Abstract

Residual IQ skew in a coherent transmitter severely degrades the performance of long-haul coherent optical communication systems. The impairment is particularly detrimental for a high baud-rate system using quadrature amplitude modulation (QAM). Furthermore, Nyquist pulse shaping increases the spectral efficiency for WDM systems. However, sharp roll-off of Nyquist pulse shaping further reduces the tolerance to residual IQ skew. Thus, certain trade-offs between spectral efficiency and roll-off factor should be made to improve the tolerance of residual IQ skew. We experimentally studied this trade-off and determined the optimal roll-off factor, channel spacing, receiver bandwidth, and equalizer length. The results serve as a guideline for high baud-rate coherent WDM systems.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Blind Transmitter IQ Imbalance Compensation in M-QAM Optical Coherent Systems

Trung-Hien Nguyen, Pascal Scalart, Mathilde Gay, Laurent Bramerie, Olivier Sentieys, Jean-Claude Simon, Christophe Peucheret, and Michel Joindot
J. Opt. Commun. Netw. 9(9) D42-D50 (2017)

A nonlinearity-tolerant frequency domain root M-shaped pulse for coherent optical communication systems

Xian Xu, Qunbi Zhuge, Benoît Châtelain, Mohamed Morsy-Osman, Mathieu Chagnon, Meng Qiu, and David V. Plant
Opt. Express 21(26) 31966-31982 (2013)

Offset-QAM based coherent WDM for spectral efficiency enhancement

J. Zhao and A. D. Ellis
Opt. Express 19(15) 14617-14631 (2011)

References

  • View by:
  • |
  • |
  • |

  1. K. Roberts, S. Foo, M. Moyer, M. Hubbard, A. Sinclair, J. Gaudette, and C. Laperle, “High Capacity Transport 100G and Beyond,” J. Lightwave Technol. 33(3), 563–578 (2015).
    [Crossref]
  2. J. Wei, Q. Cheng, R. Penty, I. White, and D. Cunningham, “400 Gigabit Ethernet using advanced modulation formats: performance, complexity, and power dissipation,” IEEE Commun. Mag. 53(2), 182–189 (2015).
    [Crossref]
  3. X. Chen, S. Chandrasekhar, S. Randel, G. Raybon, A. Adamiecki, P. Pupalaikis, and P. J. Winzer, “All-Electronic 100-GHz Bandwidth Digital-to-Analog Converter Generating PAM Signals up to 190 GBaud,” J. Lightwave Technol. 35(3), 411–417 (2017).
    [Crossref]
  4. J. Cai, H. G. Batshon, M. Mazurczyk, H. Zhang, Y. Sun, O. V. Sinkin, D. Foursa, and A. N. Pilipetskii, “64QAM Based Coded Modulation Transmission over Transoceanic Distance with > 60 Tb/s Capacity,” in Optical Fiber Communication Conference Post Deadline Papers, OSA Technical Digest (online) (Optical Society of America, 2015), paper Th5C.8.
  5. W. Peng, T. Tsuritani, and I. Morita, “Transmission of High-Baud PDM-64QAM Signals,” J. Lightwave Technol. 31(13), 2146–2162 (2013).
    [Crossref]
  6. M. Faruk and S. Savory, “Digital Signal Processing for Coherent Transceivers Employing Multilevel Formats,” J. Lightwave Technol. 35(5), 1125–1141 (2017).
    [Crossref]
  7. Y. Yue, B. Zhang, Q. Wang, R. Lofland, J. O’Neil, and J. Anderson, “Detection and alignment of dual-polarization optical quadrature amplitude transmitter IQ and XY skews using reconfigurable interference,” Opt. Express 24(6), 6719–6734 (2016).
    [Crossref] [PubMed]
  8. C. M. Diniz, F. D. Ros, R. T. Jones, and D. Zibar, “Time Skew Estimator for Dual-Polarization QAM Transmitters,” in European Conference on Optical Communication (2017), paper P1.SC3.41.
    [Crossref]
  9. H. Chen, X. Su, Z. Tao, T. Oyama, H. Nakashima, T. Hoshida, and K. Kato, “An Accurate and Robust In-phase/Quadrature Skew Measurement for Coherent Optical Transmitter by Image Spectrum Analyzing,” in European Conference on Optical Communication (2017), paper P1.SC3.35.
    [Crossref]
  10. T. Tanimura, S. Oda, T. Tanaka, T. Hoshida, Z. Tao, and J. Rasmussen, “A simple digital skew compensator for coherent receiver,” in European Conference on Optical Communication (2009), p. 7.3.2.
  11. J. Diniz, F. Da Ros, E. Da Silva, R. Jones, and D. Zibar, “Optimization of DP-MQAM Transmitter Using Cooperative Coevolutionary Genetic Algorithm,” J. Lightwave Technol. 36(12), 2450–2462 (2018).
    [Crossref]
  12. Y. Yue, Q. Wang, B. Zhang, A. Vovan, and J. Anderson, “Detection and compensation of power imbalances for DP-QAM transmitter using reconfigurable interference,” Proc. SPIE 10130, 101300M (2017).
  13. Optical Internetworking Forum, “Implementation Agreement for Integrated Polarization Multiplexed Quadrature Modulated Transmitters for Metro Applications,” www.oiforum.com/wp-content/uploads/OIF-PMQ-MTX-01.0-IA_final.pdf
  14. Optical Internetworking Forum, “Implementation Agreement for Micro Intradyne Coherent Receivers,” https://www.oiforum.com/wp-content/uploads/OIF-DPC-MRX-02.0.pdf
  15. M. Paskov, D. Lavery, and S. Savory, “Blind Equalization of Receiver In-Phase/Quadrature Skew in the Presence of Nyquist Filtering,” IEEE Photonics Technol. Lett. 25(24), 2446–2449 (2013).
    [Crossref]
  16. R. Rios-Müller, J. Renaudier, and G. Charlet, “Blind Receiver Skew Compensation and Estimation for Long-Haul Non-Dispersion Managed Systems Using Adaptive Equalizer,” J. Lightwave Technol. 33(7), 1315–1318 (2015).
    [Crossref]
  17. J. Diniz, E. da Silva, M. Piels, and D. Zibar, “Joint IQ skew and chromatic dispersion estimation for coherent optical communication receivers,” in Advanced Photonics 2016 (IPR, NOMA, Sensors, Networks, SPPCom, SOF), OSA Technical Digest (online) (Optical Society of America,2016), paper SpTu2F.2.
  18. N. Stojanovic and X. Changsong, “An Efficient Method for Skew Estimation and Compensation in Coherent Receivers,” IEEE Photonics Technol. Lett. 28(4), 489–492 (2016).
    [Crossref]
  19. E. da Silva and D. Zibar, “Widely Linear Equalization for IQ Imbalance and Skew Compensation in Optical Coherent Receivers,” J. Lightwave Technol. 34(15), 3577–3586 (2016).
    [Crossref]
  20. C. Fludger and T. Kupfer, “Transmitter Impairment Mitigation and Monitoring for High Baud-Rate, High Order Modulation Systems,” in European Conference on Optical Communication (2016), paper Tu.2.A.2.
  21. H. Chaouch and M. Filer, “Analog Coherent Optics for Long Haul Datacenter Regional Networks,” J. Lightwave Technol. 36(2), 372–376 (2018).
    [Crossref]
  22. J. Wang and Z. Pan, “Generate Nyquist-WDM Signal Using a DAC With Zero-Order Holding at the Symbol Rate,” J. Lightwave Technol. 32(24), 4085–4091 (2014).
  23. International Telecommunication Union (ITU-T) standard G.694.1, “Spectral grids for WDM applications: DWDM frequency grid.”
  24. D. Rafique and A. D. Ellis, “Nonlinear penalties in long-haul optical networks employing dynamic transponders,” Opt. Express 19(10), 9044–9049 (2011).
    [Crossref] [PubMed]
  25. B. Châtelain, C. Laperle, K. Roberts, M. Chagnon, X. Xu, A. Borowiec, F. Gagnon, and D. V. Plant, “A family of Nyquist pulses for coherent optical communications,” Opt. Express 20(8), 8397–8416 (2012).
    [Crossref] [PubMed]
  26. D. J. Elson, L. Galdino, R. Maher, R. I. Killey, B. C. Thomsen, and P. Bayvel, “High spectral density transmission emulation using amplified spontaneous emission noise,” Opt. Lett. 41(1), 68–71 (2016).
    [Crossref] [PubMed]
  27. D. J. Elson, G. Saavedra, K. Shi, D. Semrau, L. Galdino, R. Killey, B. C. Thomsen, and P. Bayvel, “Investigation of bandwidth loading in optical fibre transmission using amplified spontaneous emission noise,” Opt. Express 25(16), 19529–19537 (2017).
    [Crossref] [PubMed]
  28. D. Zibar, A. Bianciotto, Z. Wang, A. Napoli, and B. Spinnler, “Analysis and dimensioning of fully digital clock recovery for 112 gb/s coherent polmux QPSK systems,” in European Conference on Optical Communication (2009), p. 7.3.4.
  29. I. Fatadin, D. Ives, and S. Savory, “Blind Equalization and Carrier Phase Recovery in a 16-QAM Optical Coherent System,” J. Lightwave Technol. 27(15), 3042–3049 (2009).
    [Crossref]
  30. Optical Internetworking Forum, “Flex Coherent DWDM Transmission Framework Document,” http://www.oiforum.com/wp-content/uploads/OIF-FD-FLEXCOH-DWDM-01.0.pdf .

2018 (2)

2017 (4)

2016 (4)

2015 (3)

2014 (1)

2013 (2)

W. Peng, T. Tsuritani, and I. Morita, “Transmission of High-Baud PDM-64QAM Signals,” J. Lightwave Technol. 31(13), 2146–2162 (2013).
[Crossref]

M. Paskov, D. Lavery, and S. Savory, “Blind Equalization of Receiver In-Phase/Quadrature Skew in the Presence of Nyquist Filtering,” IEEE Photonics Technol. Lett. 25(24), 2446–2449 (2013).
[Crossref]

2012 (1)

2011 (1)

2009 (1)

Adamiecki, A.

Anderson, J.

Y. Yue, Q. Wang, B. Zhang, A. Vovan, and J. Anderson, “Detection and compensation of power imbalances for DP-QAM transmitter using reconfigurable interference,” Proc. SPIE 10130, 101300M (2017).

Y. Yue, B. Zhang, Q. Wang, R. Lofland, J. O’Neil, and J. Anderson, “Detection and alignment of dual-polarization optical quadrature amplitude transmitter IQ and XY skews using reconfigurable interference,” Opt. Express 24(6), 6719–6734 (2016).
[Crossref] [PubMed]

Bayvel, P.

Bianciotto, A.

D. Zibar, A. Bianciotto, Z. Wang, A. Napoli, and B. Spinnler, “Analysis and dimensioning of fully digital clock recovery for 112 gb/s coherent polmux QPSK systems,” in European Conference on Optical Communication (2009), p. 7.3.4.

Borowiec, A.

Chagnon, M.

Chandrasekhar, S.

Changsong, X.

N. Stojanovic and X. Changsong, “An Efficient Method for Skew Estimation and Compensation in Coherent Receivers,” IEEE Photonics Technol. Lett. 28(4), 489–492 (2016).
[Crossref]

Chaouch, H.

Charlet, G.

Châtelain, B.

Chen, X.

Cheng, Q.

J. Wei, Q. Cheng, R. Penty, I. White, and D. Cunningham, “400 Gigabit Ethernet using advanced modulation formats: performance, complexity, and power dissipation,” IEEE Commun. Mag. 53(2), 182–189 (2015).
[Crossref]

Cunningham, D.

J. Wei, Q. Cheng, R. Penty, I. White, and D. Cunningham, “400 Gigabit Ethernet using advanced modulation formats: performance, complexity, and power dissipation,” IEEE Commun. Mag. 53(2), 182–189 (2015).
[Crossref]

Da Ros, F.

Da Silva, E.

Diniz, J.

Ellis, A. D.

Elson, D. J.

Faruk, M.

Fatadin, I.

Filer, M.

Foo, S.

Gagnon, F.

Galdino, L.

Gaudette, J.

Hoshida, T.

T. Tanimura, S. Oda, T. Tanaka, T. Hoshida, Z. Tao, and J. Rasmussen, “A simple digital skew compensator for coherent receiver,” in European Conference on Optical Communication (2009), p. 7.3.2.

Hubbard, M.

Ives, D.

Jones, R.

Killey, R.

Killey, R. I.

Laperle, C.

Lavery, D.

M. Paskov, D. Lavery, and S. Savory, “Blind Equalization of Receiver In-Phase/Quadrature Skew in the Presence of Nyquist Filtering,” IEEE Photonics Technol. Lett. 25(24), 2446–2449 (2013).
[Crossref]

Lofland, R.

Maher, R.

Morita, I.

Moyer, M.

Napoli, A.

D. Zibar, A. Bianciotto, Z. Wang, A. Napoli, and B. Spinnler, “Analysis and dimensioning of fully digital clock recovery for 112 gb/s coherent polmux QPSK systems,” in European Conference on Optical Communication (2009), p. 7.3.4.

O’Neil, J.

Oda, S.

T. Tanimura, S. Oda, T. Tanaka, T. Hoshida, Z. Tao, and J. Rasmussen, “A simple digital skew compensator for coherent receiver,” in European Conference on Optical Communication (2009), p. 7.3.2.

Pan, Z.

Paskov, M.

M. Paskov, D. Lavery, and S. Savory, “Blind Equalization of Receiver In-Phase/Quadrature Skew in the Presence of Nyquist Filtering,” IEEE Photonics Technol. Lett. 25(24), 2446–2449 (2013).
[Crossref]

Peng, W.

Penty, R.

J. Wei, Q. Cheng, R. Penty, I. White, and D. Cunningham, “400 Gigabit Ethernet using advanced modulation formats: performance, complexity, and power dissipation,” IEEE Commun. Mag. 53(2), 182–189 (2015).
[Crossref]

Plant, D. V.

Pupalaikis, P.

Rafique, D.

Randel, S.

Rasmussen, J.

T. Tanimura, S. Oda, T. Tanaka, T. Hoshida, Z. Tao, and J. Rasmussen, “A simple digital skew compensator for coherent receiver,” in European Conference on Optical Communication (2009), p. 7.3.2.

Raybon, G.

Renaudier, J.

Rios-Müller, R.

Roberts, K.

Saavedra, G.

Savory, S.

Semrau, D.

Shi, K.

Sinclair, A.

Spinnler, B.

D. Zibar, A. Bianciotto, Z. Wang, A. Napoli, and B. Spinnler, “Analysis and dimensioning of fully digital clock recovery for 112 gb/s coherent polmux QPSK systems,” in European Conference on Optical Communication (2009), p. 7.3.4.

Stojanovic, N.

N. Stojanovic and X. Changsong, “An Efficient Method for Skew Estimation and Compensation in Coherent Receivers,” IEEE Photonics Technol. Lett. 28(4), 489–492 (2016).
[Crossref]

Tanaka, T.

T. Tanimura, S. Oda, T. Tanaka, T. Hoshida, Z. Tao, and J. Rasmussen, “A simple digital skew compensator for coherent receiver,” in European Conference on Optical Communication (2009), p. 7.3.2.

Tanimura, T.

T. Tanimura, S. Oda, T. Tanaka, T. Hoshida, Z. Tao, and J. Rasmussen, “A simple digital skew compensator for coherent receiver,” in European Conference on Optical Communication (2009), p. 7.3.2.

Tao, Z.

T. Tanimura, S. Oda, T. Tanaka, T. Hoshida, Z. Tao, and J. Rasmussen, “A simple digital skew compensator for coherent receiver,” in European Conference on Optical Communication (2009), p. 7.3.2.

Thomsen, B. C.

Tsuritani, T.

Vovan, A.

Y. Yue, Q. Wang, B. Zhang, A. Vovan, and J. Anderson, “Detection and compensation of power imbalances for DP-QAM transmitter using reconfigurable interference,” Proc. SPIE 10130, 101300M (2017).

Wang, J.

Wang, Q.

Y. Yue, Q. Wang, B. Zhang, A. Vovan, and J. Anderson, “Detection and compensation of power imbalances for DP-QAM transmitter using reconfigurable interference,” Proc. SPIE 10130, 101300M (2017).

Y. Yue, B. Zhang, Q. Wang, R. Lofland, J. O’Neil, and J. Anderson, “Detection and alignment of dual-polarization optical quadrature amplitude transmitter IQ and XY skews using reconfigurable interference,” Opt. Express 24(6), 6719–6734 (2016).
[Crossref] [PubMed]

Wang, Z.

D. Zibar, A. Bianciotto, Z. Wang, A. Napoli, and B. Spinnler, “Analysis and dimensioning of fully digital clock recovery for 112 gb/s coherent polmux QPSK systems,” in European Conference on Optical Communication (2009), p. 7.3.4.

Wei, J.

J. Wei, Q. Cheng, R. Penty, I. White, and D. Cunningham, “400 Gigabit Ethernet using advanced modulation formats: performance, complexity, and power dissipation,” IEEE Commun. Mag. 53(2), 182–189 (2015).
[Crossref]

White, I.

J. Wei, Q. Cheng, R. Penty, I. White, and D. Cunningham, “400 Gigabit Ethernet using advanced modulation formats: performance, complexity, and power dissipation,” IEEE Commun. Mag. 53(2), 182–189 (2015).
[Crossref]

Winzer, P. J.

Xu, X.

Yue, Y.

Y. Yue, Q. Wang, B. Zhang, A. Vovan, and J. Anderson, “Detection and compensation of power imbalances for DP-QAM transmitter using reconfigurable interference,” Proc. SPIE 10130, 101300M (2017).

Y. Yue, B. Zhang, Q. Wang, R. Lofland, J. O’Neil, and J. Anderson, “Detection and alignment of dual-polarization optical quadrature amplitude transmitter IQ and XY skews using reconfigurable interference,” Opt. Express 24(6), 6719–6734 (2016).
[Crossref] [PubMed]

Zhang, B.

Y. Yue, Q. Wang, B. Zhang, A. Vovan, and J. Anderson, “Detection and compensation of power imbalances for DP-QAM transmitter using reconfigurable interference,” Proc. SPIE 10130, 101300M (2017).

Y. Yue, B. Zhang, Q. Wang, R. Lofland, J. O’Neil, and J. Anderson, “Detection and alignment of dual-polarization optical quadrature amplitude transmitter IQ and XY skews using reconfigurable interference,” Opt. Express 24(6), 6719–6734 (2016).
[Crossref] [PubMed]

Zibar, D.

IEEE Commun. Mag. (1)

J. Wei, Q. Cheng, R. Penty, I. White, and D. Cunningham, “400 Gigabit Ethernet using advanced modulation formats: performance, complexity, and power dissipation,” IEEE Commun. Mag. 53(2), 182–189 (2015).
[Crossref]

IEEE Photonics Technol. Lett. (2)

M. Paskov, D. Lavery, and S. Savory, “Blind Equalization of Receiver In-Phase/Quadrature Skew in the Presence of Nyquist Filtering,” IEEE Photonics Technol. Lett. 25(24), 2446–2449 (2013).
[Crossref]

N. Stojanovic and X. Changsong, “An Efficient Method for Skew Estimation and Compensation in Coherent Receivers,” IEEE Photonics Technol. Lett. 28(4), 489–492 (2016).
[Crossref]

J. Lightwave Technol. (10)

W. Peng, T. Tsuritani, and I. Morita, “Transmission of High-Baud PDM-64QAM Signals,” J. Lightwave Technol. 31(13), 2146–2162 (2013).
[Crossref]

J. Wang and Z. Pan, “Generate Nyquist-WDM Signal Using a DAC With Zero-Order Holding at the Symbol Rate,” J. Lightwave Technol. 32(24), 4085–4091 (2014).

K. Roberts, S. Foo, M. Moyer, M. Hubbard, A. Sinclair, J. Gaudette, and C. Laperle, “High Capacity Transport 100G and Beyond,” J. Lightwave Technol. 33(3), 563–578 (2015).
[Crossref]

R. Rios-Müller, J. Renaudier, and G. Charlet, “Blind Receiver Skew Compensation and Estimation for Long-Haul Non-Dispersion Managed Systems Using Adaptive Equalizer,” J. Lightwave Technol. 33(7), 1315–1318 (2015).
[Crossref]

E. da Silva and D. Zibar, “Widely Linear Equalization for IQ Imbalance and Skew Compensation in Optical Coherent Receivers,” J. Lightwave Technol. 34(15), 3577–3586 (2016).
[Crossref]

X. Chen, S. Chandrasekhar, S. Randel, G. Raybon, A. Adamiecki, P. Pupalaikis, and P. J. Winzer, “All-Electronic 100-GHz Bandwidth Digital-to-Analog Converter Generating PAM Signals up to 190 GBaud,” J. Lightwave Technol. 35(3), 411–417 (2017).
[Crossref]

M. Faruk and S. Savory, “Digital Signal Processing for Coherent Transceivers Employing Multilevel Formats,” J. Lightwave Technol. 35(5), 1125–1141 (2017).
[Crossref]

I. Fatadin, D. Ives, and S. Savory, “Blind Equalization and Carrier Phase Recovery in a 16-QAM Optical Coherent System,” J. Lightwave Technol. 27(15), 3042–3049 (2009).
[Crossref]

H. Chaouch and M. Filer, “Analog Coherent Optics for Long Haul Datacenter Regional Networks,” J. Lightwave Technol. 36(2), 372–376 (2018).
[Crossref]

J. Diniz, F. Da Ros, E. Da Silva, R. Jones, and D. Zibar, “Optimization of DP-MQAM Transmitter Using Cooperative Coevolutionary Genetic Algorithm,” J. Lightwave Technol. 36(12), 2450–2462 (2018).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Proc. SPIE (1)

Y. Yue, Q. Wang, B. Zhang, A. Vovan, and J. Anderson, “Detection and compensation of power imbalances for DP-QAM transmitter using reconfigurable interference,” Proc. SPIE 10130, 101300M (2017).

Other (11)

Optical Internetworking Forum, “Implementation Agreement for Integrated Polarization Multiplexed Quadrature Modulated Transmitters for Metro Applications,” www.oiforum.com/wp-content/uploads/OIF-PMQ-MTX-01.0-IA_final.pdf

Optical Internetworking Forum, “Implementation Agreement for Micro Intradyne Coherent Receivers,” https://www.oiforum.com/wp-content/uploads/OIF-DPC-MRX-02.0.pdf

J. Diniz, E. da Silva, M. Piels, and D. Zibar, “Joint IQ skew and chromatic dispersion estimation for coherent optical communication receivers,” in Advanced Photonics 2016 (IPR, NOMA, Sensors, Networks, SPPCom, SOF), OSA Technical Digest (online) (Optical Society of America,2016), paper SpTu2F.2.

J. Cai, H. G. Batshon, M. Mazurczyk, H. Zhang, Y. Sun, O. V. Sinkin, D. Foursa, and A. N. Pilipetskii, “64QAM Based Coded Modulation Transmission over Transoceanic Distance with > 60 Tb/s Capacity,” in Optical Fiber Communication Conference Post Deadline Papers, OSA Technical Digest (online) (Optical Society of America, 2015), paper Th5C.8.

C. M. Diniz, F. D. Ros, R. T. Jones, and D. Zibar, “Time Skew Estimator for Dual-Polarization QAM Transmitters,” in European Conference on Optical Communication (2017), paper P1.SC3.41.
[Crossref]

H. Chen, X. Su, Z. Tao, T. Oyama, H. Nakashima, T. Hoshida, and K. Kato, “An Accurate and Robust In-phase/Quadrature Skew Measurement for Coherent Optical Transmitter by Image Spectrum Analyzing,” in European Conference on Optical Communication (2017), paper P1.SC3.35.
[Crossref]

T. Tanimura, S. Oda, T. Tanaka, T. Hoshida, Z. Tao, and J. Rasmussen, “A simple digital skew compensator for coherent receiver,” in European Conference on Optical Communication (2009), p. 7.3.2.

International Telecommunication Union (ITU-T) standard G.694.1, “Spectral grids for WDM applications: DWDM frequency grid.”

C. Fludger and T. Kupfer, “Transmitter Impairment Mitigation and Monitoring for High Baud-Rate, High Order Modulation Systems,” in European Conference on Optical Communication (2016), paper Tu.2.A.2.

D. Zibar, A. Bianciotto, Z. Wang, A. Napoli, and B. Spinnler, “Analysis and dimensioning of fully digital clock recovery for 112 gb/s coherent polmux QPSK systems,” in European Conference on Optical Communication (2009), p. 7.3.4.

Optical Internetworking Forum, “Flex Coherent DWDM Transmission Framework Document,” http://www.oiforum.com/wp-content/uploads/OIF-FD-FLEXCOH-DWDM-01.0.pdf .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Block diagram of coherent IQ transmitter and DSP ASIC on transmitter side. LD: laser diode, PS: phase shifter, Pol-Rot: polarization rotator, PBC: polarization beam combiner, PD: photo diode, FEC: forward error correction, DAC: digital-to-analog converter.
Fig. 2
Fig. 2 Illustration of dynamic adjustment of roll-off factor to improve skew tolerance. (a) Initial state with static skew well calibrated. (b) Dynamic adjustment to improve the tolerance to the drift of skew over temperature and life.
Fig. 3
Fig. 3 Simulated eye diagrams with 16-QAM signal going through (a) raised cosine filter, (b) root raised cosine filter.
Fig. 4
Fig. 4 (a) Q2 factor versus ROF, FIR filter length is 21. (b) Q2 factor versus FIR filter length of the transmitter, ROF = 0.1.
Fig. 5
Fig. 5 Top: Experimental setup. Bottom: Constellation diagrams for 400Gb/s 64GBd 16-QAM and 600Gb/s 64GBd 64-QAM. Zero residual IQ skew.
Fig. 6
Fig. 6 Optical spectrum. Aggressor channels have the same spectral shape and power level as the central channel under testing.
Fig. 7
Fig. 7 Eye diagram of 400Gb/s (64GBd 16-QAM) coherent transponder with 4ps IQ skew.
Fig. 8
Fig. 8 Penalty on Q2 factor at different scenarios. (a) Influence of symbol rate. (b) Influence of modulation format. (c) Influence of skew type, XY vs. IQ. (d) Influence of roll-off factor.
Fig. 9
Fig. 9 Influence of receiver bandwidth (RB) and channel spacing (CS) on Q2 factor. The modulation format is 400Gb/s 64GBd 16-QAM with zero residual IQ skew. (a) ROF = 0.1. (b) ROF = 1. (c) Comparison between different scenarios.
Fig. 10
Fig. 10 Influence of equalizer length (EL) on Q2 factor. Roll-off factor ROF = 0.1, 64 GBd, 16-QAM.
Fig. 11
Fig. 11 BER vs. roll-off factor and channel spacing (normalized to symbol rate). 400Gb/s signal at 64GBd using 16-QAM.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

y(n)= j=1 N h( j )x( nj )
E out e jϕ( t ) { [ S XI (t)+j S XQ (t τ IQ X ) ] X +[ S YI (t τ XY )+j S YQ (t τ XY τ IQ Y ) ] Y }
H RC ( ω )={ T s T s 2 ( 1sin[ T s 2*ROF ( | ω | π T s ) ] ) 0 , 0| ω |<π( 1ROF )/ T s π( 1ROF ) T s | ω |< π( 1+ROF ) T s | ω |π( 1+ROF )/ T s

Metrics