Abstract

A 3D printing technique for manufacturing air-clad coherent fiber optic faceplates is presented. The custom G-code programming is implemented on a fused deposition modeling (FDM) desktop printer to additively draw optical fibers using high-transparency thermoplastic filaments. The 3D printed faceplate consists of 20000 fibers and achieves spatial resolution 1.78 LP/mm. Transmission loss and crosstalk are characterized and compared among the faceplates printed from four kinds of transparent filaments as well as different faceplate thicknesses. The printing temperature is verified by testing the transmission of the faceplates printed under different temperatures. Compared with the conventional stack-and-draw fabrication, the FDM 3D printing technique simplifies the fabrication procedure. The ability to draw fibers with arbitrary organization, structure and overall shape provides additional degree of freedom to opto-mechanical design. Our results indicate a promising capability of 3D printing as the manufacturing technology for fiber optical devices.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
3D-printing of arsenic sulfide chalcogenide glasses

E. Baudet, Y. Ledemi, P. Larochelle, S. Morency, and Y. Messaddeq
Opt. Mater. Express 9(5) 2307-2317 (2019)

Novel method for manufacturing optical fiber: extrusion and drawing of microstructured polymer optical fibers from a 3D printer

Wanvisa Talataisong, Rand Ismaeel, Seyed Reza Sandoghchi, Teerapat Rutirawut, Glenn Topley, Martynas Beresna, and Gilberto Brambilla
Opt. Express 26(24) 32007-32013 (2018)

Air-structured optical fiber drawn from a 3D-printed preform

Kevin Cook, John Canning, Sergio Leon-Saval, Zane Reid, Md Arafat Hossain, Jade-Edouard Comatti, Yanhua Luo, and Gang-Ding Peng
Opt. Lett. 40(17) 3966-3969 (2015)

References

  • View by:
  • |
  • |
  • |

  1. K. V. Wong and A. Hernandez, “A review of additive manufacturing,” ISRN Mech. Eng. 2012, 208760 (2012).
  2. B. C. Gross, J. L. Erkal, S. Y. Lockwood, C. Chen, and D. M. Spence, “Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences,” Anal. Chem. 2014, 3240–3253 (2014).
  3. L. G. Bracaglia, B. T. Smith, E. Watson, N. Arumugasaamy, A. G. Mikos, and J. P. Fisher, “3D printing for the design and fabrication of polymer-based gradient scaffolds,” Acta Biomater. 56, 3–13 (2017).
    [Crossref] [PubMed]
  4. P. Tack, J. Victor, P. Gemmel, and L. Annemans, “3D-printing techniques in a medical setting: a systematic literature review,” Biomed. Eng. Online 15(1), 115 (2016).
    [Crossref] [PubMed]
  5. I. Gibson, D. Rosen, and B. Stucker, Additive manufacturing technologies: 3D printing, rapid prototyping, and direct digital manufacturing. Springer, 2014. Chapter 19.
  6. Z. Liu, M. Zhang, B. Bhandari, and Y. Wang, “3D printing: Printing precision and application in food sector,” Trends Food Sci. Technol. 69, 83–94 (2017).
    [Crossref]
  7. J. Sun, Z. Peng, W. Zhou, J. Y. Fuh, G. S. Hong, and A. Chiu, “A review on 3D printing for customized food fabrication,” Procedia Manufacturing 1, 308–319 (2015).
    [Crossref]
  8. F. C. Godoi, S. Prakash, and B. R. Bhandari, “3d printing technologies applied for food design: Status and prospects,” J. Food Eng. 179, 44–54 (2016).
    [Crossref]
  9. Y. W. D. Tay, B. Panda, S. C. Paul, N. A. Noor Mohamed, M. J. Tan, and K. F. Leong, “3D printing trends in building and construction industry: a review,” Virtual Phys. Prototyp. 12, 1–16 (2017).
  10. S. C. Joshi and A. A. Sheikh, “3D printing in aerospace and its long-term sustainability,” Virtual Phys. Prototyp. 10(4), 175–185 (2015).
    [Crossref]
  11. P. G. McMenamin, M. R. Quayle, C. R. McHenry, and J. W. Adams, “The production of anatomical teaching resources using three-dimensional (3D) printing technology,” Anat. Sci. Educ. 7(6), 479–486 (2014).
    [Crossref] [PubMed]
  12. M. P. Chae, W. M. Rozen, P. G. McMenamin, M. W. Findlay, R. T. Spychal, and D. J. Hunter-Smith, “Emerging applications of bedside 3D printing in plastic surgery,” Frontiers Surgery 2, 2-22 (2015).
  13. C. W. Hull, “Apparatus for production of three-dimensional objects by stereolithography.” U.S. Patent No. 4,575,330. 11 Mar. 1986.
  14. P. Calvert, “Inkjet printing for materials and devices,” Chem. Mater. 13(10), 3299–3305 (2001).
    [Crossref]
  15. Stratasys, “PolyJet Technology”, http://www.stratasys.com/3d-printers/technologies/polyjet-technology .
  16. J. J. Beaman and C. R. Deckard, “Selective laser sintering with assisted powder handling.” U.S. Patent No. 4,938,816. 3 Jul. 1990.
  17. C. W. Ziemian and P. M. Crawn, “Computer aided decision support for fused deposition modeling,” Rapid Prototyping J. 7(3), 138–147 (2001).
    [Crossref]
  18. F. Baumann, and D. Roller, “Vision based error detection for 3D printing processes.” MATEC web of conferences. Vol. 59. EDP Sciences, 2016.
  19. S. Thiele, K. Arzenbacher, T. Gissibl, H. Giessen, and A. M. Herkommer, “3D-printed eagle eye: Compound microlens system for foveated imaging,” Sci. Adv. 3(2), e1602655 (2017).
    [Crossref] [PubMed]
  20. J. Gawedzinski, M. E. Pawlowski, and T. S. Tkaczyk, “Quantitative evaluation of performance of three-dimensional printed lenses,” Opt. Eng. 56(8), 084110 (2017).
    [Crossref] [PubMed]
  21. P.-I. Dietrich, R. J. Harris, M. Blaicher, M. K. Corrigan, T. M. Morris, W. Freude, A. Quirrenbach, and C. Koos, “Printed freeform lens arrays on multi-core fibers for highly efficient coupling in astrophotonic systems,” Opt. Express 25(15), 18288–18295 (2017).
    [Crossref] [PubMed]
  22. T. Du, N. Cameron, M. Timothy, D. Yee, N. Dudukovic, J. Destino, C. Zhu, E. Duoss, T. F. Baumann, T. Suratwala, J. E. Smay, and R. Dylla‐Spears, “3D‐Printed Transparent Glass,” Adv. Mater. 29(26), 1701181 (2017).
  23. J. Luo, L. J. Gilbert, D. A. Bristow, R. G. Landers, J. T. Goldstein, A. M. Urbas, and E. C. Kinzel, “Additive manufacturing of glass for optical applications,” Proc. SPIE 9738, 97380Y (2016).
  24. F. Kotz, K. Arnold, W. Bauer, D. Schild, N. Keller, K. Sachsenheimer, T. M. Nargang, C. Richter, D. Helmer, and B. E. Rapp, “Three-dimensional printing of transparent fused silica glass,” Nature 544(7650), 337–339 (2017).
    [Crossref] [PubMed]
  25. S. J. Leigh, R. J. Bradley, C. P. Purssell, D. R. Billson, and D. A. Hutchins, “A simple, low-cost conductive composite material for 3D printing of electronic sensors,” PLoS One 7(11), e49365 (2012).
    [Crossref] [PubMed]
  26. M. Nierenberger, S. Lecler, P. Pfeiffer, F. Geiskopf, M. Guilhem, and P. Renaud, “Additive manufacturing of a monolithic optical force sensor based on polarization modulation,” Appl. Opt. 54(22), 6912–6918 (2015).
    [Crossref] [PubMed]
  27. H. H. Duc Nguyen, U. Hollenbach, U. Ostrzinski, K. Pfeiffer, S. Hengsbach, and J. Mohr, “Freeform three-dimensional embedded polymer waveguides enabled by external-diffusion assisted two-photon lithography,” Appl. Opt. 55(8), 1906–1912 (2016).
    [Crossref] [PubMed]
  28. H. H. D. Nguyen, U. Hollenbach, S. Pfirrmann, U. Ostrzinski, K. Pfeiffer, S. Hengsbach, and J. Mohr, “Photo-structurable polymer for interlayer single-mode waveguide fabrication by femtosecond laser writing,” Opt. Mater. 66, 110–116 (2017).
    [Crossref]
  29. K. Willis, E. Brockmeyer, S. Hudson, and I. Poupyrev, “Printed optics: 3D printing of embedded optical elements for interactive devices,” in Proceedings of the 25th Annual ACM Symposium on User Interface Software and Technology (ACM, 2012).
    [Crossref]
  30. T. Pereira, S. Rusinkiewicz, and W. Matusik, “Computational light routing: 3d printed optical fibers for sensing and display,” ACM Trans. Graph. 33(3), 24 (2014).
    [Crossref]
  31. K. Cook, J. Canning, S. Leon-Saval, Z. Reid, M. A. Hossain, J. E. Comatti, Y. Luo, and G. D. Peng, “Air-structured optical fiber drawn from a 3D-printed preform,” Opt. Lett. 40(17), 3966–3969 (2015).
    [Crossref] [PubMed]
  32. K. Cook, G. Balle, J. Canning, L. Chartier, T. Athanaze, M. A. Hossain, C. Han, J. E. Comatti, Y. Luo, and G. D. Peng, “Step-index optical fiber drawn from 3D printed preforms,” Opt. Lett. 41(19), 4554–4557 (2016).
    [Crossref] [PubMed]
  33. J. Canning, M. A. Hossain, C. Han, L. Chartier, K. Cook, and T. Athanaze, “Drawing optical fibers from three-dimensional printers,” Opt. Lett. 41(23), 5551–5554 (2016).
    [Crossref] [PubMed]
  34. Y. Wang, M. E. Pawlowski, and T. S. Tkaczyk, “High spatial sampling light-guide snapshot spectrometer,” Opt. Eng. 56(8), 081803 (2017).
    [Crossref] [PubMed]
  35. N. Bedard and T. S. Tkaczyk, “Snapshot spectrally encoded fluorescence imaging through a fiber bundle,” J. Biomed. Opt. 17(8), 080508 (2012).
    [Crossref] [PubMed]
  36. A. Bodkin, A. Sheinis, A. Norton, A. Daly, J. Roberts, C. Beaven, and S. J. Weinheimer, “Video-rate chemical identification and visualization with snapshot hyperspectral imaging,” Proc. SPIE 8374, 83740C (2012).
  37. B. Khoobehi, K. Firn, E. Rodebeck, and S. Hay, “A new snapshot hyperspectral imaging system to image optic nerve head tissue,” Acta Ophthalmol. 92(3), e241 (2014).
    [Crossref] [PubMed]
  38. J. Kriesel, G. Scriven, N. Gat, S. Nagaraj, P. Willson, and V. Swaminathan, “Snapshot hyperspectral fovea vision system,” Proc. SPIE 8390, 83900T (2012).
  39. I. Ishida, T. Akamatsu, Z. Wang, Y. Sasaki, K. Takenaga, and S. Matsuo, “Possibility of stack and draw process as fabrication technology for multi-core fiber,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC) (IEEE, 2013).
    [Crossref]
  40. Stratasys, “Fortus 900mc”, http://www.stratasys.com/3d-printers/fortus-900mc .

2017 (10)

L. G. Bracaglia, B. T. Smith, E. Watson, N. Arumugasaamy, A. G. Mikos, and J. P. Fisher, “3D printing for the design and fabrication of polymer-based gradient scaffolds,” Acta Biomater. 56, 3–13 (2017).
[Crossref] [PubMed]

Z. Liu, M. Zhang, B. Bhandari, and Y. Wang, “3D printing: Printing precision and application in food sector,” Trends Food Sci. Technol. 69, 83–94 (2017).
[Crossref]

Y. W. D. Tay, B. Panda, S. C. Paul, N. A. Noor Mohamed, M. J. Tan, and K. F. Leong, “3D printing trends in building and construction industry: a review,” Virtual Phys. Prototyp. 12, 1–16 (2017).

S. Thiele, K. Arzenbacher, T. Gissibl, H. Giessen, and A. M. Herkommer, “3D-printed eagle eye: Compound microlens system for foveated imaging,” Sci. Adv. 3(2), e1602655 (2017).
[Crossref] [PubMed]

J. Gawedzinski, M. E. Pawlowski, and T. S. Tkaczyk, “Quantitative evaluation of performance of three-dimensional printed lenses,” Opt. Eng. 56(8), 084110 (2017).
[Crossref] [PubMed]

T. Du, N. Cameron, M. Timothy, D. Yee, N. Dudukovic, J. Destino, C. Zhu, E. Duoss, T. F. Baumann, T. Suratwala, J. E. Smay, and R. Dylla‐Spears, “3D‐Printed Transparent Glass,” Adv. Mater. 29(26), 1701181 (2017).

F. Kotz, K. Arnold, W. Bauer, D. Schild, N. Keller, K. Sachsenheimer, T. M. Nargang, C. Richter, D. Helmer, and B. E. Rapp, “Three-dimensional printing of transparent fused silica glass,” Nature 544(7650), 337–339 (2017).
[Crossref] [PubMed]

H. H. D. Nguyen, U. Hollenbach, S. Pfirrmann, U. Ostrzinski, K. Pfeiffer, S. Hengsbach, and J. Mohr, “Photo-structurable polymer for interlayer single-mode waveguide fabrication by femtosecond laser writing,” Opt. Mater. 66, 110–116 (2017).
[Crossref]

Y. Wang, M. E. Pawlowski, and T. S. Tkaczyk, “High spatial sampling light-guide snapshot spectrometer,” Opt. Eng. 56(8), 081803 (2017).
[Crossref] [PubMed]

P.-I. Dietrich, R. J. Harris, M. Blaicher, M. K. Corrigan, T. M. Morris, W. Freude, A. Quirrenbach, and C. Koos, “Printed freeform lens arrays on multi-core fibers for highly efficient coupling in astrophotonic systems,” Opt. Express 25(15), 18288–18295 (2017).
[Crossref] [PubMed]

2016 (6)

F. C. Godoi, S. Prakash, and B. R. Bhandari, “3d printing technologies applied for food design: Status and prospects,” J. Food Eng. 179, 44–54 (2016).
[Crossref]

H. H. Duc Nguyen, U. Hollenbach, U. Ostrzinski, K. Pfeiffer, S. Hengsbach, and J. Mohr, “Freeform three-dimensional embedded polymer waveguides enabled by external-diffusion assisted two-photon lithography,” Appl. Opt. 55(8), 1906–1912 (2016).
[Crossref] [PubMed]

K. Cook, G. Balle, J. Canning, L. Chartier, T. Athanaze, M. A. Hossain, C. Han, J. E. Comatti, Y. Luo, and G. D. Peng, “Step-index optical fiber drawn from 3D printed preforms,” Opt. Lett. 41(19), 4554–4557 (2016).
[Crossref] [PubMed]

J. Canning, M. A. Hossain, C. Han, L. Chartier, K. Cook, and T. Athanaze, “Drawing optical fibers from three-dimensional printers,” Opt. Lett. 41(23), 5551–5554 (2016).
[Crossref] [PubMed]

J. Luo, L. J. Gilbert, D. A. Bristow, R. G. Landers, J. T. Goldstein, A. M. Urbas, and E. C. Kinzel, “Additive manufacturing of glass for optical applications,” Proc. SPIE 9738, 97380Y (2016).

P. Tack, J. Victor, P. Gemmel, and L. Annemans, “3D-printing techniques in a medical setting: a systematic literature review,” Biomed. Eng. Online 15(1), 115 (2016).
[Crossref] [PubMed]

2015 (5)

S. C. Joshi and A. A. Sheikh, “3D printing in aerospace and its long-term sustainability,” Virtual Phys. Prototyp. 10(4), 175–185 (2015).
[Crossref]

J. Sun, Z. Peng, W. Zhou, J. Y. Fuh, G. S. Hong, and A. Chiu, “A review on 3D printing for customized food fabrication,” Procedia Manufacturing 1, 308–319 (2015).
[Crossref]

M. P. Chae, W. M. Rozen, P. G. McMenamin, M. W. Findlay, R. T. Spychal, and D. J. Hunter-Smith, “Emerging applications of bedside 3D printing in plastic surgery,” Frontiers Surgery 2, 2-22 (2015).

M. Nierenberger, S. Lecler, P. Pfeiffer, F. Geiskopf, M. Guilhem, and P. Renaud, “Additive manufacturing of a monolithic optical force sensor based on polarization modulation,” Appl. Opt. 54(22), 6912–6918 (2015).
[Crossref] [PubMed]

K. Cook, J. Canning, S. Leon-Saval, Z. Reid, M. A. Hossain, J. E. Comatti, Y. Luo, and G. D. Peng, “Air-structured optical fiber drawn from a 3D-printed preform,” Opt. Lett. 40(17), 3966–3969 (2015).
[Crossref] [PubMed]

2014 (4)

B. Khoobehi, K. Firn, E. Rodebeck, and S. Hay, “A new snapshot hyperspectral imaging system to image optic nerve head tissue,” Acta Ophthalmol. 92(3), e241 (2014).
[Crossref] [PubMed]

T. Pereira, S. Rusinkiewicz, and W. Matusik, “Computational light routing: 3d printed optical fibers for sensing and display,” ACM Trans. Graph. 33(3), 24 (2014).
[Crossref]

P. G. McMenamin, M. R. Quayle, C. R. McHenry, and J. W. Adams, “The production of anatomical teaching resources using three-dimensional (3D) printing technology,” Anat. Sci. Educ. 7(6), 479–486 (2014).
[Crossref] [PubMed]

B. C. Gross, J. L. Erkal, S. Y. Lockwood, C. Chen, and D. M. Spence, “Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences,” Anal. Chem. 2014, 3240–3253 (2014).

2012 (5)

K. V. Wong and A. Hernandez, “A review of additive manufacturing,” ISRN Mech. Eng. 2012, 208760 (2012).

S. J. Leigh, R. J. Bradley, C. P. Purssell, D. R. Billson, and D. A. Hutchins, “A simple, low-cost conductive composite material for 3D printing of electronic sensors,” PLoS One 7(11), e49365 (2012).
[Crossref] [PubMed]

N. Bedard and T. S. Tkaczyk, “Snapshot spectrally encoded fluorescence imaging through a fiber bundle,” J. Biomed. Opt. 17(8), 080508 (2012).
[Crossref] [PubMed]

A. Bodkin, A. Sheinis, A. Norton, A. Daly, J. Roberts, C. Beaven, and S. J. Weinheimer, “Video-rate chemical identification and visualization with snapshot hyperspectral imaging,” Proc. SPIE 8374, 83740C (2012).

J. Kriesel, G. Scriven, N. Gat, S. Nagaraj, P. Willson, and V. Swaminathan, “Snapshot hyperspectral fovea vision system,” Proc. SPIE 8390, 83900T (2012).

2001 (2)

P. Calvert, “Inkjet printing for materials and devices,” Chem. Mater. 13(10), 3299–3305 (2001).
[Crossref]

C. W. Ziemian and P. M. Crawn, “Computer aided decision support for fused deposition modeling,” Rapid Prototyping J. 7(3), 138–147 (2001).
[Crossref]

Adams, J. W.

P. G. McMenamin, M. R. Quayle, C. R. McHenry, and J. W. Adams, “The production of anatomical teaching resources using three-dimensional (3D) printing technology,” Anat. Sci. Educ. 7(6), 479–486 (2014).
[Crossref] [PubMed]

Akamatsu, T.

I. Ishida, T. Akamatsu, Z. Wang, Y. Sasaki, K. Takenaga, and S. Matsuo, “Possibility of stack and draw process as fabrication technology for multi-core fiber,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC) (IEEE, 2013).
[Crossref]

Annemans, L.

P. Tack, J. Victor, P. Gemmel, and L. Annemans, “3D-printing techniques in a medical setting: a systematic literature review,” Biomed. Eng. Online 15(1), 115 (2016).
[Crossref] [PubMed]

Arnold, K.

F. Kotz, K. Arnold, W. Bauer, D. Schild, N. Keller, K. Sachsenheimer, T. M. Nargang, C. Richter, D. Helmer, and B. E. Rapp, “Three-dimensional printing of transparent fused silica glass,” Nature 544(7650), 337–339 (2017).
[Crossref] [PubMed]

Arumugasaamy, N.

L. G. Bracaglia, B. T. Smith, E. Watson, N. Arumugasaamy, A. G. Mikos, and J. P. Fisher, “3D printing for the design and fabrication of polymer-based gradient scaffolds,” Acta Biomater. 56, 3–13 (2017).
[Crossref] [PubMed]

Arzenbacher, K.

S. Thiele, K. Arzenbacher, T. Gissibl, H. Giessen, and A. M. Herkommer, “3D-printed eagle eye: Compound microlens system for foveated imaging,” Sci. Adv. 3(2), e1602655 (2017).
[Crossref] [PubMed]

Athanaze, T.

Balle, G.

Bauer, W.

F. Kotz, K. Arnold, W. Bauer, D. Schild, N. Keller, K. Sachsenheimer, T. M. Nargang, C. Richter, D. Helmer, and B. E. Rapp, “Three-dimensional printing of transparent fused silica glass,” Nature 544(7650), 337–339 (2017).
[Crossref] [PubMed]

Baumann, T. F.

T. Du, N. Cameron, M. Timothy, D. Yee, N. Dudukovic, J. Destino, C. Zhu, E. Duoss, T. F. Baumann, T. Suratwala, J. E. Smay, and R. Dylla‐Spears, “3D‐Printed Transparent Glass,” Adv. Mater. 29(26), 1701181 (2017).

Beaven, C.

A. Bodkin, A. Sheinis, A. Norton, A. Daly, J. Roberts, C. Beaven, and S. J. Weinheimer, “Video-rate chemical identification and visualization with snapshot hyperspectral imaging,” Proc. SPIE 8374, 83740C (2012).

Bedard, N.

N. Bedard and T. S. Tkaczyk, “Snapshot spectrally encoded fluorescence imaging through a fiber bundle,” J. Biomed. Opt. 17(8), 080508 (2012).
[Crossref] [PubMed]

Bhandari, B.

Z. Liu, M. Zhang, B. Bhandari, and Y. Wang, “3D printing: Printing precision and application in food sector,” Trends Food Sci. Technol. 69, 83–94 (2017).
[Crossref]

Bhandari, B. R.

F. C. Godoi, S. Prakash, and B. R. Bhandari, “3d printing technologies applied for food design: Status and prospects,” J. Food Eng. 179, 44–54 (2016).
[Crossref]

Billson, D. R.

S. J. Leigh, R. J. Bradley, C. P. Purssell, D. R. Billson, and D. A. Hutchins, “A simple, low-cost conductive composite material for 3D printing of electronic sensors,” PLoS One 7(11), e49365 (2012).
[Crossref] [PubMed]

Blaicher, M.

Bodkin, A.

A. Bodkin, A. Sheinis, A. Norton, A. Daly, J. Roberts, C. Beaven, and S. J. Weinheimer, “Video-rate chemical identification and visualization with snapshot hyperspectral imaging,” Proc. SPIE 8374, 83740C (2012).

Bracaglia, L. G.

L. G. Bracaglia, B. T. Smith, E. Watson, N. Arumugasaamy, A. G. Mikos, and J. P. Fisher, “3D printing for the design and fabrication of polymer-based gradient scaffolds,” Acta Biomater. 56, 3–13 (2017).
[Crossref] [PubMed]

Bradley, R. J.

S. J. Leigh, R. J. Bradley, C. P. Purssell, D. R. Billson, and D. A. Hutchins, “A simple, low-cost conductive composite material for 3D printing of electronic sensors,” PLoS One 7(11), e49365 (2012).
[Crossref] [PubMed]

Bristow, D. A.

J. Luo, L. J. Gilbert, D. A. Bristow, R. G. Landers, J. T. Goldstein, A. M. Urbas, and E. C. Kinzel, “Additive manufacturing of glass for optical applications,” Proc. SPIE 9738, 97380Y (2016).

Brockmeyer, E.

K. Willis, E. Brockmeyer, S. Hudson, and I. Poupyrev, “Printed optics: 3D printing of embedded optical elements for interactive devices,” in Proceedings of the 25th Annual ACM Symposium on User Interface Software and Technology (ACM, 2012).
[Crossref]

Calvert, P.

P. Calvert, “Inkjet printing for materials and devices,” Chem. Mater. 13(10), 3299–3305 (2001).
[Crossref]

Cameron, N.

T. Du, N. Cameron, M. Timothy, D. Yee, N. Dudukovic, J. Destino, C. Zhu, E. Duoss, T. F. Baumann, T. Suratwala, J. E. Smay, and R. Dylla‐Spears, “3D‐Printed Transparent Glass,” Adv. Mater. 29(26), 1701181 (2017).

Canning, J.

Chae, M. P.

M. P. Chae, W. M. Rozen, P. G. McMenamin, M. W. Findlay, R. T. Spychal, and D. J. Hunter-Smith, “Emerging applications of bedside 3D printing in plastic surgery,” Frontiers Surgery 2, 2-22 (2015).

Chartier, L.

Chen, C.

B. C. Gross, J. L. Erkal, S. Y. Lockwood, C. Chen, and D. M. Spence, “Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences,” Anal. Chem. 2014, 3240–3253 (2014).

Chiu, A.

J. Sun, Z. Peng, W. Zhou, J. Y. Fuh, G. S. Hong, and A. Chiu, “A review on 3D printing for customized food fabrication,” Procedia Manufacturing 1, 308–319 (2015).
[Crossref]

Comatti, J. E.

Cook, K.

Corrigan, M. K.

Crawn, P. M.

C. W. Ziemian and P. M. Crawn, “Computer aided decision support for fused deposition modeling,” Rapid Prototyping J. 7(3), 138–147 (2001).
[Crossref]

Daly, A.

A. Bodkin, A. Sheinis, A. Norton, A. Daly, J. Roberts, C. Beaven, and S. J. Weinheimer, “Video-rate chemical identification and visualization with snapshot hyperspectral imaging,” Proc. SPIE 8374, 83740C (2012).

Destino, J.

T. Du, N. Cameron, M. Timothy, D. Yee, N. Dudukovic, J. Destino, C. Zhu, E. Duoss, T. F. Baumann, T. Suratwala, J. E. Smay, and R. Dylla‐Spears, “3D‐Printed Transparent Glass,” Adv. Mater. 29(26), 1701181 (2017).

Dietrich, P.-I.

Du, T.

T. Du, N. Cameron, M. Timothy, D. Yee, N. Dudukovic, J. Destino, C. Zhu, E. Duoss, T. F. Baumann, T. Suratwala, J. E. Smay, and R. Dylla‐Spears, “3D‐Printed Transparent Glass,” Adv. Mater. 29(26), 1701181 (2017).

Duc Nguyen, H. H.

Dudukovic, N.

T. Du, N. Cameron, M. Timothy, D. Yee, N. Dudukovic, J. Destino, C. Zhu, E. Duoss, T. F. Baumann, T. Suratwala, J. E. Smay, and R. Dylla‐Spears, “3D‐Printed Transparent Glass,” Adv. Mater. 29(26), 1701181 (2017).

Duoss, E.

T. Du, N. Cameron, M. Timothy, D. Yee, N. Dudukovic, J. Destino, C. Zhu, E. Duoss, T. F. Baumann, T. Suratwala, J. E. Smay, and R. Dylla‐Spears, “3D‐Printed Transparent Glass,” Adv. Mater. 29(26), 1701181 (2017).

Dylla-Spears, R.

T. Du, N. Cameron, M. Timothy, D. Yee, N. Dudukovic, J. Destino, C. Zhu, E. Duoss, T. F. Baumann, T. Suratwala, J. E. Smay, and R. Dylla‐Spears, “3D‐Printed Transparent Glass,” Adv. Mater. 29(26), 1701181 (2017).

Erkal, J. L.

B. C. Gross, J. L. Erkal, S. Y. Lockwood, C. Chen, and D. M. Spence, “Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences,” Anal. Chem. 2014, 3240–3253 (2014).

Findlay, M. W.

M. P. Chae, W. M. Rozen, P. G. McMenamin, M. W. Findlay, R. T. Spychal, and D. J. Hunter-Smith, “Emerging applications of bedside 3D printing in plastic surgery,” Frontiers Surgery 2, 2-22 (2015).

Firn, K.

B. Khoobehi, K. Firn, E. Rodebeck, and S. Hay, “A new snapshot hyperspectral imaging system to image optic nerve head tissue,” Acta Ophthalmol. 92(3), e241 (2014).
[Crossref] [PubMed]

Fisher, J. P.

L. G. Bracaglia, B. T. Smith, E. Watson, N. Arumugasaamy, A. G. Mikos, and J. P. Fisher, “3D printing for the design and fabrication of polymer-based gradient scaffolds,” Acta Biomater. 56, 3–13 (2017).
[Crossref] [PubMed]

Freude, W.

Fuh, J. Y.

J. Sun, Z. Peng, W. Zhou, J. Y. Fuh, G. S. Hong, and A. Chiu, “A review on 3D printing for customized food fabrication,” Procedia Manufacturing 1, 308–319 (2015).
[Crossref]

Gat, N.

J. Kriesel, G. Scriven, N. Gat, S. Nagaraj, P. Willson, and V. Swaminathan, “Snapshot hyperspectral fovea vision system,” Proc. SPIE 8390, 83900T (2012).

Gawedzinski, J.

J. Gawedzinski, M. E. Pawlowski, and T. S. Tkaczyk, “Quantitative evaluation of performance of three-dimensional printed lenses,” Opt. Eng. 56(8), 084110 (2017).
[Crossref] [PubMed]

Geiskopf, F.

Gemmel, P.

P. Tack, J. Victor, P. Gemmel, and L. Annemans, “3D-printing techniques in a medical setting: a systematic literature review,” Biomed. Eng. Online 15(1), 115 (2016).
[Crossref] [PubMed]

Giessen, H.

S. Thiele, K. Arzenbacher, T. Gissibl, H. Giessen, and A. M. Herkommer, “3D-printed eagle eye: Compound microlens system for foveated imaging,” Sci. Adv. 3(2), e1602655 (2017).
[Crossref] [PubMed]

Gilbert, L. J.

J. Luo, L. J. Gilbert, D. A. Bristow, R. G. Landers, J. T. Goldstein, A. M. Urbas, and E. C. Kinzel, “Additive manufacturing of glass for optical applications,” Proc. SPIE 9738, 97380Y (2016).

Gissibl, T.

S. Thiele, K. Arzenbacher, T. Gissibl, H. Giessen, and A. M. Herkommer, “3D-printed eagle eye: Compound microlens system for foveated imaging,” Sci. Adv. 3(2), e1602655 (2017).
[Crossref] [PubMed]

Godoi, F. C.

F. C. Godoi, S. Prakash, and B. R. Bhandari, “3d printing technologies applied for food design: Status and prospects,” J. Food Eng. 179, 44–54 (2016).
[Crossref]

Goldstein, J. T.

J. Luo, L. J. Gilbert, D. A. Bristow, R. G. Landers, J. T. Goldstein, A. M. Urbas, and E. C. Kinzel, “Additive manufacturing of glass for optical applications,” Proc. SPIE 9738, 97380Y (2016).

Gross, B. C.

B. C. Gross, J. L. Erkal, S. Y. Lockwood, C. Chen, and D. M. Spence, “Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences,” Anal. Chem. 2014, 3240–3253 (2014).

Guilhem, M.

Han, C.

Harris, R. J.

Hay, S.

B. Khoobehi, K. Firn, E. Rodebeck, and S. Hay, “A new snapshot hyperspectral imaging system to image optic nerve head tissue,” Acta Ophthalmol. 92(3), e241 (2014).
[Crossref] [PubMed]

Helmer, D.

F. Kotz, K. Arnold, W. Bauer, D. Schild, N. Keller, K. Sachsenheimer, T. M. Nargang, C. Richter, D. Helmer, and B. E. Rapp, “Three-dimensional printing of transparent fused silica glass,” Nature 544(7650), 337–339 (2017).
[Crossref] [PubMed]

Hengsbach, S.

H. H. D. Nguyen, U. Hollenbach, S. Pfirrmann, U. Ostrzinski, K. Pfeiffer, S. Hengsbach, and J. Mohr, “Photo-structurable polymer for interlayer single-mode waveguide fabrication by femtosecond laser writing,” Opt. Mater. 66, 110–116 (2017).
[Crossref]

H. H. Duc Nguyen, U. Hollenbach, U. Ostrzinski, K. Pfeiffer, S. Hengsbach, and J. Mohr, “Freeform three-dimensional embedded polymer waveguides enabled by external-diffusion assisted two-photon lithography,” Appl. Opt. 55(8), 1906–1912 (2016).
[Crossref] [PubMed]

Herkommer, A. M.

S. Thiele, K. Arzenbacher, T. Gissibl, H. Giessen, and A. M. Herkommer, “3D-printed eagle eye: Compound microlens system for foveated imaging,” Sci. Adv. 3(2), e1602655 (2017).
[Crossref] [PubMed]

Hernandez, A.

K. V. Wong and A. Hernandez, “A review of additive manufacturing,” ISRN Mech. Eng. 2012, 208760 (2012).

Hollenbach, U.

H. H. D. Nguyen, U. Hollenbach, S. Pfirrmann, U. Ostrzinski, K. Pfeiffer, S. Hengsbach, and J. Mohr, “Photo-structurable polymer for interlayer single-mode waveguide fabrication by femtosecond laser writing,” Opt. Mater. 66, 110–116 (2017).
[Crossref]

H. H. Duc Nguyen, U. Hollenbach, U. Ostrzinski, K. Pfeiffer, S. Hengsbach, and J. Mohr, “Freeform three-dimensional embedded polymer waveguides enabled by external-diffusion assisted two-photon lithography,” Appl. Opt. 55(8), 1906–1912 (2016).
[Crossref] [PubMed]

Hong, G. S.

J. Sun, Z. Peng, W. Zhou, J. Y. Fuh, G. S. Hong, and A. Chiu, “A review on 3D printing for customized food fabrication,” Procedia Manufacturing 1, 308–319 (2015).
[Crossref]

Hossain, M. A.

Hudson, S.

K. Willis, E. Brockmeyer, S. Hudson, and I. Poupyrev, “Printed optics: 3D printing of embedded optical elements for interactive devices,” in Proceedings of the 25th Annual ACM Symposium on User Interface Software and Technology (ACM, 2012).
[Crossref]

Hunter-Smith, D. J.

M. P. Chae, W. M. Rozen, P. G. McMenamin, M. W. Findlay, R. T. Spychal, and D. J. Hunter-Smith, “Emerging applications of bedside 3D printing in plastic surgery,” Frontiers Surgery 2, 2-22 (2015).

Hutchins, D. A.

S. J. Leigh, R. J. Bradley, C. P. Purssell, D. R. Billson, and D. A. Hutchins, “A simple, low-cost conductive composite material for 3D printing of electronic sensors,” PLoS One 7(11), e49365 (2012).
[Crossref] [PubMed]

Ishida, I.

I. Ishida, T. Akamatsu, Z. Wang, Y. Sasaki, K. Takenaga, and S. Matsuo, “Possibility of stack and draw process as fabrication technology for multi-core fiber,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC) (IEEE, 2013).
[Crossref]

Joshi, S. C.

S. C. Joshi and A. A. Sheikh, “3D printing in aerospace and its long-term sustainability,” Virtual Phys. Prototyp. 10(4), 175–185 (2015).
[Crossref]

Keller, N.

F. Kotz, K. Arnold, W. Bauer, D. Schild, N. Keller, K. Sachsenheimer, T. M. Nargang, C. Richter, D. Helmer, and B. E. Rapp, “Three-dimensional printing of transparent fused silica glass,” Nature 544(7650), 337–339 (2017).
[Crossref] [PubMed]

Khoobehi, B.

B. Khoobehi, K. Firn, E. Rodebeck, and S. Hay, “A new snapshot hyperspectral imaging system to image optic nerve head tissue,” Acta Ophthalmol. 92(3), e241 (2014).
[Crossref] [PubMed]

Kinzel, E. C.

J. Luo, L. J. Gilbert, D. A. Bristow, R. G. Landers, J. T. Goldstein, A. M. Urbas, and E. C. Kinzel, “Additive manufacturing of glass for optical applications,” Proc. SPIE 9738, 97380Y (2016).

Koos, C.

Kotz, F.

F. Kotz, K. Arnold, W. Bauer, D. Schild, N. Keller, K. Sachsenheimer, T. M. Nargang, C. Richter, D. Helmer, and B. E. Rapp, “Three-dimensional printing of transparent fused silica glass,” Nature 544(7650), 337–339 (2017).
[Crossref] [PubMed]

Kriesel, J.

J. Kriesel, G. Scriven, N. Gat, S. Nagaraj, P. Willson, and V. Swaminathan, “Snapshot hyperspectral fovea vision system,” Proc. SPIE 8390, 83900T (2012).

Landers, R. G.

J. Luo, L. J. Gilbert, D. A. Bristow, R. G. Landers, J. T. Goldstein, A. M. Urbas, and E. C. Kinzel, “Additive manufacturing of glass for optical applications,” Proc. SPIE 9738, 97380Y (2016).

Lecler, S.

Leigh, S. J.

S. J. Leigh, R. J. Bradley, C. P. Purssell, D. R. Billson, and D. A. Hutchins, “A simple, low-cost conductive composite material for 3D printing of electronic sensors,” PLoS One 7(11), e49365 (2012).
[Crossref] [PubMed]

Leong, K. F.

Y. W. D. Tay, B. Panda, S. C. Paul, N. A. Noor Mohamed, M. J. Tan, and K. F. Leong, “3D printing trends in building and construction industry: a review,” Virtual Phys. Prototyp. 12, 1–16 (2017).

Leon-Saval, S.

Liu, Z.

Z. Liu, M. Zhang, B. Bhandari, and Y. Wang, “3D printing: Printing precision and application in food sector,” Trends Food Sci. Technol. 69, 83–94 (2017).
[Crossref]

Lockwood, S. Y.

B. C. Gross, J. L. Erkal, S. Y. Lockwood, C. Chen, and D. M. Spence, “Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences,” Anal. Chem. 2014, 3240–3253 (2014).

Luo, J.

J. Luo, L. J. Gilbert, D. A. Bristow, R. G. Landers, J. T. Goldstein, A. M. Urbas, and E. C. Kinzel, “Additive manufacturing of glass for optical applications,” Proc. SPIE 9738, 97380Y (2016).

Luo, Y.

Matsuo, S.

I. Ishida, T. Akamatsu, Z. Wang, Y. Sasaki, K. Takenaga, and S. Matsuo, “Possibility of stack and draw process as fabrication technology for multi-core fiber,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC) (IEEE, 2013).
[Crossref]

Matusik, W.

T. Pereira, S. Rusinkiewicz, and W. Matusik, “Computational light routing: 3d printed optical fibers for sensing and display,” ACM Trans. Graph. 33(3), 24 (2014).
[Crossref]

McHenry, C. R.

P. G. McMenamin, M. R. Quayle, C. R. McHenry, and J. W. Adams, “The production of anatomical teaching resources using three-dimensional (3D) printing technology,” Anat. Sci. Educ. 7(6), 479–486 (2014).
[Crossref] [PubMed]

McMenamin, P. G.

M. P. Chae, W. M. Rozen, P. G. McMenamin, M. W. Findlay, R. T. Spychal, and D. J. Hunter-Smith, “Emerging applications of bedside 3D printing in plastic surgery,” Frontiers Surgery 2, 2-22 (2015).

P. G. McMenamin, M. R. Quayle, C. R. McHenry, and J. W. Adams, “The production of anatomical teaching resources using three-dimensional (3D) printing technology,” Anat. Sci. Educ. 7(6), 479–486 (2014).
[Crossref] [PubMed]

Mikos, A. G.

L. G. Bracaglia, B. T. Smith, E. Watson, N. Arumugasaamy, A. G. Mikos, and J. P. Fisher, “3D printing for the design and fabrication of polymer-based gradient scaffolds,” Acta Biomater. 56, 3–13 (2017).
[Crossref] [PubMed]

Mohr, J.

H. H. D. Nguyen, U. Hollenbach, S. Pfirrmann, U. Ostrzinski, K. Pfeiffer, S. Hengsbach, and J. Mohr, “Photo-structurable polymer for interlayer single-mode waveguide fabrication by femtosecond laser writing,” Opt. Mater. 66, 110–116 (2017).
[Crossref]

H. H. Duc Nguyen, U. Hollenbach, U. Ostrzinski, K. Pfeiffer, S. Hengsbach, and J. Mohr, “Freeform three-dimensional embedded polymer waveguides enabled by external-diffusion assisted two-photon lithography,” Appl. Opt. 55(8), 1906–1912 (2016).
[Crossref] [PubMed]

Morris, T. M.

Nagaraj, S.

J. Kriesel, G. Scriven, N. Gat, S. Nagaraj, P. Willson, and V. Swaminathan, “Snapshot hyperspectral fovea vision system,” Proc. SPIE 8390, 83900T (2012).

Nargang, T. M.

F. Kotz, K. Arnold, W. Bauer, D. Schild, N. Keller, K. Sachsenheimer, T. M. Nargang, C. Richter, D. Helmer, and B. E. Rapp, “Three-dimensional printing of transparent fused silica glass,” Nature 544(7650), 337–339 (2017).
[Crossref] [PubMed]

Nguyen, H. H. D.

H. H. D. Nguyen, U. Hollenbach, S. Pfirrmann, U. Ostrzinski, K. Pfeiffer, S. Hengsbach, and J. Mohr, “Photo-structurable polymer for interlayer single-mode waveguide fabrication by femtosecond laser writing,” Opt. Mater. 66, 110–116 (2017).
[Crossref]

Nierenberger, M.

Noor Mohamed, N. A.

Y. W. D. Tay, B. Panda, S. C. Paul, N. A. Noor Mohamed, M. J. Tan, and K. F. Leong, “3D printing trends in building and construction industry: a review,” Virtual Phys. Prototyp. 12, 1–16 (2017).

Norton, A.

A. Bodkin, A. Sheinis, A. Norton, A. Daly, J. Roberts, C. Beaven, and S. J. Weinheimer, “Video-rate chemical identification and visualization with snapshot hyperspectral imaging,” Proc. SPIE 8374, 83740C (2012).

Ostrzinski, U.

H. H. D. Nguyen, U. Hollenbach, S. Pfirrmann, U. Ostrzinski, K. Pfeiffer, S. Hengsbach, and J. Mohr, “Photo-structurable polymer for interlayer single-mode waveguide fabrication by femtosecond laser writing,” Opt. Mater. 66, 110–116 (2017).
[Crossref]

H. H. Duc Nguyen, U. Hollenbach, U. Ostrzinski, K. Pfeiffer, S. Hengsbach, and J. Mohr, “Freeform three-dimensional embedded polymer waveguides enabled by external-diffusion assisted two-photon lithography,” Appl. Opt. 55(8), 1906–1912 (2016).
[Crossref] [PubMed]

Panda, B.

Y. W. D. Tay, B. Panda, S. C. Paul, N. A. Noor Mohamed, M. J. Tan, and K. F. Leong, “3D printing trends in building and construction industry: a review,” Virtual Phys. Prototyp. 12, 1–16 (2017).

Paul, S. C.

Y. W. D. Tay, B. Panda, S. C. Paul, N. A. Noor Mohamed, M. J. Tan, and K. F. Leong, “3D printing trends in building and construction industry: a review,” Virtual Phys. Prototyp. 12, 1–16 (2017).

Pawlowski, M. E.

J. Gawedzinski, M. E. Pawlowski, and T. S. Tkaczyk, “Quantitative evaluation of performance of three-dimensional printed lenses,” Opt. Eng. 56(8), 084110 (2017).
[Crossref] [PubMed]

Y. Wang, M. E. Pawlowski, and T. S. Tkaczyk, “High spatial sampling light-guide snapshot spectrometer,” Opt. Eng. 56(8), 081803 (2017).
[Crossref] [PubMed]

Peng, G. D.

Peng, Z.

J. Sun, Z. Peng, W. Zhou, J. Y. Fuh, G. S. Hong, and A. Chiu, “A review on 3D printing for customized food fabrication,” Procedia Manufacturing 1, 308–319 (2015).
[Crossref]

Pereira, T.

T. Pereira, S. Rusinkiewicz, and W. Matusik, “Computational light routing: 3d printed optical fibers for sensing and display,” ACM Trans. Graph. 33(3), 24 (2014).
[Crossref]

Pfeiffer, K.

H. H. D. Nguyen, U. Hollenbach, S. Pfirrmann, U. Ostrzinski, K. Pfeiffer, S. Hengsbach, and J. Mohr, “Photo-structurable polymer for interlayer single-mode waveguide fabrication by femtosecond laser writing,” Opt. Mater. 66, 110–116 (2017).
[Crossref]

H. H. Duc Nguyen, U. Hollenbach, U. Ostrzinski, K. Pfeiffer, S. Hengsbach, and J. Mohr, “Freeform three-dimensional embedded polymer waveguides enabled by external-diffusion assisted two-photon lithography,” Appl. Opt. 55(8), 1906–1912 (2016).
[Crossref] [PubMed]

Pfeiffer, P.

Pfirrmann, S.

H. H. D. Nguyen, U. Hollenbach, S. Pfirrmann, U. Ostrzinski, K. Pfeiffer, S. Hengsbach, and J. Mohr, “Photo-structurable polymer for interlayer single-mode waveguide fabrication by femtosecond laser writing,” Opt. Mater. 66, 110–116 (2017).
[Crossref]

Poupyrev, I.

K. Willis, E. Brockmeyer, S. Hudson, and I. Poupyrev, “Printed optics: 3D printing of embedded optical elements for interactive devices,” in Proceedings of the 25th Annual ACM Symposium on User Interface Software and Technology (ACM, 2012).
[Crossref]

Prakash, S.

F. C. Godoi, S. Prakash, and B. R. Bhandari, “3d printing technologies applied for food design: Status and prospects,” J. Food Eng. 179, 44–54 (2016).
[Crossref]

Purssell, C. P.

S. J. Leigh, R. J. Bradley, C. P. Purssell, D. R. Billson, and D. A. Hutchins, “A simple, low-cost conductive composite material for 3D printing of electronic sensors,” PLoS One 7(11), e49365 (2012).
[Crossref] [PubMed]

Quayle, M. R.

P. G. McMenamin, M. R. Quayle, C. R. McHenry, and J. W. Adams, “The production of anatomical teaching resources using three-dimensional (3D) printing technology,” Anat. Sci. Educ. 7(6), 479–486 (2014).
[Crossref] [PubMed]

Quirrenbach, A.

Rapp, B. E.

F. Kotz, K. Arnold, W. Bauer, D. Schild, N. Keller, K. Sachsenheimer, T. M. Nargang, C. Richter, D. Helmer, and B. E. Rapp, “Three-dimensional printing of transparent fused silica glass,” Nature 544(7650), 337–339 (2017).
[Crossref] [PubMed]

Reid, Z.

Renaud, P.

Richter, C.

F. Kotz, K. Arnold, W. Bauer, D. Schild, N. Keller, K. Sachsenheimer, T. M. Nargang, C. Richter, D. Helmer, and B. E. Rapp, “Three-dimensional printing of transparent fused silica glass,” Nature 544(7650), 337–339 (2017).
[Crossref] [PubMed]

Roberts, J.

A. Bodkin, A. Sheinis, A. Norton, A. Daly, J. Roberts, C. Beaven, and S. J. Weinheimer, “Video-rate chemical identification and visualization with snapshot hyperspectral imaging,” Proc. SPIE 8374, 83740C (2012).

Rodebeck, E.

B. Khoobehi, K. Firn, E. Rodebeck, and S. Hay, “A new snapshot hyperspectral imaging system to image optic nerve head tissue,” Acta Ophthalmol. 92(3), e241 (2014).
[Crossref] [PubMed]

Rozen, W. M.

M. P. Chae, W. M. Rozen, P. G. McMenamin, M. W. Findlay, R. T. Spychal, and D. J. Hunter-Smith, “Emerging applications of bedside 3D printing in plastic surgery,” Frontiers Surgery 2, 2-22 (2015).

Rusinkiewicz, S.

T. Pereira, S. Rusinkiewicz, and W. Matusik, “Computational light routing: 3d printed optical fibers for sensing and display,” ACM Trans. Graph. 33(3), 24 (2014).
[Crossref]

Sachsenheimer, K.

F. Kotz, K. Arnold, W. Bauer, D. Schild, N. Keller, K. Sachsenheimer, T. M. Nargang, C. Richter, D. Helmer, and B. E. Rapp, “Three-dimensional printing of transparent fused silica glass,” Nature 544(7650), 337–339 (2017).
[Crossref] [PubMed]

Sasaki, Y.

I. Ishida, T. Akamatsu, Z. Wang, Y. Sasaki, K. Takenaga, and S. Matsuo, “Possibility of stack and draw process as fabrication technology for multi-core fiber,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC) (IEEE, 2013).
[Crossref]

Schild, D.

F. Kotz, K. Arnold, W. Bauer, D. Schild, N. Keller, K. Sachsenheimer, T. M. Nargang, C. Richter, D. Helmer, and B. E. Rapp, “Three-dimensional printing of transparent fused silica glass,” Nature 544(7650), 337–339 (2017).
[Crossref] [PubMed]

Scriven, G.

J. Kriesel, G. Scriven, N. Gat, S. Nagaraj, P. Willson, and V. Swaminathan, “Snapshot hyperspectral fovea vision system,” Proc. SPIE 8390, 83900T (2012).

Sheikh, A. A.

S. C. Joshi and A. A. Sheikh, “3D printing in aerospace and its long-term sustainability,” Virtual Phys. Prototyp. 10(4), 175–185 (2015).
[Crossref]

Sheinis, A.

A. Bodkin, A. Sheinis, A. Norton, A. Daly, J. Roberts, C. Beaven, and S. J. Weinheimer, “Video-rate chemical identification and visualization with snapshot hyperspectral imaging,” Proc. SPIE 8374, 83740C (2012).

Smay, J. E.

T. Du, N. Cameron, M. Timothy, D. Yee, N. Dudukovic, J. Destino, C. Zhu, E. Duoss, T. F. Baumann, T. Suratwala, J. E. Smay, and R. Dylla‐Spears, “3D‐Printed Transparent Glass,” Adv. Mater. 29(26), 1701181 (2017).

Smith, B. T.

L. G. Bracaglia, B. T. Smith, E. Watson, N. Arumugasaamy, A. G. Mikos, and J. P. Fisher, “3D printing for the design and fabrication of polymer-based gradient scaffolds,” Acta Biomater. 56, 3–13 (2017).
[Crossref] [PubMed]

Spence, D. M.

B. C. Gross, J. L. Erkal, S. Y. Lockwood, C. Chen, and D. M. Spence, “Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences,” Anal. Chem. 2014, 3240–3253 (2014).

Spychal, R. T.

M. P. Chae, W. M. Rozen, P. G. McMenamin, M. W. Findlay, R. T. Spychal, and D. J. Hunter-Smith, “Emerging applications of bedside 3D printing in plastic surgery,” Frontiers Surgery 2, 2-22 (2015).

Sun, J.

J. Sun, Z. Peng, W. Zhou, J. Y. Fuh, G. S. Hong, and A. Chiu, “A review on 3D printing for customized food fabrication,” Procedia Manufacturing 1, 308–319 (2015).
[Crossref]

Suratwala, T.

T. Du, N. Cameron, M. Timothy, D. Yee, N. Dudukovic, J. Destino, C. Zhu, E. Duoss, T. F. Baumann, T. Suratwala, J. E. Smay, and R. Dylla‐Spears, “3D‐Printed Transparent Glass,” Adv. Mater. 29(26), 1701181 (2017).

Swaminathan, V.

J. Kriesel, G. Scriven, N. Gat, S. Nagaraj, P. Willson, and V. Swaminathan, “Snapshot hyperspectral fovea vision system,” Proc. SPIE 8390, 83900T (2012).

Tack, P.

P. Tack, J. Victor, P. Gemmel, and L. Annemans, “3D-printing techniques in a medical setting: a systematic literature review,” Biomed. Eng. Online 15(1), 115 (2016).
[Crossref] [PubMed]

Takenaga, K.

I. Ishida, T. Akamatsu, Z. Wang, Y. Sasaki, K. Takenaga, and S. Matsuo, “Possibility of stack and draw process as fabrication technology for multi-core fiber,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC) (IEEE, 2013).
[Crossref]

Tan, M. J.

Y. W. D. Tay, B. Panda, S. C. Paul, N. A. Noor Mohamed, M. J. Tan, and K. F. Leong, “3D printing trends in building and construction industry: a review,” Virtual Phys. Prototyp. 12, 1–16 (2017).

Tay, Y. W. D.

Y. W. D. Tay, B. Panda, S. C. Paul, N. A. Noor Mohamed, M. J. Tan, and K. F. Leong, “3D printing trends in building and construction industry: a review,” Virtual Phys. Prototyp. 12, 1–16 (2017).

Thiele, S.

S. Thiele, K. Arzenbacher, T. Gissibl, H. Giessen, and A. M. Herkommer, “3D-printed eagle eye: Compound microlens system for foveated imaging,” Sci. Adv. 3(2), e1602655 (2017).
[Crossref] [PubMed]

Timothy, M.

T. Du, N. Cameron, M. Timothy, D. Yee, N. Dudukovic, J. Destino, C. Zhu, E. Duoss, T. F. Baumann, T. Suratwala, J. E. Smay, and R. Dylla‐Spears, “3D‐Printed Transparent Glass,” Adv. Mater. 29(26), 1701181 (2017).

Tkaczyk, T. S.

J. Gawedzinski, M. E. Pawlowski, and T. S. Tkaczyk, “Quantitative evaluation of performance of three-dimensional printed lenses,” Opt. Eng. 56(8), 084110 (2017).
[Crossref] [PubMed]

Y. Wang, M. E. Pawlowski, and T. S. Tkaczyk, “High spatial sampling light-guide snapshot spectrometer,” Opt. Eng. 56(8), 081803 (2017).
[Crossref] [PubMed]

N. Bedard and T. S. Tkaczyk, “Snapshot spectrally encoded fluorescence imaging through a fiber bundle,” J. Biomed. Opt. 17(8), 080508 (2012).
[Crossref] [PubMed]

Urbas, A. M.

J. Luo, L. J. Gilbert, D. A. Bristow, R. G. Landers, J. T. Goldstein, A. M. Urbas, and E. C. Kinzel, “Additive manufacturing of glass for optical applications,” Proc. SPIE 9738, 97380Y (2016).

Victor, J.

P. Tack, J. Victor, P. Gemmel, and L. Annemans, “3D-printing techniques in a medical setting: a systematic literature review,” Biomed. Eng. Online 15(1), 115 (2016).
[Crossref] [PubMed]

Wang, Y.

Z. Liu, M. Zhang, B. Bhandari, and Y. Wang, “3D printing: Printing precision and application in food sector,” Trends Food Sci. Technol. 69, 83–94 (2017).
[Crossref]

Y. Wang, M. E. Pawlowski, and T. S. Tkaczyk, “High spatial sampling light-guide snapshot spectrometer,” Opt. Eng. 56(8), 081803 (2017).
[Crossref] [PubMed]

Wang, Z.

I. Ishida, T. Akamatsu, Z. Wang, Y. Sasaki, K. Takenaga, and S. Matsuo, “Possibility of stack and draw process as fabrication technology for multi-core fiber,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC) (IEEE, 2013).
[Crossref]

Watson, E.

L. G. Bracaglia, B. T. Smith, E. Watson, N. Arumugasaamy, A. G. Mikos, and J. P. Fisher, “3D printing for the design and fabrication of polymer-based gradient scaffolds,” Acta Biomater. 56, 3–13 (2017).
[Crossref] [PubMed]

Weinheimer, S. J.

A. Bodkin, A. Sheinis, A. Norton, A. Daly, J. Roberts, C. Beaven, and S. J. Weinheimer, “Video-rate chemical identification and visualization with snapshot hyperspectral imaging,” Proc. SPIE 8374, 83740C (2012).

Willis, K.

K. Willis, E. Brockmeyer, S. Hudson, and I. Poupyrev, “Printed optics: 3D printing of embedded optical elements for interactive devices,” in Proceedings of the 25th Annual ACM Symposium on User Interface Software and Technology (ACM, 2012).
[Crossref]

Willson, P.

J. Kriesel, G. Scriven, N. Gat, S. Nagaraj, P. Willson, and V. Swaminathan, “Snapshot hyperspectral fovea vision system,” Proc. SPIE 8390, 83900T (2012).

Wong, K. V.

K. V. Wong and A. Hernandez, “A review of additive manufacturing,” ISRN Mech. Eng. 2012, 208760 (2012).

Yee, D.

T. Du, N. Cameron, M. Timothy, D. Yee, N. Dudukovic, J. Destino, C. Zhu, E. Duoss, T. F. Baumann, T. Suratwala, J. E. Smay, and R. Dylla‐Spears, “3D‐Printed Transparent Glass,” Adv. Mater. 29(26), 1701181 (2017).

Zhang, M.

Z. Liu, M. Zhang, B. Bhandari, and Y. Wang, “3D printing: Printing precision and application in food sector,” Trends Food Sci. Technol. 69, 83–94 (2017).
[Crossref]

Zhou, W.

J. Sun, Z. Peng, W. Zhou, J. Y. Fuh, G. S. Hong, and A. Chiu, “A review on 3D printing for customized food fabrication,” Procedia Manufacturing 1, 308–319 (2015).
[Crossref]

Zhu, C.

T. Du, N. Cameron, M. Timothy, D. Yee, N. Dudukovic, J. Destino, C. Zhu, E. Duoss, T. F. Baumann, T. Suratwala, J. E. Smay, and R. Dylla‐Spears, “3D‐Printed Transparent Glass,” Adv. Mater. 29(26), 1701181 (2017).

Ziemian, C. W.

C. W. Ziemian and P. M. Crawn, “Computer aided decision support for fused deposition modeling,” Rapid Prototyping J. 7(3), 138–147 (2001).
[Crossref]

ACM Trans. Graph. (1)

T. Pereira, S. Rusinkiewicz, and W. Matusik, “Computational light routing: 3d printed optical fibers for sensing and display,” ACM Trans. Graph. 33(3), 24 (2014).
[Crossref]

Acta Biomater. (1)

L. G. Bracaglia, B. T. Smith, E. Watson, N. Arumugasaamy, A. G. Mikos, and J. P. Fisher, “3D printing for the design and fabrication of polymer-based gradient scaffolds,” Acta Biomater. 56, 3–13 (2017).
[Crossref] [PubMed]

Acta Ophthalmol. (1)

B. Khoobehi, K. Firn, E. Rodebeck, and S. Hay, “A new snapshot hyperspectral imaging system to image optic nerve head tissue,” Acta Ophthalmol. 92(3), e241 (2014).
[Crossref] [PubMed]

Adv. Mater. (1)

T. Du, N. Cameron, M. Timothy, D. Yee, N. Dudukovic, J. Destino, C. Zhu, E. Duoss, T. F. Baumann, T. Suratwala, J. E. Smay, and R. Dylla‐Spears, “3D‐Printed Transparent Glass,” Adv. Mater. 29(26), 1701181 (2017).

Anal. Chem. (1)

B. C. Gross, J. L. Erkal, S. Y. Lockwood, C. Chen, and D. M. Spence, “Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences,” Anal. Chem. 2014, 3240–3253 (2014).

Anat. Sci. Educ. (1)

P. G. McMenamin, M. R. Quayle, C. R. McHenry, and J. W. Adams, “The production of anatomical teaching resources using three-dimensional (3D) printing technology,” Anat. Sci. Educ. 7(6), 479–486 (2014).
[Crossref] [PubMed]

Appl. Opt. (2)

Biomed. Eng. Online (1)

P. Tack, J. Victor, P. Gemmel, and L. Annemans, “3D-printing techniques in a medical setting: a systematic literature review,” Biomed. Eng. Online 15(1), 115 (2016).
[Crossref] [PubMed]

Chem. Mater. (1)

P. Calvert, “Inkjet printing for materials and devices,” Chem. Mater. 13(10), 3299–3305 (2001).
[Crossref]

Frontiers Surgery (1)

M. P. Chae, W. M. Rozen, P. G. McMenamin, M. W. Findlay, R. T. Spychal, and D. J. Hunter-Smith, “Emerging applications of bedside 3D printing in plastic surgery,” Frontiers Surgery 2, 2-22 (2015).

ISRN Mech. Eng. (1)

K. V. Wong and A. Hernandez, “A review of additive manufacturing,” ISRN Mech. Eng. 2012, 208760 (2012).

J. Biomed. Opt. (1)

N. Bedard and T. S. Tkaczyk, “Snapshot spectrally encoded fluorescence imaging through a fiber bundle,” J. Biomed. Opt. 17(8), 080508 (2012).
[Crossref] [PubMed]

J. Food Eng. (1)

F. C. Godoi, S. Prakash, and B. R. Bhandari, “3d printing technologies applied for food design: Status and prospects,” J. Food Eng. 179, 44–54 (2016).
[Crossref]

Nature (1)

F. Kotz, K. Arnold, W. Bauer, D. Schild, N. Keller, K. Sachsenheimer, T. M. Nargang, C. Richter, D. Helmer, and B. E. Rapp, “Three-dimensional printing of transparent fused silica glass,” Nature 544(7650), 337–339 (2017).
[Crossref] [PubMed]

Opt. Eng. (2)

Y. Wang, M. E. Pawlowski, and T. S. Tkaczyk, “High spatial sampling light-guide snapshot spectrometer,” Opt. Eng. 56(8), 081803 (2017).
[Crossref] [PubMed]

J. Gawedzinski, M. E. Pawlowski, and T. S. Tkaczyk, “Quantitative evaluation of performance of three-dimensional printed lenses,” Opt. Eng. 56(8), 084110 (2017).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (3)

Opt. Mater. (1)

H. H. D. Nguyen, U. Hollenbach, S. Pfirrmann, U. Ostrzinski, K. Pfeiffer, S. Hengsbach, and J. Mohr, “Photo-structurable polymer for interlayer single-mode waveguide fabrication by femtosecond laser writing,” Opt. Mater. 66, 110–116 (2017).
[Crossref]

PLoS One (1)

S. J. Leigh, R. J. Bradley, C. P. Purssell, D. R. Billson, and D. A. Hutchins, “A simple, low-cost conductive composite material for 3D printing of electronic sensors,” PLoS One 7(11), e49365 (2012).
[Crossref] [PubMed]

Proc. SPIE (3)

J. Luo, L. J. Gilbert, D. A. Bristow, R. G. Landers, J. T. Goldstein, A. M. Urbas, and E. C. Kinzel, “Additive manufacturing of glass for optical applications,” Proc. SPIE 9738, 97380Y (2016).

A. Bodkin, A. Sheinis, A. Norton, A. Daly, J. Roberts, C. Beaven, and S. J. Weinheimer, “Video-rate chemical identification and visualization with snapshot hyperspectral imaging,” Proc. SPIE 8374, 83740C (2012).

J. Kriesel, G. Scriven, N. Gat, S. Nagaraj, P. Willson, and V. Swaminathan, “Snapshot hyperspectral fovea vision system,” Proc. SPIE 8390, 83900T (2012).

Procedia Manufacturing (1)

J. Sun, Z. Peng, W. Zhou, J. Y. Fuh, G. S. Hong, and A. Chiu, “A review on 3D printing for customized food fabrication,” Procedia Manufacturing 1, 308–319 (2015).
[Crossref]

Rapid Prototyping J. (1)

C. W. Ziemian and P. M. Crawn, “Computer aided decision support for fused deposition modeling,” Rapid Prototyping J. 7(3), 138–147 (2001).
[Crossref]

Sci. Adv. (1)

S. Thiele, K. Arzenbacher, T. Gissibl, H. Giessen, and A. M. Herkommer, “3D-printed eagle eye: Compound microlens system for foveated imaging,” Sci. Adv. 3(2), e1602655 (2017).
[Crossref] [PubMed]

Trends Food Sci. Technol. (1)

Z. Liu, M. Zhang, B. Bhandari, and Y. Wang, “3D printing: Printing precision and application in food sector,” Trends Food Sci. Technol. 69, 83–94 (2017).
[Crossref]

Virtual Phys. Prototyp. (2)

Y. W. D. Tay, B. Panda, S. C. Paul, N. A. Noor Mohamed, M. J. Tan, and K. F. Leong, “3D printing trends in building and construction industry: a review,” Virtual Phys. Prototyp. 12, 1–16 (2017).

S. C. Joshi and A. A. Sheikh, “3D printing in aerospace and its long-term sustainability,” Virtual Phys. Prototyp. 10(4), 175–185 (2015).
[Crossref]

Other (8)

I. Gibson, D. Rosen, and B. Stucker, Additive manufacturing technologies: 3D printing, rapid prototyping, and direct digital manufacturing. Springer, 2014. Chapter 19.

F. Baumann, and D. Roller, “Vision based error detection for 3D printing processes.” MATEC web of conferences. Vol. 59. EDP Sciences, 2016.

C. W. Hull, “Apparatus for production of three-dimensional objects by stereolithography.” U.S. Patent No. 4,575,330. 11 Mar. 1986.

Stratasys, “PolyJet Technology”, http://www.stratasys.com/3d-printers/technologies/polyjet-technology .

J. J. Beaman and C. R. Deckard, “Selective laser sintering with assisted powder handling.” U.S. Patent No. 4,938,816. 3 Jul. 1990.

K. Willis, E. Brockmeyer, S. Hudson, and I. Poupyrev, “Printed optics: 3D printing of embedded optical elements for interactive devices,” in Proceedings of the 25th Annual ACM Symposium on User Interface Software and Technology (ACM, 2012).
[Crossref]

I. Ishida, T. Akamatsu, Z. Wang, Y. Sasaki, K. Takenaga, and S. Matsuo, “Possibility of stack and draw process as fabrication technology for multi-core fiber,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC) (IEEE, 2013).
[Crossref]

Stratasys, “Fortus 900mc”, http://www.stratasys.com/3d-printers/fortus-900mc .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Printing procedure of the fiber optic faceplate. (a) x-y plane top view of one single layer printing path; red solid line arrows: extruder’s movement with constant extrusion; red dashed line arrows: extruder’s movement with no extrusion (b) x-y plane top view of the extrusion path including multiple layers to illustrate the 0.2mm shift; solid line arrows: odd number layers extrusion; dashed line arrows: even number layers extrusion (c) y-z plane side view of the faceplate’s fiber structure, with the red color representing odd number layers and green color representing even number layers (d) 3-D view of the designed fiber structure model
Fig. 2
Fig. 2 Microscope (Olympus SZ61) image of the end surface (y-z plane) of the printed faceplate
Fig. 3
Fig. 3 Setup layout of transmission and crosstalk measurements. (a) Direct measurement of the input beam Power. (b) Transmission measurement of the 3D printed faceplate. (c) Crosstalk measurement by capturing the image of the output plane
Fig. 4
Fig. 4 Measured (a) transmission and (b) crosstalk of the faceplates printed in four materials including ColorFabb XT-clear, Taulman3D Tech-G, Taulman3D t-glase, and Ultimaker CPE + , with fiber length 10mm.
Fig. 5
Fig. 5 Measured exponential decay of transmission with increased faceplate thickness. Material: ColorFabb XT-clear.
Fig. 6
Fig. 6 Transmission comparison for the 3D printed ColorFabb XT-clear faceplate (interpolated at 5mm length) and the commercially available plastic faceplate (Paradigm Optics PA0370).
Fig. 7
Fig. 7 The output end images for the 3D printed faceplate with three different lengths: (a) 10mm, (b) 30mm, and (c) 50mm. For each length, one fiber was illuminated at the input end, and the white dashed circles indicates the illuminated fiber at the output end. Material: ColorFabb XT-clear
Fig. 8
Fig. 8 Measured crosstalk of the faceplates for fiber lengths 10mm, 30mm and 50mm. Material: ColorFabb XT-clear
Fig. 9
Fig. 9 Perpendicular printing pattern for crosstalk reduction. (a) 3-D view comparison of the parallel printing pattern and the perpendicular printing pattern. (b) Crosstalk comparison of the parallel and perpendicular printed faceplates. Thickness: 30mm; Material: ColorFabb XT-clear. (c) Measured transmission for the parallel and perpendicular printed faceplates. Thickness: 10mm; Material: ColorFabb XT-clear.
Fig. 10
Fig. 10 (a) Measured transmission for the faceplates printed under different temperatures and different percentage of the original speed (2100mm/min). Cells with percentage value displayed are measured transmissions. Cells without displayed values are interpolated transmissions Material: ColorFabb XT-clear
Fig. 11
Fig. 11 (a) Image of the 1951 USAF resolution target in direct contact with the tested face plate. The faceplate was rotated 45 degrees. USAF target was illuminated from behind using white LED (Thorlabs Mounted High Power LED MCWHL2). (b) Zoom-in area of (a) with the group 0, element 4, 5 and 6 under the microscope (Olympus SZ61). (c) The same area in (b) without rotating the faceplate 45 degrees, showing the y-axis and z-axis spatial resolution
Fig. 12
Fig. 12 The image guiding capability of 3D printed faceplates for various macro features: (a) A Rice student identification card. (b) A laser-cut image mask of a Rice mascot owl logo at the input surface which is illuminated by a white-light LED. (c) A university campus view captured at the image plane of a photographic objective (Sigma 85mm f/1.4 EX DG HSM). (d) Image guiding capability comparison for various fiber lengths (from left to right: 10mm, 30mm, and 50mm)

Tables (1)

Tables Icon

Table 1 Crosstalk measurement for different faceplate thicknesses. Material: ColorFabb XT-clear

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Crosstalk= S n    S i S n  ×100%,
Transmission= P out P source × S i S n  ×100%,
P out = P in e (αL)
P in =C P source

Metrics