Abstract

We present, to the best of our knowledge, design and performance data of the first diode-pumped Alexandrite ring laser in Q-switched single-longitudinal mode (SLM) operation. The laser resonator contains two Alexandrite crystals, which are pumped longitudinally by means of two laser diode-bar modules emitting at 636 nm. Single-longitudinal mode operation is achieved by seeding the laser with a diode laser operating in SLM and actively stabilizing the cavity, yielding a linewidth of < 10 MHz at the potassium resonance line at 770 nm. The pulse energy is 1 mJ at a repetition rate of 150 Hz and 0.65 mJ at 320 Hz. The beam quality of M2 < 1.2 in both directions remains unchanged for the different repetition rates. After characterization in the laboratory, the laser was implemented in a novel mobile lidar system and first atmospheric measurements were conducted successfully.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Diode-pumped Q-switched Alexandrite laser in single longitudinal mode operation with Watt-level output power

Alexander Munk, Michael Strotkamp, Martin Walochnik, Bernd Jungbluth, Martin Traub, Hans-Dieter Hoffmann, Reinhart Poprawe, Josef Höffner, and Franz-Josef Lübken
Opt. Lett. 43(22) 5492-5495 (2018)

Diode-pumped Alexandrite lasers in Q-switched and cavity-dumped Q-switched operation

G. M. Thomas, A. Minassian, X. Sheng, and M. J. Damzen
Opt. Express 24(24) 27212-27224 (2016)

Unidirectional single-frequency operation of a continuous-wave Alexandrite ring laser with wavelength tunability

Xin Sheng, Goronwy Tawy, Juna Sathian, Ara Minassian, and Michael J. Damzen
Opt. Express 26(24) 31129-31136 (2018)

References

  • View by:
  • |
  • |
  • |

  1. J. Höffner and C. Fricke-Begemann, “Accurate lidar temperatures with narrowband filters,” Opt. Lett. 30(8), 890–892 (2005).
    [Crossref] [PubMed]
  2. J. Lautenbach, J. Höffner, P. Menzel, and P. Keller, “The new scanning iron lidar, current state and future developments,” in Proceedings of the 17th ESA Symposium on European Rocket and Balloon Programmes and Related Research, B. Warmbein (ESA, 2005), pp. 327–329.
  3. V. Wulfmeyer and J. Bösenberg, “Single-mode operation of an injection-seeded alexandrite ring laser for application in water-vapor and temperature differential absorption lidar,” Opt. Lett. 21(15), 1150–1152 (1996).
    [Crossref] [PubMed]
  4. U. von Zahn and J. Höffner, “Mesopause temperature profiling by potassium lidar,” Geophys. Res. Lett. 23(2), 141–144 (1996).
    [Crossref]
  5. J. Höffner and F.-J. Lübken, “Potassium lidar temperatures and densities in the mesopause region at Spitsbergen (78°N),” J. Geophys. Res. 112(D20), D20114 (2007).
    [Crossref]
  6. F.-J. Lübken, J. Höffner, T. P. Viehl, B. Kaifler, and R. J. Morris, “First measurements of thermal tides in the summer mesopause region at Antarctic latitudes,” Geophys. Res. Lett. 38(24), L24806 (2011).
    [Crossref]
  7. J. A. McKay and T. D. Wilkerson, “Diode-pumped alexandrite laser for DIAL and Doppler lidar,” Proc. SPIE 3127, 124–132 (1997).
    [Crossref]
  8. M. Damzen, “Diode-pumped Alexandrite laser: a bright prospect for future space Lidar missions,” Proc. SPIE 8534B, 81 (2012).
  9. R. Scheps, B. M. Gately, J. F. Myers, J. S. Krasinski, and D. F. Heller, “Alexandrite laser pumped by semiconductor lasers,” Appl. Phys. Lett. 56(23), 2288–2290 (1990).
    [Crossref]
  10. R. Scheps, J. F. Myers, T. R. Glesne, and H. B. Serreze, “Monochromatic end-pumped operation of an Alexandrite laser,” Opt. Commun. 97(5–6), 363–366 (1993).
    [Crossref]
  11. A. Teppitaksak, A. Minassian, G. M. Thomas, and M. J. Damzen, “High efficiency >26 W diode end-pumped Alexandrite laser,” Opt. Express 22(13), 16386–16392 (2014).
    [Crossref] [PubMed]
  12. M. Strotkamp, U. Witte, A. Munk, A. Hartung, S. Gausmann, S. Hengesbach, M. Traub, H.-D. Hoffmann, J. Hoeffner, and B. Jungbluth, “Broadly tunable, longitudinally diode-pumped Alexandrite laser,” Proc. SPIE 8959, 89591G (2014).
  13. I. Yorulmaz, E. Beyatli, A. Kurt, A. Sennaroglu, and U. Demirbas, “Efficient and low-threshold Alexandrite laser pumped by a single-mode diode,” Opt. Mater. Express 4(4), 776–789 (2014).
    [Crossref]
  14. A. Munk, B. Jungbluth, M. Strotkamp, H.-D. Hoffmann, R. Poprawe, and J. Höffner, “Diode-pumped Alexandrite ring laser for lidar applications,” Proc. SPIE 9726, 97260I (2016).
    [Crossref]
  15. G. M. Thomas, A. Minassian, X. Sheng, and M. J. Damzen, “Diode-pumped Alexandrite lasers in Q-switched and cavity-dumped Q-switched operation,” Opt. Express 24(24), 27212–27224 (2016).
    [Crossref] [PubMed]
  16. U. Parali, X. Sheng, A. Minassian, G. Tawy, J. Sathian, G. M. Thomas, and M. J. Damzen, “Diode-pumped Alexandrite laser with passive SESAM Q-switching and wavelength tenability,” Opt. Commun. 410, 970–976 (2018).
    [Crossref]
  17. S. Ghanbari, K. A. Fedorova, A. B. Krysa, E. U. Rafailov, and A. Major, “Femtosecond Alexandrite laser passively mode-locked by an InP/InGaP quantum-dot saturable absorber,” Opt. Lett. 43(2), 232–234 (2018).
    [Crossref] [PubMed]
  18. C. Cihan, A. Muti, I. Baylam, A. Kocabas, U. Demirbas, and A. Sennaroglu, “70 femtosecond Kerr-lens mode-locked multipass-cavity Alexandrite laser,” Opt. Lett. 43(6), 1315–1318 (2018).
    [Crossref] [PubMed]
  19. P. Pichon, A. Barbet, J. P. Blanchot, F. Druon, F. Balembois, and P. Georges, “LED-pumped alexandrite laser oscillator and amplifier,” Opt. Lett. 42(20), 4191–4194 (2017).
    [Crossref] [PubMed]
  20. V. Evtuhov and A. E. Siegman, “A “Twisted-Mode” Technique for Obtaining Axially Uniform Energy Density in a Laser Cavity,” Appl. Opt. 4(1), 142–143 (1965).
    [Crossref]
  21. K. Nicklaus, V. Morasch, M. Hoefer, J. Luttmann, M. Vierkötter, M. Ostermeyer, J. Höffner, C. Lemmerz, and D. Hoffmann, “Frequency stabilization of Q-switched Nd:YAG oscillators for airborne and spaceborne lidar systems,” Proc. SPIE 6451, 64511L (2007).
    [Crossref]

2018 (3)

2017 (1)

2016 (2)

A. Munk, B. Jungbluth, M. Strotkamp, H.-D. Hoffmann, R. Poprawe, and J. Höffner, “Diode-pumped Alexandrite ring laser for lidar applications,” Proc. SPIE 9726, 97260I (2016).
[Crossref]

G. M. Thomas, A. Minassian, X. Sheng, and M. J. Damzen, “Diode-pumped Alexandrite lasers in Q-switched and cavity-dumped Q-switched operation,” Opt. Express 24(24), 27212–27224 (2016).
[Crossref] [PubMed]

2014 (3)

2012 (1)

M. Damzen, “Diode-pumped Alexandrite laser: a bright prospect for future space Lidar missions,” Proc. SPIE 8534B, 81 (2012).

2011 (1)

F.-J. Lübken, J. Höffner, T. P. Viehl, B. Kaifler, and R. J. Morris, “First measurements of thermal tides in the summer mesopause region at Antarctic latitudes,” Geophys. Res. Lett. 38(24), L24806 (2011).
[Crossref]

2007 (2)

J. Höffner and F.-J. Lübken, “Potassium lidar temperatures and densities in the mesopause region at Spitsbergen (78°N),” J. Geophys. Res. 112(D20), D20114 (2007).
[Crossref]

K. Nicklaus, V. Morasch, M. Hoefer, J. Luttmann, M. Vierkötter, M. Ostermeyer, J. Höffner, C. Lemmerz, and D. Hoffmann, “Frequency stabilization of Q-switched Nd:YAG oscillators for airborne and spaceborne lidar systems,” Proc. SPIE 6451, 64511L (2007).
[Crossref]

2005 (1)

1997 (1)

J. A. McKay and T. D. Wilkerson, “Diode-pumped alexandrite laser for DIAL and Doppler lidar,” Proc. SPIE 3127, 124–132 (1997).
[Crossref]

1996 (2)

1993 (1)

R. Scheps, J. F. Myers, T. R. Glesne, and H. B. Serreze, “Monochromatic end-pumped operation of an Alexandrite laser,” Opt. Commun. 97(5–6), 363–366 (1993).
[Crossref]

1990 (1)

R. Scheps, B. M. Gately, J. F. Myers, J. S. Krasinski, and D. F. Heller, “Alexandrite laser pumped by semiconductor lasers,” Appl. Phys. Lett. 56(23), 2288–2290 (1990).
[Crossref]

1965 (1)

Balembois, F.

Barbet, A.

Baylam, I.

Beyatli, E.

Blanchot, J. P.

Bösenberg, J.

Cihan, C.

Damzen, M.

M. Damzen, “Diode-pumped Alexandrite laser: a bright prospect for future space Lidar missions,” Proc. SPIE 8534B, 81 (2012).

Damzen, M. J.

Demirbas, U.

Druon, F.

Evtuhov, V.

Fedorova, K. A.

Fricke-Begemann, C.

Gately, B. M.

R. Scheps, B. M. Gately, J. F. Myers, J. S. Krasinski, and D. F. Heller, “Alexandrite laser pumped by semiconductor lasers,” Appl. Phys. Lett. 56(23), 2288–2290 (1990).
[Crossref]

Gausmann, S.

M. Strotkamp, U. Witte, A. Munk, A. Hartung, S. Gausmann, S. Hengesbach, M. Traub, H.-D. Hoffmann, J. Hoeffner, and B. Jungbluth, “Broadly tunable, longitudinally diode-pumped Alexandrite laser,” Proc. SPIE 8959, 89591G (2014).

Georges, P.

Ghanbari, S.

Glesne, T. R.

R. Scheps, J. F. Myers, T. R. Glesne, and H. B. Serreze, “Monochromatic end-pumped operation of an Alexandrite laser,” Opt. Commun. 97(5–6), 363–366 (1993).
[Crossref]

Hartung, A.

M. Strotkamp, U. Witte, A. Munk, A. Hartung, S. Gausmann, S. Hengesbach, M. Traub, H.-D. Hoffmann, J. Hoeffner, and B. Jungbluth, “Broadly tunable, longitudinally diode-pumped Alexandrite laser,” Proc. SPIE 8959, 89591G (2014).

Heller, D. F.

R. Scheps, B. M. Gately, J. F. Myers, J. S. Krasinski, and D. F. Heller, “Alexandrite laser pumped by semiconductor lasers,” Appl. Phys. Lett. 56(23), 2288–2290 (1990).
[Crossref]

Hengesbach, S.

M. Strotkamp, U. Witte, A. Munk, A. Hartung, S. Gausmann, S. Hengesbach, M. Traub, H.-D. Hoffmann, J. Hoeffner, and B. Jungbluth, “Broadly tunable, longitudinally diode-pumped Alexandrite laser,” Proc. SPIE 8959, 89591G (2014).

Hoefer, M.

K. Nicklaus, V. Morasch, M. Hoefer, J. Luttmann, M. Vierkötter, M. Ostermeyer, J. Höffner, C. Lemmerz, and D. Hoffmann, “Frequency stabilization of Q-switched Nd:YAG oscillators for airborne and spaceborne lidar systems,” Proc. SPIE 6451, 64511L (2007).
[Crossref]

Hoeffner, J.

M. Strotkamp, U. Witte, A. Munk, A. Hartung, S. Gausmann, S. Hengesbach, M. Traub, H.-D. Hoffmann, J. Hoeffner, and B. Jungbluth, “Broadly tunable, longitudinally diode-pumped Alexandrite laser,” Proc. SPIE 8959, 89591G (2014).

Hoffmann, D.

K. Nicklaus, V. Morasch, M. Hoefer, J. Luttmann, M. Vierkötter, M. Ostermeyer, J. Höffner, C. Lemmerz, and D. Hoffmann, “Frequency stabilization of Q-switched Nd:YAG oscillators for airborne and spaceborne lidar systems,” Proc. SPIE 6451, 64511L (2007).
[Crossref]

Hoffmann, H.-D.

A. Munk, B. Jungbluth, M. Strotkamp, H.-D. Hoffmann, R. Poprawe, and J. Höffner, “Diode-pumped Alexandrite ring laser for lidar applications,” Proc. SPIE 9726, 97260I (2016).
[Crossref]

M. Strotkamp, U. Witte, A. Munk, A. Hartung, S. Gausmann, S. Hengesbach, M. Traub, H.-D. Hoffmann, J. Hoeffner, and B. Jungbluth, “Broadly tunable, longitudinally diode-pumped Alexandrite laser,” Proc. SPIE 8959, 89591G (2014).

Höffner, J.

A. Munk, B. Jungbluth, M. Strotkamp, H.-D. Hoffmann, R. Poprawe, and J. Höffner, “Diode-pumped Alexandrite ring laser for lidar applications,” Proc. SPIE 9726, 97260I (2016).
[Crossref]

F.-J. Lübken, J. Höffner, T. P. Viehl, B. Kaifler, and R. J. Morris, “First measurements of thermal tides in the summer mesopause region at Antarctic latitudes,” Geophys. Res. Lett. 38(24), L24806 (2011).
[Crossref]

J. Höffner and F.-J. Lübken, “Potassium lidar temperatures and densities in the mesopause region at Spitsbergen (78°N),” J. Geophys. Res. 112(D20), D20114 (2007).
[Crossref]

K. Nicklaus, V. Morasch, M. Hoefer, J. Luttmann, M. Vierkötter, M. Ostermeyer, J. Höffner, C. Lemmerz, and D. Hoffmann, “Frequency stabilization of Q-switched Nd:YAG oscillators for airborne and spaceborne lidar systems,” Proc. SPIE 6451, 64511L (2007).
[Crossref]

J. Höffner and C. Fricke-Begemann, “Accurate lidar temperatures with narrowband filters,” Opt. Lett. 30(8), 890–892 (2005).
[Crossref] [PubMed]

U. von Zahn and J. Höffner, “Mesopause temperature profiling by potassium lidar,” Geophys. Res. Lett. 23(2), 141–144 (1996).
[Crossref]

Jungbluth, B.

A. Munk, B. Jungbluth, M. Strotkamp, H.-D. Hoffmann, R. Poprawe, and J. Höffner, “Diode-pumped Alexandrite ring laser for lidar applications,” Proc. SPIE 9726, 97260I (2016).
[Crossref]

M. Strotkamp, U. Witte, A. Munk, A. Hartung, S. Gausmann, S. Hengesbach, M. Traub, H.-D. Hoffmann, J. Hoeffner, and B. Jungbluth, “Broadly tunable, longitudinally diode-pumped Alexandrite laser,” Proc. SPIE 8959, 89591G (2014).

Kaifler, B.

F.-J. Lübken, J. Höffner, T. P. Viehl, B. Kaifler, and R. J. Morris, “First measurements of thermal tides in the summer mesopause region at Antarctic latitudes,” Geophys. Res. Lett. 38(24), L24806 (2011).
[Crossref]

Kocabas, A.

Krasinski, J. S.

R. Scheps, B. M. Gately, J. F. Myers, J. S. Krasinski, and D. F. Heller, “Alexandrite laser pumped by semiconductor lasers,” Appl. Phys. Lett. 56(23), 2288–2290 (1990).
[Crossref]

Krysa, A. B.

Kurt, A.

Lemmerz, C.

K. Nicklaus, V. Morasch, M. Hoefer, J. Luttmann, M. Vierkötter, M. Ostermeyer, J. Höffner, C. Lemmerz, and D. Hoffmann, “Frequency stabilization of Q-switched Nd:YAG oscillators for airborne and spaceborne lidar systems,” Proc. SPIE 6451, 64511L (2007).
[Crossref]

Lübken, F.-J.

F.-J. Lübken, J. Höffner, T. P. Viehl, B. Kaifler, and R. J. Morris, “First measurements of thermal tides in the summer mesopause region at Antarctic latitudes,” Geophys. Res. Lett. 38(24), L24806 (2011).
[Crossref]

J. Höffner and F.-J. Lübken, “Potassium lidar temperatures and densities in the mesopause region at Spitsbergen (78°N),” J. Geophys. Res. 112(D20), D20114 (2007).
[Crossref]

Luttmann, J.

K. Nicklaus, V. Morasch, M. Hoefer, J. Luttmann, M. Vierkötter, M. Ostermeyer, J. Höffner, C. Lemmerz, and D. Hoffmann, “Frequency stabilization of Q-switched Nd:YAG oscillators for airborne and spaceborne lidar systems,” Proc. SPIE 6451, 64511L (2007).
[Crossref]

Major, A.

McKay, J. A.

J. A. McKay and T. D. Wilkerson, “Diode-pumped alexandrite laser for DIAL and Doppler lidar,” Proc. SPIE 3127, 124–132 (1997).
[Crossref]

Minassian, A.

Morasch, V.

K. Nicklaus, V. Morasch, M. Hoefer, J. Luttmann, M. Vierkötter, M. Ostermeyer, J. Höffner, C. Lemmerz, and D. Hoffmann, “Frequency stabilization of Q-switched Nd:YAG oscillators for airborne and spaceborne lidar systems,” Proc. SPIE 6451, 64511L (2007).
[Crossref]

Morris, R. J.

F.-J. Lübken, J. Höffner, T. P. Viehl, B. Kaifler, and R. J. Morris, “First measurements of thermal tides in the summer mesopause region at Antarctic latitudes,” Geophys. Res. Lett. 38(24), L24806 (2011).
[Crossref]

Munk, A.

A. Munk, B. Jungbluth, M. Strotkamp, H.-D. Hoffmann, R. Poprawe, and J. Höffner, “Diode-pumped Alexandrite ring laser for lidar applications,” Proc. SPIE 9726, 97260I (2016).
[Crossref]

M. Strotkamp, U. Witte, A. Munk, A. Hartung, S. Gausmann, S. Hengesbach, M. Traub, H.-D. Hoffmann, J. Hoeffner, and B. Jungbluth, “Broadly tunable, longitudinally diode-pumped Alexandrite laser,” Proc. SPIE 8959, 89591G (2014).

Muti, A.

Myers, J. F.

R. Scheps, J. F. Myers, T. R. Glesne, and H. B. Serreze, “Monochromatic end-pumped operation of an Alexandrite laser,” Opt. Commun. 97(5–6), 363–366 (1993).
[Crossref]

R. Scheps, B. M. Gately, J. F. Myers, J. S. Krasinski, and D. F. Heller, “Alexandrite laser pumped by semiconductor lasers,” Appl. Phys. Lett. 56(23), 2288–2290 (1990).
[Crossref]

Nicklaus, K.

K. Nicklaus, V. Morasch, M. Hoefer, J. Luttmann, M. Vierkötter, M. Ostermeyer, J. Höffner, C. Lemmerz, and D. Hoffmann, “Frequency stabilization of Q-switched Nd:YAG oscillators for airborne and spaceborne lidar systems,” Proc. SPIE 6451, 64511L (2007).
[Crossref]

Ostermeyer, M.

K. Nicklaus, V. Morasch, M. Hoefer, J. Luttmann, M. Vierkötter, M. Ostermeyer, J. Höffner, C. Lemmerz, and D. Hoffmann, “Frequency stabilization of Q-switched Nd:YAG oscillators for airborne and spaceborne lidar systems,” Proc. SPIE 6451, 64511L (2007).
[Crossref]

Parali, U.

U. Parali, X. Sheng, A. Minassian, G. Tawy, J. Sathian, G. M. Thomas, and M. J. Damzen, “Diode-pumped Alexandrite laser with passive SESAM Q-switching and wavelength tenability,” Opt. Commun. 410, 970–976 (2018).
[Crossref]

Pichon, P.

Poprawe, R.

A. Munk, B. Jungbluth, M. Strotkamp, H.-D. Hoffmann, R. Poprawe, and J. Höffner, “Diode-pumped Alexandrite ring laser for lidar applications,” Proc. SPIE 9726, 97260I (2016).
[Crossref]

Rafailov, E. U.

Sathian, J.

U. Parali, X. Sheng, A. Minassian, G. Tawy, J. Sathian, G. M. Thomas, and M. J. Damzen, “Diode-pumped Alexandrite laser with passive SESAM Q-switching and wavelength tenability,” Opt. Commun. 410, 970–976 (2018).
[Crossref]

Scheps, R.

R. Scheps, J. F. Myers, T. R. Glesne, and H. B. Serreze, “Monochromatic end-pumped operation of an Alexandrite laser,” Opt. Commun. 97(5–6), 363–366 (1993).
[Crossref]

R. Scheps, B. M. Gately, J. F. Myers, J. S. Krasinski, and D. F. Heller, “Alexandrite laser pumped by semiconductor lasers,” Appl. Phys. Lett. 56(23), 2288–2290 (1990).
[Crossref]

Sennaroglu, A.

Serreze, H. B.

R. Scheps, J. F. Myers, T. R. Glesne, and H. B. Serreze, “Monochromatic end-pumped operation of an Alexandrite laser,” Opt. Commun. 97(5–6), 363–366 (1993).
[Crossref]

Sheng, X.

U. Parali, X. Sheng, A. Minassian, G. Tawy, J. Sathian, G. M. Thomas, and M. J. Damzen, “Diode-pumped Alexandrite laser with passive SESAM Q-switching and wavelength tenability,” Opt. Commun. 410, 970–976 (2018).
[Crossref]

G. M. Thomas, A. Minassian, X. Sheng, and M. J. Damzen, “Diode-pumped Alexandrite lasers in Q-switched and cavity-dumped Q-switched operation,” Opt. Express 24(24), 27212–27224 (2016).
[Crossref] [PubMed]

Siegman, A. E.

Strotkamp, M.

A. Munk, B. Jungbluth, M. Strotkamp, H.-D. Hoffmann, R. Poprawe, and J. Höffner, “Diode-pumped Alexandrite ring laser for lidar applications,” Proc. SPIE 9726, 97260I (2016).
[Crossref]

M. Strotkamp, U. Witte, A. Munk, A. Hartung, S. Gausmann, S. Hengesbach, M. Traub, H.-D. Hoffmann, J. Hoeffner, and B. Jungbluth, “Broadly tunable, longitudinally diode-pumped Alexandrite laser,” Proc. SPIE 8959, 89591G (2014).

Tawy, G.

U. Parali, X. Sheng, A. Minassian, G. Tawy, J. Sathian, G. M. Thomas, and M. J. Damzen, “Diode-pumped Alexandrite laser with passive SESAM Q-switching and wavelength tenability,” Opt. Commun. 410, 970–976 (2018).
[Crossref]

Teppitaksak, A.

Thomas, G. M.

Traub, M.

M. Strotkamp, U. Witte, A. Munk, A. Hartung, S. Gausmann, S. Hengesbach, M. Traub, H.-D. Hoffmann, J. Hoeffner, and B. Jungbluth, “Broadly tunable, longitudinally diode-pumped Alexandrite laser,” Proc. SPIE 8959, 89591G (2014).

Viehl, T. P.

F.-J. Lübken, J. Höffner, T. P. Viehl, B. Kaifler, and R. J. Morris, “First measurements of thermal tides in the summer mesopause region at Antarctic latitudes,” Geophys. Res. Lett. 38(24), L24806 (2011).
[Crossref]

Vierkötter, M.

K. Nicklaus, V. Morasch, M. Hoefer, J. Luttmann, M. Vierkötter, M. Ostermeyer, J. Höffner, C. Lemmerz, and D. Hoffmann, “Frequency stabilization of Q-switched Nd:YAG oscillators for airborne and spaceborne lidar systems,” Proc. SPIE 6451, 64511L (2007).
[Crossref]

von Zahn, U.

U. von Zahn and J. Höffner, “Mesopause temperature profiling by potassium lidar,” Geophys. Res. Lett. 23(2), 141–144 (1996).
[Crossref]

Wilkerson, T. D.

J. A. McKay and T. D. Wilkerson, “Diode-pumped alexandrite laser for DIAL and Doppler lidar,” Proc. SPIE 3127, 124–132 (1997).
[Crossref]

Witte, U.

M. Strotkamp, U. Witte, A. Munk, A. Hartung, S. Gausmann, S. Hengesbach, M. Traub, H.-D. Hoffmann, J. Hoeffner, and B. Jungbluth, “Broadly tunable, longitudinally diode-pumped Alexandrite laser,” Proc. SPIE 8959, 89591G (2014).

Wulfmeyer, V.

Yorulmaz, I.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

R. Scheps, B. M. Gately, J. F. Myers, J. S. Krasinski, and D. F. Heller, “Alexandrite laser pumped by semiconductor lasers,” Appl. Phys. Lett. 56(23), 2288–2290 (1990).
[Crossref]

Geophys. Res. Lett. (2)

U. von Zahn and J. Höffner, “Mesopause temperature profiling by potassium lidar,” Geophys. Res. Lett. 23(2), 141–144 (1996).
[Crossref]

F.-J. Lübken, J. Höffner, T. P. Viehl, B. Kaifler, and R. J. Morris, “First measurements of thermal tides in the summer mesopause region at Antarctic latitudes,” Geophys. Res. Lett. 38(24), L24806 (2011).
[Crossref]

J. Geophys. Res. (1)

J. Höffner and F.-J. Lübken, “Potassium lidar temperatures and densities in the mesopause region at Spitsbergen (78°N),” J. Geophys. Res. 112(D20), D20114 (2007).
[Crossref]

Opt. Commun. (2)

R. Scheps, J. F. Myers, T. R. Glesne, and H. B. Serreze, “Monochromatic end-pumped operation of an Alexandrite laser,” Opt. Commun. 97(5–6), 363–366 (1993).
[Crossref]

U. Parali, X. Sheng, A. Minassian, G. Tawy, J. Sathian, G. M. Thomas, and M. J. Damzen, “Diode-pumped Alexandrite laser with passive SESAM Q-switching and wavelength tenability,” Opt. Commun. 410, 970–976 (2018).
[Crossref]

Opt. Express (2)

Opt. Lett. (5)

Opt. Mater. Express (1)

Proc. SPIE (5)

A. Munk, B. Jungbluth, M. Strotkamp, H.-D. Hoffmann, R. Poprawe, and J. Höffner, “Diode-pumped Alexandrite ring laser for lidar applications,” Proc. SPIE 9726, 97260I (2016).
[Crossref]

J. A. McKay and T. D. Wilkerson, “Diode-pumped alexandrite laser for DIAL and Doppler lidar,” Proc. SPIE 3127, 124–132 (1997).
[Crossref]

M. Damzen, “Diode-pumped Alexandrite laser: a bright prospect for future space Lidar missions,” Proc. SPIE 8534B, 81 (2012).

M. Strotkamp, U. Witte, A. Munk, A. Hartung, S. Gausmann, S. Hengesbach, M. Traub, H.-D. Hoffmann, J. Hoeffner, and B. Jungbluth, “Broadly tunable, longitudinally diode-pumped Alexandrite laser,” Proc. SPIE 8959, 89591G (2014).

K. Nicklaus, V. Morasch, M. Hoefer, J. Luttmann, M. Vierkötter, M. Ostermeyer, J. Höffner, C. Lemmerz, and D. Hoffmann, “Frequency stabilization of Q-switched Nd:YAG oscillators for airborne and spaceborne lidar systems,” Proc. SPIE 6451, 64511L (2007).
[Crossref]

Other (1)

J. Lautenbach, J. Höffner, P. Menzel, and P. Keller, “The new scanning iron lidar, current state and future developments,” in Proceedings of the 17th ESA Symposium on European Rocket and Balloon Programmes and Related Research, B. Warmbein (ESA, 2005), pp. 327–329.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Pulse peak power as a function of the pump current for different repetition rates and spectrum of the diode pump module at 20 A pump current, 200 µs pulse length and a repetition rate of 250 Hz (inlet). (b) Beam caustic in fast-axis and slow-axis behind pump optics and beam profile in the focus (inlet).
Fig. 2
Fig. 2 Scheme of the pump configuration: the pump light is focused through the pumping mirror into the crystal by the focusing lens. Because of the lower beam quality, the divergence in the direction of the slow-axis is much stronger compared to the fast-axis. The laser mode, which is matched in its size to the pump beam size in the fast-axis, passes the laser medium under a small angle in the direction of the slow-axis and is redirected through the crystal along the optical axis by the pumping mirror. Due to the small angle between incoming and outgoing beam, the two can be separated after the laser medium with a scraper mirror.
Fig. 3
Fig. 3 Schematic setup of the ring cavity with numbered cavity elements: Focusing lens (1), pumping mirror (2), Alexandrite crystal with intrinsic thermal lens (3), flat folding mirrors (4), output coupler (5), mirror on piezo actor for stabilization of the cavity length (6), curved mirror (7), Faraday Rotator (8), half-wave plate (9), Brewster Pockels cell (10), thin-film polarizer (11).
Fig. 4
Fig. 4 Photograph of the ring cavity with the beam path sketching in red.
Fig. 5
Fig. 5 (a) Pulse energy in SLM operation over time. (b) Caustic of the laser in single longitudinal mode operation after cylindrical beam shaping with beam profiles in focus and far field.
Fig. 6
Fig. 6 (a) Optical spectrum of the Q-switched ring laser with and without seeding. (b) Pulse shape in single-longitudinal mode operation.
Fig. 7
Fig. 7 First atmospheric measurements of the potassium layer with the diode-pumped alexandrite laser.

Metrics