Abstract

A low-cost fabrication method for a high-surface-quality glass microlens array (MLA) was proposed using a glass molding technique with a vitreous carbon (VC) mold. A VC mold with a high-surface-quality MLA cavity was fabricated, and the glass MLA with a root mean square surface roughness of 4.59 nm was replicated using the VC mold. To obtain the glass MLA with high replication quality, the effects of molding conditions were examined. The surface quality was not degraded during the proposed VC mold fabrication method and glass molding process. The focused beam spot of the glass molded MLA was analyzed; it showed a diffraction-limited characteristic of the glass molded MLA.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Glass molding of all glass Fresnel lens with vitreous carbon micromold

Young Kyu Kim, Muhammad Refatul Haq, and Seok-Min Kim
Opt. Express 27(2) 1553-1562 (2019)

Replication of optical microlens array using photoresist coated molds

M. Chakrabarti, C. Dam-Hansen, J. Stubager, T. F. Pedersen, and H. C. Pedersen
Opt. Express 24(9) 9528-9540 (2016)

Replication of high refractive index glass microlens array by imprinting in conjunction with laser assisted rapid surface heating for high resolution confocal microscopy imaging

Taekyung Kim, Mohd Zairulnizam Bin Mohd Zawawi, Ryung Shin, Donghyun Kim, Woojae Choi, Chul Park, and Shinill Kang
Opt. Express 27(13) 18869-18882 (2019)

References

  • View by:
  • |
  • |
  • |

  1. S. M. Kim, H. M. Kim, J. S. Lim, S. I. Kang, Y. H. Kim, R. Henderiks, A. Kastelijn, and C. Busch, “Elimination of Jitter in Microlens illuminated Optical Probe Array Using a Filtering Layer for the Optical Read Only Memory Card System,” Jpn. J. Appl. Phys. 45(2B), 1162–1166 (2006).
    [Crossref]
  2. H. Hamam, “A two-way optical interconnection network using a single mode fiber array,” Opt. Commun. 150(1-6), 270–276 (1998).
    [Crossref]
  3. O. Matoba, E. Tajahuerce, and B. Javidi, “Three-dimensional object recognition based on multiple perspectives imaging with microlens arrays,” in 14th Annual Meeting of the IEEE Lasers and Electro-Optics Society (2001), pp. 495–496.
    [Crossref]
  4. E. Bonet, P. Andrés, J. C. Barreiro, and A. Pons, “Self-imaging properties of a periodic microlens array: versatile array illuminator realization,” Opt. Commun. 106(1-3), 39–44 (1994).
    [Crossref]
  5. H. Urey and K. D. Powell, “Microlens-array-based exit-pupil expander for full-color displays,” Appl. Opt. 44(23), 4930–4936 (2005).
    [Crossref] [PubMed]
  6. M. Chakrabarti, C. Dam-Hansen, J. Stubager, T. F. Pedersen, and H. C. Pedersen, “Replication of optical microlens array using photoresist coated molds,” Opt. Express 24(9), 9528–9540 (2016).
    [Crossref] [PubMed]
  7. C. Y. Chang and C. H. Yu, “A basic experimental study of ultrasonic assisted hot embossing process for rapid fabrication of microlens arrays,” J. Micromech. Microeng. 25(2), 1–11 (2015).
    [Crossref]
  8. J. Chen, J. Cheng, D. Zhang, and S. C. Chen, “Precision UV imprinting system for parallel fabrication of large-area micro-lens arrays on non-planar surfaces,” Precis. Eng. 44, 70–74 (2016).
    [Crossref]
  9. C. Y. Chang and M. H. Tsai, “Development of a continuous roll-to-roll processing system for mass production of plastic optical film,” J. Micromech. Microeng. 25(12), 1–10 (2015).
    [Crossref]
  10. X. Huang, P. Wang, E. Lin, J. Jiao, X. Wang, Y. Li, Y. Hou, and Q. Zhao, “Fabrication of the glass microlens arrays and the collimating property on nanolaser,” Appl. Phys., A Mater. Sci. Process. 122(649), 1–6 (2016).
  11. F. Chen, H. Liu, Q. Yang, X. Wang, C. Hou, H. Bian, W. Liang, J. Si, and X. Hou, “Maskless fabrication of concave microlens arrays on silica glasses by a femtosecond-laser-enhanced local wet etching method,” Opt. Express 18(19), 20334–20343 (2010).
    [Crossref] [PubMed]
  12. H. K. Choi, M. S. Ahsan, D. Y. Yoo, I. B. Sohn, Y. C. Noh, J. T. Kim, D. O. Jung, J. H. Kim, and H. M. Kang, “Formation of cylindrical micro-lens array on fused silica glass surface using CO2 laser assisted reshaping technique,” Opt. Laser Technol. 75, 63–70 (2015).
    [Crossref]
  13. Y. Chen, A. Y. Yi, D. Yao, F. Klocke, and G. Pongs, “A reflow process for glass microlens array fabrication by use of precision compression molding,” J. Micromech. Microeng. 18(5), 1–8 (2008).
    [Crossref]
  14. C. Y. Huang, W. T. Hsiao, K. C. Huang, K. S. Chang, H. Y. Chou, and C. P. Chou, “Fabrication of a double-sided micro-lens array by a glass molding technique,” J. Micromech. Microeng. 21(085020), 1–6 (2011).
  15. W. J. Choi, J. Y. Lee, W. B. Kim, B. K. Min, S. I. Kang, and S. J. Lee, “Design and fabrication of tungsten carbide mould with micro patterns imprinted by micro lithography,” J. Micromech. Microeng. 14(11), 1519–1525 (2004).
    [Crossref]
  16. H. J. Jang, M. R. Haq, Y. K. Kim, J. Kim, P. H. Oh, J. H. Ju, S. M. Kim, and J. S. Lim, “Fabrication of Glass Microchannel via Glass Imprinting using a Vitreous Carbon Mold for Flow Focusing Droplet Generator,” Sensors (Basel) 18(83), 1–9 (2018).
  17. J. H. Ju, S. L. Lim, J. W. Seok, and S. M. Kim, “A method to fabricate Low-Cost and large area vitreous carbon mold for glass molded microstructures,” Int. J. Precis. Eng. Manuf. 16(2), 287–291 (2015).
    [Crossref]
  18. Z. Li, G. Jin, F. Fang, H. Gong, and H. Jia, “Ultrasonically Assisted Single Point Diamond Turning of Optical Mold of Tungsten Carbide,” Micromachines (Basel) 9(77), 1–11 (2018).
  19. C.-Y. Huang, C.-H. Kuo, W.-T. Hsiao, K.-C. Huang, S.-F. Tseng, and C.-P. Chou, “Glass biochip fabrication by laser micromachining and glass-molding process,” J. Mater. Process. Technol. 212(3), 633–639 (2012).
    [Crossref]
  20. T. Zhou, J. Yan, Z. Liang, X. Wang, R. Kobayashi, and T. Kuriyagawa, “Development of polycrystalline Ni–P mold by heat treatment for glass microgroove forming,” Precis. Eng. 39, 25–30 (2015).
    [Crossref]
  21. S. W. Youn, M. Takahashi, H. Goto, and R. Maeda, “A study on focused ion beam milling of glassy carbon molds for the thermal imprinting of quartz and borosilicate glasses,” J. Micromech. Microeng. 16(12), 2576–2584 (2006).
    [Crossref]
  22. E. Nam, C. Y. Lee, M. B. Jun, and B. K. Min, “Ductile mode electrochemical oxidation assisted micromachining for glassy carbon,” J. Micromech. Microeng. 25(045021), 1–8 (2015).
  23. S. F. Tseng, M. F. Chen, W. T. Hsiao, C. Y. Huang, C. H. Yang, and Y. S. Chen, “Laser micromilling of convex microfluidic channels onto glassy carbon for glass molding dies,” Opt. Lasers Eng. 57, 58–63 (2014).
    [Crossref]
  24. S. H. Chang, Y. M. Lee, K. H. Shin, and Y. M. Heo, “A study of the Aspheric Glass Lens Forming Analysis in the Progressive GMP Process,” J. Opt. Soc. Korea 11(3), 85–92 (2007).
    [Crossref]
  25. F. C. Cowlard and J. C. Lewis, “Vitreous carbon—a new form of Carbon,” J. Mater. Sci. 2(6), 507–512 (1967).
    [Crossref]

2018 (2)

H. J. Jang, M. R. Haq, Y. K. Kim, J. Kim, P. H. Oh, J. H. Ju, S. M. Kim, and J. S. Lim, “Fabrication of Glass Microchannel via Glass Imprinting using a Vitreous Carbon Mold for Flow Focusing Droplet Generator,” Sensors (Basel) 18(83), 1–9 (2018).

Z. Li, G. Jin, F. Fang, H. Gong, and H. Jia, “Ultrasonically Assisted Single Point Diamond Turning of Optical Mold of Tungsten Carbide,” Micromachines (Basel) 9(77), 1–11 (2018).

2016 (3)

M. Chakrabarti, C. Dam-Hansen, J. Stubager, T. F. Pedersen, and H. C. Pedersen, “Replication of optical microlens array using photoresist coated molds,” Opt. Express 24(9), 9528–9540 (2016).
[Crossref] [PubMed]

J. Chen, J. Cheng, D. Zhang, and S. C. Chen, “Precision UV imprinting system for parallel fabrication of large-area micro-lens arrays on non-planar surfaces,” Precis. Eng. 44, 70–74 (2016).
[Crossref]

X. Huang, P. Wang, E. Lin, J. Jiao, X. Wang, Y. Li, Y. Hou, and Q. Zhao, “Fabrication of the glass microlens arrays and the collimating property on nanolaser,” Appl. Phys., A Mater. Sci. Process. 122(649), 1–6 (2016).

2015 (6)

C. Y. Chang and M. H. Tsai, “Development of a continuous roll-to-roll processing system for mass production of plastic optical film,” J. Micromech. Microeng. 25(12), 1–10 (2015).
[Crossref]

C. Y. Chang and C. H. Yu, “A basic experimental study of ultrasonic assisted hot embossing process for rapid fabrication of microlens arrays,” J. Micromech. Microeng. 25(2), 1–11 (2015).
[Crossref]

J. H. Ju, S. L. Lim, J. W. Seok, and S. M. Kim, “A method to fabricate Low-Cost and large area vitreous carbon mold for glass molded microstructures,” Int. J. Precis. Eng. Manuf. 16(2), 287–291 (2015).
[Crossref]

H. K. Choi, M. S. Ahsan, D. Y. Yoo, I. B. Sohn, Y. C. Noh, J. T. Kim, D. O. Jung, J. H. Kim, and H. M. Kang, “Formation of cylindrical micro-lens array on fused silica glass surface using CO2 laser assisted reshaping technique,” Opt. Laser Technol. 75, 63–70 (2015).
[Crossref]

E. Nam, C. Y. Lee, M. B. Jun, and B. K. Min, “Ductile mode electrochemical oxidation assisted micromachining for glassy carbon,” J. Micromech. Microeng. 25(045021), 1–8 (2015).

T. Zhou, J. Yan, Z. Liang, X. Wang, R. Kobayashi, and T. Kuriyagawa, “Development of polycrystalline Ni–P mold by heat treatment for glass microgroove forming,” Precis. Eng. 39, 25–30 (2015).
[Crossref]

2014 (1)

S. F. Tseng, M. F. Chen, W. T. Hsiao, C. Y. Huang, C. H. Yang, and Y. S. Chen, “Laser micromilling of convex microfluidic channels onto glassy carbon for glass molding dies,” Opt. Lasers Eng. 57, 58–63 (2014).
[Crossref]

2012 (1)

C.-Y. Huang, C.-H. Kuo, W.-T. Hsiao, K.-C. Huang, S.-F. Tseng, and C.-P. Chou, “Glass biochip fabrication by laser micromachining and glass-molding process,” J. Mater. Process. Technol. 212(3), 633–639 (2012).
[Crossref]

2011 (1)

C. Y. Huang, W. T. Hsiao, K. C. Huang, K. S. Chang, H. Y. Chou, and C. P. Chou, “Fabrication of a double-sided micro-lens array by a glass molding technique,” J. Micromech. Microeng. 21(085020), 1–6 (2011).

2010 (1)

2008 (1)

Y. Chen, A. Y. Yi, D. Yao, F. Klocke, and G. Pongs, “A reflow process for glass microlens array fabrication by use of precision compression molding,” J. Micromech. Microeng. 18(5), 1–8 (2008).
[Crossref]

2007 (1)

2006 (2)

S. W. Youn, M. Takahashi, H. Goto, and R. Maeda, “A study on focused ion beam milling of glassy carbon molds for the thermal imprinting of quartz and borosilicate glasses,” J. Micromech. Microeng. 16(12), 2576–2584 (2006).
[Crossref]

S. M. Kim, H. M. Kim, J. S. Lim, S. I. Kang, Y. H. Kim, R. Henderiks, A. Kastelijn, and C. Busch, “Elimination of Jitter in Microlens illuminated Optical Probe Array Using a Filtering Layer for the Optical Read Only Memory Card System,” Jpn. J. Appl. Phys. 45(2B), 1162–1166 (2006).
[Crossref]

2005 (1)

2004 (1)

W. J. Choi, J. Y. Lee, W. B. Kim, B. K. Min, S. I. Kang, and S. J. Lee, “Design and fabrication of tungsten carbide mould with micro patterns imprinted by micro lithography,” J. Micromech. Microeng. 14(11), 1519–1525 (2004).
[Crossref]

1998 (1)

H. Hamam, “A two-way optical interconnection network using a single mode fiber array,” Opt. Commun. 150(1-6), 270–276 (1998).
[Crossref]

1994 (1)

E. Bonet, P. Andrés, J. C. Barreiro, and A. Pons, “Self-imaging properties of a periodic microlens array: versatile array illuminator realization,” Opt. Commun. 106(1-3), 39–44 (1994).
[Crossref]

1967 (1)

F. C. Cowlard and J. C. Lewis, “Vitreous carbon—a new form of Carbon,” J. Mater. Sci. 2(6), 507–512 (1967).
[Crossref]

Ahsan, M. S.

H. K. Choi, M. S. Ahsan, D. Y. Yoo, I. B. Sohn, Y. C. Noh, J. T. Kim, D. O. Jung, J. H. Kim, and H. M. Kang, “Formation of cylindrical micro-lens array on fused silica glass surface using CO2 laser assisted reshaping technique,” Opt. Laser Technol. 75, 63–70 (2015).
[Crossref]

Andrés, P.

E. Bonet, P. Andrés, J. C. Barreiro, and A. Pons, “Self-imaging properties of a periodic microlens array: versatile array illuminator realization,” Opt. Commun. 106(1-3), 39–44 (1994).
[Crossref]

Barreiro, J. C.

E. Bonet, P. Andrés, J. C. Barreiro, and A. Pons, “Self-imaging properties of a periodic microlens array: versatile array illuminator realization,” Opt. Commun. 106(1-3), 39–44 (1994).
[Crossref]

Bian, H.

Bonet, E.

E. Bonet, P. Andrés, J. C. Barreiro, and A. Pons, “Self-imaging properties of a periodic microlens array: versatile array illuminator realization,” Opt. Commun. 106(1-3), 39–44 (1994).
[Crossref]

Busch, C.

S. M. Kim, H. M. Kim, J. S. Lim, S. I. Kang, Y. H. Kim, R. Henderiks, A. Kastelijn, and C. Busch, “Elimination of Jitter in Microlens illuminated Optical Probe Array Using a Filtering Layer for the Optical Read Only Memory Card System,” Jpn. J. Appl. Phys. 45(2B), 1162–1166 (2006).
[Crossref]

Chakrabarti, M.

Chang, C. Y.

C. Y. Chang and C. H. Yu, “A basic experimental study of ultrasonic assisted hot embossing process for rapid fabrication of microlens arrays,” J. Micromech. Microeng. 25(2), 1–11 (2015).
[Crossref]

C. Y. Chang and M. H. Tsai, “Development of a continuous roll-to-roll processing system for mass production of plastic optical film,” J. Micromech. Microeng. 25(12), 1–10 (2015).
[Crossref]

Chang, K. S.

C. Y. Huang, W. T. Hsiao, K. C. Huang, K. S. Chang, H. Y. Chou, and C. P. Chou, “Fabrication of a double-sided micro-lens array by a glass molding technique,” J. Micromech. Microeng. 21(085020), 1–6 (2011).

Chang, S. H.

Chen, F.

Chen, J.

J. Chen, J. Cheng, D. Zhang, and S. C. Chen, “Precision UV imprinting system for parallel fabrication of large-area micro-lens arrays on non-planar surfaces,” Precis. Eng. 44, 70–74 (2016).
[Crossref]

Chen, M. F.

S. F. Tseng, M. F. Chen, W. T. Hsiao, C. Y. Huang, C. H. Yang, and Y. S. Chen, “Laser micromilling of convex microfluidic channels onto glassy carbon for glass molding dies,” Opt. Lasers Eng. 57, 58–63 (2014).
[Crossref]

Chen, S. C.

J. Chen, J. Cheng, D. Zhang, and S. C. Chen, “Precision UV imprinting system for parallel fabrication of large-area micro-lens arrays on non-planar surfaces,” Precis. Eng. 44, 70–74 (2016).
[Crossref]

Chen, Y.

Y. Chen, A. Y. Yi, D. Yao, F. Klocke, and G. Pongs, “A reflow process for glass microlens array fabrication by use of precision compression molding,” J. Micromech. Microeng. 18(5), 1–8 (2008).
[Crossref]

Chen, Y. S.

S. F. Tseng, M. F. Chen, W. T. Hsiao, C. Y. Huang, C. H. Yang, and Y. S. Chen, “Laser micromilling of convex microfluidic channels onto glassy carbon for glass molding dies,” Opt. Lasers Eng. 57, 58–63 (2014).
[Crossref]

Cheng, J.

J. Chen, J. Cheng, D. Zhang, and S. C. Chen, “Precision UV imprinting system for parallel fabrication of large-area micro-lens arrays on non-planar surfaces,” Precis. Eng. 44, 70–74 (2016).
[Crossref]

Choi, H. K.

H. K. Choi, M. S. Ahsan, D. Y. Yoo, I. B. Sohn, Y. C. Noh, J. T. Kim, D. O. Jung, J. H. Kim, and H. M. Kang, “Formation of cylindrical micro-lens array on fused silica glass surface using CO2 laser assisted reshaping technique,” Opt. Laser Technol. 75, 63–70 (2015).
[Crossref]

Choi, W. J.

W. J. Choi, J. Y. Lee, W. B. Kim, B. K. Min, S. I. Kang, and S. J. Lee, “Design and fabrication of tungsten carbide mould with micro patterns imprinted by micro lithography,” J. Micromech. Microeng. 14(11), 1519–1525 (2004).
[Crossref]

Chou, C. P.

C. Y. Huang, W. T. Hsiao, K. C. Huang, K. S. Chang, H. Y. Chou, and C. P. Chou, “Fabrication of a double-sided micro-lens array by a glass molding technique,” J. Micromech. Microeng. 21(085020), 1–6 (2011).

Chou, C.-P.

C.-Y. Huang, C.-H. Kuo, W.-T. Hsiao, K.-C. Huang, S.-F. Tseng, and C.-P. Chou, “Glass biochip fabrication by laser micromachining and glass-molding process,” J. Mater. Process. Technol. 212(3), 633–639 (2012).
[Crossref]

Chou, H. Y.

C. Y. Huang, W. T. Hsiao, K. C. Huang, K. S. Chang, H. Y. Chou, and C. P. Chou, “Fabrication of a double-sided micro-lens array by a glass molding technique,” J. Micromech. Microeng. 21(085020), 1–6 (2011).

Cowlard, F. C.

F. C. Cowlard and J. C. Lewis, “Vitreous carbon—a new form of Carbon,” J. Mater. Sci. 2(6), 507–512 (1967).
[Crossref]

Dam-Hansen, C.

Fang, F.

Z. Li, G. Jin, F. Fang, H. Gong, and H. Jia, “Ultrasonically Assisted Single Point Diamond Turning of Optical Mold of Tungsten Carbide,” Micromachines (Basel) 9(77), 1–11 (2018).

Gong, H.

Z. Li, G. Jin, F. Fang, H. Gong, and H. Jia, “Ultrasonically Assisted Single Point Diamond Turning of Optical Mold of Tungsten Carbide,” Micromachines (Basel) 9(77), 1–11 (2018).

Goto, H.

S. W. Youn, M. Takahashi, H. Goto, and R. Maeda, “A study on focused ion beam milling of glassy carbon molds for the thermal imprinting of quartz and borosilicate glasses,” J. Micromech. Microeng. 16(12), 2576–2584 (2006).
[Crossref]

Hamam, H.

H. Hamam, “A two-way optical interconnection network using a single mode fiber array,” Opt. Commun. 150(1-6), 270–276 (1998).
[Crossref]

Haq, M. R.

H. J. Jang, M. R. Haq, Y. K. Kim, J. Kim, P. H. Oh, J. H. Ju, S. M. Kim, and J. S. Lim, “Fabrication of Glass Microchannel via Glass Imprinting using a Vitreous Carbon Mold for Flow Focusing Droplet Generator,” Sensors (Basel) 18(83), 1–9 (2018).

Henderiks, R.

S. M. Kim, H. M. Kim, J. S. Lim, S. I. Kang, Y. H. Kim, R. Henderiks, A. Kastelijn, and C. Busch, “Elimination of Jitter in Microlens illuminated Optical Probe Array Using a Filtering Layer for the Optical Read Only Memory Card System,” Jpn. J. Appl. Phys. 45(2B), 1162–1166 (2006).
[Crossref]

Heo, Y. M.

Hou, C.

Hou, X.

Hou, Y.

X. Huang, P. Wang, E. Lin, J. Jiao, X. Wang, Y. Li, Y. Hou, and Q. Zhao, “Fabrication of the glass microlens arrays and the collimating property on nanolaser,” Appl. Phys., A Mater. Sci. Process. 122(649), 1–6 (2016).

Hsiao, W. T.

S. F. Tseng, M. F. Chen, W. T. Hsiao, C. Y. Huang, C. H. Yang, and Y. S. Chen, “Laser micromilling of convex microfluidic channels onto glassy carbon for glass molding dies,” Opt. Lasers Eng. 57, 58–63 (2014).
[Crossref]

C. Y. Huang, W. T. Hsiao, K. C. Huang, K. S. Chang, H. Y. Chou, and C. P. Chou, “Fabrication of a double-sided micro-lens array by a glass molding technique,” J. Micromech. Microeng. 21(085020), 1–6 (2011).

Hsiao, W.-T.

C.-Y. Huang, C.-H. Kuo, W.-T. Hsiao, K.-C. Huang, S.-F. Tseng, and C.-P. Chou, “Glass biochip fabrication by laser micromachining and glass-molding process,” J. Mater. Process. Technol. 212(3), 633–639 (2012).
[Crossref]

Huang, C. Y.

S. F. Tseng, M. F. Chen, W. T. Hsiao, C. Y. Huang, C. H. Yang, and Y. S. Chen, “Laser micromilling of convex microfluidic channels onto glassy carbon for glass molding dies,” Opt. Lasers Eng. 57, 58–63 (2014).
[Crossref]

C. Y. Huang, W. T. Hsiao, K. C. Huang, K. S. Chang, H. Y. Chou, and C. P. Chou, “Fabrication of a double-sided micro-lens array by a glass molding technique,” J. Micromech. Microeng. 21(085020), 1–6 (2011).

Huang, C.-Y.

C.-Y. Huang, C.-H. Kuo, W.-T. Hsiao, K.-C. Huang, S.-F. Tseng, and C.-P. Chou, “Glass biochip fabrication by laser micromachining and glass-molding process,” J. Mater. Process. Technol. 212(3), 633–639 (2012).
[Crossref]

Huang, K. C.

C. Y. Huang, W. T. Hsiao, K. C. Huang, K. S. Chang, H. Y. Chou, and C. P. Chou, “Fabrication of a double-sided micro-lens array by a glass molding technique,” J. Micromech. Microeng. 21(085020), 1–6 (2011).

Huang, K.-C.

C.-Y. Huang, C.-H. Kuo, W.-T. Hsiao, K.-C. Huang, S.-F. Tseng, and C.-P. Chou, “Glass biochip fabrication by laser micromachining and glass-molding process,” J. Mater. Process. Technol. 212(3), 633–639 (2012).
[Crossref]

Huang, X.

X. Huang, P. Wang, E. Lin, J. Jiao, X. Wang, Y. Li, Y. Hou, and Q. Zhao, “Fabrication of the glass microlens arrays and the collimating property on nanolaser,” Appl. Phys., A Mater. Sci. Process. 122(649), 1–6 (2016).

Jang, H. J.

H. J. Jang, M. R. Haq, Y. K. Kim, J. Kim, P. H. Oh, J. H. Ju, S. M. Kim, and J. S. Lim, “Fabrication of Glass Microchannel via Glass Imprinting using a Vitreous Carbon Mold for Flow Focusing Droplet Generator,” Sensors (Basel) 18(83), 1–9 (2018).

Javidi, B.

O. Matoba, E. Tajahuerce, and B. Javidi, “Three-dimensional object recognition based on multiple perspectives imaging with microlens arrays,” in 14th Annual Meeting of the IEEE Lasers and Electro-Optics Society (2001), pp. 495–496.
[Crossref]

Jia, H.

Z. Li, G. Jin, F. Fang, H. Gong, and H. Jia, “Ultrasonically Assisted Single Point Diamond Turning of Optical Mold of Tungsten Carbide,” Micromachines (Basel) 9(77), 1–11 (2018).

Jiao, J.

X. Huang, P. Wang, E. Lin, J. Jiao, X. Wang, Y. Li, Y. Hou, and Q. Zhao, “Fabrication of the glass microlens arrays and the collimating property on nanolaser,” Appl. Phys., A Mater. Sci. Process. 122(649), 1–6 (2016).

Jin, G.

Z. Li, G. Jin, F. Fang, H. Gong, and H. Jia, “Ultrasonically Assisted Single Point Diamond Turning of Optical Mold of Tungsten Carbide,” Micromachines (Basel) 9(77), 1–11 (2018).

Ju, J. H.

H. J. Jang, M. R. Haq, Y. K. Kim, J. Kim, P. H. Oh, J. H. Ju, S. M. Kim, and J. S. Lim, “Fabrication of Glass Microchannel via Glass Imprinting using a Vitreous Carbon Mold for Flow Focusing Droplet Generator,” Sensors (Basel) 18(83), 1–9 (2018).

J. H. Ju, S. L. Lim, J. W. Seok, and S. M. Kim, “A method to fabricate Low-Cost and large area vitreous carbon mold for glass molded microstructures,” Int. J. Precis. Eng. Manuf. 16(2), 287–291 (2015).
[Crossref]

Jun, M. B.

E. Nam, C. Y. Lee, M. B. Jun, and B. K. Min, “Ductile mode electrochemical oxidation assisted micromachining for glassy carbon,” J. Micromech. Microeng. 25(045021), 1–8 (2015).

Jung, D. O.

H. K. Choi, M. S. Ahsan, D. Y. Yoo, I. B. Sohn, Y. C. Noh, J. T. Kim, D. O. Jung, J. H. Kim, and H. M. Kang, “Formation of cylindrical micro-lens array on fused silica glass surface using CO2 laser assisted reshaping technique,” Opt. Laser Technol. 75, 63–70 (2015).
[Crossref]

Kang, H. M.

H. K. Choi, M. S. Ahsan, D. Y. Yoo, I. B. Sohn, Y. C. Noh, J. T. Kim, D. O. Jung, J. H. Kim, and H. M. Kang, “Formation of cylindrical micro-lens array on fused silica glass surface using CO2 laser assisted reshaping technique,” Opt. Laser Technol. 75, 63–70 (2015).
[Crossref]

Kang, S. I.

S. M. Kim, H. M. Kim, J. S. Lim, S. I. Kang, Y. H. Kim, R. Henderiks, A. Kastelijn, and C. Busch, “Elimination of Jitter in Microlens illuminated Optical Probe Array Using a Filtering Layer for the Optical Read Only Memory Card System,” Jpn. J. Appl. Phys. 45(2B), 1162–1166 (2006).
[Crossref]

W. J. Choi, J. Y. Lee, W. B. Kim, B. K. Min, S. I. Kang, and S. J. Lee, “Design and fabrication of tungsten carbide mould with micro patterns imprinted by micro lithography,” J. Micromech. Microeng. 14(11), 1519–1525 (2004).
[Crossref]

Kastelijn, A.

S. M. Kim, H. M. Kim, J. S. Lim, S. I. Kang, Y. H. Kim, R. Henderiks, A. Kastelijn, and C. Busch, “Elimination of Jitter in Microlens illuminated Optical Probe Array Using a Filtering Layer for the Optical Read Only Memory Card System,” Jpn. J. Appl. Phys. 45(2B), 1162–1166 (2006).
[Crossref]

Kim, H. M.

S. M. Kim, H. M. Kim, J. S. Lim, S. I. Kang, Y. H. Kim, R. Henderiks, A. Kastelijn, and C. Busch, “Elimination of Jitter in Microlens illuminated Optical Probe Array Using a Filtering Layer for the Optical Read Only Memory Card System,” Jpn. J. Appl. Phys. 45(2B), 1162–1166 (2006).
[Crossref]

Kim, J.

H. J. Jang, M. R. Haq, Y. K. Kim, J. Kim, P. H. Oh, J. H. Ju, S. M. Kim, and J. S. Lim, “Fabrication of Glass Microchannel via Glass Imprinting using a Vitreous Carbon Mold for Flow Focusing Droplet Generator,” Sensors (Basel) 18(83), 1–9 (2018).

Kim, J. H.

H. K. Choi, M. S. Ahsan, D. Y. Yoo, I. B. Sohn, Y. C. Noh, J. T. Kim, D. O. Jung, J. H. Kim, and H. M. Kang, “Formation of cylindrical micro-lens array on fused silica glass surface using CO2 laser assisted reshaping technique,” Opt. Laser Technol. 75, 63–70 (2015).
[Crossref]

Kim, J. T.

H. K. Choi, M. S. Ahsan, D. Y. Yoo, I. B. Sohn, Y. C. Noh, J. T. Kim, D. O. Jung, J. H. Kim, and H. M. Kang, “Formation of cylindrical micro-lens array on fused silica glass surface using CO2 laser assisted reshaping technique,” Opt. Laser Technol. 75, 63–70 (2015).
[Crossref]

Kim, S. M.

H. J. Jang, M. R. Haq, Y. K. Kim, J. Kim, P. H. Oh, J. H. Ju, S. M. Kim, and J. S. Lim, “Fabrication of Glass Microchannel via Glass Imprinting using a Vitreous Carbon Mold for Flow Focusing Droplet Generator,” Sensors (Basel) 18(83), 1–9 (2018).

J. H. Ju, S. L. Lim, J. W. Seok, and S. M. Kim, “A method to fabricate Low-Cost and large area vitreous carbon mold for glass molded microstructures,” Int. J. Precis. Eng. Manuf. 16(2), 287–291 (2015).
[Crossref]

S. M. Kim, H. M. Kim, J. S. Lim, S. I. Kang, Y. H. Kim, R. Henderiks, A. Kastelijn, and C. Busch, “Elimination of Jitter in Microlens illuminated Optical Probe Array Using a Filtering Layer for the Optical Read Only Memory Card System,” Jpn. J. Appl. Phys. 45(2B), 1162–1166 (2006).
[Crossref]

Kim, W. B.

W. J. Choi, J. Y. Lee, W. B. Kim, B. K. Min, S. I. Kang, and S. J. Lee, “Design and fabrication of tungsten carbide mould with micro patterns imprinted by micro lithography,” J. Micromech. Microeng. 14(11), 1519–1525 (2004).
[Crossref]

Kim, Y. H.

S. M. Kim, H. M. Kim, J. S. Lim, S. I. Kang, Y. H. Kim, R. Henderiks, A. Kastelijn, and C. Busch, “Elimination of Jitter in Microlens illuminated Optical Probe Array Using a Filtering Layer for the Optical Read Only Memory Card System,” Jpn. J. Appl. Phys. 45(2B), 1162–1166 (2006).
[Crossref]

Kim, Y. K.

H. J. Jang, M. R. Haq, Y. K. Kim, J. Kim, P. H. Oh, J. H. Ju, S. M. Kim, and J. S. Lim, “Fabrication of Glass Microchannel via Glass Imprinting using a Vitreous Carbon Mold for Flow Focusing Droplet Generator,” Sensors (Basel) 18(83), 1–9 (2018).

Klocke, F.

Y. Chen, A. Y. Yi, D. Yao, F. Klocke, and G. Pongs, “A reflow process for glass microlens array fabrication by use of precision compression molding,” J. Micromech. Microeng. 18(5), 1–8 (2008).
[Crossref]

Kobayashi, R.

T. Zhou, J. Yan, Z. Liang, X. Wang, R. Kobayashi, and T. Kuriyagawa, “Development of polycrystalline Ni–P mold by heat treatment for glass microgroove forming,” Precis. Eng. 39, 25–30 (2015).
[Crossref]

Kuo, C.-H.

C.-Y. Huang, C.-H. Kuo, W.-T. Hsiao, K.-C. Huang, S.-F. Tseng, and C.-P. Chou, “Glass biochip fabrication by laser micromachining and glass-molding process,” J. Mater. Process. Technol. 212(3), 633–639 (2012).
[Crossref]

Kuriyagawa, T.

T. Zhou, J. Yan, Z. Liang, X. Wang, R. Kobayashi, and T. Kuriyagawa, “Development of polycrystalline Ni–P mold by heat treatment for glass microgroove forming,” Precis. Eng. 39, 25–30 (2015).
[Crossref]

Lee, C. Y.

E. Nam, C. Y. Lee, M. B. Jun, and B. K. Min, “Ductile mode electrochemical oxidation assisted micromachining for glassy carbon,” J. Micromech. Microeng. 25(045021), 1–8 (2015).

Lee, J. Y.

W. J. Choi, J. Y. Lee, W. B. Kim, B. K. Min, S. I. Kang, and S. J. Lee, “Design and fabrication of tungsten carbide mould with micro patterns imprinted by micro lithography,” J. Micromech. Microeng. 14(11), 1519–1525 (2004).
[Crossref]

Lee, S. J.

W. J. Choi, J. Y. Lee, W. B. Kim, B. K. Min, S. I. Kang, and S. J. Lee, “Design and fabrication of tungsten carbide mould with micro patterns imprinted by micro lithography,” J. Micromech. Microeng. 14(11), 1519–1525 (2004).
[Crossref]

Lee, Y. M.

Lewis, J. C.

F. C. Cowlard and J. C. Lewis, “Vitreous carbon—a new form of Carbon,” J. Mater. Sci. 2(6), 507–512 (1967).
[Crossref]

Li, Y.

X. Huang, P. Wang, E. Lin, J. Jiao, X. Wang, Y. Li, Y. Hou, and Q. Zhao, “Fabrication of the glass microlens arrays and the collimating property on nanolaser,” Appl. Phys., A Mater. Sci. Process. 122(649), 1–6 (2016).

Li, Z.

Z. Li, G. Jin, F. Fang, H. Gong, and H. Jia, “Ultrasonically Assisted Single Point Diamond Turning of Optical Mold of Tungsten Carbide,” Micromachines (Basel) 9(77), 1–11 (2018).

Liang, W.

Liang, Z.

T. Zhou, J. Yan, Z. Liang, X. Wang, R. Kobayashi, and T. Kuriyagawa, “Development of polycrystalline Ni–P mold by heat treatment for glass microgroove forming,” Precis. Eng. 39, 25–30 (2015).
[Crossref]

Lim, J. S.

H. J. Jang, M. R. Haq, Y. K. Kim, J. Kim, P. H. Oh, J. H. Ju, S. M. Kim, and J. S. Lim, “Fabrication of Glass Microchannel via Glass Imprinting using a Vitreous Carbon Mold for Flow Focusing Droplet Generator,” Sensors (Basel) 18(83), 1–9 (2018).

S. M. Kim, H. M. Kim, J. S. Lim, S. I. Kang, Y. H. Kim, R. Henderiks, A. Kastelijn, and C. Busch, “Elimination of Jitter in Microlens illuminated Optical Probe Array Using a Filtering Layer for the Optical Read Only Memory Card System,” Jpn. J. Appl. Phys. 45(2B), 1162–1166 (2006).
[Crossref]

Lim, S. L.

J. H. Ju, S. L. Lim, J. W. Seok, and S. M. Kim, “A method to fabricate Low-Cost and large area vitreous carbon mold for glass molded microstructures,” Int. J. Precis. Eng. Manuf. 16(2), 287–291 (2015).
[Crossref]

Lin, E.

X. Huang, P. Wang, E. Lin, J. Jiao, X. Wang, Y. Li, Y. Hou, and Q. Zhao, “Fabrication of the glass microlens arrays and the collimating property on nanolaser,” Appl. Phys., A Mater. Sci. Process. 122(649), 1–6 (2016).

Liu, H.

Maeda, R.

S. W. Youn, M. Takahashi, H. Goto, and R. Maeda, “A study on focused ion beam milling of glassy carbon molds for the thermal imprinting of quartz and borosilicate glasses,” J. Micromech. Microeng. 16(12), 2576–2584 (2006).
[Crossref]

Matoba, O.

O. Matoba, E. Tajahuerce, and B. Javidi, “Three-dimensional object recognition based on multiple perspectives imaging with microlens arrays,” in 14th Annual Meeting of the IEEE Lasers and Electro-Optics Society (2001), pp. 495–496.
[Crossref]

Min, B. K.

E. Nam, C. Y. Lee, M. B. Jun, and B. K. Min, “Ductile mode electrochemical oxidation assisted micromachining for glassy carbon,” J. Micromech. Microeng. 25(045021), 1–8 (2015).

W. J. Choi, J. Y. Lee, W. B. Kim, B. K. Min, S. I. Kang, and S. J. Lee, “Design and fabrication of tungsten carbide mould with micro patterns imprinted by micro lithography,” J. Micromech. Microeng. 14(11), 1519–1525 (2004).
[Crossref]

Nam, E.

E. Nam, C. Y. Lee, M. B. Jun, and B. K. Min, “Ductile mode electrochemical oxidation assisted micromachining for glassy carbon,” J. Micromech. Microeng. 25(045021), 1–8 (2015).

Noh, Y. C.

H. K. Choi, M. S. Ahsan, D. Y. Yoo, I. B. Sohn, Y. C. Noh, J. T. Kim, D. O. Jung, J. H. Kim, and H. M. Kang, “Formation of cylindrical micro-lens array on fused silica glass surface using CO2 laser assisted reshaping technique,” Opt. Laser Technol. 75, 63–70 (2015).
[Crossref]

Oh, P. H.

H. J. Jang, M. R. Haq, Y. K. Kim, J. Kim, P. H. Oh, J. H. Ju, S. M. Kim, and J. S. Lim, “Fabrication of Glass Microchannel via Glass Imprinting using a Vitreous Carbon Mold for Flow Focusing Droplet Generator,” Sensors (Basel) 18(83), 1–9 (2018).

Pedersen, H. C.

Pedersen, T. F.

Pongs, G.

Y. Chen, A. Y. Yi, D. Yao, F. Klocke, and G. Pongs, “A reflow process for glass microlens array fabrication by use of precision compression molding,” J. Micromech. Microeng. 18(5), 1–8 (2008).
[Crossref]

Pons, A.

E. Bonet, P. Andrés, J. C. Barreiro, and A. Pons, “Self-imaging properties of a periodic microlens array: versatile array illuminator realization,” Opt. Commun. 106(1-3), 39–44 (1994).
[Crossref]

Powell, K. D.

Seok, J. W.

J. H. Ju, S. L. Lim, J. W. Seok, and S. M. Kim, “A method to fabricate Low-Cost and large area vitreous carbon mold for glass molded microstructures,” Int. J. Precis. Eng. Manuf. 16(2), 287–291 (2015).
[Crossref]

Shin, K. H.

Si, J.

Sohn, I. B.

H. K. Choi, M. S. Ahsan, D. Y. Yoo, I. B. Sohn, Y. C. Noh, J. T. Kim, D. O. Jung, J. H. Kim, and H. M. Kang, “Formation of cylindrical micro-lens array on fused silica glass surface using CO2 laser assisted reshaping technique,” Opt. Laser Technol. 75, 63–70 (2015).
[Crossref]

Stubager, J.

Tajahuerce, E.

O. Matoba, E. Tajahuerce, and B. Javidi, “Three-dimensional object recognition based on multiple perspectives imaging with microlens arrays,” in 14th Annual Meeting of the IEEE Lasers and Electro-Optics Society (2001), pp. 495–496.
[Crossref]

Takahashi, M.

S. W. Youn, M. Takahashi, H. Goto, and R. Maeda, “A study on focused ion beam milling of glassy carbon molds for the thermal imprinting of quartz and borosilicate glasses,” J. Micromech. Microeng. 16(12), 2576–2584 (2006).
[Crossref]

Tsai, M. H.

C. Y. Chang and M. H. Tsai, “Development of a continuous roll-to-roll processing system for mass production of plastic optical film,” J. Micromech. Microeng. 25(12), 1–10 (2015).
[Crossref]

Tseng, S. F.

S. F. Tseng, M. F. Chen, W. T. Hsiao, C. Y. Huang, C. H. Yang, and Y. S. Chen, “Laser micromilling of convex microfluidic channels onto glassy carbon for glass molding dies,” Opt. Lasers Eng. 57, 58–63 (2014).
[Crossref]

Tseng, S.-F.

C.-Y. Huang, C.-H. Kuo, W.-T. Hsiao, K.-C. Huang, S.-F. Tseng, and C.-P. Chou, “Glass biochip fabrication by laser micromachining and glass-molding process,” J. Mater. Process. Technol. 212(3), 633–639 (2012).
[Crossref]

Urey, H.

Wang, P.

X. Huang, P. Wang, E. Lin, J. Jiao, X. Wang, Y. Li, Y. Hou, and Q. Zhao, “Fabrication of the glass microlens arrays and the collimating property on nanolaser,” Appl. Phys., A Mater. Sci. Process. 122(649), 1–6 (2016).

Wang, X.

X. Huang, P. Wang, E. Lin, J. Jiao, X. Wang, Y. Li, Y. Hou, and Q. Zhao, “Fabrication of the glass microlens arrays and the collimating property on nanolaser,” Appl. Phys., A Mater. Sci. Process. 122(649), 1–6 (2016).

T. Zhou, J. Yan, Z. Liang, X. Wang, R. Kobayashi, and T. Kuriyagawa, “Development of polycrystalline Ni–P mold by heat treatment for glass microgroove forming,” Precis. Eng. 39, 25–30 (2015).
[Crossref]

F. Chen, H. Liu, Q. Yang, X. Wang, C. Hou, H. Bian, W. Liang, J. Si, and X. Hou, “Maskless fabrication of concave microlens arrays on silica glasses by a femtosecond-laser-enhanced local wet etching method,” Opt. Express 18(19), 20334–20343 (2010).
[Crossref] [PubMed]

Yan, J.

T. Zhou, J. Yan, Z. Liang, X. Wang, R. Kobayashi, and T. Kuriyagawa, “Development of polycrystalline Ni–P mold by heat treatment for glass microgroove forming,” Precis. Eng. 39, 25–30 (2015).
[Crossref]

Yang, C. H.

S. F. Tseng, M. F. Chen, W. T. Hsiao, C. Y. Huang, C. H. Yang, and Y. S. Chen, “Laser micromilling of convex microfluidic channels onto glassy carbon for glass molding dies,” Opt. Lasers Eng. 57, 58–63 (2014).
[Crossref]

Yang, Q.

Yao, D.

Y. Chen, A. Y. Yi, D. Yao, F. Klocke, and G. Pongs, “A reflow process for glass microlens array fabrication by use of precision compression molding,” J. Micromech. Microeng. 18(5), 1–8 (2008).
[Crossref]

Yi, A. Y.

Y. Chen, A. Y. Yi, D. Yao, F. Klocke, and G. Pongs, “A reflow process for glass microlens array fabrication by use of precision compression molding,” J. Micromech. Microeng. 18(5), 1–8 (2008).
[Crossref]

Yoo, D. Y.

H. K. Choi, M. S. Ahsan, D. Y. Yoo, I. B. Sohn, Y. C. Noh, J. T. Kim, D. O. Jung, J. H. Kim, and H. M. Kang, “Formation of cylindrical micro-lens array on fused silica glass surface using CO2 laser assisted reshaping technique,” Opt. Laser Technol. 75, 63–70 (2015).
[Crossref]

Youn, S. W.

S. W. Youn, M. Takahashi, H. Goto, and R. Maeda, “A study on focused ion beam milling of glassy carbon molds for the thermal imprinting of quartz and borosilicate glasses,” J. Micromech. Microeng. 16(12), 2576–2584 (2006).
[Crossref]

Yu, C. H.

C. Y. Chang and C. H. Yu, “A basic experimental study of ultrasonic assisted hot embossing process for rapid fabrication of microlens arrays,” J. Micromech. Microeng. 25(2), 1–11 (2015).
[Crossref]

Zhang, D.

J. Chen, J. Cheng, D. Zhang, and S. C. Chen, “Precision UV imprinting system for parallel fabrication of large-area micro-lens arrays on non-planar surfaces,” Precis. Eng. 44, 70–74 (2016).
[Crossref]

Zhao, Q.

X. Huang, P. Wang, E. Lin, J. Jiao, X. Wang, Y. Li, Y. Hou, and Q. Zhao, “Fabrication of the glass microlens arrays and the collimating property on nanolaser,” Appl. Phys., A Mater. Sci. Process. 122(649), 1–6 (2016).

Zhou, T.

T. Zhou, J. Yan, Z. Liang, X. Wang, R. Kobayashi, and T. Kuriyagawa, “Development of polycrystalline Ni–P mold by heat treatment for glass microgroove forming,” Precis. Eng. 39, 25–30 (2015).
[Crossref]

Appl. Opt. (1)

Appl. Phys., A Mater. Sci. Process. (1)

X. Huang, P. Wang, E. Lin, J. Jiao, X. Wang, Y. Li, Y. Hou, and Q. Zhao, “Fabrication of the glass microlens arrays and the collimating property on nanolaser,” Appl. Phys., A Mater. Sci. Process. 122(649), 1–6 (2016).

Int. J. Precis. Eng. Manuf. (1)

J. H. Ju, S. L. Lim, J. W. Seok, and S. M. Kim, “A method to fabricate Low-Cost and large area vitreous carbon mold for glass molded microstructures,” Int. J. Precis. Eng. Manuf. 16(2), 287–291 (2015).
[Crossref]

J. Mater. Process. Technol. (1)

C.-Y. Huang, C.-H. Kuo, W.-T. Hsiao, K.-C. Huang, S.-F. Tseng, and C.-P. Chou, “Glass biochip fabrication by laser micromachining and glass-molding process,” J. Mater. Process. Technol. 212(3), 633–639 (2012).
[Crossref]

J. Mater. Sci. (1)

F. C. Cowlard and J. C. Lewis, “Vitreous carbon—a new form of Carbon,” J. Mater. Sci. 2(6), 507–512 (1967).
[Crossref]

J. Micromech. Microeng. (7)

S. W. Youn, M. Takahashi, H. Goto, and R. Maeda, “A study on focused ion beam milling of glassy carbon molds for the thermal imprinting of quartz and borosilicate glasses,” J. Micromech. Microeng. 16(12), 2576–2584 (2006).
[Crossref]

E. Nam, C. Y. Lee, M. B. Jun, and B. K. Min, “Ductile mode electrochemical oxidation assisted micromachining for glassy carbon,” J. Micromech. Microeng. 25(045021), 1–8 (2015).

Y. Chen, A. Y. Yi, D. Yao, F. Klocke, and G. Pongs, “A reflow process for glass microlens array fabrication by use of precision compression molding,” J. Micromech. Microeng. 18(5), 1–8 (2008).
[Crossref]

C. Y. Huang, W. T. Hsiao, K. C. Huang, K. S. Chang, H. Y. Chou, and C. P. Chou, “Fabrication of a double-sided micro-lens array by a glass molding technique,” J. Micromech. Microeng. 21(085020), 1–6 (2011).

W. J. Choi, J. Y. Lee, W. B. Kim, B. K. Min, S. I. Kang, and S. J. Lee, “Design and fabrication of tungsten carbide mould with micro patterns imprinted by micro lithography,” J. Micromech. Microeng. 14(11), 1519–1525 (2004).
[Crossref]

C. Y. Chang and C. H. Yu, “A basic experimental study of ultrasonic assisted hot embossing process for rapid fabrication of microlens arrays,” J. Micromech. Microeng. 25(2), 1–11 (2015).
[Crossref]

C. Y. Chang and M. H. Tsai, “Development of a continuous roll-to-roll processing system for mass production of plastic optical film,” J. Micromech. Microeng. 25(12), 1–10 (2015).
[Crossref]

J. Opt. Soc. Korea (1)

Jpn. J. Appl. Phys. (1)

S. M. Kim, H. M. Kim, J. S. Lim, S. I. Kang, Y. H. Kim, R. Henderiks, A. Kastelijn, and C. Busch, “Elimination of Jitter in Microlens illuminated Optical Probe Array Using a Filtering Layer for the Optical Read Only Memory Card System,” Jpn. J. Appl. Phys. 45(2B), 1162–1166 (2006).
[Crossref]

Micromachines (Basel) (1)

Z. Li, G. Jin, F. Fang, H. Gong, and H. Jia, “Ultrasonically Assisted Single Point Diamond Turning of Optical Mold of Tungsten Carbide,” Micromachines (Basel) 9(77), 1–11 (2018).

Opt. Commun. (2)

H. Hamam, “A two-way optical interconnection network using a single mode fiber array,” Opt. Commun. 150(1-6), 270–276 (1998).
[Crossref]

E. Bonet, P. Andrés, J. C. Barreiro, and A. Pons, “Self-imaging properties of a periodic microlens array: versatile array illuminator realization,” Opt. Commun. 106(1-3), 39–44 (1994).
[Crossref]

Opt. Express (2)

Opt. Laser Technol. (1)

H. K. Choi, M. S. Ahsan, D. Y. Yoo, I. B. Sohn, Y. C. Noh, J. T. Kim, D. O. Jung, J. H. Kim, and H. M. Kang, “Formation of cylindrical micro-lens array on fused silica glass surface using CO2 laser assisted reshaping technique,” Opt. Laser Technol. 75, 63–70 (2015).
[Crossref]

Opt. Lasers Eng. (1)

S. F. Tseng, M. F. Chen, W. T. Hsiao, C. Y. Huang, C. H. Yang, and Y. S. Chen, “Laser micromilling of convex microfluidic channels onto glassy carbon for glass molding dies,” Opt. Lasers Eng. 57, 58–63 (2014).
[Crossref]

Precis. Eng. (2)

T. Zhou, J. Yan, Z. Liang, X. Wang, R. Kobayashi, and T. Kuriyagawa, “Development of polycrystalline Ni–P mold by heat treatment for glass microgroove forming,” Precis. Eng. 39, 25–30 (2015).
[Crossref]

J. Chen, J. Cheng, D. Zhang, and S. C. Chen, “Precision UV imprinting system for parallel fabrication of large-area micro-lens arrays on non-planar surfaces,” Precis. Eng. 44, 70–74 (2016).
[Crossref]

Sensors (Basel) (1)

H. J. Jang, M. R. Haq, Y. K. Kim, J. Kim, P. H. Oh, J. H. Ju, S. M. Kim, and J. S. Lim, “Fabrication of Glass Microchannel via Glass Imprinting using a Vitreous Carbon Mold for Flow Focusing Droplet Generator,” Sensors (Basel) 18(83), 1–9 (2018).

Other (1)

O. Matoba, E. Tajahuerce, and B. Javidi, “Three-dimensional object recognition based on multiple perspectives imaging with microlens arrays,” in 14th Annual Meeting of the IEEE Lasers and Electro-Optics Society (2001), pp. 495–496.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic of the fabrication process for glass molded MLA using a VC mold.
Fig. 2
Fig. 2 AFM and SEM measurement results of fabricated (a) thermal reflowed MLA master, (b) polymer master, (c) cured furan precursor, and (d) carbonized VC mold.
Fig. 3
Fig. 3 Comparison of cross-sectional surface profiles of the reflowed master, polymer master, furan precursor (inverted), and VC mold (inverted) by AFM.
Fig. 4
Fig. 4 (a) Effects of glass molding temperature on the measured sag height at the molding pressure of 2 MPa, and (b) optical microscope image and sample picture (left bottom) of glass molded microlens at a temperature of 730°C and a pressure of 2MPa,
Fig. 5
Fig. 5 Comparison of cross-sectional surface profiles obtained by AFM measurement results between the VC mold (inverted) and the glass molded MLA with applied pressures of 1 MPa and 2 MPa.
Fig. 6
Fig. 6 (a) AFM and (b) SEM measurement results of glass molded MLA with a pitch of 9.9 μm, diameter 8.4 μm, and sag height 0.699 μm.
Fig. 7
Fig. 7 (a) 3D intensity profile and (b) cross-sectional profile of the focused laser beam (wavelength of 655 nm) of the glass molded MLA

Metrics