

Van Labeke, D.

F. I. Baida, D. Van Labeke, and Y. Pagani, “Body-of-revolution FDTD simulations of improved tip performance for scanning near-field optical microscopes,” Opt. Commun. 225(4-6), 241–252 (2003).
[Crossref]

Vitol, E. A.

E. A. Vitol, Z. Orynbayeva, M. J. Bouchard, J. Azizkhan-Clifford, G. Friedman, and Y. Gogotsi, “In Situ Intracellular Spectroscopy with Surface Enhanced Raman Spectroscopy (SERS)-Enabled Nanopipettes,” ACS Nano 3(11), 3529–3536 (2009).
[Crossref] [PubMed]

Vo-Dinh, T.

Y. Zhang, A. Dhawan, and T. Vo-Dinh, “Design and Fabrication of Fiber-Optic Nanoprobes for Optical Sensing,” Nanoscale Res. Lett. 6(1), 18 (2011).
[PubMed]

J. P. Scaffidi, M. K. Gregas, V. Seewaldt, and T. Vo-Dinh, “SERS-based plasmonic nanobiosensing in single living cells,” Anal. Bioanal. Chem. 393(4), 1135–1141 (2009).
[Crossref] [PubMed]

Wang, J.

J. Cao and J. Wang, “Development of Ag nanopolyhedra based fiber-optic probes for high performance SERS detection,” New J. Chem. 39(4), 2421–2424 (2015).
[Crossref]

Wang, T.

W. Xu, Z. Chen, N. Chen, H. Zhang, S. Liu, X. Hu, J. Wen, and T. Wang, “SERS Taper-Fiber Nanoprobe Modified by Gold Nanoparticles Wrapped with Ultrathin Alumina Film by Atomic Layer Deposition,” Sensors (Basel) 17(3), 467 (2017).
[Crossref] [PubMed]

Z. Chen, Z. Dai, N. Chen, S. Liu, F. Pang, B. Lu, and T. Wang, “Gold Nanoparticles-Modified Tapered Fiber Nanoprobe for Remote SERS Detection,” IEEE Photonics Technol. Lett. 26(8), 777–780 (2014).
[Crossref]

Wang, Y.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Wen, J.

W. Xu, Z. Chen, N. Chen, H. Zhang, S. Liu, X. Hu, J. Wen, and T. Wang, “SERS Taper-Fiber Nanoprobe Modified by Gold Nanoparticles Wrapped with Ultrathin Alumina Film by Atomic Layer Deposition,” Sensors (Basel) 17(3), 467 (2017).
[Crossref] [PubMed]

White, D. J.

G. Kostovski, D. J. White, A. Mitchell, M. W. Austin, and P. R. Stoddart, “Nanoimprinted optical fibres: Biotemplated nanostructures for SERS sensing,” Biosens. Bioelectron. 24(5), 1531–1535 (2009).
[Crossref] [PubMed]

D. J. White, A. P. Mazzolini, and P. R. Stoddart, “Fabrication of a range of SERS substrates on nanostructured multicore optical fibres,” J. Raman Spectrosc. 38(4), 377–382 (2007).
[Crossref]

Wingfield, J.

J. Taylor, A. Huefner, L. Li, J. Wingfield, and S. Mahajan, “Nanoparticles and intracellular applications of surface-enhanced Raman spectroscopy,” Analyst (Lond.) 141(17), 5037–5055 (2016).
[Crossref] [PubMed]

Wittig, B.

J. Kneipp, H. Kneipp, B. Wittig, and K. Kneipp, “Novel optical nanosensors for probing and imaging live cells,” Nanomedicine (Lond.) 6(2), 214–226 (2010).
[Crossref] [PubMed]

Woehl, J. C.

A. Drezet, M. J. Nasse, S. Huant, and J. C. Woehl, “The optical near-field of an aperture tip,” Europhys. Lett. 66(1), 41–47 (2004).
[Crossref]

A. Drezet, J. C. Woehl, and S. Huant, “Diffraction by a small aperture in conical geometry: Application to metal-coated tips used in near-field scanning optical microscopy,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(44 Pt 2B), 046611 (2002).
[Crossref] [PubMed]

Wróbel, P.

Xu, W.

W. Xu, Z. Chen, N. Chen, H. Zhang, S. Liu, X. Hu, J. Wen, and T. Wang, “SERS Taper-Fiber Nanoprobe Modified by Gold Nanoparticles Wrapped with Ultrathin Alumina Film by Atomic Layer Deposition,” Sensors (Basel) 17(3), 467 (2017).
[Crossref] [PubMed]

Yun, S. K.

Yurlov, V.

Zhang, H.

W. Xu, Z. Chen, N. Chen, H. Zhang, S. Liu, X. Hu, J. Wen, and T. Wang, “SERS Taper-Fiber Nanoprobe Modified by Gold Nanoparticles Wrapped with Ultrathin Alumina Film by Atomic Layer Deposition,” Sensors (Basel) 17(3), 467 (2017).
[Crossref] [PubMed]

Zhang, Y.

Y. Zhang, A. Dhawan, and T. Vo-Dinh, “Design and Fabrication of Fiber-Optic Nanoprobes for Optical Sensing,” Nanoscale Res. Lett. 6(1), 18 (2011).
[PubMed]

Zou, J. M.

Y. B. Tan, J. M. Zou, and N. Gu, “Preparation of Stabilizer-Free Silver Nanoparticle-Coated Micropipettes as Surface-Enhanced Raman Scattering Substrate for Single Cell Detection,” Nanoscale Res. Lett. 10(1), 417 (2015).
[Crossref] [PubMed]

ACS Nano (2)

A. Huefner, W. L. Kuan, K. H. Müller, J. N. Skepper, R. A. Barker, and S. Mahajan, “Characterization and Visualization of Vesicles in the Endo-Lysosomal Pathway with Surface-Enhanced Raman Spectroscopy and Chemometrics,” ACS Nano 10(1), 307–316 (2016).
[Crossref] [PubMed]

E. A. Vitol, Z. Orynbayeva, M. J. Bouchard, J. Azizkhan-Clifford, G. Friedman, and Y. Gogotsi, “In Situ Intracellular Spectroscopy with Surface Enhanced Raman Spectroscopy (SERS)-Enabled Nanopipettes,” ACS Nano 3(11), 3529–3536 (2009).
[Crossref] [PubMed]

Anal. Bioanal. Chem. (1)

J. P. Scaffidi, M. K. Gregas, V. Seewaldt, and T. Vo-Dinh, “SERS-based plasmonic nanobiosensing in single living cells,” Anal. Bioanal. Chem. 393(4), 1135–1141 (2009).
[Crossref] [PubMed]

Anal. Chem. (1)

C. E. Talley, L. Jusinski, C. W. Hollars, S. M. Lane, and T. Huser, “Intracellular pH Sensors Based on Surface-Enhanced Raman Scattering,” Anal. Chem. 76(23), 7064–7068 (2004).
[Crossref] [PubMed]

Anal. Methods (1)

D. Jin, Y. Bai, H. Chen, S. Liu, N. Chen, J. Huang, S. Huang, and Z. Chen, “SERS detection of expired tetracycline hydrochloride with an optical fiber nano-probe,” Anal. Methods 7(4), 1307–1312 (2015).
[Crossref]

Analyst (Lond.) (1)

J. Taylor, A. Huefner, L. Li, J. Wingfield, and S. Mahajan, “Nanoparticles and intracellular applications of surface-enhanced Raman spectroscopy,” Analyst (Lond.) 141(17), 5037–5055 (2016).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

R. Müller and C. Lienau, “Propagation of femtosecond optical pulses through uncoated and metal-coated near-field fiber probes,” Appl. Phys. Lett. 76(23), 3367–3369 (2000).
[Crossref]

Biosens. Bioelectron. (1)

G. Kostovski, D. J. White, A. Mitchell, M. W. Austin, and P. R. Stoddart, “Nanoimprinted optical fibres: Biotemplated nanostructures for SERS sensing,” Biosens. Bioelectron. 24(5), 1531–1535 (2009).
[Crossref] [PubMed]

ChemistrySelect (1)

J. Cao and Q. Mao, “Tapered Optical Fiber Probe with a Double–substrate Strategy for Surface–enhanced Raman Scattering Detection,” ChemistrySelect 1(8), 1784–1788 (2016).
[Crossref]

Europhys. Lett. (1)

A. Drezet, M. J. Nasse, S. Huant, and J. C. Woehl, “The optical near-field of an aperture tip,” Europhys. Lett. 66(1), 41–47 (2004).
[Crossref]

Faraday Discuss. (1)

R. Boitor, F. Sinjab, S. Strohbuecker, V. Sottile, and I. Notingher, “Towards quantitative molecular mapping of cells by Raman microscopy: using AFM for decoupling molecular concentration and cell topography,” Faraday Discuss. 187, 199–212 (2016).
[Crossref] [PubMed]

IEEE Photonics Technol. Lett. (1)

Z. Chen, Z. Dai, N. Chen, S. Liu, F. Pang, B. Lu, and T. Wang, “Gold Nanoparticles-Modified Tapered Fiber Nanoprobe for Remote SERS Detection,” IEEE Photonics Technol. Lett. 26(8), 777–780 (2014).
[Crossref]

J. Am. Chem. Soc. (1)

Y. C. Cao, R. Jin, J. M. Nam, C. S. Thaxton, and C. A. Mirkin, “Raman dye-labeled nanoparticle probes for proteins,” J. Am. Chem. Soc. 125(48), 14676–14677 (2003).
[Crossref] [PubMed]

J. Appl. Phys. (1)

M. I. Bakunov, S. B. Bodrov, and M. Hangyo, “Intermode conversion in a near-field optical fiber probe,” J. Appl. Phys. 96(4), 1775–1780 (2004).
[Crossref]

J. Microsc. (1)

A. Bouhelier, J. Renger, M. R. Beversluis, and L. Novotny, “Plasmon-Coupled Tip-enhanced Near-Field Optical Microscopy,” J. Microsc. 210(3), 220–224 (2003).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (1)

J. Phys. Chem. B (2)

E. C. Le Ru, M. Meyer, and P. G. Etchegoin, “Proof of Single-Molecule Sensitivity in Surface Enhanced Raman Scattering (SERS) by Means of a Two-Analyte Technique,” J. Phys. Chem. B 110(4), 1944–1948 (2006).
[Crossref] [PubMed]

J. D. Driskell, R. J. Lipert, and M. D. Porter, “Labeled Gold Nanoparticles Immobilized at Smooth Metallic Substrates: Systematic Investigation of Surface Plasmon Resonance and Surface-Enhanced Raman Scattering,” J. Phys. Chem. B 110(35), 17444–17451 (2006).
[Crossref] [PubMed]

J. Raman Spectrosc. (1)

D. J. White, A. P. Mazzolini, and P. R. Stoddart, “Fabrication of a range of SERS substrates on nanostructured multicore optical fibres,” J. Raman Spectrosc. 38(4), 377–382 (2007).
[Crossref]

Nanomedicine (Lond.) (1)

J. Kneipp, H. Kneipp, B. Wittig, and K. Kneipp, “Novel optical nanosensors for probing and imaging live cells,” Nanomedicine (Lond.) 6(2), 214–226 (2010).
[Crossref] [PubMed]

Nanoscale (1)

F. Latorre, S. Kupfer, T. Bocklitz, D. Kinzel, S. Trautmann, S. Gräfe, and V. Deckert, “Spatial resolution of tip-enhanced Raman spectroscopy - DFT assessment of the chemical effect,” Nanoscale 8(19), 10229–10239 (2016).
[Crossref] [PubMed]

Nanoscale Res. Lett. (2)

Y. B. Tan, J. M. Zou, and N. Gu, “Preparation of Stabilizer-Free Silver Nanoparticle-Coated Micropipettes as Surface-Enhanced Raman Scattering Substrate for Single Cell Detection,” Nanoscale Res. Lett. 10(1), 417 (2015).
[Crossref] [PubMed]

Y. Zhang, A. Dhawan, and T. Vo-Dinh, “Design and Fabrication of Fiber-Optic Nanoprobes for Optical Sensing,” Nanoscale Res. Lett. 6(1), 18 (2011).
[PubMed]

Nanotechnology (1)

T. Hutter, S. R. Elliott, and S. Mahajan, “Interaction of metallic nanoparticles with dielectric substrates: effect of optical constants,” Nanotechnology 24(3), 035201 (2013).
[Crossref] [PubMed]

Nat. Photonics (1)

K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

New J. Chem. (1)

J. Cao and J. Wang, “Development of Ag nanopolyhedra based fiber-optic probes for high performance SERS detection,” New J. Chem. 39(4), 2421–2424 (2015).
[Crossref]

Opt. Commun. (2)

F. I. Baida, D. Van Labeke, and Y. Pagani, “Body-of-revolution FDTD simulations of improved tip performance for scanning near-field optical microscopes,” Opt. Commun. 225(4-6), 241–252 (2003).
[Crossref]

N. A. Janunts, K. S. Baghdasaryan, K. Nerkararyan, and B. Hecht, “Excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip,” Opt. Commun. 253(1-3), 118–124 (2005).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Phys. Chem. Chem. Phys. (1)

D. C. Rodrigues, M. L. de Souza, K. S. Souza, D. P. dos Santos, G. F. S. Andrade, and M. L. A. Temperini, “Critical assessment of enhancement factor measurements in surface-enhanced Raman scattering on different substrates,” Phys. Chem. Chem. Phys. 17(33), 21294–21301 (2015).
[Crossref] [PubMed]

Phys. Rev. A (1)

W. Ding, S. R. Andrews, and S. A. Maier, “Internal excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip,” Phys. Rev. A 75(6), 063822 (2007).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

A. Drezet, J. C. Woehl, and S. Huant, “Diffraction by a small aperture in conical geometry: Application to metal-coated tips used in near-field scanning optical microscopy,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(44 Pt 2B), 046611 (2002).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Science (2)

S. Nie and S. R. Emory, “Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

Y. C. Cao, R. Jin, and C. A. Mirkin, “Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection,” Science 297(5586), 1536–1540 (2002).
[Crossref] [PubMed]

Sensors (Basel) (1)

W. Xu, Z. Chen, N. Chen, H. Zhang, S. Liu, X. Hu, J. Wen, and T. Wang, “SERS Taper-Fiber Nanoprobe Modified by Gold Nanoparticles Wrapped with Ultrathin Alumina Film by Atomic Layer Deposition,” Sensors (Basel) 17(3), 467 (2017).
[Crossref] [PubMed]

Other (3)

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2011).

X. Ni, Z. Liu, and A. V. Kildishev, “PhotonicsDB: Optical Constants” (2010), http://nanohub.org/resources/PhotonicsDB .

G. Louarn, S. Taleb, and S. Cuenot, “Prediction of the Transmitted Light Through a Nano-Aperture of SNOM Probes,” in Proceedings of the COMSOL Users Conference Paris (2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Measured 633nm laser light distribution in: (a) flat cleaved fibre end; and (b) tapered-fibre tip; (c) SERS spectra of nanoparticles and MBA-coated fibres; (d) SERS spectra of MBA for pH 4 and pH 10; (e) peak ratio (intensity at 1425 cm−1 divided by intensity at 1590 cm−1) for different pH buffer solutions.
Fig. 2
Fig. 2 Simulated spatial distribution of the electric field in a bare silica fibre (50 nm tip radius, 20.5° cone angle) excited by a Gaussian p-polarised light at a wavelength of: (a) 500 nm; (b) 700 nm; and (c) 900 nm.
Fig. 3
Fig. 3 Simulated spatial distribution of the electric field in a bare silica fibre (50 nm tip radius, 20.5° cone angle) excited by a Gaussian s-polarised light at a wavelength of: (a) 500 nm; (b) 700 nm; and (c) 900 nm.
Fig. 4
Fig. 4 Spatial distribution of the electric field in a gold nanoparticle-coated silica fibre (50 nm tip radius, 20.5° cone angle) excited by a Gaussian p-polarised light at a wavelength of: (a) 500 nm; (b) 700 nm; and (c) 900 nm.
Fig. 5
Fig. 5 Spatial distribution of the electric field in a gold nanoparticle-coated silica fibre (50 nm tip radius, 20.5° cone angle) excited by a Gaussian s-polarised light at a wavelength of: (a) 500 nm; (b) 700 nm; and (c) 900 nm.
Fig. 6
Fig. 6 Transmission at different polarisations as measured 50 nm below a silica fibre tip (50 nm tip radius, 20.5° cone angle) coated with gold nanoparticles of 60 nm diameter, 10 nm gap between the nanoparticles and located 1 nm away from the fibre.
Fig. 7
Fig. 7 Plot of maximum electric-field values along a line connecting the nanoparticles. The inset shows the dashed line along the centres of nanoparticles at which the maximum value of the electric field is measured. The silica fibre tip (50 nm tip radius, 20.5° cone angle) coated with gold nanoparticles of 60 nm diameter, 10 nm gap between the nanoparticles and located 1 nm away from the fibre.
Fig. 8
Fig. 8 Electric-field distribution in the gold nanoparticle-coated fibre tip at wavelengths of: (a) 590 nm; (b) 660 nm; and (c) 900 nm. The corresponding electric-field values along a line connecting the NPs’ axis at wavelengths of: (d) 590 nm; (e) 660 nm; and (f) 900 nm. The silica fibre tip (50 nm tip radius, 20.5° cone angle) coated with gold nanoparticles of 60 nm diameter, 10 nm gap between the nanoparticles and located 1 nm away from the fibre.
Fig. 9
Fig. 9 (a) Plot of maximum electric-field values along a line connecting the nanoparticles as a function of: (a) the radius of the tip for a fixed cone angle of 20.5°; and (b) the cone angle for laser wavelengths of 532, 633 and 785 nm (radius of tip is 250 nm). The inset shows how the cone angle is defined. The silica fibre tip coated with gold nanoparticles of 60 nm diameter, 10 nm gap between the nanoparticles and located 1 nm away from the fibre.
Fig. 10
Fig. 10 (a) Plot of maximum electric-field values along a line connecting the nanoparticles as a function of: (a) the gap distance between the 60 nm diameter nanoparticles; and (b) the radius of the nanoparticles with 10 nm gap, for laser wavelengths of 532, 633 and 785 nm for a fixed fibre tip radius of 250 nm and a cone angle of 30°.

Metrics