Abstract

Holograms of colloidal particles can be analyzed with the Lorenz-Mie theory of light scattering to measure individual particles’ three-dimensional positions with nanometer precision while simultaneously estimating their sizes and refractive indexes. Extracting this wealth of information begins by detecting and localizing features of interest within individual holograms. Conventionally approached with heuristic algorithms, this image analysis problem can be solved faster and more generally with machine-learning techniques. We demonstrate that two popular machine-learning algorithms, cascade classifiers and deep convolutional neural networks (CNN), can solve the feature-localization problem orders of magnitude faster than current state-of-the-art techniques. Our CNN implementation localizes holographic features precisely enough to bootstrap more detailed analyses based on the Lorenz-Mie theory of light scattering. The wavelet-based Haar cascade proves to be less precise, but is so computationally efficient that it creates new opportunities for applications that emphasize speed and low cost. We demonstrate its use as a real-time targeting system for holographic optical trapping.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Machine-learning approach to holographic particle characterization

Aaron Yevick, Mark Hannel, and David G. Grier
Opt. Express 22(22) 26884-26890 (2014)

Accurate holographic imaging of colloidal particle pairs by Rayleigh-Sommerfeld reconstruction

David Kapfenberger, Adar Sonn-Segev, and Yael Roichman
Opt. Express 21(10) 12228-12237 (2013)

Bayesian approach to analyzing holograms of colloidal particles

Thomas G. Dimiduk and Vinothan N. Manoharan
Opt. Express 24(21) 24045-24060 (2016)

References

  • View by:
  • |
  • |
  • |

  1. S.-H. Lee, Y. Roichman, G.-R. Yi, S.-H. Kim, S.-M. Yang, A. van Blaaderen, P. van Oostrum, and D. G. Grier, “Characterizing and tracking single colloidal particles with video holographic microscopy,” Opt. Express 15, 18275–18282 (2007).
    [Crossref] [PubMed]
  2. A. Yevick, M. Hannel, and D. G. Grier, “Machine-learning approach to holographic particle characterization,” Opt. Express 22, 26884–26890 (2014).
    [Crossref] [PubMed]
  3. L. A. Philips, D. B. Ruffner, F. C. Cheong, J. M. Blusewicz, P. Kasimbeg, B. Waisi, J. McCutcheon, and D. G. Grier, “Holographic characterization of contaminants in water: Differentiation of suspended particles in heterogeneous dispersions,” Water Res. 122, 431–439 (2017).
    [Crossref] [PubMed]
  4. R. W. Perry, G. N. Meng, T. G. Dimiduk, J. Fung, and V. N. Manoharan, “Real-space studies of the structure and dynamics of self-assembled colloidal clusters,” Faraday Discuss. 159, 211–234 (2012).
    [Crossref]
  5. J. Fung, R. W. Perry, T. G. Dimiduk, and V. N. Manoharan, “Imaging multiple colloidal particles by fitting electromagnetic scattering solutions to digital holograms,” J. Quant. Spectr. Rad. Transf. 113, 2482–2489 (2012).
    [Crossref]
  6. J. Fung and V. N. Manoharan, “Holographic measurements of anisotropic three-dimensional diffusion of colloidal clusters,” Phys. Rev. E 88, 020302 (2013).
    [Crossref]
  7. C. Wang, X. Zhong, D. B. Ruffner, A. Stutt, L. A. Philips, M. D. Ward, and D. G. Grier, “Holographic characterization of protein aggregates,” J. Pharm. Sci. 105, 1074–1085 (2016).
    [Crossref] [PubMed]
  8. C. Wang, F. C. Cheong, D. B. Ruffner, X. Zhong, M. D. Ward, and D. G. Grier, “Holographic characterization of colloidal fractal aggregates,” Soft Matter 12, 8774–8780 (2016).
    [Crossref] [PubMed]
  9. F. C. Cheong and D. G. Grier, “Rotational and translational diffusion of copper oxide nanorods measured with holographic video microscopy,” Opt. Express 18, 6555–6562 (2010).
    [Crossref] [PubMed]
  10. A. Wang, T. G. Dimiduk, J. Fung, S. Razavi, I. Kretzschmar, K. Chaudhary, and V. N. Manoharan, “Using the discrete dipole approximation and holographic microscopy to measure rotational dynamics of non-spherical colloidal particles,” J. Quant. Spectr. Rad. Transf. 146, 499–509 (2014).
    [Crossref]
  11. M. Hannel, C. Middleton, and D. G. Grier, “Holographic characterization of imperfect colloidal spheres,” Appl. Phys. Lett. 107, 141905 (2015).
    [Crossref]
  12. F. C. Cheong, P. Kasimbeg, D. B. Ruffner, E. H. Hlaing, J. M. Blusewicz, L. A. Philips, and D. G. Grier, “Holographic characterization of colloidal particles in turbid media,” Appl. Phys. Lett. 111, 153702 (2017).
    [Crossref]
  13. C. Wang, H. Shpaisman, A. D. Hollingsworth, and D. G. Grier, “Celebrating Soft Matter’s 10th Anniversary: Monitoring colloidal growth with holographic microscopy,” Soft Matter 11, 1062–1066 (2015).
    [Crossref]
  14. C. Wang, H. W. Moyses, and D. G. Grier, “Stimulus-responsive colloidal sensors with fast holographic readout,” Appl. Phys. Lett. 107, 051903 (2015).
    [Crossref]
  15. F. C. Cheong, S. Duarte, S.-H. Lee, and D. G. Grier, “Holographic microrheology of polysaccharides from Streptococcus mutans biofilms,” Rheol. Acta 48, 109–115 (2008).
    [Crossref]
  16. H. Shpaisman, B. J. Krishnatreya, and D. G. Grier, “Holographic microrefractometer,” Appl. Phys. Lett. 101, 091102 (2012).
    [Crossref]
  17. F. C. Cheong, K. Xiao, D. J. Pine, and D. G. Grier, “Holographic characterization of individual colloidal spheres’ porosities,” Soft Matter 7, 6816–6819 (2011).
    [Crossref]
  18. F. C. Cheong, K. Xiao, and D. G. Grier, “Characterization of individual milk fat globules with holographic video microscopy,” J. Dairy Sci. 92, 95–99 (2009).
    [Crossref]
  19. J. C. Crocker and D. G. Grier, “Methods of digital video microscopy for colloidal studies,” J. Colloid InterfaceSci. 179, 298–310 (1996).
    [Crossref]
  20. F. C. Cheong, B. Sun, R. Dreyfus, J. Amato-Grill, K. Xiao, L. Dixon, and D. G. Grier, “Flow visualization and flow cytometry with holographic video microscopy,” Opt. Express 17, 13071–13079 (2009).
    [Crossref] [PubMed]
  21. B. J. Krishnatreya and D. G. Grier, “Fast feature identification for holographic tracking: The orientation alignment transform,” Opt. Express 22, 12773–12778 (2014).
    [Crossref] [PubMed]
  22. D. Allan, T. Caswell, N. Keim, and C. van der Wel, “Trackpy v0.3.2,” http://doi.org/10.5281/zenodo.60550 (2016).
  23. R. Parthasarathy, “Rapid, accurate particle tracking by calculation of radial symmetry centers,” Nature Methods 9, 724–726 (2012).
    [Crossref] [PubMed]
  24. C. Hollitt, “A convolution approach to the circle Hough transform for arbitrary radius,” Mach. Vis. Appl. 24, 683–694 (2013).
    [Crossref]
  25. P. Viola and M. Jones, “Rapid object detection using a boosted cascade of simple features,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2001), pp. 511–518.
  26. R. Lienhart and J. Maydt, “An extended set of Haar-like features for rapid object detection,” in IEEE Conference on Image Processing (IEEE, 2002), pp. 900–903.
    [Crossref]
  27. Itseez, “Open Source Computer Vision Library,” https://github.com/itseez/opencv (2015).
  28. A. Neubeck and L. Van Gool, “Efficient non-maximum suppression,” in 18th International Conference on Pattern Recognition (ICPR’06), vol. 3, pp. 850–855 (2006).
    [Crossref]
  29. P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun, “Overfeat: Integrated recognition, localization and detection using convolutional networks,” https://arxiv.org/abs/1312.6229 .
  30. M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems,” https://www.tensorflow.org/ (2015).
  31. R. Stewart and M. Andriluka, “End-to-end people detection in crowded scenes,” https://arxiv.org/abs/1506.04878 .
  32. C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2015), pp. 1–9.
  33. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley Interscience, 1983).
  34. M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption and Emission of Light by Small Particles (Cambridge University, 2001).
  35. F. C. Cheong, B. J. Krishnatreya, and D. G. Grier, “Strategies for three-dimensional particle tracking with holographic video microscopy,” Opt. Express 18, 13,563–13,573 (2010).
    [Crossref]
  36. B. J. Krishnatreya, A. Colen-Landy, P. Hasebe, B. A. Bell, J. R. Jones, A. Sunda-Meya, and D. G. Grier, “Measuring Boltzmann’s constant through holographic video microscopy of a single sphere,” Am. J. Phys. 82, 23–31 (2014).
    [Crossref]
  37. X. Michalet and A. J. Berglund, “Optimal diffusion coefficient estimation in single-particle tracking,” Phys. Rev. E 85, 061916 (2012).
    [Crossref]
  38. D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003).
    [Crossref] [PubMed]
  39. S. C. Chapin, V. Germain, and E. R. Dufresne, “Automated trapping, assembly, and sorting with holographic optical tweezers,” Opt. Express 14, 13095–13100 (2006).
    [Crossref] [PubMed]

2017 (2)

L. A. Philips, D. B. Ruffner, F. C. Cheong, J. M. Blusewicz, P. Kasimbeg, B. Waisi, J. McCutcheon, and D. G. Grier, “Holographic characterization of contaminants in water: Differentiation of suspended particles in heterogeneous dispersions,” Water Res. 122, 431–439 (2017).
[Crossref] [PubMed]

F. C. Cheong, P. Kasimbeg, D. B. Ruffner, E. H. Hlaing, J. M. Blusewicz, L. A. Philips, and D. G. Grier, “Holographic characterization of colloidal particles in turbid media,” Appl. Phys. Lett. 111, 153702 (2017).
[Crossref]

2016 (2)

C. Wang, X. Zhong, D. B. Ruffner, A. Stutt, L. A. Philips, M. D. Ward, and D. G. Grier, “Holographic characterization of protein aggregates,” J. Pharm. Sci. 105, 1074–1085 (2016).
[Crossref] [PubMed]

C. Wang, F. C. Cheong, D. B. Ruffner, X. Zhong, M. D. Ward, and D. G. Grier, “Holographic characterization of colloidal fractal aggregates,” Soft Matter 12, 8774–8780 (2016).
[Crossref] [PubMed]

2015 (3)

C. Wang, H. Shpaisman, A. D. Hollingsworth, and D. G. Grier, “Celebrating Soft Matter’s 10th Anniversary: Monitoring colloidal growth with holographic microscopy,” Soft Matter 11, 1062–1066 (2015).
[Crossref]

C. Wang, H. W. Moyses, and D. G. Grier, “Stimulus-responsive colloidal sensors with fast holographic readout,” Appl. Phys. Lett. 107, 051903 (2015).
[Crossref]

M. Hannel, C. Middleton, and D. G. Grier, “Holographic characterization of imperfect colloidal spheres,” Appl. Phys. Lett. 107, 141905 (2015).
[Crossref]

2014 (4)

B. J. Krishnatreya and D. G. Grier, “Fast feature identification for holographic tracking: The orientation alignment transform,” Opt. Express 22, 12773–12778 (2014).
[Crossref] [PubMed]

B. J. Krishnatreya, A. Colen-Landy, P. Hasebe, B. A. Bell, J. R. Jones, A. Sunda-Meya, and D. G. Grier, “Measuring Boltzmann’s constant through holographic video microscopy of a single sphere,” Am. J. Phys. 82, 23–31 (2014).
[Crossref]

A. Wang, T. G. Dimiduk, J. Fung, S. Razavi, I. Kretzschmar, K. Chaudhary, and V. N. Manoharan, “Using the discrete dipole approximation and holographic microscopy to measure rotational dynamics of non-spherical colloidal particles,” J. Quant. Spectr. Rad. Transf. 146, 499–509 (2014).
[Crossref]

A. Yevick, M. Hannel, and D. G. Grier, “Machine-learning approach to holographic particle characterization,” Opt. Express 22, 26884–26890 (2014).
[Crossref] [PubMed]

2013 (2)

J. Fung and V. N. Manoharan, “Holographic measurements of anisotropic three-dimensional diffusion of colloidal clusters,” Phys. Rev. E 88, 020302 (2013).
[Crossref]

C. Hollitt, “A convolution approach to the circle Hough transform for arbitrary radius,” Mach. Vis. Appl. 24, 683–694 (2013).
[Crossref]

2012 (5)

X. Michalet and A. J. Berglund, “Optimal diffusion coefficient estimation in single-particle tracking,” Phys. Rev. E 85, 061916 (2012).
[Crossref]

R. Parthasarathy, “Rapid, accurate particle tracking by calculation of radial symmetry centers,” Nature Methods 9, 724–726 (2012).
[Crossref] [PubMed]

R. W. Perry, G. N. Meng, T. G. Dimiduk, J. Fung, and V. N. Manoharan, “Real-space studies of the structure and dynamics of self-assembled colloidal clusters,” Faraday Discuss. 159, 211–234 (2012).
[Crossref]

J. Fung, R. W. Perry, T. G. Dimiduk, and V. N. Manoharan, “Imaging multiple colloidal particles by fitting electromagnetic scattering solutions to digital holograms,” J. Quant. Spectr. Rad. Transf. 113, 2482–2489 (2012).
[Crossref]

H. Shpaisman, B. J. Krishnatreya, and D. G. Grier, “Holographic microrefractometer,” Appl. Phys. Lett. 101, 091102 (2012).
[Crossref]

2011 (1)

F. C. Cheong, K. Xiao, D. J. Pine, and D. G. Grier, “Holographic characterization of individual colloidal spheres’ porosities,” Soft Matter 7, 6816–6819 (2011).
[Crossref]

2010 (2)

F. C. Cheong and D. G. Grier, “Rotational and translational diffusion of copper oxide nanorods measured with holographic video microscopy,” Opt. Express 18, 6555–6562 (2010).
[Crossref] [PubMed]

F. C. Cheong, B. J. Krishnatreya, and D. G. Grier, “Strategies for three-dimensional particle tracking with holographic video microscopy,” Opt. Express 18, 13,563–13,573 (2010).
[Crossref]

2009 (2)

F. C. Cheong, B. Sun, R. Dreyfus, J. Amato-Grill, K. Xiao, L. Dixon, and D. G. Grier, “Flow visualization and flow cytometry with holographic video microscopy,” Opt. Express 17, 13071–13079 (2009).
[Crossref] [PubMed]

F. C. Cheong, K. Xiao, and D. G. Grier, “Characterization of individual milk fat globules with holographic video microscopy,” J. Dairy Sci. 92, 95–99 (2009).
[Crossref]

2008 (1)

F. C. Cheong, S. Duarte, S.-H. Lee, and D. G. Grier, “Holographic microrheology of polysaccharides from Streptococcus mutans biofilms,” Rheol. Acta 48, 109–115 (2008).
[Crossref]

2007 (1)

2006 (1)

2003 (1)

D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003).
[Crossref] [PubMed]

1996 (1)

J. C. Crocker and D. G. Grier, “Methods of digital video microscopy for colloidal studies,” J. Colloid InterfaceSci. 179, 298–310 (1996).
[Crossref]

Amato-Grill, J.

Anguelov, D.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2015), pp. 1–9.

Bell, B. A.

B. J. Krishnatreya, A. Colen-Landy, P. Hasebe, B. A. Bell, J. R. Jones, A. Sunda-Meya, and D. G. Grier, “Measuring Boltzmann’s constant through holographic video microscopy of a single sphere,” Am. J. Phys. 82, 23–31 (2014).
[Crossref]

Berglund, A. J.

X. Michalet and A. J. Berglund, “Optimal diffusion coefficient estimation in single-particle tracking,” Phys. Rev. E 85, 061916 (2012).
[Crossref]

Blusewicz, J. M.

L. A. Philips, D. B. Ruffner, F. C. Cheong, J. M. Blusewicz, P. Kasimbeg, B. Waisi, J. McCutcheon, and D. G. Grier, “Holographic characterization of contaminants in water: Differentiation of suspended particles in heterogeneous dispersions,” Water Res. 122, 431–439 (2017).
[Crossref] [PubMed]

F. C. Cheong, P. Kasimbeg, D. B. Ruffner, E. H. Hlaing, J. M. Blusewicz, L. A. Philips, and D. G. Grier, “Holographic characterization of colloidal particles in turbid media,” Appl. Phys. Lett. 111, 153702 (2017).
[Crossref]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley Interscience, 1983).

Chapin, S. C.

Chaudhary, K.

A. Wang, T. G. Dimiduk, J. Fung, S. Razavi, I. Kretzschmar, K. Chaudhary, and V. N. Manoharan, “Using the discrete dipole approximation and holographic microscopy to measure rotational dynamics of non-spherical colloidal particles,” J. Quant. Spectr. Rad. Transf. 146, 499–509 (2014).
[Crossref]

Cheong, F. C.

F. C. Cheong, P. Kasimbeg, D. B. Ruffner, E. H. Hlaing, J. M. Blusewicz, L. A. Philips, and D. G. Grier, “Holographic characterization of colloidal particles in turbid media,” Appl. Phys. Lett. 111, 153702 (2017).
[Crossref]

L. A. Philips, D. B. Ruffner, F. C. Cheong, J. M. Blusewicz, P. Kasimbeg, B. Waisi, J. McCutcheon, and D. G. Grier, “Holographic characterization of contaminants in water: Differentiation of suspended particles in heterogeneous dispersions,” Water Res. 122, 431–439 (2017).
[Crossref] [PubMed]

C. Wang, F. C. Cheong, D. B. Ruffner, X. Zhong, M. D. Ward, and D. G. Grier, “Holographic characterization of colloidal fractal aggregates,” Soft Matter 12, 8774–8780 (2016).
[Crossref] [PubMed]

F. C. Cheong, K. Xiao, D. J. Pine, and D. G. Grier, “Holographic characterization of individual colloidal spheres’ porosities,” Soft Matter 7, 6816–6819 (2011).
[Crossref]

F. C. Cheong and D. G. Grier, “Rotational and translational diffusion of copper oxide nanorods measured with holographic video microscopy,” Opt. Express 18, 6555–6562 (2010).
[Crossref] [PubMed]

F. C. Cheong, B. J. Krishnatreya, and D. G. Grier, “Strategies for three-dimensional particle tracking with holographic video microscopy,” Opt. Express 18, 13,563–13,573 (2010).
[Crossref]

F. C. Cheong, B. Sun, R. Dreyfus, J. Amato-Grill, K. Xiao, L. Dixon, and D. G. Grier, “Flow visualization and flow cytometry with holographic video microscopy,” Opt. Express 17, 13071–13079 (2009).
[Crossref] [PubMed]

F. C. Cheong, K. Xiao, and D. G. Grier, “Characterization of individual milk fat globules with holographic video microscopy,” J. Dairy Sci. 92, 95–99 (2009).
[Crossref]

F. C. Cheong, S. Duarte, S.-H. Lee, and D. G. Grier, “Holographic microrheology of polysaccharides from Streptococcus mutans biofilms,” Rheol. Acta 48, 109–115 (2008).
[Crossref]

Colen-Landy, A.

B. J. Krishnatreya, A. Colen-Landy, P. Hasebe, B. A. Bell, J. R. Jones, A. Sunda-Meya, and D. G. Grier, “Measuring Boltzmann’s constant through holographic video microscopy of a single sphere,” Am. J. Phys. 82, 23–31 (2014).
[Crossref]

Crocker, J. C.

J. C. Crocker and D. G. Grier, “Methods of digital video microscopy for colloidal studies,” J. Colloid InterfaceSci. 179, 298–310 (1996).
[Crossref]

Dimiduk, T. G.

A. Wang, T. G. Dimiduk, J. Fung, S. Razavi, I. Kretzschmar, K. Chaudhary, and V. N. Manoharan, “Using the discrete dipole approximation and holographic microscopy to measure rotational dynamics of non-spherical colloidal particles,” J. Quant. Spectr. Rad. Transf. 146, 499–509 (2014).
[Crossref]

J. Fung, R. W. Perry, T. G. Dimiduk, and V. N. Manoharan, “Imaging multiple colloidal particles by fitting electromagnetic scattering solutions to digital holograms,” J. Quant. Spectr. Rad. Transf. 113, 2482–2489 (2012).
[Crossref]

R. W. Perry, G. N. Meng, T. G. Dimiduk, J. Fung, and V. N. Manoharan, “Real-space studies of the structure and dynamics of self-assembled colloidal clusters,” Faraday Discuss. 159, 211–234 (2012).
[Crossref]

Dixon, L.

Dreyfus, R.

Duarte, S.

F. C. Cheong, S. Duarte, S.-H. Lee, and D. G. Grier, “Holographic microrheology of polysaccharides from Streptococcus mutans biofilms,” Rheol. Acta 48, 109–115 (2008).
[Crossref]

Dufresne, E. R.

Erhan, D.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2015), pp. 1–9.

Fung, J.

A. Wang, T. G. Dimiduk, J. Fung, S. Razavi, I. Kretzschmar, K. Chaudhary, and V. N. Manoharan, “Using the discrete dipole approximation and holographic microscopy to measure rotational dynamics of non-spherical colloidal particles,” J. Quant. Spectr. Rad. Transf. 146, 499–509 (2014).
[Crossref]

J. Fung and V. N. Manoharan, “Holographic measurements of anisotropic three-dimensional diffusion of colloidal clusters,” Phys. Rev. E 88, 020302 (2013).
[Crossref]

R. W. Perry, G. N. Meng, T. G. Dimiduk, J. Fung, and V. N. Manoharan, “Real-space studies of the structure and dynamics of self-assembled colloidal clusters,” Faraday Discuss. 159, 211–234 (2012).
[Crossref]

J. Fung, R. W. Perry, T. G. Dimiduk, and V. N. Manoharan, “Imaging multiple colloidal particles by fitting electromagnetic scattering solutions to digital holograms,” J. Quant. Spectr. Rad. Transf. 113, 2482–2489 (2012).
[Crossref]

Germain, V.

Grier, D. G.

L. A. Philips, D. B. Ruffner, F. C. Cheong, J. M. Blusewicz, P. Kasimbeg, B. Waisi, J. McCutcheon, and D. G. Grier, “Holographic characterization of contaminants in water: Differentiation of suspended particles in heterogeneous dispersions,” Water Res. 122, 431–439 (2017).
[Crossref] [PubMed]

F. C. Cheong, P. Kasimbeg, D. B. Ruffner, E. H. Hlaing, J. M. Blusewicz, L. A. Philips, and D. G. Grier, “Holographic characterization of colloidal particles in turbid media,” Appl. Phys. Lett. 111, 153702 (2017).
[Crossref]

C. Wang, F. C. Cheong, D. B. Ruffner, X. Zhong, M. D. Ward, and D. G. Grier, “Holographic characterization of colloidal fractal aggregates,” Soft Matter 12, 8774–8780 (2016).
[Crossref] [PubMed]

C. Wang, X. Zhong, D. B. Ruffner, A. Stutt, L. A. Philips, M. D. Ward, and D. G. Grier, “Holographic characterization of protein aggregates,” J. Pharm. Sci. 105, 1074–1085 (2016).
[Crossref] [PubMed]

C. Wang, H. Shpaisman, A. D. Hollingsworth, and D. G. Grier, “Celebrating Soft Matter’s 10th Anniversary: Monitoring colloidal growth with holographic microscopy,” Soft Matter 11, 1062–1066 (2015).
[Crossref]

M. Hannel, C. Middleton, and D. G. Grier, “Holographic characterization of imperfect colloidal spheres,” Appl. Phys. Lett. 107, 141905 (2015).
[Crossref]

C. Wang, H. W. Moyses, and D. G. Grier, “Stimulus-responsive colloidal sensors with fast holographic readout,” Appl. Phys. Lett. 107, 051903 (2015).
[Crossref]

B. J. Krishnatreya and D. G. Grier, “Fast feature identification for holographic tracking: The orientation alignment transform,” Opt. Express 22, 12773–12778 (2014).
[Crossref] [PubMed]

A. Yevick, M. Hannel, and D. G. Grier, “Machine-learning approach to holographic particle characterization,” Opt. Express 22, 26884–26890 (2014).
[Crossref] [PubMed]

B. J. Krishnatreya, A. Colen-Landy, P. Hasebe, B. A. Bell, J. R. Jones, A. Sunda-Meya, and D. G. Grier, “Measuring Boltzmann’s constant through holographic video microscopy of a single sphere,” Am. J. Phys. 82, 23–31 (2014).
[Crossref]

H. Shpaisman, B. J. Krishnatreya, and D. G. Grier, “Holographic microrefractometer,” Appl. Phys. Lett. 101, 091102 (2012).
[Crossref]

F. C. Cheong, K. Xiao, D. J. Pine, and D. G. Grier, “Holographic characterization of individual colloidal spheres’ porosities,” Soft Matter 7, 6816–6819 (2011).
[Crossref]

F. C. Cheong, B. J. Krishnatreya, and D. G. Grier, “Strategies for three-dimensional particle tracking with holographic video microscopy,” Opt. Express 18, 13,563–13,573 (2010).
[Crossref]

F. C. Cheong and D. G. Grier, “Rotational and translational diffusion of copper oxide nanorods measured with holographic video microscopy,” Opt. Express 18, 6555–6562 (2010).
[Crossref] [PubMed]

F. C. Cheong, B. Sun, R. Dreyfus, J. Amato-Grill, K. Xiao, L. Dixon, and D. G. Grier, “Flow visualization and flow cytometry with holographic video microscopy,” Opt. Express 17, 13071–13079 (2009).
[Crossref] [PubMed]

F. C. Cheong, K. Xiao, and D. G. Grier, “Characterization of individual milk fat globules with holographic video microscopy,” J. Dairy Sci. 92, 95–99 (2009).
[Crossref]

F. C. Cheong, S. Duarte, S.-H. Lee, and D. G. Grier, “Holographic microrheology of polysaccharides from Streptococcus mutans biofilms,” Rheol. Acta 48, 109–115 (2008).
[Crossref]

S.-H. Lee, Y. Roichman, G.-R. Yi, S.-H. Kim, S.-M. Yang, A. van Blaaderen, P. van Oostrum, and D. G. Grier, “Characterizing and tracking single colloidal particles with video holographic microscopy,” Opt. Express 15, 18275–18282 (2007).
[Crossref] [PubMed]

D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003).
[Crossref] [PubMed]

J. C. Crocker and D. G. Grier, “Methods of digital video microscopy for colloidal studies,” J. Colloid InterfaceSci. 179, 298–310 (1996).
[Crossref]

Hannel, M.

M. Hannel, C. Middleton, and D. G. Grier, “Holographic characterization of imperfect colloidal spheres,” Appl. Phys. Lett. 107, 141905 (2015).
[Crossref]

A. Yevick, M. Hannel, and D. G. Grier, “Machine-learning approach to holographic particle characterization,” Opt. Express 22, 26884–26890 (2014).
[Crossref] [PubMed]

Hasebe, P.

B. J. Krishnatreya, A. Colen-Landy, P. Hasebe, B. A. Bell, J. R. Jones, A. Sunda-Meya, and D. G. Grier, “Measuring Boltzmann’s constant through holographic video microscopy of a single sphere,” Am. J. Phys. 82, 23–31 (2014).
[Crossref]

Hlaing, E. H.

F. C. Cheong, P. Kasimbeg, D. B. Ruffner, E. H. Hlaing, J. M. Blusewicz, L. A. Philips, and D. G. Grier, “Holographic characterization of colloidal particles in turbid media,” Appl. Phys. Lett. 111, 153702 (2017).
[Crossref]

Hollingsworth, A. D.

C. Wang, H. Shpaisman, A. D. Hollingsworth, and D. G. Grier, “Celebrating Soft Matter’s 10th Anniversary: Monitoring colloidal growth with holographic microscopy,” Soft Matter 11, 1062–1066 (2015).
[Crossref]

Hollitt, C.

C. Hollitt, “A convolution approach to the circle Hough transform for arbitrary radius,” Mach. Vis. Appl. 24, 683–694 (2013).
[Crossref]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley Interscience, 1983).

Jia, Y.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2015), pp. 1–9.

Jones, J. R.

B. J. Krishnatreya, A. Colen-Landy, P. Hasebe, B. A. Bell, J. R. Jones, A. Sunda-Meya, and D. G. Grier, “Measuring Boltzmann’s constant through holographic video microscopy of a single sphere,” Am. J. Phys. 82, 23–31 (2014).
[Crossref]

Jones, M.

P. Viola and M. Jones, “Rapid object detection using a boosted cascade of simple features,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2001), pp. 511–518.

Kasimbeg, P.

F. C. Cheong, P. Kasimbeg, D. B. Ruffner, E. H. Hlaing, J. M. Blusewicz, L. A. Philips, and D. G. Grier, “Holographic characterization of colloidal particles in turbid media,” Appl. Phys. Lett. 111, 153702 (2017).
[Crossref]

L. A. Philips, D. B. Ruffner, F. C. Cheong, J. M. Blusewicz, P. Kasimbeg, B. Waisi, J. McCutcheon, and D. G. Grier, “Holographic characterization of contaminants in water: Differentiation of suspended particles in heterogeneous dispersions,” Water Res. 122, 431–439 (2017).
[Crossref] [PubMed]

Kim, S.-H.

Kretzschmar, I.

A. Wang, T. G. Dimiduk, J. Fung, S. Razavi, I. Kretzschmar, K. Chaudhary, and V. N. Manoharan, “Using the discrete dipole approximation and holographic microscopy to measure rotational dynamics of non-spherical colloidal particles,” J. Quant. Spectr. Rad. Transf. 146, 499–509 (2014).
[Crossref]

Krishnatreya, B. J.

B. J. Krishnatreya and D. G. Grier, “Fast feature identification for holographic tracking: The orientation alignment transform,” Opt. Express 22, 12773–12778 (2014).
[Crossref] [PubMed]

B. J. Krishnatreya, A. Colen-Landy, P. Hasebe, B. A. Bell, J. R. Jones, A. Sunda-Meya, and D. G. Grier, “Measuring Boltzmann’s constant through holographic video microscopy of a single sphere,” Am. J. Phys. 82, 23–31 (2014).
[Crossref]

H. Shpaisman, B. J. Krishnatreya, and D. G. Grier, “Holographic microrefractometer,” Appl. Phys. Lett. 101, 091102 (2012).
[Crossref]

F. C. Cheong, B. J. Krishnatreya, and D. G. Grier, “Strategies for three-dimensional particle tracking with holographic video microscopy,” Opt. Express 18, 13,563–13,573 (2010).
[Crossref]

Lacis, A. A.

M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption and Emission of Light by Small Particles (Cambridge University, 2001).

Lee, S.-H.

Lienhart, R.

R. Lienhart and J. Maydt, “An extended set of Haar-like features for rapid object detection,” in IEEE Conference on Image Processing (IEEE, 2002), pp. 900–903.
[Crossref]

Liu, W.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2015), pp. 1–9.

Manoharan, V. N.

A. Wang, T. G. Dimiduk, J. Fung, S. Razavi, I. Kretzschmar, K. Chaudhary, and V. N. Manoharan, “Using the discrete dipole approximation and holographic microscopy to measure rotational dynamics of non-spherical colloidal particles,” J. Quant. Spectr. Rad. Transf. 146, 499–509 (2014).
[Crossref]

J. Fung and V. N. Manoharan, “Holographic measurements of anisotropic three-dimensional diffusion of colloidal clusters,” Phys. Rev. E 88, 020302 (2013).
[Crossref]

R. W. Perry, G. N. Meng, T. G. Dimiduk, J. Fung, and V. N. Manoharan, “Real-space studies of the structure and dynamics of self-assembled colloidal clusters,” Faraday Discuss. 159, 211–234 (2012).
[Crossref]

J. Fung, R. W. Perry, T. G. Dimiduk, and V. N. Manoharan, “Imaging multiple colloidal particles by fitting electromagnetic scattering solutions to digital holograms,” J. Quant. Spectr. Rad. Transf. 113, 2482–2489 (2012).
[Crossref]

Maydt, J.

R. Lienhart and J. Maydt, “An extended set of Haar-like features for rapid object detection,” in IEEE Conference on Image Processing (IEEE, 2002), pp. 900–903.
[Crossref]

McCutcheon, J.

L. A. Philips, D. B. Ruffner, F. C. Cheong, J. M. Blusewicz, P. Kasimbeg, B. Waisi, J. McCutcheon, and D. G. Grier, “Holographic characterization of contaminants in water: Differentiation of suspended particles in heterogeneous dispersions,” Water Res. 122, 431–439 (2017).
[Crossref] [PubMed]

Meng, G. N.

R. W. Perry, G. N. Meng, T. G. Dimiduk, J. Fung, and V. N. Manoharan, “Real-space studies of the structure and dynamics of self-assembled colloidal clusters,” Faraday Discuss. 159, 211–234 (2012).
[Crossref]

Michalet, X.

X. Michalet and A. J. Berglund, “Optimal diffusion coefficient estimation in single-particle tracking,” Phys. Rev. E 85, 061916 (2012).
[Crossref]

Middleton, C.

M. Hannel, C. Middleton, and D. G. Grier, “Holographic characterization of imperfect colloidal spheres,” Appl. Phys. Lett. 107, 141905 (2015).
[Crossref]

Mishchenko, M. I.

M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption and Emission of Light by Small Particles (Cambridge University, 2001).

Moyses, H. W.

C. Wang, H. W. Moyses, and D. G. Grier, “Stimulus-responsive colloidal sensors with fast holographic readout,” Appl. Phys. Lett. 107, 051903 (2015).
[Crossref]

Neubeck, A.

A. Neubeck and L. Van Gool, “Efficient non-maximum suppression,” in 18th International Conference on Pattern Recognition (ICPR’06), vol. 3, pp. 850–855 (2006).
[Crossref]

Parthasarathy, R.

R. Parthasarathy, “Rapid, accurate particle tracking by calculation of radial symmetry centers,” Nature Methods 9, 724–726 (2012).
[Crossref] [PubMed]

Perry, R. W.

R. W. Perry, G. N. Meng, T. G. Dimiduk, J. Fung, and V. N. Manoharan, “Real-space studies of the structure and dynamics of self-assembled colloidal clusters,” Faraday Discuss. 159, 211–234 (2012).
[Crossref]

J. Fung, R. W. Perry, T. G. Dimiduk, and V. N. Manoharan, “Imaging multiple colloidal particles by fitting electromagnetic scattering solutions to digital holograms,” J. Quant. Spectr. Rad. Transf. 113, 2482–2489 (2012).
[Crossref]

Philips, L. A.

L. A. Philips, D. B. Ruffner, F. C. Cheong, J. M. Blusewicz, P. Kasimbeg, B. Waisi, J. McCutcheon, and D. G. Grier, “Holographic characterization of contaminants in water: Differentiation of suspended particles in heterogeneous dispersions,” Water Res. 122, 431–439 (2017).
[Crossref] [PubMed]

F. C. Cheong, P. Kasimbeg, D. B. Ruffner, E. H. Hlaing, J. M. Blusewicz, L. A. Philips, and D. G. Grier, “Holographic characterization of colloidal particles in turbid media,” Appl. Phys. Lett. 111, 153702 (2017).
[Crossref]

C. Wang, X. Zhong, D. B. Ruffner, A. Stutt, L. A. Philips, M. D. Ward, and D. G. Grier, “Holographic characterization of protein aggregates,” J. Pharm. Sci. 105, 1074–1085 (2016).
[Crossref] [PubMed]

Pine, D. J.

F. C. Cheong, K. Xiao, D. J. Pine, and D. G. Grier, “Holographic characterization of individual colloidal spheres’ porosities,” Soft Matter 7, 6816–6819 (2011).
[Crossref]

Rabinovich, A.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2015), pp. 1–9.

Razavi, S.

A. Wang, T. G. Dimiduk, J. Fung, S. Razavi, I. Kretzschmar, K. Chaudhary, and V. N. Manoharan, “Using the discrete dipole approximation and holographic microscopy to measure rotational dynamics of non-spherical colloidal particles,” J. Quant. Spectr. Rad. Transf. 146, 499–509 (2014).
[Crossref]

Reed, S.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2015), pp. 1–9.

Roichman, Y.

Ruffner, D. B.

L. A. Philips, D. B. Ruffner, F. C. Cheong, J. M. Blusewicz, P. Kasimbeg, B. Waisi, J. McCutcheon, and D. G. Grier, “Holographic characterization of contaminants in water: Differentiation of suspended particles in heterogeneous dispersions,” Water Res. 122, 431–439 (2017).
[Crossref] [PubMed]

F. C. Cheong, P. Kasimbeg, D. B. Ruffner, E. H. Hlaing, J. M. Blusewicz, L. A. Philips, and D. G. Grier, “Holographic characterization of colloidal particles in turbid media,” Appl. Phys. Lett. 111, 153702 (2017).
[Crossref]

C. Wang, F. C. Cheong, D. B. Ruffner, X. Zhong, M. D. Ward, and D. G. Grier, “Holographic characterization of colloidal fractal aggregates,” Soft Matter 12, 8774–8780 (2016).
[Crossref] [PubMed]

C. Wang, X. Zhong, D. B. Ruffner, A. Stutt, L. A. Philips, M. D. Ward, and D. G. Grier, “Holographic characterization of protein aggregates,” J. Pharm. Sci. 105, 1074–1085 (2016).
[Crossref] [PubMed]

Sermanet, P.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2015), pp. 1–9.

Shpaisman, H.

C. Wang, H. Shpaisman, A. D. Hollingsworth, and D. G. Grier, “Celebrating Soft Matter’s 10th Anniversary: Monitoring colloidal growth with holographic microscopy,” Soft Matter 11, 1062–1066 (2015).
[Crossref]

H. Shpaisman, B. J. Krishnatreya, and D. G. Grier, “Holographic microrefractometer,” Appl. Phys. Lett. 101, 091102 (2012).
[Crossref]

Stutt, A.

C. Wang, X. Zhong, D. B. Ruffner, A. Stutt, L. A. Philips, M. D. Ward, and D. G. Grier, “Holographic characterization of protein aggregates,” J. Pharm. Sci. 105, 1074–1085 (2016).
[Crossref] [PubMed]

Sun, B.

Sunda-Meya, A.

B. J. Krishnatreya, A. Colen-Landy, P. Hasebe, B. A. Bell, J. R. Jones, A. Sunda-Meya, and D. G. Grier, “Measuring Boltzmann’s constant through holographic video microscopy of a single sphere,” Am. J. Phys. 82, 23–31 (2014).
[Crossref]

Szegedy, C.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2015), pp. 1–9.

Travis, L. D.

M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption and Emission of Light by Small Particles (Cambridge University, 2001).

van Blaaderen, A.

Van Gool, L.

A. Neubeck and L. Van Gool, “Efficient non-maximum suppression,” in 18th International Conference on Pattern Recognition (ICPR’06), vol. 3, pp. 850–855 (2006).
[Crossref]

van Oostrum, P.

Vanhoucke, V.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2015), pp. 1–9.

Viola, P.

P. Viola and M. Jones, “Rapid object detection using a boosted cascade of simple features,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2001), pp. 511–518.

Waisi, B.

L. A. Philips, D. B. Ruffner, F. C. Cheong, J. M. Blusewicz, P. Kasimbeg, B. Waisi, J. McCutcheon, and D. G. Grier, “Holographic characterization of contaminants in water: Differentiation of suspended particles in heterogeneous dispersions,” Water Res. 122, 431–439 (2017).
[Crossref] [PubMed]

Wang, A.

A. Wang, T. G. Dimiduk, J. Fung, S. Razavi, I. Kretzschmar, K. Chaudhary, and V. N. Manoharan, “Using the discrete dipole approximation and holographic microscopy to measure rotational dynamics of non-spherical colloidal particles,” J. Quant. Spectr. Rad. Transf. 146, 499–509 (2014).
[Crossref]

Wang, C.

C. Wang, F. C. Cheong, D. B. Ruffner, X. Zhong, M. D. Ward, and D. G. Grier, “Holographic characterization of colloidal fractal aggregates,” Soft Matter 12, 8774–8780 (2016).
[Crossref] [PubMed]

C. Wang, X. Zhong, D. B. Ruffner, A. Stutt, L. A. Philips, M. D. Ward, and D. G. Grier, “Holographic characterization of protein aggregates,” J. Pharm. Sci. 105, 1074–1085 (2016).
[Crossref] [PubMed]

C. Wang, H. W. Moyses, and D. G. Grier, “Stimulus-responsive colloidal sensors with fast holographic readout,” Appl. Phys. Lett. 107, 051903 (2015).
[Crossref]

C. Wang, H. Shpaisman, A. D. Hollingsworth, and D. G. Grier, “Celebrating Soft Matter’s 10th Anniversary: Monitoring colloidal growth with holographic microscopy,” Soft Matter 11, 1062–1066 (2015).
[Crossref]

Ward, M. D.

C. Wang, X. Zhong, D. B. Ruffner, A. Stutt, L. A. Philips, M. D. Ward, and D. G. Grier, “Holographic characterization of protein aggregates,” J. Pharm. Sci. 105, 1074–1085 (2016).
[Crossref] [PubMed]

C. Wang, F. C. Cheong, D. B. Ruffner, X. Zhong, M. D. Ward, and D. G. Grier, “Holographic characterization of colloidal fractal aggregates,” Soft Matter 12, 8774–8780 (2016).
[Crossref] [PubMed]

Xiao, K.

F. C. Cheong, K. Xiao, D. J. Pine, and D. G. Grier, “Holographic characterization of individual colloidal spheres’ porosities,” Soft Matter 7, 6816–6819 (2011).
[Crossref]

F. C. Cheong, K. Xiao, and D. G. Grier, “Characterization of individual milk fat globules with holographic video microscopy,” J. Dairy Sci. 92, 95–99 (2009).
[Crossref]

F. C. Cheong, B. Sun, R. Dreyfus, J. Amato-Grill, K. Xiao, L. Dixon, and D. G. Grier, “Flow visualization and flow cytometry with holographic video microscopy,” Opt. Express 17, 13071–13079 (2009).
[Crossref] [PubMed]

Yang, S.-M.

Yevick, A.

Yi, G.-R.

Zhong, X.

C. Wang, F. C. Cheong, D. B. Ruffner, X. Zhong, M. D. Ward, and D. G. Grier, “Holographic characterization of colloidal fractal aggregates,” Soft Matter 12, 8774–8780 (2016).
[Crossref] [PubMed]

C. Wang, X. Zhong, D. B. Ruffner, A. Stutt, L. A. Philips, M. D. Ward, and D. G. Grier, “Holographic characterization of protein aggregates,” J. Pharm. Sci. 105, 1074–1085 (2016).
[Crossref] [PubMed]

Am. J. Phys. (1)

B. J. Krishnatreya, A. Colen-Landy, P. Hasebe, B. A. Bell, J. R. Jones, A. Sunda-Meya, and D. G. Grier, “Measuring Boltzmann’s constant through holographic video microscopy of a single sphere,” Am. J. Phys. 82, 23–31 (2014).
[Crossref]

Appl. Phys. Lett. (4)

H. Shpaisman, B. J. Krishnatreya, and D. G. Grier, “Holographic microrefractometer,” Appl. Phys. Lett. 101, 091102 (2012).
[Crossref]

M. Hannel, C. Middleton, and D. G. Grier, “Holographic characterization of imperfect colloidal spheres,” Appl. Phys. Lett. 107, 141905 (2015).
[Crossref]

F. C. Cheong, P. Kasimbeg, D. B. Ruffner, E. H. Hlaing, J. M. Blusewicz, L. A. Philips, and D. G. Grier, “Holographic characterization of colloidal particles in turbid media,” Appl. Phys. Lett. 111, 153702 (2017).
[Crossref]

C. Wang, H. W. Moyses, and D. G. Grier, “Stimulus-responsive colloidal sensors with fast holographic readout,” Appl. Phys. Lett. 107, 051903 (2015).
[Crossref]

Faraday Discuss. (1)

R. W. Perry, G. N. Meng, T. G. Dimiduk, J. Fung, and V. N. Manoharan, “Real-space studies of the structure and dynamics of self-assembled colloidal clusters,” Faraday Discuss. 159, 211–234 (2012).
[Crossref]

J. Colloid InterfaceSci. (1)

J. C. Crocker and D. G. Grier, “Methods of digital video microscopy for colloidal studies,” J. Colloid InterfaceSci. 179, 298–310 (1996).
[Crossref]

J. Dairy Sci. (1)

F. C. Cheong, K. Xiao, and D. G. Grier, “Characterization of individual milk fat globules with holographic video microscopy,” J. Dairy Sci. 92, 95–99 (2009).
[Crossref]

J. Pharm. Sci. (1)

C. Wang, X. Zhong, D. B. Ruffner, A. Stutt, L. A. Philips, M. D. Ward, and D. G. Grier, “Holographic characterization of protein aggregates,” J. Pharm. Sci. 105, 1074–1085 (2016).
[Crossref] [PubMed]

J. Quant. Spectr. Rad. Transf. (2)

A. Wang, T. G. Dimiduk, J. Fung, S. Razavi, I. Kretzschmar, K. Chaudhary, and V. N. Manoharan, “Using the discrete dipole approximation and holographic microscopy to measure rotational dynamics of non-spherical colloidal particles,” J. Quant. Spectr. Rad. Transf. 146, 499–509 (2014).
[Crossref]

J. Fung, R. W. Perry, T. G. Dimiduk, and V. N. Manoharan, “Imaging multiple colloidal particles by fitting electromagnetic scattering solutions to digital holograms,” J. Quant. Spectr. Rad. Transf. 113, 2482–2489 (2012).
[Crossref]

Mach. Vis. Appl. (1)

C. Hollitt, “A convolution approach to the circle Hough transform for arbitrary radius,” Mach. Vis. Appl. 24, 683–694 (2013).
[Crossref]

Nature (1)

D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003).
[Crossref] [PubMed]

Nature Methods (1)

R. Parthasarathy, “Rapid, accurate particle tracking by calculation of radial symmetry centers,” Nature Methods 9, 724–726 (2012).
[Crossref] [PubMed]

Opt. Express (7)

Phys. Rev. E (2)

J. Fung and V. N. Manoharan, “Holographic measurements of anisotropic three-dimensional diffusion of colloidal clusters,” Phys. Rev. E 88, 020302 (2013).
[Crossref]

X. Michalet and A. J. Berglund, “Optimal diffusion coefficient estimation in single-particle tracking,” Phys. Rev. E 85, 061916 (2012).
[Crossref]

Rheol. Acta (1)

F. C. Cheong, S. Duarte, S.-H. Lee, and D. G. Grier, “Holographic microrheology of polysaccharides from Streptococcus mutans biofilms,” Rheol. Acta 48, 109–115 (2008).
[Crossref]

Soft Matter (3)

C. Wang, H. Shpaisman, A. D. Hollingsworth, and D. G. Grier, “Celebrating Soft Matter’s 10th Anniversary: Monitoring colloidal growth with holographic microscopy,” Soft Matter 11, 1062–1066 (2015).
[Crossref]

C. Wang, F. C. Cheong, D. B. Ruffner, X. Zhong, M. D. Ward, and D. G. Grier, “Holographic characterization of colloidal fractal aggregates,” Soft Matter 12, 8774–8780 (2016).
[Crossref] [PubMed]

F. C. Cheong, K. Xiao, D. J. Pine, and D. G. Grier, “Holographic characterization of individual colloidal spheres’ porosities,” Soft Matter 7, 6816–6819 (2011).
[Crossref]

Water Res. (1)

L. A. Philips, D. B. Ruffner, F. C. Cheong, J. M. Blusewicz, P. Kasimbeg, B. Waisi, J. McCutcheon, and D. G. Grier, “Holographic characterization of contaminants in water: Differentiation of suspended particles in heterogeneous dispersions,” Water Res. 122, 431–439 (2017).
[Crossref] [PubMed]

Other (11)

D. Allan, T. Caswell, N. Keim, and C. van der Wel, “Trackpy v0.3.2,” http://doi.org/10.5281/zenodo.60550 (2016).

P. Viola and M. Jones, “Rapid object detection using a boosted cascade of simple features,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2001), pp. 511–518.

R. Lienhart and J. Maydt, “An extended set of Haar-like features for rapid object detection,” in IEEE Conference on Image Processing (IEEE, 2002), pp. 900–903.
[Crossref]

Itseez, “Open Source Computer Vision Library,” https://github.com/itseez/opencv (2015).

A. Neubeck and L. Van Gool, “Efficient non-maximum suppression,” in 18th International Conference on Pattern Recognition (ICPR’06), vol. 3, pp. 850–855 (2006).
[Crossref]

P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun, “Overfeat: Integrated recognition, localization and detection using convolutional networks,” https://arxiv.org/abs/1312.6229 .

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems,” https://www.tensorflow.org/ (2015).

R. Stewart and M. Andriluka, “End-to-end people detection in crowded scenes,” https://arxiv.org/abs/1506.04878 .

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2015), pp. 1–9.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley Interscience, 1983).

M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption and Emission of Light by Small Particles (Cambridge University, 2001).

Supplementary Material (2)

NameDescription
» Visualization 1       Automatic trapping of freely diffusing colloidal spheres
» Visualization 1       Automatic trapping of freely diffusing colloidal spheres

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Overview of holographic particle characterization. (a) Plane-wave illumination is scattered by colloidal particles (red spheres). The field scattered by a particle at rp interferes with the plane wave to produce a hologram in the focal plane of a microscope. (b) Features in a digitally recorded hologram are detected with a machine-learning algorithm before being analyzed with light-scattering theory to estimate the particles’ physical properties.
Fig. 2
Fig. 2 Each localization technique provided estimates for the trajectory of a simulated brownian particle. (a) Probability distribution functions for the localization error achieved by (top) heuristic algorithm, (middle) convolutional neural network, and (bottom) cascade classifier. Inset shows expanded view of the subpixel resolution. Vertical dashed line indicates single-pixel precision. (b) Mean-square displacement computed from trajectories obtained with the three detection algorithms. Short-time asymptotes yield dynamical estimates for the localization error. Open circles represent experimental data, as explained in Sec. 4.4.
Fig. 3
Fig. 3 Localization errors as a function of particle radius and refractive index at a height of zp = 13.5 μm above the focal plane. (a) Cascade classifier. (b) Convolutional neural network. (c) Rate of false positive detections for the cascade classifier. (d) Hologram of a 500 nm-diameter silica sphere that was overlooked by the cascade classifier. This particle was localized to within one pixel by the CNN. (e) Hologram of a 2.4 μm-diameter polystyrene sphere (upper left) interfering with the hologram of a 4.0 μm-diameter TPM sphere located 15 μm above it. Blue dots show feature locations proposed by the heuristic algorithm; Red boxes enclose features detected by the CNN; Dashed black boxes are proposed by the cascade classifier. (f) Hologram of four particles overlaid with regions of interest identified by the CNN. One occluded feature was overlooked by the CNN.
Fig. 4
Fig. 4 (a) Cascade classifier tracking 2 μm-diameter colloidal spheres diffusing through water in a holographic optical trapping system. Each trace shows 5 seconds of the associated particle’s motion. The associated video ( Visualization 1) shows the tracking data being used to alternately trap and release the particles. (b) CNN detection of holographic features. The high-contrast feature is created by a 1.5 μm diameter silica sphere. The low-contrast feature represents a coliform bacterium in the dispersion.

Tables (1)

Tables Icon

Table 1 Analysis times in ms/frame for the heuristic algorithm, the convolutional neural network (CNN) implemented on CPU and GPU, and the cascade classifier implemented on a workstation and on a Raspberry Pi 3 single-board computer.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E 0 ( r , t ) = u 0 e i k z e i ω t x ^ ,
E s ( r , t ) = u 0 e i k z p f s ( k [ r r p ] ) e i ω t ,
E ( r , t ) = E 0 ( r , t ) + E s ( r , t ) .
b ( r ) = | x ^ + e i k z p f s ( k [ r r p ] ) | 2 .

Metrics