Abstract

A mid-infrared cavity-enhanced sensor system was demonstrated for the detection of formaldehyde (H2CO) using a continuous-wave (cw) interband cascade laser (ICL) centered at 3599 nm. A compact Fabry-Perot (F-P) cavity with a physical size of 38 × 52 × 76 mm3 was developed consisting of two concave mirrors with a radius of curvature of 80 mm and a reflectivity of 99.8% at 3.6 μm. Different from the widely reported electro-optical (EO) external modulation based Pound-Drever-Hall (PDH) locking technique, a radio-frequency electrical internal modulation based PDH technique was used for locking the laser mode to the cavity mode. A dual-feedback control on the laser current and on the piezo transducer (PZT) displacement was utilized for further stabilizing mode locking. A 20 m effective optical path length was achieved with a cavity length of 2 cm and a finesse of 1572. The effectiveness and sensitivity of the sensor system were demonstrated by targeting an absorption line at 2778.5 cm−1 for H2CO measurements. A linear relation between the cavity transmitted signal amplitude and the H2CO concentration was obtained within the range of 0−5 ppm. A 1σ detection limit of 25 parts-per-billion (ppb) was achieved with an averaging time of 1 s based on Allan-Werle variance analysis. The reported dual-feedback RF modulation based PDH technique led to a method for gas detection using a similar experimental setup and measurement scheme.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
ICL-based mid-infrared carbon dioxide sensor system for deep-sea natural gas hydrate exploration

Zhiwei Liu, Chuantao Zheng, Chen Chen, Yafei Li, Hongtao Xie, Qiang Ren, Yiding Wang, and Frank K. Tittel
Opt. Express 27(4) 5598-5609 (2019)

Simultaneous atmospheric nitrous oxide, methane and water vapor detection with a single continuous wave quantum cascade laser

Yingchun Cao, Nancy P. Sanchez, Wenzhe Jiang, Robert J. Griffin, Feng Xie, Lawrence C. Hughes, Chung-en Zah, and Frank K. Tittel
Opt. Express 23(3) 2121-2132 (2015)

Ppb-level formaldehyde detection using a CW room-temperature interband cascade laser and a miniature dense pattern multipass gas cell

Lei Dong, Yajun Yu, Chunguang Li, Stephen So, and Frank K. Tittel
Opt. Express 23(15) 19821-19830 (2015)

References

  • View by:
  • |
  • |
  • |

  1. W. Zhang, X. Cheng, X. Zhang, Y. Xu, S. Gao, H. Zhao, and L. Huo, “High selectivity to ppb-level HCHO sensor based on mesoporous tubular SnO2 at low temperature,” Sens. Actuators B Chem. 247, 664–672 (2017).
    [Crossref]
  2. D. Wang, M. Zhang, Z. Chen, H. Li, A. Chen, X. Wang, and J. Yang, “Enhanced formaldehyde sensing properties of hollow SnO2 nanofibers by graphene oxide,” Sens. Actuators B Chem. 250, 533–542 (2017).
    [Crossref]
  3. L. Dong, Y. Yu, C. Li, S. So, and F. K. Tittel, “Ppb-level formaldehyde detection using a CW room-temperature interband cascade laser and a miniature dense pattern multipass gas cell,” Opt. Express 23(15), 19821–19830 (2015).
    [Crossref] [PubMed]
  4. H. I. Schiff, D. R. Hastie, G. I. Mackay, T. Iguchi, and B. A. Ridley, “Tunable diode laser systems for measuring trace gases intropospheric air,” Environ. Sci. Technol. 17(8), 352A–364A (1983).
    [PubMed]
  5. H. Dahnke, G. von Basum, K. Kleinermanns, P. Hering, and M. Mürtz, “Rapid formaldehyde monitoring in ambient air by means of mid-infrared cavity leak-out spectroscopy,” Appl. Phys. B 75(2–3), 311–316 (2002).
    [Crossref]
  6. D. Rehle, D. Leleux, M. Erdelyi, F. Tittel, M. Fraser, and S. Friedfeld, “Ambient formaldehyde detection with a laser spectrometer based on difference-frequency generation in PPLN,” Appl. Phys. B 72(8), 947–952 (2001).
    [Crossref] [PubMed]
  7. D. G. Lancaster, A. Fried, B. Wert, B. Henry, and F. K. Tittel, “Difference-frequency-based tunable absorption spectrometer for detection of atmospheric formaldehyde,” Appl. Opt. 39(24), 4436–4443 (2000).
    [Crossref] [PubMed]
  8. P. Maddaloni, P. Malara, G. Gagliardi, and P. De Natale, “Two-tone frequency modulation spectroscopy for ambient-air trace gas detection using a portable difference-frequency source around 3 μm,” Appl. Phys. B 85(2–3), 219–222 (2006).
    [Crossref]
  9. K. Tanaka, K. Miyamura, K. Akishima, K. Tonokura, and M. Konno, “Sensitive measurements of trace gas of formaldehyde using a mid-infrared laser spectrometer with a compact multi-pass cell,” Infrared Phys. Technol. 79, 1–5 (2016).
    [Crossref]
  10. J. Li, U. Parchatka, and H. Fischer, “A formaldehyde trace gas sensor based on a thermoelectrically cooled CW-DFB quantum cascade laser,” Anal. Methods 6(15), 5483–5488 (2014).
    [Crossref]
  11. S. Lundqvist, P. Kluczynski, R. Weih, M. von Edlinger, L. Nähle, M. Fischer, A. Bauer, S. Höfling, and J. Koeth, “Sensing of formaldehyde using a distributed feedback interband cascade laser emitting around 3493 nm,” Appl. Opt. 51(25), 6009–6013 (2012).
    [Crossref] [PubMed]
  12. F. Capasso, “High-performance midinfrared quantum cascade lasers,” Opt. Eng. 49(11), 111102 (2010).
    [Crossref]
  13. T. K. Boyson, P. J. Dagdigian, K. D. Pavey, N. J. FitzGerald, T. G. Spence, D. S. Moore, and C. C. Harb, “Real-time multiplexed digital cavity-enhanced spectroscopy,” Opt. Lett. 40(19), 4560–4562 (2015).
    [Crossref] [PubMed]
  14. S. G. Baran, G. Hancock, R. Peverall, G. A. Ritchie, and N. J. van Leeuwen, “Optical feedback cavity enhanced absorption spectroscopy with diode lasers,” Analyst (Lond.) 134(2), 243–249 (2009).
    [Crossref] [PubMed]
  15. P. S. Johnston and K. K. Lehmann, “Cavity enhanced absorption spectroscopy using a broadband prism cavity and a supercontinuum source,” Opt. Express 16(19), 15013–15023 (2008).
    [Crossref] [PubMed]
  16. H. Yi, T. Wu, G. Wang, W. Zhao, E. Fertein, C. Coeur, X. Gao, W. Zhang, and W. Chen, “Sensing atmospheric reactive species using light emitting diode by incoherent broadband cavity enhanced absorption spectroscopy,” Opt. Express 24(10), A781–A790 (2016).
    [Crossref] [PubMed]
  17. E. D. Black, “An introduction to Pound–Drever–Hall laser frequency stabilization,” Am. J. Phys. 69(1), 79–87 (2001).
    [Crossref]
  18. R. Drever, J. L. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
    [Crossref]
  19. C. E. Liekhus-Schmaltz and J. D. D. Martin, “Understanding Pound-Drever-Hall locking using voltage controlled radio-frequency oscillators: An undergraduate experiment,” Am. J. Phys. 80(3), 232–239 (2012).
    [Crossref]
  20. B. Burghardt, W. Jitschin, and G. Meisel, “Precise rf tuning for cw dye lasers,” Appl. Phys., A Mater. Sci. Process. 20(2), 141–146 (1979).
  21. T. C. Briles, D. C. Yost, A. Cingöz, J. Ye, and T. R. Schibli, “Simple piezoelectric-actuated mirror with 180 kHz servo bandwidth,” Opt. Express 18(10), 9739–9746 (2010).
    [Crossref] [PubMed]
  22. C. E. Liekhus-Schmaltz, R. Mantifel, M. Torabifard, I. B. Burgess, and J. D. D. Martin, “Injection-locked diode laser current modulation for pound-drever-hall frequency stabilization using transfer cavities,” JOSA. B 29(6), 1394–1398 (2012).
    [Crossref]
  23. J. M. Langridge, T. Laurila, R. S. Watt, R. L. Jones, C. F. Kaminski, and J. Hult, “Cavity enhanced absorption spectroscopy of multiple trace gas species using a supercontinuum radiation source,” Opt. Express 16(14), 10178–10188 (2008).
    [Crossref] [PubMed]
  24. S. Kassi, M. Chenevier, L. Gianfrani, A. Salhi, Y. Rouillard, A. Ouvrard, and D. Romanini, “Looking into the volcano with a MIR-IR DFB diode laser and Cavity Enhanced Absorption Spectroscopy,” Opt. Express 14(23), 11442–11452 (2006).
    [Crossref] [PubMed]
  25. F. Wei, B. Lu, J. Wang, D. Xu, Z. Pan, D. Chen, H. Cai, and R. Qu, “Precision and broadband frequency swept laser source based on high-order modulation-sideband injection-locking,” Opt. Express 23(4), 4970–4980 (2015).
    [Crossref] [PubMed]
  26. J. Li, Z. Du, and Y. An, “Frequency modulation characteristics for interband cascade lasers emitting at 3 μm,” Appl. Phys. B 121(1), 7–17 (2015).
    [Crossref]
  27. A. Soibel, M. W. Wright, W. Farr, S. Keo, C. Hill, R. Q. Yang, and H. C. Liu, “High-speed operation of interband cascade lasers,” Electron. Lett. 45(5), 264–265 (2009).
    [Crossref]

2017 (2)

W. Zhang, X. Cheng, X. Zhang, Y. Xu, S. Gao, H. Zhao, and L. Huo, “High selectivity to ppb-level HCHO sensor based on mesoporous tubular SnO2 at low temperature,” Sens. Actuators B Chem. 247, 664–672 (2017).
[Crossref]

D. Wang, M. Zhang, Z. Chen, H. Li, A. Chen, X. Wang, and J. Yang, “Enhanced formaldehyde sensing properties of hollow SnO2 nanofibers by graphene oxide,” Sens. Actuators B Chem. 250, 533–542 (2017).
[Crossref]

2016 (2)

K. Tanaka, K. Miyamura, K. Akishima, K. Tonokura, and M. Konno, “Sensitive measurements of trace gas of formaldehyde using a mid-infrared laser spectrometer with a compact multi-pass cell,” Infrared Phys. Technol. 79, 1–5 (2016).
[Crossref]

H. Yi, T. Wu, G. Wang, W. Zhao, E. Fertein, C. Coeur, X. Gao, W. Zhang, and W. Chen, “Sensing atmospheric reactive species using light emitting diode by incoherent broadband cavity enhanced absorption spectroscopy,” Opt. Express 24(10), A781–A790 (2016).
[Crossref] [PubMed]

2015 (4)

2014 (1)

J. Li, U. Parchatka, and H. Fischer, “A formaldehyde trace gas sensor based on a thermoelectrically cooled CW-DFB quantum cascade laser,” Anal. Methods 6(15), 5483–5488 (2014).
[Crossref]

2012 (3)

C. E. Liekhus-Schmaltz and J. D. D. Martin, “Understanding Pound-Drever-Hall locking using voltage controlled radio-frequency oscillators: An undergraduate experiment,” Am. J. Phys. 80(3), 232–239 (2012).
[Crossref]

C. E. Liekhus-Schmaltz, R. Mantifel, M. Torabifard, I. B. Burgess, and J. D. D. Martin, “Injection-locked diode laser current modulation for pound-drever-hall frequency stabilization using transfer cavities,” JOSA. B 29(6), 1394–1398 (2012).
[Crossref]

S. Lundqvist, P. Kluczynski, R. Weih, M. von Edlinger, L. Nähle, M. Fischer, A. Bauer, S. Höfling, and J. Koeth, “Sensing of formaldehyde using a distributed feedback interband cascade laser emitting around 3493 nm,” Appl. Opt. 51(25), 6009–6013 (2012).
[Crossref] [PubMed]

2010 (2)

2009 (2)

S. G. Baran, G. Hancock, R. Peverall, G. A. Ritchie, and N. J. van Leeuwen, “Optical feedback cavity enhanced absorption spectroscopy with diode lasers,” Analyst (Lond.) 134(2), 243–249 (2009).
[Crossref] [PubMed]

A. Soibel, M. W. Wright, W. Farr, S. Keo, C. Hill, R. Q. Yang, and H. C. Liu, “High-speed operation of interband cascade lasers,” Electron. Lett. 45(5), 264–265 (2009).
[Crossref]

2008 (2)

2006 (2)

S. Kassi, M. Chenevier, L. Gianfrani, A. Salhi, Y. Rouillard, A. Ouvrard, and D. Romanini, “Looking into the volcano with a MIR-IR DFB diode laser and Cavity Enhanced Absorption Spectroscopy,” Opt. Express 14(23), 11442–11452 (2006).
[Crossref] [PubMed]

P. Maddaloni, P. Malara, G. Gagliardi, and P. De Natale, “Two-tone frequency modulation spectroscopy for ambient-air trace gas detection using a portable difference-frequency source around 3 μm,” Appl. Phys. B 85(2–3), 219–222 (2006).
[Crossref]

2002 (1)

H. Dahnke, G. von Basum, K. Kleinermanns, P. Hering, and M. Mürtz, “Rapid formaldehyde monitoring in ambient air by means of mid-infrared cavity leak-out spectroscopy,” Appl. Phys. B 75(2–3), 311–316 (2002).
[Crossref]

2001 (2)

D. Rehle, D. Leleux, M. Erdelyi, F. Tittel, M. Fraser, and S. Friedfeld, “Ambient formaldehyde detection with a laser spectrometer based on difference-frequency generation in PPLN,” Appl. Phys. B 72(8), 947–952 (2001).
[Crossref] [PubMed]

E. D. Black, “An introduction to Pound–Drever–Hall laser frequency stabilization,” Am. J. Phys. 69(1), 79–87 (2001).
[Crossref]

2000 (1)

1983 (2)

R. Drever, J. L. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[Crossref]

H. I. Schiff, D. R. Hastie, G. I. Mackay, T. Iguchi, and B. A. Ridley, “Tunable diode laser systems for measuring trace gases intropospheric air,” Environ. Sci. Technol. 17(8), 352A–364A (1983).
[PubMed]

1979 (1)

B. Burghardt, W. Jitschin, and G. Meisel, “Precise rf tuning for cw dye lasers,” Appl. Phys., A Mater. Sci. Process. 20(2), 141–146 (1979).

Akishima, K.

K. Tanaka, K. Miyamura, K. Akishima, K. Tonokura, and M. Konno, “Sensitive measurements of trace gas of formaldehyde using a mid-infrared laser spectrometer with a compact multi-pass cell,” Infrared Phys. Technol. 79, 1–5 (2016).
[Crossref]

An, Y.

J. Li, Z. Du, and Y. An, “Frequency modulation characteristics for interband cascade lasers emitting at 3 μm,” Appl. Phys. B 121(1), 7–17 (2015).
[Crossref]

Baran, S. G.

S. G. Baran, G. Hancock, R. Peverall, G. A. Ritchie, and N. J. van Leeuwen, “Optical feedback cavity enhanced absorption spectroscopy with diode lasers,” Analyst (Lond.) 134(2), 243–249 (2009).
[Crossref] [PubMed]

Bauer, A.

Black, E. D.

E. D. Black, “An introduction to Pound–Drever–Hall laser frequency stabilization,” Am. J. Phys. 69(1), 79–87 (2001).
[Crossref]

Boyson, T. K.

Briles, T. C.

Burgess, I. B.

C. E. Liekhus-Schmaltz, R. Mantifel, M. Torabifard, I. B. Burgess, and J. D. D. Martin, “Injection-locked diode laser current modulation for pound-drever-hall frequency stabilization using transfer cavities,” JOSA. B 29(6), 1394–1398 (2012).
[Crossref]

Burghardt, B.

B. Burghardt, W. Jitschin, and G. Meisel, “Precise rf tuning for cw dye lasers,” Appl. Phys., A Mater. Sci. Process. 20(2), 141–146 (1979).

Cai, H.

Capasso, F.

F. Capasso, “High-performance midinfrared quantum cascade lasers,” Opt. Eng. 49(11), 111102 (2010).
[Crossref]

Chen, A.

D. Wang, M. Zhang, Z. Chen, H. Li, A. Chen, X. Wang, and J. Yang, “Enhanced formaldehyde sensing properties of hollow SnO2 nanofibers by graphene oxide,” Sens. Actuators B Chem. 250, 533–542 (2017).
[Crossref]

Chen, D.

Chen, W.

Chen, Z.

D. Wang, M. Zhang, Z. Chen, H. Li, A. Chen, X. Wang, and J. Yang, “Enhanced formaldehyde sensing properties of hollow SnO2 nanofibers by graphene oxide,” Sens. Actuators B Chem. 250, 533–542 (2017).
[Crossref]

Chenevier, M.

Cheng, X.

W. Zhang, X. Cheng, X. Zhang, Y. Xu, S. Gao, H. Zhao, and L. Huo, “High selectivity to ppb-level HCHO sensor based on mesoporous tubular SnO2 at low temperature,” Sens. Actuators B Chem. 247, 664–672 (2017).
[Crossref]

Cingöz, A.

Coeur, C.

Dagdigian, P. J.

Dahnke, H.

H. Dahnke, G. von Basum, K. Kleinermanns, P. Hering, and M. Mürtz, “Rapid formaldehyde monitoring in ambient air by means of mid-infrared cavity leak-out spectroscopy,” Appl. Phys. B 75(2–3), 311–316 (2002).
[Crossref]

De Natale, P.

P. Maddaloni, P. Malara, G. Gagliardi, and P. De Natale, “Two-tone frequency modulation spectroscopy for ambient-air trace gas detection using a portable difference-frequency source around 3 μm,” Appl. Phys. B 85(2–3), 219–222 (2006).
[Crossref]

Dong, L.

Drever, R.

R. Drever, J. L. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[Crossref]

Du, Z.

J. Li, Z. Du, and Y. An, “Frequency modulation characteristics for interband cascade lasers emitting at 3 μm,” Appl. Phys. B 121(1), 7–17 (2015).
[Crossref]

Erdelyi, M.

D. Rehle, D. Leleux, M. Erdelyi, F. Tittel, M. Fraser, and S. Friedfeld, “Ambient formaldehyde detection with a laser spectrometer based on difference-frequency generation in PPLN,” Appl. Phys. B 72(8), 947–952 (2001).
[Crossref] [PubMed]

Farr, W.

A. Soibel, M. W. Wright, W. Farr, S. Keo, C. Hill, R. Q. Yang, and H. C. Liu, “High-speed operation of interband cascade lasers,” Electron. Lett. 45(5), 264–265 (2009).
[Crossref]

Fertein, E.

Fischer, H.

J. Li, U. Parchatka, and H. Fischer, “A formaldehyde trace gas sensor based on a thermoelectrically cooled CW-DFB quantum cascade laser,” Anal. Methods 6(15), 5483–5488 (2014).
[Crossref]

Fischer, M.

FitzGerald, N. J.

Ford, G.

R. Drever, J. L. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[Crossref]

Fraser, M.

D. Rehle, D. Leleux, M. Erdelyi, F. Tittel, M. Fraser, and S. Friedfeld, “Ambient formaldehyde detection with a laser spectrometer based on difference-frequency generation in PPLN,” Appl. Phys. B 72(8), 947–952 (2001).
[Crossref] [PubMed]

Fried, A.

Friedfeld, S.

D. Rehle, D. Leleux, M. Erdelyi, F. Tittel, M. Fraser, and S. Friedfeld, “Ambient formaldehyde detection with a laser spectrometer based on difference-frequency generation in PPLN,” Appl. Phys. B 72(8), 947–952 (2001).
[Crossref] [PubMed]

Gagliardi, G.

P. Maddaloni, P. Malara, G. Gagliardi, and P. De Natale, “Two-tone frequency modulation spectroscopy for ambient-air trace gas detection using a portable difference-frequency source around 3 μm,” Appl. Phys. B 85(2–3), 219–222 (2006).
[Crossref]

Gao, S.

W. Zhang, X. Cheng, X. Zhang, Y. Xu, S. Gao, H. Zhao, and L. Huo, “High selectivity to ppb-level HCHO sensor based on mesoporous tubular SnO2 at low temperature,” Sens. Actuators B Chem. 247, 664–672 (2017).
[Crossref]

Gao, X.

Gianfrani, L.

Hall, J. L.

R. Drever, J. L. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[Crossref]

Hancock, G.

S. G. Baran, G. Hancock, R. Peverall, G. A. Ritchie, and N. J. van Leeuwen, “Optical feedback cavity enhanced absorption spectroscopy with diode lasers,” Analyst (Lond.) 134(2), 243–249 (2009).
[Crossref] [PubMed]

Harb, C. C.

Hastie, D. R.

H. I. Schiff, D. R. Hastie, G. I. Mackay, T. Iguchi, and B. A. Ridley, “Tunable diode laser systems for measuring trace gases intropospheric air,” Environ. Sci. Technol. 17(8), 352A–364A (1983).
[PubMed]

Henry, B.

Hering, P.

H. Dahnke, G. von Basum, K. Kleinermanns, P. Hering, and M. Mürtz, “Rapid formaldehyde monitoring in ambient air by means of mid-infrared cavity leak-out spectroscopy,” Appl. Phys. B 75(2–3), 311–316 (2002).
[Crossref]

Hill, C.

A. Soibel, M. W. Wright, W. Farr, S. Keo, C. Hill, R. Q. Yang, and H. C. Liu, “High-speed operation of interband cascade lasers,” Electron. Lett. 45(5), 264–265 (2009).
[Crossref]

Höfling, S.

Hough, J.

R. Drever, J. L. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[Crossref]

Hult, J.

Huo, L.

W. Zhang, X. Cheng, X. Zhang, Y. Xu, S. Gao, H. Zhao, and L. Huo, “High selectivity to ppb-level HCHO sensor based on mesoporous tubular SnO2 at low temperature,” Sens. Actuators B Chem. 247, 664–672 (2017).
[Crossref]

Iguchi, T.

H. I. Schiff, D. R. Hastie, G. I. Mackay, T. Iguchi, and B. A. Ridley, “Tunable diode laser systems for measuring trace gases intropospheric air,” Environ. Sci. Technol. 17(8), 352A–364A (1983).
[PubMed]

Jitschin, W.

B. Burghardt, W. Jitschin, and G. Meisel, “Precise rf tuning for cw dye lasers,” Appl. Phys., A Mater. Sci. Process. 20(2), 141–146 (1979).

Johnston, P. S.

Jones, R. L.

Kaminski, C. F.

Kassi, S.

Keo, S.

A. Soibel, M. W. Wright, W. Farr, S. Keo, C. Hill, R. Q. Yang, and H. C. Liu, “High-speed operation of interband cascade lasers,” Electron. Lett. 45(5), 264–265 (2009).
[Crossref]

Kleinermanns, K.

H. Dahnke, G. von Basum, K. Kleinermanns, P. Hering, and M. Mürtz, “Rapid formaldehyde monitoring in ambient air by means of mid-infrared cavity leak-out spectroscopy,” Appl. Phys. B 75(2–3), 311–316 (2002).
[Crossref]

Kluczynski, P.

Koeth, J.

Konno, M.

K. Tanaka, K. Miyamura, K. Akishima, K. Tonokura, and M. Konno, “Sensitive measurements of trace gas of formaldehyde using a mid-infrared laser spectrometer with a compact multi-pass cell,” Infrared Phys. Technol. 79, 1–5 (2016).
[Crossref]

Kowalski, F.

R. Drever, J. L. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[Crossref]

Lancaster, D. G.

Langridge, J. M.

Laurila, T.

Lehmann, K. K.

Leleux, D.

D. Rehle, D. Leleux, M. Erdelyi, F. Tittel, M. Fraser, and S. Friedfeld, “Ambient formaldehyde detection with a laser spectrometer based on difference-frequency generation in PPLN,” Appl. Phys. B 72(8), 947–952 (2001).
[Crossref] [PubMed]

Li, C.

Li, H.

D. Wang, M. Zhang, Z. Chen, H. Li, A. Chen, X. Wang, and J. Yang, “Enhanced formaldehyde sensing properties of hollow SnO2 nanofibers by graphene oxide,” Sens. Actuators B Chem. 250, 533–542 (2017).
[Crossref]

Li, J.

J. Li, Z. Du, and Y. An, “Frequency modulation characteristics for interband cascade lasers emitting at 3 μm,” Appl. Phys. B 121(1), 7–17 (2015).
[Crossref]

J. Li, U. Parchatka, and H. Fischer, “A formaldehyde trace gas sensor based on a thermoelectrically cooled CW-DFB quantum cascade laser,” Anal. Methods 6(15), 5483–5488 (2014).
[Crossref]

Liekhus-Schmaltz, C. E.

C. E. Liekhus-Schmaltz and J. D. D. Martin, “Understanding Pound-Drever-Hall locking using voltage controlled radio-frequency oscillators: An undergraduate experiment,” Am. J. Phys. 80(3), 232–239 (2012).
[Crossref]

C. E. Liekhus-Schmaltz, R. Mantifel, M. Torabifard, I. B. Burgess, and J. D. D. Martin, “Injection-locked diode laser current modulation for pound-drever-hall frequency stabilization using transfer cavities,” JOSA. B 29(6), 1394–1398 (2012).
[Crossref]

Liu, H. C.

A. Soibel, M. W. Wright, W. Farr, S. Keo, C. Hill, R. Q. Yang, and H. C. Liu, “High-speed operation of interband cascade lasers,” Electron. Lett. 45(5), 264–265 (2009).
[Crossref]

Lu, B.

Lundqvist, S.

Mackay, G. I.

H. I. Schiff, D. R. Hastie, G. I. Mackay, T. Iguchi, and B. A. Ridley, “Tunable diode laser systems for measuring trace gases intropospheric air,” Environ. Sci. Technol. 17(8), 352A–364A (1983).
[PubMed]

Maddaloni, P.

P. Maddaloni, P. Malara, G. Gagliardi, and P. De Natale, “Two-tone frequency modulation spectroscopy for ambient-air trace gas detection using a portable difference-frequency source around 3 μm,” Appl. Phys. B 85(2–3), 219–222 (2006).
[Crossref]

Malara, P.

P. Maddaloni, P. Malara, G. Gagliardi, and P. De Natale, “Two-tone frequency modulation spectroscopy for ambient-air trace gas detection using a portable difference-frequency source around 3 μm,” Appl. Phys. B 85(2–3), 219–222 (2006).
[Crossref]

Mantifel, R.

C. E. Liekhus-Schmaltz, R. Mantifel, M. Torabifard, I. B. Burgess, and J. D. D. Martin, “Injection-locked diode laser current modulation for pound-drever-hall frequency stabilization using transfer cavities,” JOSA. B 29(6), 1394–1398 (2012).
[Crossref]

Martin, J. D. D.

C. E. Liekhus-Schmaltz and J. D. D. Martin, “Understanding Pound-Drever-Hall locking using voltage controlled radio-frequency oscillators: An undergraduate experiment,” Am. J. Phys. 80(3), 232–239 (2012).
[Crossref]

C. E. Liekhus-Schmaltz, R. Mantifel, M. Torabifard, I. B. Burgess, and J. D. D. Martin, “Injection-locked diode laser current modulation for pound-drever-hall frequency stabilization using transfer cavities,” JOSA. B 29(6), 1394–1398 (2012).
[Crossref]

Meisel, G.

B. Burghardt, W. Jitschin, and G. Meisel, “Precise rf tuning for cw dye lasers,” Appl. Phys., A Mater. Sci. Process. 20(2), 141–146 (1979).

Miyamura, K.

K. Tanaka, K. Miyamura, K. Akishima, K. Tonokura, and M. Konno, “Sensitive measurements of trace gas of formaldehyde using a mid-infrared laser spectrometer with a compact multi-pass cell,” Infrared Phys. Technol. 79, 1–5 (2016).
[Crossref]

Moore, D. S.

Munley, A.

R. Drever, J. L. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[Crossref]

Mürtz, M.

H. Dahnke, G. von Basum, K. Kleinermanns, P. Hering, and M. Mürtz, “Rapid formaldehyde monitoring in ambient air by means of mid-infrared cavity leak-out spectroscopy,” Appl. Phys. B 75(2–3), 311–316 (2002).
[Crossref]

Nähle, L.

Ouvrard, A.

Pan, Z.

Parchatka, U.

J. Li, U. Parchatka, and H. Fischer, “A formaldehyde trace gas sensor based on a thermoelectrically cooled CW-DFB quantum cascade laser,” Anal. Methods 6(15), 5483–5488 (2014).
[Crossref]

Pavey, K. D.

Peverall, R.

S. G. Baran, G. Hancock, R. Peverall, G. A. Ritchie, and N. J. van Leeuwen, “Optical feedback cavity enhanced absorption spectroscopy with diode lasers,” Analyst (Lond.) 134(2), 243–249 (2009).
[Crossref] [PubMed]

Qu, R.

Rehle, D.

D. Rehle, D. Leleux, M. Erdelyi, F. Tittel, M. Fraser, and S. Friedfeld, “Ambient formaldehyde detection with a laser spectrometer based on difference-frequency generation in PPLN,” Appl. Phys. B 72(8), 947–952 (2001).
[Crossref] [PubMed]

Ridley, B. A.

H. I. Schiff, D. R. Hastie, G. I. Mackay, T. Iguchi, and B. A. Ridley, “Tunable diode laser systems for measuring trace gases intropospheric air,” Environ. Sci. Technol. 17(8), 352A–364A (1983).
[PubMed]

Ritchie, G. A.

S. G. Baran, G. Hancock, R. Peverall, G. A. Ritchie, and N. J. van Leeuwen, “Optical feedback cavity enhanced absorption spectroscopy with diode lasers,” Analyst (Lond.) 134(2), 243–249 (2009).
[Crossref] [PubMed]

Romanini, D.

Rouillard, Y.

Salhi, A.

Schibli, T. R.

Schiff, H. I.

H. I. Schiff, D. R. Hastie, G. I. Mackay, T. Iguchi, and B. A. Ridley, “Tunable diode laser systems for measuring trace gases intropospheric air,” Environ. Sci. Technol. 17(8), 352A–364A (1983).
[PubMed]

So, S.

Soibel, A.

A. Soibel, M. W. Wright, W. Farr, S. Keo, C. Hill, R. Q. Yang, and H. C. Liu, “High-speed operation of interband cascade lasers,” Electron. Lett. 45(5), 264–265 (2009).
[Crossref]

Spence, T. G.

Tanaka, K.

K. Tanaka, K. Miyamura, K. Akishima, K. Tonokura, and M. Konno, “Sensitive measurements of trace gas of formaldehyde using a mid-infrared laser spectrometer with a compact multi-pass cell,” Infrared Phys. Technol. 79, 1–5 (2016).
[Crossref]

Tittel, F.

D. Rehle, D. Leleux, M. Erdelyi, F. Tittel, M. Fraser, and S. Friedfeld, “Ambient formaldehyde detection with a laser spectrometer based on difference-frequency generation in PPLN,” Appl. Phys. B 72(8), 947–952 (2001).
[Crossref] [PubMed]

Tittel, F. K.

Tonokura, K.

K. Tanaka, K. Miyamura, K. Akishima, K. Tonokura, and M. Konno, “Sensitive measurements of trace gas of formaldehyde using a mid-infrared laser spectrometer with a compact multi-pass cell,” Infrared Phys. Technol. 79, 1–5 (2016).
[Crossref]

Torabifard, M.

C. E. Liekhus-Schmaltz, R. Mantifel, M. Torabifard, I. B. Burgess, and J. D. D. Martin, “Injection-locked diode laser current modulation for pound-drever-hall frequency stabilization using transfer cavities,” JOSA. B 29(6), 1394–1398 (2012).
[Crossref]

van Leeuwen, N. J.

S. G. Baran, G. Hancock, R. Peverall, G. A. Ritchie, and N. J. van Leeuwen, “Optical feedback cavity enhanced absorption spectroscopy with diode lasers,” Analyst (Lond.) 134(2), 243–249 (2009).
[Crossref] [PubMed]

von Basum, G.

H. Dahnke, G. von Basum, K. Kleinermanns, P. Hering, and M. Mürtz, “Rapid formaldehyde monitoring in ambient air by means of mid-infrared cavity leak-out spectroscopy,” Appl. Phys. B 75(2–3), 311–316 (2002).
[Crossref]

von Edlinger, M.

Wang, D.

D. Wang, M. Zhang, Z. Chen, H. Li, A. Chen, X. Wang, and J. Yang, “Enhanced formaldehyde sensing properties of hollow SnO2 nanofibers by graphene oxide,” Sens. Actuators B Chem. 250, 533–542 (2017).
[Crossref]

Wang, G.

Wang, J.

Wang, X.

D. Wang, M. Zhang, Z. Chen, H. Li, A. Chen, X. Wang, and J. Yang, “Enhanced formaldehyde sensing properties of hollow SnO2 nanofibers by graphene oxide,” Sens. Actuators B Chem. 250, 533–542 (2017).
[Crossref]

Ward, H.

R. Drever, J. L. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[Crossref]

Watt, R. S.

Wei, F.

Weih, R.

Wert, B.

Wright, M. W.

A. Soibel, M. W. Wright, W. Farr, S. Keo, C. Hill, R. Q. Yang, and H. C. Liu, “High-speed operation of interband cascade lasers,” Electron. Lett. 45(5), 264–265 (2009).
[Crossref]

Wu, T.

Xu, D.

Xu, Y.

W. Zhang, X. Cheng, X. Zhang, Y. Xu, S. Gao, H. Zhao, and L. Huo, “High selectivity to ppb-level HCHO sensor based on mesoporous tubular SnO2 at low temperature,” Sens. Actuators B Chem. 247, 664–672 (2017).
[Crossref]

Yang, J.

D. Wang, M. Zhang, Z. Chen, H. Li, A. Chen, X. Wang, and J. Yang, “Enhanced formaldehyde sensing properties of hollow SnO2 nanofibers by graphene oxide,” Sens. Actuators B Chem. 250, 533–542 (2017).
[Crossref]

Yang, R. Q.

A. Soibel, M. W. Wright, W. Farr, S. Keo, C. Hill, R. Q. Yang, and H. C. Liu, “High-speed operation of interband cascade lasers,” Electron. Lett. 45(5), 264–265 (2009).
[Crossref]

Ye, J.

Yi, H.

Yost, D. C.

Yu, Y.

Zhang, M.

D. Wang, M. Zhang, Z. Chen, H. Li, A. Chen, X. Wang, and J. Yang, “Enhanced formaldehyde sensing properties of hollow SnO2 nanofibers by graphene oxide,” Sens. Actuators B Chem. 250, 533–542 (2017).
[Crossref]

Zhang, W.

W. Zhang, X. Cheng, X. Zhang, Y. Xu, S. Gao, H. Zhao, and L. Huo, “High selectivity to ppb-level HCHO sensor based on mesoporous tubular SnO2 at low temperature,” Sens. Actuators B Chem. 247, 664–672 (2017).
[Crossref]

H. Yi, T. Wu, G. Wang, W. Zhao, E. Fertein, C. Coeur, X. Gao, W. Zhang, and W. Chen, “Sensing atmospheric reactive species using light emitting diode by incoherent broadband cavity enhanced absorption spectroscopy,” Opt. Express 24(10), A781–A790 (2016).
[Crossref] [PubMed]

Zhang, X.

W. Zhang, X. Cheng, X. Zhang, Y. Xu, S. Gao, H. Zhao, and L. Huo, “High selectivity to ppb-level HCHO sensor based on mesoporous tubular SnO2 at low temperature,” Sens. Actuators B Chem. 247, 664–672 (2017).
[Crossref]

Zhao, H.

W. Zhang, X. Cheng, X. Zhang, Y. Xu, S. Gao, H. Zhao, and L. Huo, “High selectivity to ppb-level HCHO sensor based on mesoporous tubular SnO2 at low temperature,” Sens. Actuators B Chem. 247, 664–672 (2017).
[Crossref]

Zhao, W.

Am. J. Phys. (2)

E. D. Black, “An introduction to Pound–Drever–Hall laser frequency stabilization,” Am. J. Phys. 69(1), 79–87 (2001).
[Crossref]

C. E. Liekhus-Schmaltz and J. D. D. Martin, “Understanding Pound-Drever-Hall locking using voltage controlled radio-frequency oscillators: An undergraduate experiment,” Am. J. Phys. 80(3), 232–239 (2012).
[Crossref]

Anal. Methods (1)

J. Li, U. Parchatka, and H. Fischer, “A formaldehyde trace gas sensor based on a thermoelectrically cooled CW-DFB quantum cascade laser,” Anal. Methods 6(15), 5483–5488 (2014).
[Crossref]

Analyst (Lond.) (1)

S. G. Baran, G. Hancock, R. Peverall, G. A. Ritchie, and N. J. van Leeuwen, “Optical feedback cavity enhanced absorption spectroscopy with diode lasers,” Analyst (Lond.) 134(2), 243–249 (2009).
[Crossref] [PubMed]

Appl. Opt. (2)

Appl. Phys. B (5)

P. Maddaloni, P. Malara, G. Gagliardi, and P. De Natale, “Two-tone frequency modulation spectroscopy for ambient-air trace gas detection using a portable difference-frequency source around 3 μm,” Appl. Phys. B 85(2–3), 219–222 (2006).
[Crossref]

H. Dahnke, G. von Basum, K. Kleinermanns, P. Hering, and M. Mürtz, “Rapid formaldehyde monitoring in ambient air by means of mid-infrared cavity leak-out spectroscopy,” Appl. Phys. B 75(2–3), 311–316 (2002).
[Crossref]

D. Rehle, D. Leleux, M. Erdelyi, F. Tittel, M. Fraser, and S. Friedfeld, “Ambient formaldehyde detection with a laser spectrometer based on difference-frequency generation in PPLN,” Appl. Phys. B 72(8), 947–952 (2001).
[Crossref] [PubMed]

R. Drever, J. L. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[Crossref]

J. Li, Z. Du, and Y. An, “Frequency modulation characteristics for interband cascade lasers emitting at 3 μm,” Appl. Phys. B 121(1), 7–17 (2015).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

B. Burghardt, W. Jitschin, and G. Meisel, “Precise rf tuning for cw dye lasers,” Appl. Phys., A Mater. Sci. Process. 20(2), 141–146 (1979).

Electron. Lett. (1)

A. Soibel, M. W. Wright, W. Farr, S. Keo, C. Hill, R. Q. Yang, and H. C. Liu, “High-speed operation of interband cascade lasers,” Electron. Lett. 45(5), 264–265 (2009).
[Crossref]

Environ. Sci. Technol. (1)

H. I. Schiff, D. R. Hastie, G. I. Mackay, T. Iguchi, and B. A. Ridley, “Tunable diode laser systems for measuring trace gases intropospheric air,” Environ. Sci. Technol. 17(8), 352A–364A (1983).
[PubMed]

Infrared Phys. Technol. (1)

K. Tanaka, K. Miyamura, K. Akishima, K. Tonokura, and M. Konno, “Sensitive measurements of trace gas of formaldehyde using a mid-infrared laser spectrometer with a compact multi-pass cell,” Infrared Phys. Technol. 79, 1–5 (2016).
[Crossref]

JOSA. B (1)

C. E. Liekhus-Schmaltz, R. Mantifel, M. Torabifard, I. B. Burgess, and J. D. D. Martin, “Injection-locked diode laser current modulation for pound-drever-hall frequency stabilization using transfer cavities,” JOSA. B 29(6), 1394–1398 (2012).
[Crossref]

Opt. Eng. (1)

F. Capasso, “High-performance midinfrared quantum cascade lasers,” Opt. Eng. 49(11), 111102 (2010).
[Crossref]

Opt. Express (7)

P. S. Johnston and K. K. Lehmann, “Cavity enhanced absorption spectroscopy using a broadband prism cavity and a supercontinuum source,” Opt. Express 16(19), 15013–15023 (2008).
[Crossref] [PubMed]

H. Yi, T. Wu, G. Wang, W. Zhao, E. Fertein, C. Coeur, X. Gao, W. Zhang, and W. Chen, “Sensing atmospheric reactive species using light emitting diode by incoherent broadband cavity enhanced absorption spectroscopy,” Opt. Express 24(10), A781–A790 (2016).
[Crossref] [PubMed]

L. Dong, Y. Yu, C. Li, S. So, and F. K. Tittel, “Ppb-level formaldehyde detection using a CW room-temperature interband cascade laser and a miniature dense pattern multipass gas cell,” Opt. Express 23(15), 19821–19830 (2015).
[Crossref] [PubMed]

J. M. Langridge, T. Laurila, R. S. Watt, R. L. Jones, C. F. Kaminski, and J. Hult, “Cavity enhanced absorption spectroscopy of multiple trace gas species using a supercontinuum radiation source,” Opt. Express 16(14), 10178–10188 (2008).
[Crossref] [PubMed]

S. Kassi, M. Chenevier, L. Gianfrani, A. Salhi, Y. Rouillard, A. Ouvrard, and D. Romanini, “Looking into the volcano with a MIR-IR DFB diode laser and Cavity Enhanced Absorption Spectroscopy,” Opt. Express 14(23), 11442–11452 (2006).
[Crossref] [PubMed]

F. Wei, B. Lu, J. Wang, D. Xu, Z. Pan, D. Chen, H. Cai, and R. Qu, “Precision and broadband frequency swept laser source based on high-order modulation-sideband injection-locking,” Opt. Express 23(4), 4970–4980 (2015).
[Crossref] [PubMed]

T. C. Briles, D. C. Yost, A. Cingöz, J. Ye, and T. R. Schibli, “Simple piezoelectric-actuated mirror with 180 kHz servo bandwidth,” Opt. Express 18(10), 9739–9746 (2010).
[Crossref] [PubMed]

Opt. Lett. (1)

Sens. Actuators B Chem. (2)

W. Zhang, X. Cheng, X. Zhang, Y. Xu, S. Gao, H. Zhao, and L. Huo, “High selectivity to ppb-level HCHO sensor based on mesoporous tubular SnO2 at low temperature,” Sens. Actuators B Chem. 247, 664–672 (2017).
[Crossref]

D. Wang, M. Zhang, Z. Chen, H. Li, A. Chen, X. Wang, and J. Yang, “Enhanced formaldehyde sensing properties of hollow SnO2 nanofibers by graphene oxide,” Sens. Actuators B Chem. 250, 533–542 (2017).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Structure of the RF modulation based PDH-locked cavity-enhanced H2CO sensor system with a dual-feedback control on the laser current and PZT displacement. Red lines are optical paths and blue lines are signal paths. ICL, interband cascade laser; PBS, polarizing beam splitter; PZT, piezoelectric transducer; DAQ, data acquisition; PD, photodiode detector; LPF, low-pass filter; HPF, high-pass filter. The inset shows the schematic of the designed cavity.
Fig. 2
Fig. 2 (a) H2O absorption line near 2780 cm−1. (b) Atmospheric H2CO absorption line located near 2780 cm−1 in comparison with N2O and CH4. (c) Tuning characteristics of the 3.6 µm ICL.
Fig. 3
Fig. 3 The electronic feedback loop of the RF electrical modulation based PDH locking method. RFI, Radio frequency input; CSI, Current servo input; PD, photodiode; PID, proportional–integral–derivative.
Fig. 4
Fig. 4 Cavity resonance under critical coupling conditions. (a) PZT sweep signal. (b) Transmitted signal from the cavity. (c) Error signal generated by the mixer followed by a low-pass filter.
Fig. 5
Fig. 5 An acquired absorption spectrum of 10 ppm H2CO by tuning the laser temperature from 33.55 °C to 33.7 °C in steps of 0.012 °C
Fig. 6
Fig. 6 (a) Cavity transmitted signal at different H2CO concentration levels. (b) The fitting curve of the relationship between the averaged absorption signal amplitude and H2CO concentration within the range 0−5 ppm. The inset shows the error bar of the 1 ppm H2CO averaged amplitude.
Fig. 7
Fig. 7 The Allan variance plot of the sensor system (lower figure) based on the long-term concentration measurement results (upper figure) for the 1 ppm H2CO sample.

Tables (1)

Tables Icon

Table 1 Basic specifications of the designed cavity. c is the light speed in the cavity.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

V=2.50.136C

Metrics