Abstract

Surface plasmons have a fundamental role in the dynamics of photon–electron interactions and in optical metamaterials. Terahertz (THz) time-domain spectroscopy was used to characterize the complex dielectric constant, index of refraction, and conductivity of super-aligned, free-standing, multi-walled carbon nanotube films over the range 0.2-2.5 THz. These complex parameters were in excellent agreement with Maxwell-Garnett and Drude-Lorentz models. In addition, surface plasmon excitations in engineered, subwavelength, multi-walled carbon nanotube metasurfaces were examined. The observed surface plasmon resonances, reproduced by simulation, could be changed over the THz frequency range by altering the lattice constant of the arrays. The THz transmission was enhanced at the resonance peak. Overall, the results indicate potential applications for THz metasurfaces based on super-aligned, free-standing multi-walled carbon nanotubes.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Terahertz surface plasmon polaritons on freestanding multi-walled carbon nanotube aerogel sheets

T. D. Nguyen, S. Liu, M. D. Lima, S. Fang, R. H. Baughman, A. Nahata, and Z. V. Vardeny
Opt. Mater. Express 2(6) 782-788 (2012)

Broadband extraordinary terahertz transmission through super-aligned carbon nanotubes film

Yue Wang, Xiaoguang Zhao, Guangwu Duan, and Xin Zhang
Opt. Express 24(14) 15730-15741 (2016)

Diameter-dependent shielding effectiveness and terahertz conductivity of multiwalled carbon nanotubes

Debanjan Polley, Kumar Neeraj, Anjan Barman, and Rajib Kumar Mitra
J. Opt. Soc. Am. B 33(12) 2430-2436 (2016)

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [Crossref] [PubMed]
  2. J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
    [Crossref] [PubMed]
  3. A. K. Azad and W. Zhang, “Resonant terahertz transmission in subwavelength metallic hole arrays of sub-skin-depth thickness,” Opt. Lett. 30(21), 2945–2947 (2005).
    [Crossref] [PubMed]
  4. Y. Monnai, D. Jahn, W. Withayachumnankul, M. Koch, and H. Shinoda, “Terahertz plasmonic Bessel beam former,” Appl. Phys. Lett. 106(2), 021101 (2015).
    [Crossref]
  5. J. T. Hong, D. J. Park, J. H. Yim, J. K. Park, J. Y. Park, S. Lee, and Y. H. Ahn, “Dielectric constant engineering of single-walled carbon nanotube films for metamaterials and plasmonic devices,” J. Phys. Chem. Lett. 4(22), 3950–3957 (2013).
    [Crossref]
  6. W. Gao, J. Shu, K. Reichel, D. V. Nickel, X. He, G. Shi, R. Vajtai, P. M. Ajayan, J. Kono, D. M. Mittleman, and Q. Xu, “High-contrast terahertz wave modulation by gated graphene enhanced by extraordinary transmission through ring apertures,” Nano Lett. 14(3), 1242–1248 (2014).
    [Crossref] [PubMed]
  7. I. Khromova, M. Navarro-Cia, I. Brener, J. L. Reno, A. Ponomarev, and O. Mitrofanov, “Dipolar resonances in conductive carbon micro-fibers probed by near-field terahertz spectroscopy,” Appl. Phys. Lett. 107(2), 021102 (2015).
    [Crossref]
  8. T. Allsop, R. Arif, R. Neal, K. Kalli, V. Kundrat, A. Rozhin, P. Culverhouse, and D. J. Webb, “Photonic gas sensors exploiting directly the optical properties of hybrid carbon nanotube localized surface plasmon structures,” Light Sci. Appl. 5(2), e16036 (2017).
    [Crossref]
  9. K. Liu, Y. H. Sun, P. Liu, X. Y. Lin, S. S. Fan, and K. L. Jiang, “Cross-stacked superaligned carbon nanotube films for transparent and stretchable conductors,” Adv. Funct. Mater. 21(14), 2721–2728 (2011).
    [Crossref]
  10. J. Kyoung, E. Y. Jang, M. D. Lima, H. R. Park, R. O. Robles, X. Lepró, Y. H. Kim, R. H. Baughman, and D. S. Kim, “A reel-wound carbon nanotube polarizer for terahertz frequencies,” Nano Lett. 11(10), 4227–4231 (2011).
    [Crossref] [PubMed]
  11. Y. Wang, J. H. Yin, Q. Wu, and Y. J. Tong, “Anisotropic Properties of Ultra-thin Freestanding Multi-walled Carbon Nanotubes Film for Terahertz Polarizer Application,” IEEE. Trans. THz Sci. Technol. 6(2), 278–283 (2016).
  12. N. Li, Y. Huang, F. Du, X. He, X. Lin, H. Gao, Y. Ma, F. Li, Y. Chen, and P. C. Eklund, “Electromagnetic Interference (EMI) Shielding of Single-Walled Carbon Nanotube Epoxy Composites,” Nano Lett. 6(6), 1141–1145 (2006).
    [Crossref] [PubMed]
  13. H. M. Kim, K. Kim, C. Y. Lee, J. Jooa, S. J. Cho, H. S. Yoon, D. A. Pejakovic, J. W. Yoo, and A. J. Epstein, “Electrical conductivity and electromagnetic interference shielding of multiwalled carbon nanotube composites containing Fe catalyst,” Appl. Phys. Lett. 84(4), 589–591 (2004).
    [Crossref]
  14. M. A. Seo, J. H. Yim, Y. H. Ahn, F. Rotermund, D. S. Kim, S. Lee, and H. Lim, “Terahertz electromagnetic interference shielding using single-walled carbon nanotube flexible films,” Appl. Phys. Lett. 93(23), 231905 (2008).
    [Crossref]
  15. K. Jiang, Q. Li, and S. Fan, “Nanotechnology: spinning continuous carbon nanotube yarns,” Nature 419(6909), 801 (2002).
    [Crossref] [PubMed]
  16. K. Liu, Y. Sun, L. Chen, C. Feng, X. Feng, K. Jiang, Y. Zhao, and S. Fan, “Controlled growth of super-aligned carbon nanotube arrays for spinning continuous unidirectional sheets with tunable physical properties,” Nano Lett. 8(2), 700–705 (2008).
    [Crossref] [PubMed]
  17. X. B. Zhang, K. L. Jiang, C. Teng, P. Liu, L. N. Zhang, J. Kong, T. H. Zhang, Q. Q. Li, and S. S. Fan, “Spinning and processing continuous yarns from 4-inch wafer scale super aligned carbon nanotube arrays,” Adv. Mater. 18(12), 1505–1510 (2006).
    [Crossref]
  18. Y. Wang, X. Zhao, G. Duan, and X. Zhang, “Broadband extraordinary terahertz transmission through super-aligned carbon nanotubes film,” Opt. Express 24(14), 15730–15741 (2016).
    [Crossref] [PubMed]
  19. K. Tanaka, T. Yamabe, and K. Fukui, The Science and Technology of Carbon Nanotubes (Elsevier Science, 1999).
  20. Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science 305(5688), 1273–1276 (2004).
    [Crossref] [PubMed]
  21. D. Grischkowsky, S. Keiding, M. V. Exter, and C. Fattinger, “Far-infrared time domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7(10), 2006–2015 (1990).
    [Crossref]
  22. T. I. Jeon and D. Grischkowsky, “Nature of conduction in doped silicon,” Phys. Rev. Lett. 78(6), 1106–1109 (1997).
    [Crossref]
  23. R. Tarkiainen, M. Ahlskog, J. Penttila, L. Roschier, P. Hakonen, M. Paalanen, and E. Sonin, “Multiwalled carbon nanotube: Luttinger versus Fermi liquid,” Phys. Rev. B 64(19), 195414 (2001).
    [Crossref]
  24. E. Dadrasnia, H. Lamela, M. B. Kuppam, F. Garet, and J.-L. Coutaz, “Determination of the DC Electrical Conductivity of Multiwalled Carbon Nanotube Films and Graphene Layers from Noncontact Time-Domain Terahertz Measurements,” Adv. Condens. Matter Phys. 2014, 370619 (2014).
    [Crossref]
  25. G. P. Papari, V. Gargiulo, M. Alfè, R. D. Capua, A. Pezzella, and A. Andreone, “THz spectroscopy on graphene-like materials for bio-compatible devices,” J. Appl. Phys. 121(14), 145107 (2017).
    [Crossref]
  26. A. Stefan, Plasmonics: fundamentals and applications (Springer, 2007).
  27. T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature 446(7135), 517–521 (2007).
    [Crossref] [PubMed]

2017 (2)

T. Allsop, R. Arif, R. Neal, K. Kalli, V. Kundrat, A. Rozhin, P. Culverhouse, and D. J. Webb, “Photonic gas sensors exploiting directly the optical properties of hybrid carbon nanotube localized surface plasmon structures,” Light Sci. Appl. 5(2), e16036 (2017).
[Crossref]

G. P. Papari, V. Gargiulo, M. Alfè, R. D. Capua, A. Pezzella, and A. Andreone, “THz spectroscopy on graphene-like materials for bio-compatible devices,” J. Appl. Phys. 121(14), 145107 (2017).
[Crossref]

2016 (2)

Y. Wang, J. H. Yin, Q. Wu, and Y. J. Tong, “Anisotropic Properties of Ultra-thin Freestanding Multi-walled Carbon Nanotubes Film for Terahertz Polarizer Application,” IEEE. Trans. THz Sci. Technol. 6(2), 278–283 (2016).

Y. Wang, X. Zhao, G. Duan, and X. Zhang, “Broadband extraordinary terahertz transmission through super-aligned carbon nanotubes film,” Opt. Express 24(14), 15730–15741 (2016).
[Crossref] [PubMed]

2015 (2)

Y. Monnai, D. Jahn, W. Withayachumnankul, M. Koch, and H. Shinoda, “Terahertz plasmonic Bessel beam former,” Appl. Phys. Lett. 106(2), 021101 (2015).
[Crossref]

I. Khromova, M. Navarro-Cia, I. Brener, J. L. Reno, A. Ponomarev, and O. Mitrofanov, “Dipolar resonances in conductive carbon micro-fibers probed by near-field terahertz spectroscopy,” Appl. Phys. Lett. 107(2), 021102 (2015).
[Crossref]

2014 (2)

E. Dadrasnia, H. Lamela, M. B. Kuppam, F. Garet, and J.-L. Coutaz, “Determination of the DC Electrical Conductivity of Multiwalled Carbon Nanotube Films and Graphene Layers from Noncontact Time-Domain Terahertz Measurements,” Adv. Condens. Matter Phys. 2014, 370619 (2014).
[Crossref]

W. Gao, J. Shu, K. Reichel, D. V. Nickel, X. He, G. Shi, R. Vajtai, P. M. Ajayan, J. Kono, D. M. Mittleman, and Q. Xu, “High-contrast terahertz wave modulation by gated graphene enhanced by extraordinary transmission through ring apertures,” Nano Lett. 14(3), 1242–1248 (2014).
[Crossref] [PubMed]

2013 (1)

J. T. Hong, D. J. Park, J. H. Yim, J. K. Park, J. Y. Park, S. Lee, and Y. H. Ahn, “Dielectric constant engineering of single-walled carbon nanotube films for metamaterials and plasmonic devices,” J. Phys. Chem. Lett. 4(22), 3950–3957 (2013).
[Crossref]

2011 (2)

K. Liu, Y. H. Sun, P. Liu, X. Y. Lin, S. S. Fan, and K. L. Jiang, “Cross-stacked superaligned carbon nanotube films for transparent and stretchable conductors,” Adv. Funct. Mater. 21(14), 2721–2728 (2011).
[Crossref]

J. Kyoung, E. Y. Jang, M. D. Lima, H. R. Park, R. O. Robles, X. Lepró, Y. H. Kim, R. H. Baughman, and D. S. Kim, “A reel-wound carbon nanotube polarizer for terahertz frequencies,” Nano Lett. 11(10), 4227–4231 (2011).
[Crossref] [PubMed]

2008 (2)

K. Liu, Y. Sun, L. Chen, C. Feng, X. Feng, K. Jiang, Y. Zhao, and S. Fan, “Controlled growth of super-aligned carbon nanotube arrays for spinning continuous unidirectional sheets with tunable physical properties,” Nano Lett. 8(2), 700–705 (2008).
[Crossref] [PubMed]

M. A. Seo, J. H. Yim, Y. H. Ahn, F. Rotermund, D. S. Kim, S. Lee, and H. Lim, “Terahertz electromagnetic interference shielding using single-walled carbon nanotube flexible films,” Appl. Phys. Lett. 93(23), 231905 (2008).
[Crossref]

2007 (1)

T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature 446(7135), 517–521 (2007).
[Crossref] [PubMed]

2006 (2)

N. Li, Y. Huang, F. Du, X. He, X. Lin, H. Gao, Y. Ma, F. Li, Y. Chen, and P. C. Eklund, “Electromagnetic Interference (EMI) Shielding of Single-Walled Carbon Nanotube Epoxy Composites,” Nano Lett. 6(6), 1141–1145 (2006).
[Crossref] [PubMed]

X. B. Zhang, K. L. Jiang, C. Teng, P. Liu, L. N. Zhang, J. Kong, T. H. Zhang, Q. Q. Li, and S. S. Fan, “Spinning and processing continuous yarns from 4-inch wafer scale super aligned carbon nanotube arrays,” Adv. Mater. 18(12), 1505–1510 (2006).
[Crossref]

2005 (1)

2004 (3)

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science 305(5688), 1273–1276 (2004).
[Crossref] [PubMed]

H. M. Kim, K. Kim, C. Y. Lee, J. Jooa, S. J. Cho, H. S. Yoon, D. A. Pejakovic, J. W. Yoo, and A. J. Epstein, “Electrical conductivity and electromagnetic interference shielding of multiwalled carbon nanotube composites containing Fe catalyst,” Appl. Phys. Lett. 84(4), 589–591 (2004).
[Crossref]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

2002 (1)

K. Jiang, Q. Li, and S. Fan, “Nanotechnology: spinning continuous carbon nanotube yarns,” Nature 419(6909), 801 (2002).
[Crossref] [PubMed]

2001 (1)

R. Tarkiainen, M. Ahlskog, J. Penttila, L. Roschier, P. Hakonen, M. Paalanen, and E. Sonin, “Multiwalled carbon nanotube: Luttinger versus Fermi liquid,” Phys. Rev. B 64(19), 195414 (2001).
[Crossref]

1997 (1)

T. I. Jeon and D. Grischkowsky, “Nature of conduction in doped silicon,” Phys. Rev. Lett. 78(6), 1106–1109 (1997).
[Crossref]

1990 (1)

Agrawal, A.

T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature 446(7135), 517–521 (2007).
[Crossref] [PubMed]

Ahlskog, M.

R. Tarkiainen, M. Ahlskog, J. Penttila, L. Roschier, P. Hakonen, M. Paalanen, and E. Sonin, “Multiwalled carbon nanotube: Luttinger versus Fermi liquid,” Phys. Rev. B 64(19), 195414 (2001).
[Crossref]

Ahn, Y. H.

J. T. Hong, D. J. Park, J. H. Yim, J. K. Park, J. Y. Park, S. Lee, and Y. H. Ahn, “Dielectric constant engineering of single-walled carbon nanotube films for metamaterials and plasmonic devices,” J. Phys. Chem. Lett. 4(22), 3950–3957 (2013).
[Crossref]

M. A. Seo, J. H. Yim, Y. H. Ahn, F. Rotermund, D. S. Kim, S. Lee, and H. Lim, “Terahertz electromagnetic interference shielding using single-walled carbon nanotube flexible films,” Appl. Phys. Lett. 93(23), 231905 (2008).
[Crossref]

Ajayan, P. M.

W. Gao, J. Shu, K. Reichel, D. V. Nickel, X. He, G. Shi, R. Vajtai, P. M. Ajayan, J. Kono, D. M. Mittleman, and Q. Xu, “High-contrast terahertz wave modulation by gated graphene enhanced by extraordinary transmission through ring apertures,” Nano Lett. 14(3), 1242–1248 (2014).
[Crossref] [PubMed]

Alfè, M.

G. P. Papari, V. Gargiulo, M. Alfè, R. D. Capua, A. Pezzella, and A. Andreone, “THz spectroscopy on graphene-like materials for bio-compatible devices,” J. Appl. Phys. 121(14), 145107 (2017).
[Crossref]

Allsop, T.

T. Allsop, R. Arif, R. Neal, K. Kalli, V. Kundrat, A. Rozhin, P. Culverhouse, and D. J. Webb, “Photonic gas sensors exploiting directly the optical properties of hybrid carbon nanotube localized surface plasmon structures,” Light Sci. Appl. 5(2), e16036 (2017).
[Crossref]

Andreone, A.

G. P. Papari, V. Gargiulo, M. Alfè, R. D. Capua, A. Pezzella, and A. Andreone, “THz spectroscopy on graphene-like materials for bio-compatible devices,” J. Appl. Phys. 121(14), 145107 (2017).
[Crossref]

Arif, R.

T. Allsop, R. Arif, R. Neal, K. Kalli, V. Kundrat, A. Rozhin, P. Culverhouse, and D. J. Webb, “Photonic gas sensors exploiting directly the optical properties of hybrid carbon nanotube localized surface plasmon structures,” Light Sci. Appl. 5(2), e16036 (2017).
[Crossref]

Azad, A. K.

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Baughman, R. H.

J. Kyoung, E. Y. Jang, M. D. Lima, H. R. Park, R. O. Robles, X. Lepró, Y. H. Kim, R. H. Baughman, and D. S. Kim, “A reel-wound carbon nanotube polarizer for terahertz frequencies,” Nano Lett. 11(10), 4227–4231 (2011).
[Crossref] [PubMed]

Brener, I.

I. Khromova, M. Navarro-Cia, I. Brener, J. L. Reno, A. Ponomarev, and O. Mitrofanov, “Dipolar resonances in conductive carbon micro-fibers probed by near-field terahertz spectroscopy,” Appl. Phys. Lett. 107(2), 021102 (2015).
[Crossref]

Capua, R. D.

G. P. Papari, V. Gargiulo, M. Alfè, R. D. Capua, A. Pezzella, and A. Andreone, “THz spectroscopy on graphene-like materials for bio-compatible devices,” J. Appl. Phys. 121(14), 145107 (2017).
[Crossref]

Chen, L.

K. Liu, Y. Sun, L. Chen, C. Feng, X. Feng, K. Jiang, Y. Zhao, and S. Fan, “Controlled growth of super-aligned carbon nanotube arrays for spinning continuous unidirectional sheets with tunable physical properties,” Nano Lett. 8(2), 700–705 (2008).
[Crossref] [PubMed]

Chen, Y.

N. Li, Y. Huang, F. Du, X. He, X. Lin, H. Gao, Y. Ma, F. Li, Y. Chen, and P. C. Eklund, “Electromagnetic Interference (EMI) Shielding of Single-Walled Carbon Nanotube Epoxy Composites,” Nano Lett. 6(6), 1141–1145 (2006).
[Crossref] [PubMed]

Chen, Z.

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science 305(5688), 1273–1276 (2004).
[Crossref] [PubMed]

Cho, S. J.

H. M. Kim, K. Kim, C. Y. Lee, J. Jooa, S. J. Cho, H. S. Yoon, D. A. Pejakovic, J. W. Yoo, and A. J. Epstein, “Electrical conductivity and electromagnetic interference shielding of multiwalled carbon nanotube composites containing Fe catalyst,” Appl. Phys. Lett. 84(4), 589–591 (2004).
[Crossref]

Coutaz, J.-L.

E. Dadrasnia, H. Lamela, M. B. Kuppam, F. Garet, and J.-L. Coutaz, “Determination of the DC Electrical Conductivity of Multiwalled Carbon Nanotube Films and Graphene Layers from Noncontact Time-Domain Terahertz Measurements,” Adv. Condens. Matter Phys. 2014, 370619 (2014).
[Crossref]

Culverhouse, P.

T. Allsop, R. Arif, R. Neal, K. Kalli, V. Kundrat, A. Rozhin, P. Culverhouse, and D. J. Webb, “Photonic gas sensors exploiting directly the optical properties of hybrid carbon nanotube localized surface plasmon structures,” Light Sci. Appl. 5(2), e16036 (2017).
[Crossref]

Dadrasnia, E.

E. Dadrasnia, H. Lamela, M. B. Kuppam, F. Garet, and J.-L. Coutaz, “Determination of the DC Electrical Conductivity of Multiwalled Carbon Nanotube Films and Graphene Layers from Noncontact Time-Domain Terahertz Measurements,” Adv. Condens. Matter Phys. 2014, 370619 (2014).
[Crossref]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Du, F.

N. Li, Y. Huang, F. Du, X. He, X. Lin, H. Gao, Y. Ma, F. Li, Y. Chen, and P. C. Eklund, “Electromagnetic Interference (EMI) Shielding of Single-Walled Carbon Nanotube Epoxy Composites,” Nano Lett. 6(6), 1141–1145 (2006).
[Crossref] [PubMed]

Du, X.

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science 305(5688), 1273–1276 (2004).
[Crossref] [PubMed]

Duan, G.

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Eklund, P. C.

N. Li, Y. Huang, F. Du, X. He, X. Lin, H. Gao, Y. Ma, F. Li, Y. Chen, and P. C. Eklund, “Electromagnetic Interference (EMI) Shielding of Single-Walled Carbon Nanotube Epoxy Composites,” Nano Lett. 6(6), 1141–1145 (2006).
[Crossref] [PubMed]

Epstein, A. J.

H. M. Kim, K. Kim, C. Y. Lee, J. Jooa, S. J. Cho, H. S. Yoon, D. A. Pejakovic, J. W. Yoo, and A. J. Epstein, “Electrical conductivity and electromagnetic interference shielding of multiwalled carbon nanotube composites containing Fe catalyst,” Appl. Phys. Lett. 84(4), 589–591 (2004).
[Crossref]

Exter, M. V.

Fan, S.

K. Liu, Y. Sun, L. Chen, C. Feng, X. Feng, K. Jiang, Y. Zhao, and S. Fan, “Controlled growth of super-aligned carbon nanotube arrays for spinning continuous unidirectional sheets with tunable physical properties,” Nano Lett. 8(2), 700–705 (2008).
[Crossref] [PubMed]

K. Jiang, Q. Li, and S. Fan, “Nanotechnology: spinning continuous carbon nanotube yarns,” Nature 419(6909), 801 (2002).
[Crossref] [PubMed]

Fan, S. S.

K. Liu, Y. H. Sun, P. Liu, X. Y. Lin, S. S. Fan, and K. L. Jiang, “Cross-stacked superaligned carbon nanotube films for transparent and stretchable conductors,” Adv. Funct. Mater. 21(14), 2721–2728 (2011).
[Crossref]

X. B. Zhang, K. L. Jiang, C. Teng, P. Liu, L. N. Zhang, J. Kong, T. H. Zhang, Q. Q. Li, and S. S. Fan, “Spinning and processing continuous yarns from 4-inch wafer scale super aligned carbon nanotube arrays,” Adv. Mater. 18(12), 1505–1510 (2006).
[Crossref]

Fattinger, C.

Feng, C.

K. Liu, Y. Sun, L. Chen, C. Feng, X. Feng, K. Jiang, Y. Zhao, and S. Fan, “Controlled growth of super-aligned carbon nanotube arrays for spinning continuous unidirectional sheets with tunable physical properties,” Nano Lett. 8(2), 700–705 (2008).
[Crossref] [PubMed]

Feng, X.

K. Liu, Y. Sun, L. Chen, C. Feng, X. Feng, K. Jiang, Y. Zhao, and S. Fan, “Controlled growth of super-aligned carbon nanotube arrays for spinning continuous unidirectional sheets with tunable physical properties,” Nano Lett. 8(2), 700–705 (2008).
[Crossref] [PubMed]

Gao, H.

N. Li, Y. Huang, F. Du, X. He, X. Lin, H. Gao, Y. Ma, F. Li, Y. Chen, and P. C. Eklund, “Electromagnetic Interference (EMI) Shielding of Single-Walled Carbon Nanotube Epoxy Composites,” Nano Lett. 6(6), 1141–1145 (2006).
[Crossref] [PubMed]

Gao, W.

W. Gao, J. Shu, K. Reichel, D. V. Nickel, X. He, G. Shi, R. Vajtai, P. M. Ajayan, J. Kono, D. M. Mittleman, and Q. Xu, “High-contrast terahertz wave modulation by gated graphene enhanced by extraordinary transmission through ring apertures,” Nano Lett. 14(3), 1242–1248 (2014).
[Crossref] [PubMed]

Garcia-Vidal, F. J.

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

Garet, F.

E. Dadrasnia, H. Lamela, M. B. Kuppam, F. Garet, and J.-L. Coutaz, “Determination of the DC Electrical Conductivity of Multiwalled Carbon Nanotube Films and Graphene Layers from Noncontact Time-Domain Terahertz Measurements,” Adv. Condens. Matter Phys. 2014, 370619 (2014).
[Crossref]

Gargiulo, V.

G. P. Papari, V. Gargiulo, M. Alfè, R. D. Capua, A. Pezzella, and A. Andreone, “THz spectroscopy on graphene-like materials for bio-compatible devices,” J. Appl. Phys. 121(14), 145107 (2017).
[Crossref]

Grischkowsky, D.

Hakonen, P.

R. Tarkiainen, M. Ahlskog, J. Penttila, L. Roschier, P. Hakonen, M. Paalanen, and E. Sonin, “Multiwalled carbon nanotube: Luttinger versus Fermi liquid,” Phys. Rev. B 64(19), 195414 (2001).
[Crossref]

He, X.

W. Gao, J. Shu, K. Reichel, D. V. Nickel, X. He, G. Shi, R. Vajtai, P. M. Ajayan, J. Kono, D. M. Mittleman, and Q. Xu, “High-contrast terahertz wave modulation by gated graphene enhanced by extraordinary transmission through ring apertures,” Nano Lett. 14(3), 1242–1248 (2014).
[Crossref] [PubMed]

N. Li, Y. Huang, F. Du, X. He, X. Lin, H. Gao, Y. Ma, F. Li, Y. Chen, and P. C. Eklund, “Electromagnetic Interference (EMI) Shielding of Single-Walled Carbon Nanotube Epoxy Composites,” Nano Lett. 6(6), 1141–1145 (2006).
[Crossref] [PubMed]

Hebard, A. F.

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science 305(5688), 1273–1276 (2004).
[Crossref] [PubMed]

Hong, J. T.

J. T. Hong, D. J. Park, J. H. Yim, J. K. Park, J. Y. Park, S. Lee, and Y. H. Ahn, “Dielectric constant engineering of single-walled carbon nanotube films for metamaterials and plasmonic devices,” J. Phys. Chem. Lett. 4(22), 3950–3957 (2013).
[Crossref]

Huang, Y.

N. Li, Y. Huang, F. Du, X. He, X. Lin, H. Gao, Y. Ma, F. Li, Y. Chen, and P. C. Eklund, “Electromagnetic Interference (EMI) Shielding of Single-Walled Carbon Nanotube Epoxy Composites,” Nano Lett. 6(6), 1141–1145 (2006).
[Crossref] [PubMed]

Jahn, D.

Y. Monnai, D. Jahn, W. Withayachumnankul, M. Koch, and H. Shinoda, “Terahertz plasmonic Bessel beam former,” Appl. Phys. Lett. 106(2), 021101 (2015).
[Crossref]

Jang, E. Y.

J. Kyoung, E. Y. Jang, M. D. Lima, H. R. Park, R. O. Robles, X. Lepró, Y. H. Kim, R. H. Baughman, and D. S. Kim, “A reel-wound carbon nanotube polarizer for terahertz frequencies,” Nano Lett. 11(10), 4227–4231 (2011).
[Crossref] [PubMed]

Jeon, T. I.

T. I. Jeon and D. Grischkowsky, “Nature of conduction in doped silicon,” Phys. Rev. Lett. 78(6), 1106–1109 (1997).
[Crossref]

Jiang, K.

K. Liu, Y. Sun, L. Chen, C. Feng, X. Feng, K. Jiang, Y. Zhao, and S. Fan, “Controlled growth of super-aligned carbon nanotube arrays for spinning continuous unidirectional sheets with tunable physical properties,” Nano Lett. 8(2), 700–705 (2008).
[Crossref] [PubMed]

K. Jiang, Q. Li, and S. Fan, “Nanotechnology: spinning continuous carbon nanotube yarns,” Nature 419(6909), 801 (2002).
[Crossref] [PubMed]

Jiang, K. L.

K. Liu, Y. H. Sun, P. Liu, X. Y. Lin, S. S. Fan, and K. L. Jiang, “Cross-stacked superaligned carbon nanotube films for transparent and stretchable conductors,” Adv. Funct. Mater. 21(14), 2721–2728 (2011).
[Crossref]

X. B. Zhang, K. L. Jiang, C. Teng, P. Liu, L. N. Zhang, J. Kong, T. H. Zhang, Q. Q. Li, and S. S. Fan, “Spinning and processing continuous yarns from 4-inch wafer scale super aligned carbon nanotube arrays,” Adv. Mater. 18(12), 1505–1510 (2006).
[Crossref]

Jooa, J.

H. M. Kim, K. Kim, C. Y. Lee, J. Jooa, S. J. Cho, H. S. Yoon, D. A. Pejakovic, J. W. Yoo, and A. J. Epstein, “Electrical conductivity and electromagnetic interference shielding of multiwalled carbon nanotube composites containing Fe catalyst,” Appl. Phys. Lett. 84(4), 589–591 (2004).
[Crossref]

Kalli, K.

T. Allsop, R. Arif, R. Neal, K. Kalli, V. Kundrat, A. Rozhin, P. Culverhouse, and D. J. Webb, “Photonic gas sensors exploiting directly the optical properties of hybrid carbon nanotube localized surface plasmon structures,” Light Sci. Appl. 5(2), e16036 (2017).
[Crossref]

Kamaras, K.

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science 305(5688), 1273–1276 (2004).
[Crossref] [PubMed]

Keiding, S.

Khromova, I.

I. Khromova, M. Navarro-Cia, I. Brener, J. L. Reno, A. Ponomarev, and O. Mitrofanov, “Dipolar resonances in conductive carbon micro-fibers probed by near-field terahertz spectroscopy,” Appl. Phys. Lett. 107(2), 021102 (2015).
[Crossref]

Kim, D. S.

J. Kyoung, E. Y. Jang, M. D. Lima, H. R. Park, R. O. Robles, X. Lepró, Y. H. Kim, R. H. Baughman, and D. S. Kim, “A reel-wound carbon nanotube polarizer for terahertz frequencies,” Nano Lett. 11(10), 4227–4231 (2011).
[Crossref] [PubMed]

M. A. Seo, J. H. Yim, Y. H. Ahn, F. Rotermund, D. S. Kim, S. Lee, and H. Lim, “Terahertz electromagnetic interference shielding using single-walled carbon nanotube flexible films,” Appl. Phys. Lett. 93(23), 231905 (2008).
[Crossref]

Kim, H. M.

H. M. Kim, K. Kim, C. Y. Lee, J. Jooa, S. J. Cho, H. S. Yoon, D. A. Pejakovic, J. W. Yoo, and A. J. Epstein, “Electrical conductivity and electromagnetic interference shielding of multiwalled carbon nanotube composites containing Fe catalyst,” Appl. Phys. Lett. 84(4), 589–591 (2004).
[Crossref]

Kim, K.

H. M. Kim, K. Kim, C. Y. Lee, J. Jooa, S. J. Cho, H. S. Yoon, D. A. Pejakovic, J. W. Yoo, and A. J. Epstein, “Electrical conductivity and electromagnetic interference shielding of multiwalled carbon nanotube composites containing Fe catalyst,” Appl. Phys. Lett. 84(4), 589–591 (2004).
[Crossref]

Kim, Y. H.

J. Kyoung, E. Y. Jang, M. D. Lima, H. R. Park, R. O. Robles, X. Lepró, Y. H. Kim, R. H. Baughman, and D. S. Kim, “A reel-wound carbon nanotube polarizer for terahertz frequencies,” Nano Lett. 11(10), 4227–4231 (2011).
[Crossref] [PubMed]

Koch, M.

Y. Monnai, D. Jahn, W. Withayachumnankul, M. Koch, and H. Shinoda, “Terahertz plasmonic Bessel beam former,” Appl. Phys. Lett. 106(2), 021101 (2015).
[Crossref]

Kong, J.

X. B. Zhang, K. L. Jiang, C. Teng, P. Liu, L. N. Zhang, J. Kong, T. H. Zhang, Q. Q. Li, and S. S. Fan, “Spinning and processing continuous yarns from 4-inch wafer scale super aligned carbon nanotube arrays,” Adv. Mater. 18(12), 1505–1510 (2006).
[Crossref]

Kono, J.

W. Gao, J. Shu, K. Reichel, D. V. Nickel, X. He, G. Shi, R. Vajtai, P. M. Ajayan, J. Kono, D. M. Mittleman, and Q. Xu, “High-contrast terahertz wave modulation by gated graphene enhanced by extraordinary transmission through ring apertures,” Nano Lett. 14(3), 1242–1248 (2014).
[Crossref] [PubMed]

Kundrat, V.

T. Allsop, R. Arif, R. Neal, K. Kalli, V. Kundrat, A. Rozhin, P. Culverhouse, and D. J. Webb, “Photonic gas sensors exploiting directly the optical properties of hybrid carbon nanotube localized surface plasmon structures,” Light Sci. Appl. 5(2), e16036 (2017).
[Crossref]

Kuppam, M. B.

E. Dadrasnia, H. Lamela, M. B. Kuppam, F. Garet, and J.-L. Coutaz, “Determination of the DC Electrical Conductivity of Multiwalled Carbon Nanotube Films and Graphene Layers from Noncontact Time-Domain Terahertz Measurements,” Adv. Condens. Matter Phys. 2014, 370619 (2014).
[Crossref]

Kyoung, J.

J. Kyoung, E. Y. Jang, M. D. Lima, H. R. Park, R. O. Robles, X. Lepró, Y. H. Kim, R. H. Baughman, and D. S. Kim, “A reel-wound carbon nanotube polarizer for terahertz frequencies,” Nano Lett. 11(10), 4227–4231 (2011).
[Crossref] [PubMed]

Lamela, H.

E. Dadrasnia, H. Lamela, M. B. Kuppam, F. Garet, and J.-L. Coutaz, “Determination of the DC Electrical Conductivity of Multiwalled Carbon Nanotube Films and Graphene Layers from Noncontact Time-Domain Terahertz Measurements,” Adv. Condens. Matter Phys. 2014, 370619 (2014).
[Crossref]

Lee, C. Y.

H. M. Kim, K. Kim, C. Y. Lee, J. Jooa, S. J. Cho, H. S. Yoon, D. A. Pejakovic, J. W. Yoo, and A. J. Epstein, “Electrical conductivity and electromagnetic interference shielding of multiwalled carbon nanotube composites containing Fe catalyst,” Appl. Phys. Lett. 84(4), 589–591 (2004).
[Crossref]

Lee, S.

J. T. Hong, D. J. Park, J. H. Yim, J. K. Park, J. Y. Park, S. Lee, and Y. H. Ahn, “Dielectric constant engineering of single-walled carbon nanotube films for metamaterials and plasmonic devices,” J. Phys. Chem. Lett. 4(22), 3950–3957 (2013).
[Crossref]

M. A. Seo, J. H. Yim, Y. H. Ahn, F. Rotermund, D. S. Kim, S. Lee, and H. Lim, “Terahertz electromagnetic interference shielding using single-walled carbon nanotube flexible films,” Appl. Phys. Lett. 93(23), 231905 (2008).
[Crossref]

Lepró, X.

J. Kyoung, E. Y. Jang, M. D. Lima, H. R. Park, R. O. Robles, X. Lepró, Y. H. Kim, R. H. Baughman, and D. S. Kim, “A reel-wound carbon nanotube polarizer for terahertz frequencies,” Nano Lett. 11(10), 4227–4231 (2011).
[Crossref] [PubMed]

Li, F.

N. Li, Y. Huang, F. Du, X. He, X. Lin, H. Gao, Y. Ma, F. Li, Y. Chen, and P. C. Eklund, “Electromagnetic Interference (EMI) Shielding of Single-Walled Carbon Nanotube Epoxy Composites,” Nano Lett. 6(6), 1141–1145 (2006).
[Crossref] [PubMed]

Li, N.

N. Li, Y. Huang, F. Du, X. He, X. Lin, H. Gao, Y. Ma, F. Li, Y. Chen, and P. C. Eklund, “Electromagnetic Interference (EMI) Shielding of Single-Walled Carbon Nanotube Epoxy Composites,” Nano Lett. 6(6), 1141–1145 (2006).
[Crossref] [PubMed]

Li, Q.

K. Jiang, Q. Li, and S. Fan, “Nanotechnology: spinning continuous carbon nanotube yarns,” Nature 419(6909), 801 (2002).
[Crossref] [PubMed]

Li, Q. Q.

X. B. Zhang, K. L. Jiang, C. Teng, P. Liu, L. N. Zhang, J. Kong, T. H. Zhang, Q. Q. Li, and S. S. Fan, “Spinning and processing continuous yarns from 4-inch wafer scale super aligned carbon nanotube arrays,” Adv. Mater. 18(12), 1505–1510 (2006).
[Crossref]

Lim, H.

M. A. Seo, J. H. Yim, Y. H. Ahn, F. Rotermund, D. S. Kim, S. Lee, and H. Lim, “Terahertz electromagnetic interference shielding using single-walled carbon nanotube flexible films,” Appl. Phys. Lett. 93(23), 231905 (2008).
[Crossref]

Lima, M. D.

J. Kyoung, E. Y. Jang, M. D. Lima, H. R. Park, R. O. Robles, X. Lepró, Y. H. Kim, R. H. Baughman, and D. S. Kim, “A reel-wound carbon nanotube polarizer for terahertz frequencies,” Nano Lett. 11(10), 4227–4231 (2011).
[Crossref] [PubMed]

Lin, X.

N. Li, Y. Huang, F. Du, X. He, X. Lin, H. Gao, Y. Ma, F. Li, Y. Chen, and P. C. Eklund, “Electromagnetic Interference (EMI) Shielding of Single-Walled Carbon Nanotube Epoxy Composites,” Nano Lett. 6(6), 1141–1145 (2006).
[Crossref] [PubMed]

Lin, X. Y.

K. Liu, Y. H. Sun, P. Liu, X. Y. Lin, S. S. Fan, and K. L. Jiang, “Cross-stacked superaligned carbon nanotube films for transparent and stretchable conductors,” Adv. Funct. Mater. 21(14), 2721–2728 (2011).
[Crossref]

Liu, K.

K. Liu, Y. H. Sun, P. Liu, X. Y. Lin, S. S. Fan, and K. L. Jiang, “Cross-stacked superaligned carbon nanotube films for transparent and stretchable conductors,” Adv. Funct. Mater. 21(14), 2721–2728 (2011).
[Crossref]

K. Liu, Y. Sun, L. Chen, C. Feng, X. Feng, K. Jiang, Y. Zhao, and S. Fan, “Controlled growth of super-aligned carbon nanotube arrays for spinning continuous unidirectional sheets with tunable physical properties,” Nano Lett. 8(2), 700–705 (2008).
[Crossref] [PubMed]

Liu, P.

K. Liu, Y. H. Sun, P. Liu, X. Y. Lin, S. S. Fan, and K. L. Jiang, “Cross-stacked superaligned carbon nanotube films for transparent and stretchable conductors,” Adv. Funct. Mater. 21(14), 2721–2728 (2011).
[Crossref]

X. B. Zhang, K. L. Jiang, C. Teng, P. Liu, L. N. Zhang, J. Kong, T. H. Zhang, Q. Q. Li, and S. S. Fan, “Spinning and processing continuous yarns from 4-inch wafer scale super aligned carbon nanotube arrays,” Adv. Mater. 18(12), 1505–1510 (2006).
[Crossref]

Logan, J. M.

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science 305(5688), 1273–1276 (2004).
[Crossref] [PubMed]

Ma, Y.

N. Li, Y. Huang, F. Du, X. He, X. Lin, H. Gao, Y. Ma, F. Li, Y. Chen, and P. C. Eklund, “Electromagnetic Interference (EMI) Shielding of Single-Walled Carbon Nanotube Epoxy Composites,” Nano Lett. 6(6), 1141–1145 (2006).
[Crossref] [PubMed]

Martín-Moreno, L.

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

Matsui, T.

T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature 446(7135), 517–521 (2007).
[Crossref] [PubMed]

Mitrofanov, O.

I. Khromova, M. Navarro-Cia, I. Brener, J. L. Reno, A. Ponomarev, and O. Mitrofanov, “Dipolar resonances in conductive carbon micro-fibers probed by near-field terahertz spectroscopy,” Appl. Phys. Lett. 107(2), 021102 (2015).
[Crossref]

Mittleman, D. M.

W. Gao, J. Shu, K. Reichel, D. V. Nickel, X. He, G. Shi, R. Vajtai, P. M. Ajayan, J. Kono, D. M. Mittleman, and Q. Xu, “High-contrast terahertz wave modulation by gated graphene enhanced by extraordinary transmission through ring apertures,” Nano Lett. 14(3), 1242–1248 (2014).
[Crossref] [PubMed]

Monnai, Y.

Y. Monnai, D. Jahn, W. Withayachumnankul, M. Koch, and H. Shinoda, “Terahertz plasmonic Bessel beam former,” Appl. Phys. Lett. 106(2), 021101 (2015).
[Crossref]

Nahata, A.

T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature 446(7135), 517–521 (2007).
[Crossref] [PubMed]

Navarro-Cia, M.

I. Khromova, M. Navarro-Cia, I. Brener, J. L. Reno, A. Ponomarev, and O. Mitrofanov, “Dipolar resonances in conductive carbon micro-fibers probed by near-field terahertz spectroscopy,” Appl. Phys. Lett. 107(2), 021102 (2015).
[Crossref]

Neal, R.

T. Allsop, R. Arif, R. Neal, K. Kalli, V. Kundrat, A. Rozhin, P. Culverhouse, and D. J. Webb, “Photonic gas sensors exploiting directly the optical properties of hybrid carbon nanotube localized surface plasmon structures,” Light Sci. Appl. 5(2), e16036 (2017).
[Crossref]

Nickel, D. V.

W. Gao, J. Shu, K. Reichel, D. V. Nickel, X. He, G. Shi, R. Vajtai, P. M. Ajayan, J. Kono, D. M. Mittleman, and Q. Xu, “High-contrast terahertz wave modulation by gated graphene enhanced by extraordinary transmission through ring apertures,” Nano Lett. 14(3), 1242–1248 (2014).
[Crossref] [PubMed]

Nikolou, M.

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science 305(5688), 1273–1276 (2004).
[Crossref] [PubMed]

Paalanen, M.

R. Tarkiainen, M. Ahlskog, J. Penttila, L. Roschier, P. Hakonen, M. Paalanen, and E. Sonin, “Multiwalled carbon nanotube: Luttinger versus Fermi liquid,” Phys. Rev. B 64(19), 195414 (2001).
[Crossref]

Papari, G. P.

G. P. Papari, V. Gargiulo, M. Alfè, R. D. Capua, A. Pezzella, and A. Andreone, “THz spectroscopy on graphene-like materials for bio-compatible devices,” J. Appl. Phys. 121(14), 145107 (2017).
[Crossref]

Park, D. J.

J. T. Hong, D. J. Park, J. H. Yim, J. K. Park, J. Y. Park, S. Lee, and Y. H. Ahn, “Dielectric constant engineering of single-walled carbon nanotube films for metamaterials and plasmonic devices,” J. Phys. Chem. Lett. 4(22), 3950–3957 (2013).
[Crossref]

Park, H. R.

J. Kyoung, E. Y. Jang, M. D. Lima, H. R. Park, R. O. Robles, X. Lepró, Y. H. Kim, R. H. Baughman, and D. S. Kim, “A reel-wound carbon nanotube polarizer for terahertz frequencies,” Nano Lett. 11(10), 4227–4231 (2011).
[Crossref] [PubMed]

Park, J. K.

J. T. Hong, D. J. Park, J. H. Yim, J. K. Park, J. Y. Park, S. Lee, and Y. H. Ahn, “Dielectric constant engineering of single-walled carbon nanotube films for metamaterials and plasmonic devices,” J. Phys. Chem. Lett. 4(22), 3950–3957 (2013).
[Crossref]

Park, J. Y.

J. T. Hong, D. J. Park, J. H. Yim, J. K. Park, J. Y. Park, S. Lee, and Y. H. Ahn, “Dielectric constant engineering of single-walled carbon nanotube films for metamaterials and plasmonic devices,” J. Phys. Chem. Lett. 4(22), 3950–3957 (2013).
[Crossref]

Pejakovic, D. A.

H. M. Kim, K. Kim, C. Y. Lee, J. Jooa, S. J. Cho, H. S. Yoon, D. A. Pejakovic, J. W. Yoo, and A. J. Epstein, “Electrical conductivity and electromagnetic interference shielding of multiwalled carbon nanotube composites containing Fe catalyst,” Appl. Phys. Lett. 84(4), 589–591 (2004).
[Crossref]

Pendry, J. B.

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

Penttila, J.

R. Tarkiainen, M. Ahlskog, J. Penttila, L. Roschier, P. Hakonen, M. Paalanen, and E. Sonin, “Multiwalled carbon nanotube: Luttinger versus Fermi liquid,” Phys. Rev. B 64(19), 195414 (2001).
[Crossref]

Pezzella, A.

G. P. Papari, V. Gargiulo, M. Alfè, R. D. Capua, A. Pezzella, and A. Andreone, “THz spectroscopy on graphene-like materials for bio-compatible devices,” J. Appl. Phys. 121(14), 145107 (2017).
[Crossref]

Ponomarev, A.

I. Khromova, M. Navarro-Cia, I. Brener, J. L. Reno, A. Ponomarev, and O. Mitrofanov, “Dipolar resonances in conductive carbon micro-fibers probed by near-field terahertz spectroscopy,” Appl. Phys. Lett. 107(2), 021102 (2015).
[Crossref]

Reichel, K.

W. Gao, J. Shu, K. Reichel, D. V. Nickel, X. He, G. Shi, R. Vajtai, P. M. Ajayan, J. Kono, D. M. Mittleman, and Q. Xu, “High-contrast terahertz wave modulation by gated graphene enhanced by extraordinary transmission through ring apertures,” Nano Lett. 14(3), 1242–1248 (2014).
[Crossref] [PubMed]

Reno, J. L.

I. Khromova, M. Navarro-Cia, I. Brener, J. L. Reno, A. Ponomarev, and O. Mitrofanov, “Dipolar resonances in conductive carbon micro-fibers probed by near-field terahertz spectroscopy,” Appl. Phys. Lett. 107(2), 021102 (2015).
[Crossref]

Reynolds, J. R.

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science 305(5688), 1273–1276 (2004).
[Crossref] [PubMed]

Rinzler, A. G.

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science 305(5688), 1273–1276 (2004).
[Crossref] [PubMed]

Robles, R. O.

J. Kyoung, E. Y. Jang, M. D. Lima, H. R. Park, R. O. Robles, X. Lepró, Y. H. Kim, R. H. Baughman, and D. S. Kim, “A reel-wound carbon nanotube polarizer for terahertz frequencies,” Nano Lett. 11(10), 4227–4231 (2011).
[Crossref] [PubMed]

Roschier, L.

R. Tarkiainen, M. Ahlskog, J. Penttila, L. Roschier, P. Hakonen, M. Paalanen, and E. Sonin, “Multiwalled carbon nanotube: Luttinger versus Fermi liquid,” Phys. Rev. B 64(19), 195414 (2001).
[Crossref]

Rotermund, F.

M. A. Seo, J. H. Yim, Y. H. Ahn, F. Rotermund, D. S. Kim, S. Lee, and H. Lim, “Terahertz electromagnetic interference shielding using single-walled carbon nanotube flexible films,” Appl. Phys. Lett. 93(23), 231905 (2008).
[Crossref]

Rozhin, A.

T. Allsop, R. Arif, R. Neal, K. Kalli, V. Kundrat, A. Rozhin, P. Culverhouse, and D. J. Webb, “Photonic gas sensors exploiting directly the optical properties of hybrid carbon nanotube localized surface plasmon structures,” Light Sci. Appl. 5(2), e16036 (2017).
[Crossref]

Seo, M. A.

M. A. Seo, J. H. Yim, Y. H. Ahn, F. Rotermund, D. S. Kim, S. Lee, and H. Lim, “Terahertz electromagnetic interference shielding using single-walled carbon nanotube flexible films,” Appl. Phys. Lett. 93(23), 231905 (2008).
[Crossref]

Shi, G.

W. Gao, J. Shu, K. Reichel, D. V. Nickel, X. He, G. Shi, R. Vajtai, P. M. Ajayan, J. Kono, D. M. Mittleman, and Q. Xu, “High-contrast terahertz wave modulation by gated graphene enhanced by extraordinary transmission through ring apertures,” Nano Lett. 14(3), 1242–1248 (2014).
[Crossref] [PubMed]

Shinoda, H.

Y. Monnai, D. Jahn, W. Withayachumnankul, M. Koch, and H. Shinoda, “Terahertz plasmonic Bessel beam former,” Appl. Phys. Lett. 106(2), 021101 (2015).
[Crossref]

Shu, J.

W. Gao, J. Shu, K. Reichel, D. V. Nickel, X. He, G. Shi, R. Vajtai, P. M. Ajayan, J. Kono, D. M. Mittleman, and Q. Xu, “High-contrast terahertz wave modulation by gated graphene enhanced by extraordinary transmission through ring apertures,” Nano Lett. 14(3), 1242–1248 (2014).
[Crossref] [PubMed]

Sippel, J.

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science 305(5688), 1273–1276 (2004).
[Crossref] [PubMed]

Sonin, E.

R. Tarkiainen, M. Ahlskog, J. Penttila, L. Roschier, P. Hakonen, M. Paalanen, and E. Sonin, “Multiwalled carbon nanotube: Luttinger versus Fermi liquid,” Phys. Rev. B 64(19), 195414 (2001).
[Crossref]

Sun, Y.

K. Liu, Y. Sun, L. Chen, C. Feng, X. Feng, K. Jiang, Y. Zhao, and S. Fan, “Controlled growth of super-aligned carbon nanotube arrays for spinning continuous unidirectional sheets with tunable physical properties,” Nano Lett. 8(2), 700–705 (2008).
[Crossref] [PubMed]

Sun, Y. H.

K. Liu, Y. H. Sun, P. Liu, X. Y. Lin, S. S. Fan, and K. L. Jiang, “Cross-stacked superaligned carbon nanotube films for transparent and stretchable conductors,” Adv. Funct. Mater. 21(14), 2721–2728 (2011).
[Crossref]

Tanner, D. B.

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science 305(5688), 1273–1276 (2004).
[Crossref] [PubMed]

Tarkiainen, R.

R. Tarkiainen, M. Ahlskog, J. Penttila, L. Roschier, P. Hakonen, M. Paalanen, and E. Sonin, “Multiwalled carbon nanotube: Luttinger versus Fermi liquid,” Phys. Rev. B 64(19), 195414 (2001).
[Crossref]

Teng, C.

X. B. Zhang, K. L. Jiang, C. Teng, P. Liu, L. N. Zhang, J. Kong, T. H. Zhang, Q. Q. Li, and S. S. Fan, “Spinning and processing continuous yarns from 4-inch wafer scale super aligned carbon nanotube arrays,” Adv. Mater. 18(12), 1505–1510 (2006).
[Crossref]

Tong, Y. J.

Y. Wang, J. H. Yin, Q. Wu, and Y. J. Tong, “Anisotropic Properties of Ultra-thin Freestanding Multi-walled Carbon Nanotubes Film for Terahertz Polarizer Application,” IEEE. Trans. THz Sci. Technol. 6(2), 278–283 (2016).

Vajtai, R.

W. Gao, J. Shu, K. Reichel, D. V. Nickel, X. He, G. Shi, R. Vajtai, P. M. Ajayan, J. Kono, D. M. Mittleman, and Q. Xu, “High-contrast terahertz wave modulation by gated graphene enhanced by extraordinary transmission through ring apertures,” Nano Lett. 14(3), 1242–1248 (2014).
[Crossref] [PubMed]

Vardeny, Z. V.

T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature 446(7135), 517–521 (2007).
[Crossref] [PubMed]

Wang, Y.

Y. Wang, J. H. Yin, Q. Wu, and Y. J. Tong, “Anisotropic Properties of Ultra-thin Freestanding Multi-walled Carbon Nanotubes Film for Terahertz Polarizer Application,” IEEE. Trans. THz Sci. Technol. 6(2), 278–283 (2016).

Y. Wang, X. Zhao, G. Duan, and X. Zhang, “Broadband extraordinary terahertz transmission through super-aligned carbon nanotubes film,” Opt. Express 24(14), 15730–15741 (2016).
[Crossref] [PubMed]

Webb, D. J.

T. Allsop, R. Arif, R. Neal, K. Kalli, V. Kundrat, A. Rozhin, P. Culverhouse, and D. J. Webb, “Photonic gas sensors exploiting directly the optical properties of hybrid carbon nanotube localized surface plasmon structures,” Light Sci. Appl. 5(2), e16036 (2017).
[Crossref]

Withayachumnankul, W.

Y. Monnai, D. Jahn, W. Withayachumnankul, M. Koch, and H. Shinoda, “Terahertz plasmonic Bessel beam former,” Appl. Phys. Lett. 106(2), 021101 (2015).
[Crossref]

Wu, Q.

Y. Wang, J. H. Yin, Q. Wu, and Y. J. Tong, “Anisotropic Properties of Ultra-thin Freestanding Multi-walled Carbon Nanotubes Film for Terahertz Polarizer Application,” IEEE. Trans. THz Sci. Technol. 6(2), 278–283 (2016).

Wu, Z.

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science 305(5688), 1273–1276 (2004).
[Crossref] [PubMed]

Xu, Q.

W. Gao, J. Shu, K. Reichel, D. V. Nickel, X. He, G. Shi, R. Vajtai, P. M. Ajayan, J. Kono, D. M. Mittleman, and Q. Xu, “High-contrast terahertz wave modulation by gated graphene enhanced by extraordinary transmission through ring apertures,” Nano Lett. 14(3), 1242–1248 (2014).
[Crossref] [PubMed]

Yim, J. H.

J. T. Hong, D. J. Park, J. H. Yim, J. K. Park, J. Y. Park, S. Lee, and Y. H. Ahn, “Dielectric constant engineering of single-walled carbon nanotube films for metamaterials and plasmonic devices,” J. Phys. Chem. Lett. 4(22), 3950–3957 (2013).
[Crossref]

M. A. Seo, J. H. Yim, Y. H. Ahn, F. Rotermund, D. S. Kim, S. Lee, and H. Lim, “Terahertz electromagnetic interference shielding using single-walled carbon nanotube flexible films,” Appl. Phys. Lett. 93(23), 231905 (2008).
[Crossref]

Yin, J. H.

Y. Wang, J. H. Yin, Q. Wu, and Y. J. Tong, “Anisotropic Properties of Ultra-thin Freestanding Multi-walled Carbon Nanotubes Film for Terahertz Polarizer Application,” IEEE. Trans. THz Sci. Technol. 6(2), 278–283 (2016).

Yoo, J. W.

H. M. Kim, K. Kim, C. Y. Lee, J. Jooa, S. J. Cho, H. S. Yoon, D. A. Pejakovic, J. W. Yoo, and A. J. Epstein, “Electrical conductivity and electromagnetic interference shielding of multiwalled carbon nanotube composites containing Fe catalyst,” Appl. Phys. Lett. 84(4), 589–591 (2004).
[Crossref]

Yoon, H. S.

H. M. Kim, K. Kim, C. Y. Lee, J. Jooa, S. J. Cho, H. S. Yoon, D. A. Pejakovic, J. W. Yoo, and A. J. Epstein, “Electrical conductivity and electromagnetic interference shielding of multiwalled carbon nanotube composites containing Fe catalyst,” Appl. Phys. Lett. 84(4), 589–591 (2004).
[Crossref]

Zhang, L. N.

X. B. Zhang, K. L. Jiang, C. Teng, P. Liu, L. N. Zhang, J. Kong, T. H. Zhang, Q. Q. Li, and S. S. Fan, “Spinning and processing continuous yarns from 4-inch wafer scale super aligned carbon nanotube arrays,” Adv. Mater. 18(12), 1505–1510 (2006).
[Crossref]

Zhang, T. H.

X. B. Zhang, K. L. Jiang, C. Teng, P. Liu, L. N. Zhang, J. Kong, T. H. Zhang, Q. Q. Li, and S. S. Fan, “Spinning and processing continuous yarns from 4-inch wafer scale super aligned carbon nanotube arrays,” Adv. Mater. 18(12), 1505–1510 (2006).
[Crossref]

Zhang, W.

Zhang, X.

Zhang, X. B.

X. B. Zhang, K. L. Jiang, C. Teng, P. Liu, L. N. Zhang, J. Kong, T. H. Zhang, Q. Q. Li, and S. S. Fan, “Spinning and processing continuous yarns from 4-inch wafer scale super aligned carbon nanotube arrays,” Adv. Mater. 18(12), 1505–1510 (2006).
[Crossref]

Zhao, X.

Zhao, Y.

K. Liu, Y. Sun, L. Chen, C. Feng, X. Feng, K. Jiang, Y. Zhao, and S. Fan, “Controlled growth of super-aligned carbon nanotube arrays for spinning continuous unidirectional sheets with tunable physical properties,” Nano Lett. 8(2), 700–705 (2008).
[Crossref] [PubMed]

Adv. Condens. Matter Phys. (1)

E. Dadrasnia, H. Lamela, M. B. Kuppam, F. Garet, and J.-L. Coutaz, “Determination of the DC Electrical Conductivity of Multiwalled Carbon Nanotube Films and Graphene Layers from Noncontact Time-Domain Terahertz Measurements,” Adv. Condens. Matter Phys. 2014, 370619 (2014).
[Crossref]

Adv. Funct. Mater. (1)

K. Liu, Y. H. Sun, P. Liu, X. Y. Lin, S. S. Fan, and K. L. Jiang, “Cross-stacked superaligned carbon nanotube films for transparent and stretchable conductors,” Adv. Funct. Mater. 21(14), 2721–2728 (2011).
[Crossref]

Adv. Mater. (1)

X. B. Zhang, K. L. Jiang, C. Teng, P. Liu, L. N. Zhang, J. Kong, T. H. Zhang, Q. Q. Li, and S. S. Fan, “Spinning and processing continuous yarns from 4-inch wafer scale super aligned carbon nanotube arrays,” Adv. Mater. 18(12), 1505–1510 (2006).
[Crossref]

Appl. Phys. Lett. (4)

H. M. Kim, K. Kim, C. Y. Lee, J. Jooa, S. J. Cho, H. S. Yoon, D. A. Pejakovic, J. W. Yoo, and A. J. Epstein, “Electrical conductivity and electromagnetic interference shielding of multiwalled carbon nanotube composites containing Fe catalyst,” Appl. Phys. Lett. 84(4), 589–591 (2004).
[Crossref]

M. A. Seo, J. H. Yim, Y. H. Ahn, F. Rotermund, D. S. Kim, S. Lee, and H. Lim, “Terahertz electromagnetic interference shielding using single-walled carbon nanotube flexible films,” Appl. Phys. Lett. 93(23), 231905 (2008).
[Crossref]

I. Khromova, M. Navarro-Cia, I. Brener, J. L. Reno, A. Ponomarev, and O. Mitrofanov, “Dipolar resonances in conductive carbon micro-fibers probed by near-field terahertz spectroscopy,” Appl. Phys. Lett. 107(2), 021102 (2015).
[Crossref]

Y. Monnai, D. Jahn, W. Withayachumnankul, M. Koch, and H. Shinoda, “Terahertz plasmonic Bessel beam former,” Appl. Phys. Lett. 106(2), 021101 (2015).
[Crossref]

IEEE. Trans. THz Sci. Technol. (1)

Y. Wang, J. H. Yin, Q. Wu, and Y. J. Tong, “Anisotropic Properties of Ultra-thin Freestanding Multi-walled Carbon Nanotubes Film for Terahertz Polarizer Application,” IEEE. Trans. THz Sci. Technol. 6(2), 278–283 (2016).

J. Appl. Phys. (1)

G. P. Papari, V. Gargiulo, M. Alfè, R. D. Capua, A. Pezzella, and A. Andreone, “THz spectroscopy on graphene-like materials for bio-compatible devices,” J. Appl. Phys. 121(14), 145107 (2017).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. Lett. (1)

J. T. Hong, D. J. Park, J. H. Yim, J. K. Park, J. Y. Park, S. Lee, and Y. H. Ahn, “Dielectric constant engineering of single-walled carbon nanotube films for metamaterials and plasmonic devices,” J. Phys. Chem. Lett. 4(22), 3950–3957 (2013).
[Crossref]

Light Sci. Appl. (1)

T. Allsop, R. Arif, R. Neal, K. Kalli, V. Kundrat, A. Rozhin, P. Culverhouse, and D. J. Webb, “Photonic gas sensors exploiting directly the optical properties of hybrid carbon nanotube localized surface plasmon structures,” Light Sci. Appl. 5(2), e16036 (2017).
[Crossref]

Nano Lett. (4)

J. Kyoung, E. Y. Jang, M. D. Lima, H. R. Park, R. O. Robles, X. Lepró, Y. H. Kim, R. H. Baughman, and D. S. Kim, “A reel-wound carbon nanotube polarizer for terahertz frequencies,” Nano Lett. 11(10), 4227–4231 (2011).
[Crossref] [PubMed]

W. Gao, J. Shu, K. Reichel, D. V. Nickel, X. He, G. Shi, R. Vajtai, P. M. Ajayan, J. Kono, D. M. Mittleman, and Q. Xu, “High-contrast terahertz wave modulation by gated graphene enhanced by extraordinary transmission through ring apertures,” Nano Lett. 14(3), 1242–1248 (2014).
[Crossref] [PubMed]

N. Li, Y. Huang, F. Du, X. He, X. Lin, H. Gao, Y. Ma, F. Li, Y. Chen, and P. C. Eklund, “Electromagnetic Interference (EMI) Shielding of Single-Walled Carbon Nanotube Epoxy Composites,” Nano Lett. 6(6), 1141–1145 (2006).
[Crossref] [PubMed]

K. Liu, Y. Sun, L. Chen, C. Feng, X. Feng, K. Jiang, Y. Zhao, and S. Fan, “Controlled growth of super-aligned carbon nanotube arrays for spinning continuous unidirectional sheets with tunable physical properties,” Nano Lett. 8(2), 700–705 (2008).
[Crossref] [PubMed]

Nature (3)

K. Jiang, Q. Li, and S. Fan, “Nanotechnology: spinning continuous carbon nanotube yarns,” Nature 419(6909), 801 (2002).
[Crossref] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature 446(7135), 517–521 (2007).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. B (1)

R. Tarkiainen, M. Ahlskog, J. Penttila, L. Roschier, P. Hakonen, M. Paalanen, and E. Sonin, “Multiwalled carbon nanotube: Luttinger versus Fermi liquid,” Phys. Rev. B 64(19), 195414 (2001).
[Crossref]

Phys. Rev. Lett. (1)

T. I. Jeon and D. Grischkowsky, “Nature of conduction in doped silicon,” Phys. Rev. Lett. 78(6), 1106–1109 (1997).
[Crossref]

Science (2)

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science 305(5688), 1273–1276 (2004).
[Crossref] [PubMed]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

Other (2)

K. Tanaka, T. Yamabe, and K. Fukui, The Science and Technology of Carbon Nanotubes (Elsevier Science, 1999).

A. Stefan, Plasmonics: fundamentals and applications (Springer, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Free-standing carbon nanotubes film pulled from a super-aligned MWCNT array. The CNT axis and THz polarization is shown in (a). (b) SEM image of a MWCNT film in which the CNTs are aligned along the drawing direction. (c) High-resolution TEM image of MWCNTs
Fig. 2
Fig. 2 (a) Time-domain measurements of THz signals through a free-standing MWCNT film. The reference THz signal was measured in air using the THz time-domain system. The inset is the free-standing MWCNTs film. (b) THz time-domain signal through a 2D film array of carbon nanotubes. The inset is subwavelength MWCNT film arrays. ‘TE’ (‘TM’) denotes parallel (‘Perpendicular’) THz polarization with respect to the axes of the carbon nanotubes.
Fig. 3
Fig. 3 (a) Index of refraction, (b) effective dielectric constant, and (c) conductivity for TE polarization case of multi-walled carbon nanotube films; (d) Index of refraction, (e) effective dielectric constant, and (f) conductivity for TM polarization case. The solid lines ( ε eff ) are fitted data with MG and DL model, the open circles and squares are the experimental data points. Red indicates the real part and blue indicates the imaginary part.
Fig. 4
Fig. 4 SEM images of a carbon nanotube metasurface with a 2D array of square apertures of length b, width a, thickness d, x-axis period px, and y-axis period py. (a) px = py = 200 μm; (b) px = py = 250 μm; (c) px = py = 300 μm, and (d) Schematic of single square aperture.
Fig. 5
Fig. 5 Transmittance vs. frequency for different lattice constants. (a)-(c) Measured transmittance, and (d)-(f) simulated transmittance. (a) and (d) 200-μm lattice; (b) and (e) 250-μm lattice; (c) and (f) 300-μm lattice.
Fig. 6
Fig. 6 Dispersion relation for spoof SPPs on MWCNTs film/air surface.
Fig. 7
Fig. 7 (a) Surface current, E-field, and H-field distribution of the 200-μm-period sample. The fields were plotted for the 1.27-THz resonance. Inset shows the (k, E) plane in correspondence of the CNTs film/air boundary. (b) Transmittance maps at oblique angles of incidence, where the dotted line defines the resonance frequencies for different angles.

Tables (1)

Tables Icon

Table 1 Best-fit MG and DL theory parameters for the MWCNT films

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ε eff = ε i ( 1N )( 1f ) ε i +[ N+f( 1N ) ] ε m ( fN+1N ) ε i +N( 1f ) ε m ( MG model ),
ε m = ε ω p 2 ω(ω+iγ) + j ω pj 2 ( ω j 2 + ω 2 )i γ j ω i ( DL model ).

Metrics