Abstract

We present a thin film crystal ion sliced (CIS) LiNbO3 phase modulator that demonstrates an unprecedented measured electro-optic (EO) response up to 500 GHz. Shallow rib waveguides are utilized for guiding a single transverse electric (TE) optical mode, and Au coplanar waveguides (CPWs) support the modulating radio frequency (RF) mode. Precise index matching between the co-propagating RF and optical modes is responsible for the device’s broadband response, which is estimated to extend even beyond 500 GHz. Matching the velocities of these co-propagating RF and optical modes is realized by cladding the modulator’s interaction region in a thin UV15 polymer layer, which increases the RF modal index. The fabricated modulator possesses a tightly confined optical mode, which lends itself to a strong interaction between the modulating RF field and the guided optical carrier; resulting in a measured DC half-wave voltage of 3.8 V·cm−1. The design, fabrication, and characterization of our broadband modulator is presented in this work.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
110 GHz CMOS compatible thin film LiNbO3 modulator on silicon

Andrew J. Mercante, Peng Yao, Shouyuan Shi, Garrett Schneider, Janusz Murakowski, and Dennis W. Prather
Opt. Express 24(14) 15590-15595 (2016)

High-performance racetrack resonator in silicon nitride - thin film lithium niobate hybrid platform

Abu Naim R. Ahmed, Shouyuan Shi, Andrew J. Mercante, and Dennis W. Prather
Opt. Express 27(21) 30741-30751 (2019)

Bonded thin film lithium niobate modulator on a silicon photonics platform exceeding 100 GHz 3-dB electrical modulation bandwidth

Peter O. Weigel, Jie Zhao, Kelvin Fang, Hasan Al-Rubaye, Douglas Trotter, Dana Hood, John Mudrick, Christina Dallo, Andrew T. Pomerene, Andrew L. Starbuck, Christopher T. DeRose, Anthony L. Lentine, Gabriel Rebeiz, and Shayan Mookherjea
Opt. Express 26(18) 23728-23739 (2018)

References

  • View by:
  • |
  • |
  • |

  1. M. De Micheli, J. Botineau, P. Sibillot, D. B. Ostrowsky, and M. Papuchon, “Fabrication and characterization of titanium indiffused proton exchanged (TIPE) waveguides in lithium niobate,” Opt. Commun. 42(2), 101–103 (1982).
    [Crossref]
  2. Y. Shi, “Micromachined wide-band lithium-niobate electrooptic Modulators,” IEEE Trans. Microw. Theory Tech. 54(2), 810–815 (2006).
    [Crossref]
  3. M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293–2295 (1998).
    [Crossref]
  4. G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photonics Rev. 6(4), 488–503 (2012).
    [Crossref]
  5. A. Rao and S. Fathpour, “Compact lithium niobate electrooptic modulators,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–14 (2018).
    [Crossref]
  6. A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro–optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
    [Crossref]
  7. C. Wang, M. Zhang, B. Stern, M. Lipson, and M. Lončar, “Nanophotonic lithium niobate electro-optic modulators,” Opt. Express 26(2), 1547–1555 (2018).
    [Crossref] [PubMed]
  8. V. Stenger, J. Toney, A. Pollick, J. Busch, J. Scholl, P. Pontius, and S. Sriram, “Integrated RF photonic devices based on crystal ion sliced lithium niobate,” in L. P. Sadwick and C. M. O. Sullivan, eds. (2013), pp. 86240I 1–8.
  9. A. J. Mercante, P. Yao, S. Shi, G. Schneider, J. Murakowski, and D. W. Prather, “110 GHz CMOS compatible thin film LiNbO3 modulator on silicon,” Opt. Express 24(14), 15590–15595 (2016).
    [Crossref] [PubMed]
  10. L. Cai, Y. Kang, and H. Hu, “Electric-optical property of the proton exchanged phase modulator in single-crystal lithium niobate thin film,” Opt. Express 24(5), 4640–4647 (2016).
    [Crossref] [PubMed]
  11. V. Stenger, J. Toney, A. Pollick, J. Busch, J. Scholl, P. Pontius, and S. Sriram, “Engineered thin film lithium niobate substrate for high gain-bandwidth electro-optic modulators,” in CLEO: Science and Innovations (Optical Society of America, 2013).
  12. L. Chen, J. Chen, J. Nagy, and R. M. Reano, “Highly linear ring modulator from hybrid silicon and lithium niobate,” Opt. Express 23(10), 13255–13264 (2015).
    [Crossref] [PubMed]
  13. L. Chen, Q. Xu, M. G. Wood, and R. M. Reano, “Hybrid silicon and lithium niobate electro-optical ring modulator,” Optica 1(2), 112–118 (2014).
    [Crossref]
  14. L. Chen, M. G. Wood, and R. M. Reano, “12.5 pm/V hybrid silicon and lithium niobate optical microring resonator with integrated electrodes,” Opt. Express 21(22), 27003–27010 (2013).
    [Crossref] [PubMed]
  15. P. O. Weigel, M. Savanier, C. T. DeRose, A. T. Pomerene, A. L. Starbuck, A. L. Lentine, V. Stenger, and S. Mookherjea, “Lightwave circuits in lithium niobate through hybrid waveguides with silicon photonics,” Sci. Rep. 6(1), 22301 (2016).
    [Crossref] [PubMed]
  16. A. Rao, A. Patil, P. Rabiei, A. Honardoost, R. DeSalvo, A. Paolella, and S. Fathpour, “High-performance and linear thin-film lithium niobate Mach-Zehnder modulators on silicon up to 50 GHz,” Opt. Lett. 41(24), 5700–5703 (2016).
    [Crossref] [PubMed]
  17. P. O. Weigel, J. Zhao, K. Fang, H. Al-Rubaye, D. Trotter, and D. Hood, “Hybrid silicon photonic – lithium niobate electro-optic Mach-Zehnder modulator beyond 100 GHz,” arXiv:1803.10365 (2018).
  18. L. Chang, Y. Li, N. Volet, L. Wang, J. Peters, and J. E. Bowers, “Thin film wavelength converters for photonic integrated circuits,” Optica 3(5), 531–535 (2016).
    [Crossref]
  19. L. Chang, M. H. P. Pfeiffer, N. Volet, M. Zervas, J. D. Peters, C. L. Manganelli, E. J. Stanton, Y. Li, T. J. Kippenberg, and J. E. Bowers, “Heterogeneous integration of lithium niobate and silicon nitride waveguides for wafer-scale photonic integrated circuits on silicon,” Opt. Lett. 42(4), 803–806 (2017).
    [Crossref] [PubMed]
  20. Y. C. Shen, “Terahertz pulsed spectroscopy and imaging for pharmaceutical applications: A review,” Int. J. Pharm. 417(1-2), 48–60 (2011).
    [Crossref] [PubMed]
  21. D. Shrekenhamer, C. M. Watts, and W. J. Padilla, “Terahertz single pixel imaging with an optically controlled dynamic spatial light modulator,” Opt. Express 21(10), 12507–12518 (2013).
    [Crossref] [PubMed]
  22. M. C. Kemp, P. F. Taday, B. E. Cole, J. A. Cluff, A. J. Fitzgerald, and W. R. Tribe, “Security applications of terahertz technology,” in R. J. Hwu and D. L. Woolard, eds. (2003), pp. 44–52.
  23. T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photonics 10(6), 371–379 (2016).
    [Crossref]
  24. J. Macario, P. Yao, S. Shi, A. Zablocki, C. Harrity, R. D. Martin, C. A. Schuetz, and D. W. Prather, “Full spectrum millimeter-wave modulation,” Opt. Express 20(21), 23623–23629 (2012).
    [Crossref] [PubMed]
  25. K. Aoki, J. Kondou, O. Mitomi, and M. Minakata, “Velocity-matching conditions for ultrahigh-speed optical LiNbO3 modulators with traveling-wave electrode,” Jpn. J. Appl. Phys. 45(11), 8696–8698 (2006).
    [Crossref]
  26. M. Lee, “Dielectric constant and loss tangent in LiNbO3 crystals from 90 to 147 GHz,” Appl. Phys. Lett. 79(9), 1342–1344 (2001).
    [Crossref]
  27. D. K. Ghodgaonkar, V. V. Varadan, and V. K. Varadan, “A free-space method for measurement of dielectric constants and loss tangents at microwave frequencies,” IEEE Trans. Instrum. Meas. 37(3), 789–793 (1989).
    [Crossref]
  28. D. L. K. Eng, B. C. Olbricht, S. Shi, and D. W. Prather, “Dielectric characterization of thin films using microstrip ring resonators,” Microw. Opt. Technol. Lett. 57(10), 2306–2310 (2015).
    [Crossref]
  29. D. L. K. Eng, Z. Aranda, B. C. Olbricht, S. Shi, and D. W. Prather, “Heterogeneous packaging of organic electro-optic modulators with RF substrates,” IEEE Photonics Technol. Lett. 28(6), 613–616 (2016).
    [Crossref]
  30. I. Krasnokutska, J. J. Tambasco, X. Li, and A. Peruzzo, “Ultra-low loss photonic circuits in lithium niobate on insulator,” Opt. Express 26(2), 897–904 (2018).
    [Crossref] [PubMed]
  31. D. L. K. Eng, S. T. Kozacik, I. V. Kosilkin, J. P. Wilson, D. D. Ross, S. Shi, L. Dalton, B. C. Olbricht, and D. W. Prather, “Simple fabrication and processing of an all-polymer electrooptic modulator,” IEEE J. Sel. Top. Quantum Electron. 19(6), 190–195 (2013).
    [Crossref]
  32. Y. Shi, L. Yan, and A. E. Willner, “High-speed electrooptic modulator characterization using optical spectrum analysis,” J. Lightwave Technol. 21(10), 2358–2367 (2003).
    [Crossref]
  33. C. J. Huang, C. A. Schuetz, R. Shireen, S. Shi, and D. W. Prather, “LiNbO 3 optical modulator for MMW sensing and imaging,” in R. Appleby and D. A. Wikner, eds. (2007), pp. 65480I–1–9.
  34. M. Y. Frankel, S. Gupta, J. A. Valdmanis, and G. A. Mourou, “Terahertz attenuation and dispersion characteristics of coplanar transmission lines,” IEEE Trans. Microw. Theory Tech. 39(6), 910–916 (1991).
    [Crossref]
  35. J. Chiles, M. Malinowski, A. Rao, S. Novak, K. Richardson, and S. Fathpour, “Low-loss, submicron chalcogenide integrated photonics with chlorine plasma etching,” Appl. Phys. Lett. 106, 111110 (2015).

2018 (3)

2017 (1)

2016 (7)

D. L. K. Eng, Z. Aranda, B. C. Olbricht, S. Shi, and D. W. Prather, “Heterogeneous packaging of organic electro-optic modulators with RF substrates,” IEEE Photonics Technol. Lett. 28(6), 613–616 (2016).
[Crossref]

P. O. Weigel, M. Savanier, C. T. DeRose, A. T. Pomerene, A. L. Starbuck, A. L. Lentine, V. Stenger, and S. Mookherjea, “Lightwave circuits in lithium niobate through hybrid waveguides with silicon photonics,” Sci. Rep. 6(1), 22301 (2016).
[Crossref] [PubMed]

A. Rao, A. Patil, P. Rabiei, A. Honardoost, R. DeSalvo, A. Paolella, and S. Fathpour, “High-performance and linear thin-film lithium niobate Mach-Zehnder modulators on silicon up to 50 GHz,” Opt. Lett. 41(24), 5700–5703 (2016).
[Crossref] [PubMed]

L. Chang, Y. Li, N. Volet, L. Wang, J. Peters, and J. E. Bowers, “Thin film wavelength converters for photonic integrated circuits,” Optica 3(5), 531–535 (2016).
[Crossref]

T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photonics 10(6), 371–379 (2016).
[Crossref]

A. J. Mercante, P. Yao, S. Shi, G. Schneider, J. Murakowski, and D. W. Prather, “110 GHz CMOS compatible thin film LiNbO3 modulator on silicon,” Opt. Express 24(14), 15590–15595 (2016).
[Crossref] [PubMed]

L. Cai, Y. Kang, and H. Hu, “Electric-optical property of the proton exchanged phase modulator in single-crystal lithium niobate thin film,” Opt. Express 24(5), 4640–4647 (2016).
[Crossref] [PubMed]

2015 (3)

L. Chen, J. Chen, J. Nagy, and R. M. Reano, “Highly linear ring modulator from hybrid silicon and lithium niobate,” Opt. Express 23(10), 13255–13264 (2015).
[Crossref] [PubMed]

J. Chiles, M. Malinowski, A. Rao, S. Novak, K. Richardson, and S. Fathpour, “Low-loss, submicron chalcogenide integrated photonics with chlorine plasma etching,” Appl. Phys. Lett. 106, 111110 (2015).

D. L. K. Eng, B. C. Olbricht, S. Shi, and D. W. Prather, “Dielectric characterization of thin films using microstrip ring resonators,” Microw. Opt. Technol. Lett. 57(10), 2306–2310 (2015).
[Crossref]

2014 (1)

2013 (3)

2012 (2)

G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photonics Rev. 6(4), 488–503 (2012).
[Crossref]

J. Macario, P. Yao, S. Shi, A. Zablocki, C. Harrity, R. D. Martin, C. A. Schuetz, and D. W. Prather, “Full spectrum millimeter-wave modulation,” Opt. Express 20(21), 23623–23629 (2012).
[Crossref] [PubMed]

2011 (1)

Y. C. Shen, “Terahertz pulsed spectroscopy and imaging for pharmaceutical applications: A review,” Int. J. Pharm. 417(1-2), 48–60 (2011).
[Crossref] [PubMed]

2007 (1)

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro–optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
[Crossref]

2006 (2)

K. Aoki, J. Kondou, O. Mitomi, and M. Minakata, “Velocity-matching conditions for ultrahigh-speed optical LiNbO3 modulators with traveling-wave electrode,” Jpn. J. Appl. Phys. 45(11), 8696–8698 (2006).
[Crossref]

Y. Shi, “Micromachined wide-band lithium-niobate electrooptic Modulators,” IEEE Trans. Microw. Theory Tech. 54(2), 810–815 (2006).
[Crossref]

2003 (1)

2001 (1)

M. Lee, “Dielectric constant and loss tangent in LiNbO3 crystals from 90 to 147 GHz,” Appl. Phys. Lett. 79(9), 1342–1344 (2001).
[Crossref]

1998 (1)

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293–2295 (1998).
[Crossref]

1991 (1)

M. Y. Frankel, S. Gupta, J. A. Valdmanis, and G. A. Mourou, “Terahertz attenuation and dispersion characteristics of coplanar transmission lines,” IEEE Trans. Microw. Theory Tech. 39(6), 910–916 (1991).
[Crossref]

1989 (1)

D. K. Ghodgaonkar, V. V. Varadan, and V. K. Varadan, “A free-space method for measurement of dielectric constants and loss tangents at microwave frequencies,” IEEE Trans. Instrum. Meas. 37(3), 789–793 (1989).
[Crossref]

1982 (1)

M. De Micheli, J. Botineau, P. Sibillot, D. B. Ostrowsky, and M. Papuchon, “Fabrication and characterization of titanium indiffused proton exchanged (TIPE) waveguides in lithium niobate,” Opt. Commun. 42(2), 101–103 (1982).
[Crossref]

Aoki, K.

K. Aoki, J. Kondou, O. Mitomi, and M. Minakata, “Velocity-matching conditions for ultrahigh-speed optical LiNbO3 modulators with traveling-wave electrode,” Jpn. J. Appl. Phys. 45(11), 8696–8698 (2006).
[Crossref]

Aranda, Z.

D. L. K. Eng, Z. Aranda, B. C. Olbricht, S. Shi, and D. W. Prather, “Heterogeneous packaging of organic electro-optic modulators with RF substrates,” IEEE Photonics Technol. Lett. 28(6), 613–616 (2016).
[Crossref]

Bakhru, H.

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293–2295 (1998).
[Crossref]

Botineau, J.

M. De Micheli, J. Botineau, P. Sibillot, D. B. Ostrowsky, and M. Papuchon, “Fabrication and characterization of titanium indiffused proton exchanged (TIPE) waveguides in lithium niobate,” Opt. Commun. 42(2), 101–103 (1982).
[Crossref]

Bowers, J. E.

Cai, L.

Cargill, G. S.

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293–2295 (1998).
[Crossref]

Chang, L.

Chen, J.

Chen, L.

Chiles, J.

J. Chiles, M. Malinowski, A. Rao, S. Novak, K. Richardson, and S. Fathpour, “Low-loss, submicron chalcogenide integrated photonics with chlorine plasma etching,” Appl. Phys. Lett. 106, 111110 (2015).

Cross, L. E.

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293–2295 (1998).
[Crossref]

Dalton, L.

D. L. K. Eng, S. T. Kozacik, I. V. Kosilkin, J. P. Wilson, D. D. Ross, S. Shi, L. Dalton, B. C. Olbricht, and D. W. Prather, “Simple fabrication and processing of an all-polymer electrooptic modulator,” IEEE J. Sel. Top. Quantum Electron. 19(6), 190–195 (2013).
[Crossref]

De Micheli, M.

M. De Micheli, J. Botineau, P. Sibillot, D. B. Ostrowsky, and M. Papuchon, “Fabrication and characterization of titanium indiffused proton exchanged (TIPE) waveguides in lithium niobate,” Opt. Commun. 42(2), 101–103 (1982).
[Crossref]

Degl’Innocenti, R.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro–optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
[Crossref]

DeRose, C. T.

P. O. Weigel, M. Savanier, C. T. DeRose, A. T. Pomerene, A. L. Starbuck, A. L. Lentine, V. Stenger, and S. Mookherjea, “Lightwave circuits in lithium niobate through hybrid waveguides with silicon photonics,” Sci. Rep. 6(1), 22301 (2016).
[Crossref] [PubMed]

DeSalvo, R.

Ducournau, G.

T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photonics 10(6), 371–379 (2016).
[Crossref]

Eng, D. L. K.

D. L. K. Eng, Z. Aranda, B. C. Olbricht, S. Shi, and D. W. Prather, “Heterogeneous packaging of organic electro-optic modulators with RF substrates,” IEEE Photonics Technol. Lett. 28(6), 613–616 (2016).
[Crossref]

D. L. K. Eng, B. C. Olbricht, S. Shi, and D. W. Prather, “Dielectric characterization of thin films using microstrip ring resonators,” Microw. Opt. Technol. Lett. 57(10), 2306–2310 (2015).
[Crossref]

D. L. K. Eng, S. T. Kozacik, I. V. Kosilkin, J. P. Wilson, D. D. Ross, S. Shi, L. Dalton, B. C. Olbricht, and D. W. Prather, “Simple fabrication and processing of an all-polymer electrooptic modulator,” IEEE J. Sel. Top. Quantum Electron. 19(6), 190–195 (2013).
[Crossref]

Fathpour, S.

A. Rao and S. Fathpour, “Compact lithium niobate electrooptic modulators,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–14 (2018).
[Crossref]

A. Rao, A. Patil, P. Rabiei, A. Honardoost, R. DeSalvo, A. Paolella, and S. Fathpour, “High-performance and linear thin-film lithium niobate Mach-Zehnder modulators on silicon up to 50 GHz,” Opt. Lett. 41(24), 5700–5703 (2016).
[Crossref] [PubMed]

J. Chiles, M. Malinowski, A. Rao, S. Novak, K. Richardson, and S. Fathpour, “Low-loss, submicron chalcogenide integrated photonics with chlorine plasma etching,” Appl. Phys. Lett. 106, 111110 (2015).

Frankel, M. Y.

M. Y. Frankel, S. Gupta, J. A. Valdmanis, and G. A. Mourou, “Terahertz attenuation and dispersion characteristics of coplanar transmission lines,” IEEE Trans. Microw. Theory Tech. 39(6), 910–916 (1991).
[Crossref]

Ghodgaonkar, D. K.

D. K. Ghodgaonkar, V. V. Varadan, and V. K. Varadan, “A free-space method for measurement of dielectric constants and loss tangents at microwave frequencies,” IEEE Trans. Instrum. Meas. 37(3), 789–793 (1989).
[Crossref]

Guarino, A.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro–optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
[Crossref]

Günter, P.

G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photonics Rev. 6(4), 488–503 (2012).
[Crossref]

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro–optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
[Crossref]

Gupta, S.

M. Y. Frankel, S. Gupta, J. A. Valdmanis, and G. A. Mourou, “Terahertz attenuation and dispersion characteristics of coplanar transmission lines,” IEEE Trans. Microw. Theory Tech. 39(6), 910–916 (1991).
[Crossref]

Harrity, C.

Honardoost, A.

Hu, H.

L. Cai, Y. Kang, and H. Hu, “Electric-optical property of the proton exchanged phase modulator in single-crystal lithium niobate thin film,” Opt. Express 24(5), 4640–4647 (2016).
[Crossref] [PubMed]

G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photonics Rev. 6(4), 488–503 (2012).
[Crossref]

Kang, Y.

Kippenberg, T. J.

Kondou, J.

K. Aoki, J. Kondou, O. Mitomi, and M. Minakata, “Velocity-matching conditions for ultrahigh-speed optical LiNbO3 modulators with traveling-wave electrode,” Jpn. J. Appl. Phys. 45(11), 8696–8698 (2006).
[Crossref]

Kosilkin, I. V.

D. L. K. Eng, S. T. Kozacik, I. V. Kosilkin, J. P. Wilson, D. D. Ross, S. Shi, L. Dalton, B. C. Olbricht, and D. W. Prather, “Simple fabrication and processing of an all-polymer electrooptic modulator,” IEEE J. Sel. Top. Quantum Electron. 19(6), 190–195 (2013).
[Crossref]

Kozacik, S. T.

D. L. K. Eng, S. T. Kozacik, I. V. Kosilkin, J. P. Wilson, D. D. Ross, S. Shi, L. Dalton, B. C. Olbricht, and D. W. Prather, “Simple fabrication and processing of an all-polymer electrooptic modulator,” IEEE J. Sel. Top. Quantum Electron. 19(6), 190–195 (2013).
[Crossref]

Krasnokutska, I.

Kumar, A.

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293–2295 (1998).
[Crossref]

Lee, M.

M. Lee, “Dielectric constant and loss tangent in LiNbO3 crystals from 90 to 147 GHz,” Appl. Phys. Lett. 79(9), 1342–1344 (2001).
[Crossref]

Lentine, A. L.

P. O. Weigel, M. Savanier, C. T. DeRose, A. T. Pomerene, A. L. Starbuck, A. L. Lentine, V. Stenger, and S. Mookherjea, “Lightwave circuits in lithium niobate through hybrid waveguides with silicon photonics,” Sci. Rep. 6(1), 22301 (2016).
[Crossref] [PubMed]

Levy, M.

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293–2295 (1998).
[Crossref]

Li, X.

Li, Y.

Lipson, M.

Liu, R.

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293–2295 (1998).
[Crossref]

Loncar, M.

Macario, J.

Malinowski, M.

J. Chiles, M. Malinowski, A. Rao, S. Novak, K. Richardson, and S. Fathpour, “Low-loss, submicron chalcogenide integrated photonics with chlorine plasma etching,” Appl. Phys. Lett. 106, 111110 (2015).

Manganelli, C. L.

Martin, R. D.

Mercante, A. J.

Minakata, M.

K. Aoki, J. Kondou, O. Mitomi, and M. Minakata, “Velocity-matching conditions for ultrahigh-speed optical LiNbO3 modulators with traveling-wave electrode,” Jpn. J. Appl. Phys. 45(11), 8696–8698 (2006).
[Crossref]

Mitomi, O.

K. Aoki, J. Kondou, O. Mitomi, and M. Minakata, “Velocity-matching conditions for ultrahigh-speed optical LiNbO3 modulators with traveling-wave electrode,” Jpn. J. Appl. Phys. 45(11), 8696–8698 (2006).
[Crossref]

Mookherjea, S.

P. O. Weigel, M. Savanier, C. T. DeRose, A. T. Pomerene, A. L. Starbuck, A. L. Lentine, V. Stenger, and S. Mookherjea, “Lightwave circuits in lithium niobate through hybrid waveguides with silicon photonics,” Sci. Rep. 6(1), 22301 (2016).
[Crossref] [PubMed]

Mourou, G. A.

M. Y. Frankel, S. Gupta, J. A. Valdmanis, and G. A. Mourou, “Terahertz attenuation and dispersion characteristics of coplanar transmission lines,” IEEE Trans. Microw. Theory Tech. 39(6), 910–916 (1991).
[Crossref]

Murakowski, J.

Nagatsuma, T.

T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photonics 10(6), 371–379 (2016).
[Crossref]

Nagy, J.

Novak, S.

J. Chiles, M. Malinowski, A. Rao, S. Novak, K. Richardson, and S. Fathpour, “Low-loss, submicron chalcogenide integrated photonics with chlorine plasma etching,” Appl. Phys. Lett. 106, 111110 (2015).

Olbricht, B. C.

D. L. K. Eng, Z. Aranda, B. C. Olbricht, S. Shi, and D. W. Prather, “Heterogeneous packaging of organic electro-optic modulators with RF substrates,” IEEE Photonics Technol. Lett. 28(6), 613–616 (2016).
[Crossref]

D. L. K. Eng, B. C. Olbricht, S. Shi, and D. W. Prather, “Dielectric characterization of thin films using microstrip ring resonators,” Microw. Opt. Technol. Lett. 57(10), 2306–2310 (2015).
[Crossref]

D. L. K. Eng, S. T. Kozacik, I. V. Kosilkin, J. P. Wilson, D. D. Ross, S. Shi, L. Dalton, B. C. Olbricht, and D. W. Prather, “Simple fabrication and processing of an all-polymer electrooptic modulator,” IEEE J. Sel. Top. Quantum Electron. 19(6), 190–195 (2013).
[Crossref]

Osgood, R. M.

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293–2295 (1998).
[Crossref]

Ostrowsky, D. B.

M. De Micheli, J. Botineau, P. Sibillot, D. B. Ostrowsky, and M. Papuchon, “Fabrication and characterization of titanium indiffused proton exchanged (TIPE) waveguides in lithium niobate,” Opt. Commun. 42(2), 101–103 (1982).
[Crossref]

Padilla, W. J.

Paolella, A.

Papuchon, M.

M. De Micheli, J. Botineau, P. Sibillot, D. B. Ostrowsky, and M. Papuchon, “Fabrication and characterization of titanium indiffused proton exchanged (TIPE) waveguides in lithium niobate,” Opt. Commun. 42(2), 101–103 (1982).
[Crossref]

Patil, A.

Peruzzo, A.

Peters, J.

Peters, J. D.

Pfeiffer, M. H. P.

Poberaj, G.

G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photonics Rev. 6(4), 488–503 (2012).
[Crossref]

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro–optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
[Crossref]

Pomerene, A. T.

P. O. Weigel, M. Savanier, C. T. DeRose, A. T. Pomerene, A. L. Starbuck, A. L. Lentine, V. Stenger, and S. Mookherjea, “Lightwave circuits in lithium niobate through hybrid waveguides with silicon photonics,” Sci. Rep. 6(1), 22301 (2016).
[Crossref] [PubMed]

Prather, D. W.

D. L. K. Eng, Z. Aranda, B. C. Olbricht, S. Shi, and D. W. Prather, “Heterogeneous packaging of organic electro-optic modulators with RF substrates,” IEEE Photonics Technol. Lett. 28(6), 613–616 (2016).
[Crossref]

A. J. Mercante, P. Yao, S. Shi, G. Schneider, J. Murakowski, and D. W. Prather, “110 GHz CMOS compatible thin film LiNbO3 modulator on silicon,” Opt. Express 24(14), 15590–15595 (2016).
[Crossref] [PubMed]

D. L. K. Eng, B. C. Olbricht, S. Shi, and D. W. Prather, “Dielectric characterization of thin films using microstrip ring resonators,” Microw. Opt. Technol. Lett. 57(10), 2306–2310 (2015).
[Crossref]

D. L. K. Eng, S. T. Kozacik, I. V. Kosilkin, J. P. Wilson, D. D. Ross, S. Shi, L. Dalton, B. C. Olbricht, and D. W. Prather, “Simple fabrication and processing of an all-polymer electrooptic modulator,” IEEE J. Sel. Top. Quantum Electron. 19(6), 190–195 (2013).
[Crossref]

J. Macario, P. Yao, S. Shi, A. Zablocki, C. Harrity, R. D. Martin, C. A. Schuetz, and D. W. Prather, “Full spectrum millimeter-wave modulation,” Opt. Express 20(21), 23623–23629 (2012).
[Crossref] [PubMed]

Rabiei, P.

Rao, A.

A. Rao and S. Fathpour, “Compact lithium niobate electrooptic modulators,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–14 (2018).
[Crossref]

A. Rao, A. Patil, P. Rabiei, A. Honardoost, R. DeSalvo, A. Paolella, and S. Fathpour, “High-performance and linear thin-film lithium niobate Mach-Zehnder modulators on silicon up to 50 GHz,” Opt. Lett. 41(24), 5700–5703 (2016).
[Crossref] [PubMed]

J. Chiles, M. Malinowski, A. Rao, S. Novak, K. Richardson, and S. Fathpour, “Low-loss, submicron chalcogenide integrated photonics with chlorine plasma etching,” Appl. Phys. Lett. 106, 111110 (2015).

Reano, R. M.

Renaud, C. C.

T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photonics 10(6), 371–379 (2016).
[Crossref]

Rezzonico, D.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro–optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
[Crossref]

Richardson, K.

J. Chiles, M. Malinowski, A. Rao, S. Novak, K. Richardson, and S. Fathpour, “Low-loss, submicron chalcogenide integrated photonics with chlorine plasma etching,” Appl. Phys. Lett. 106, 111110 (2015).

Ross, D. D.

D. L. K. Eng, S. T. Kozacik, I. V. Kosilkin, J. P. Wilson, D. D. Ross, S. Shi, L. Dalton, B. C. Olbricht, and D. W. Prather, “Simple fabrication and processing of an all-polymer electrooptic modulator,” IEEE J. Sel. Top. Quantum Electron. 19(6), 190–195 (2013).
[Crossref]

Savanier, M.

P. O. Weigel, M. Savanier, C. T. DeRose, A. T. Pomerene, A. L. Starbuck, A. L. Lentine, V. Stenger, and S. Mookherjea, “Lightwave circuits in lithium niobate through hybrid waveguides with silicon photonics,” Sci. Rep. 6(1), 22301 (2016).
[Crossref] [PubMed]

Schneider, G.

Schuetz, C. A.

Shen, Y. C.

Y. C. Shen, “Terahertz pulsed spectroscopy and imaging for pharmaceutical applications: A review,” Int. J. Pharm. 417(1-2), 48–60 (2011).
[Crossref] [PubMed]

Shi, S.

D. L. K. Eng, Z. Aranda, B. C. Olbricht, S. Shi, and D. W. Prather, “Heterogeneous packaging of organic electro-optic modulators with RF substrates,” IEEE Photonics Technol. Lett. 28(6), 613–616 (2016).
[Crossref]

A. J. Mercante, P. Yao, S. Shi, G. Schneider, J. Murakowski, and D. W. Prather, “110 GHz CMOS compatible thin film LiNbO3 modulator on silicon,” Opt. Express 24(14), 15590–15595 (2016).
[Crossref] [PubMed]

D. L. K. Eng, B. C. Olbricht, S. Shi, and D. W. Prather, “Dielectric characterization of thin films using microstrip ring resonators,” Microw. Opt. Technol. Lett. 57(10), 2306–2310 (2015).
[Crossref]

D. L. K. Eng, S. T. Kozacik, I. V. Kosilkin, J. P. Wilson, D. D. Ross, S. Shi, L. Dalton, B. C. Olbricht, and D. W. Prather, “Simple fabrication and processing of an all-polymer electrooptic modulator,” IEEE J. Sel. Top. Quantum Electron. 19(6), 190–195 (2013).
[Crossref]

J. Macario, P. Yao, S. Shi, A. Zablocki, C. Harrity, R. D. Martin, C. A. Schuetz, and D. W. Prather, “Full spectrum millimeter-wave modulation,” Opt. Express 20(21), 23623–23629 (2012).
[Crossref] [PubMed]

Shi, Y.

Y. Shi, “Micromachined wide-band lithium-niobate electrooptic Modulators,” IEEE Trans. Microw. Theory Tech. 54(2), 810–815 (2006).
[Crossref]

Y. Shi, L. Yan, and A. E. Willner, “High-speed electrooptic modulator characterization using optical spectrum analysis,” J. Lightwave Technol. 21(10), 2358–2367 (2003).
[Crossref]

Shrekenhamer, D.

Sibillot, P.

M. De Micheli, J. Botineau, P. Sibillot, D. B. Ostrowsky, and M. Papuchon, “Fabrication and characterization of titanium indiffused proton exchanged (TIPE) waveguides in lithium niobate,” Opt. Commun. 42(2), 101–103 (1982).
[Crossref]

Sohler, W.

G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photonics Rev. 6(4), 488–503 (2012).
[Crossref]

Stanton, E. J.

Starbuck, A. L.

P. O. Weigel, M. Savanier, C. T. DeRose, A. T. Pomerene, A. L. Starbuck, A. L. Lentine, V. Stenger, and S. Mookherjea, “Lightwave circuits in lithium niobate through hybrid waveguides with silicon photonics,” Sci. Rep. 6(1), 22301 (2016).
[Crossref] [PubMed]

Stenger, V.

P. O. Weigel, M. Savanier, C. T. DeRose, A. T. Pomerene, A. L. Starbuck, A. L. Lentine, V. Stenger, and S. Mookherjea, “Lightwave circuits in lithium niobate through hybrid waveguides with silicon photonics,” Sci. Rep. 6(1), 22301 (2016).
[Crossref] [PubMed]

Stern, B.

Tambasco, J. J.

Valdmanis, J. A.

M. Y. Frankel, S. Gupta, J. A. Valdmanis, and G. A. Mourou, “Terahertz attenuation and dispersion characteristics of coplanar transmission lines,” IEEE Trans. Microw. Theory Tech. 39(6), 910–916 (1991).
[Crossref]

Varadan, V. K.

D. K. Ghodgaonkar, V. V. Varadan, and V. K. Varadan, “A free-space method for measurement of dielectric constants and loss tangents at microwave frequencies,” IEEE Trans. Instrum. Meas. 37(3), 789–793 (1989).
[Crossref]

Varadan, V. V.

D. K. Ghodgaonkar, V. V. Varadan, and V. K. Varadan, “A free-space method for measurement of dielectric constants and loss tangents at microwave frequencies,” IEEE Trans. Instrum. Meas. 37(3), 789–793 (1989).
[Crossref]

Volet, N.

Wang, C.

Wang, L.

Watts, C. M.

Weigel, P. O.

P. O. Weigel, M. Savanier, C. T. DeRose, A. T. Pomerene, A. L. Starbuck, A. L. Lentine, V. Stenger, and S. Mookherjea, “Lightwave circuits in lithium niobate through hybrid waveguides with silicon photonics,” Sci. Rep. 6(1), 22301 (2016).
[Crossref] [PubMed]

Willner, A. E.

Wilson, J. P.

D. L. K. Eng, S. T. Kozacik, I. V. Kosilkin, J. P. Wilson, D. D. Ross, S. Shi, L. Dalton, B. C. Olbricht, and D. W. Prather, “Simple fabrication and processing of an all-polymer electrooptic modulator,” IEEE J. Sel. Top. Quantum Electron. 19(6), 190–195 (2013).
[Crossref]

Wood, M. G.

Xu, Q.

Yan, L.

Yao, P.

Zablocki, A.

Zervas, M.

Zhang, M.

Appl. Phys. Lett. (3)

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293–2295 (1998).
[Crossref]

M. Lee, “Dielectric constant and loss tangent in LiNbO3 crystals from 90 to 147 GHz,” Appl. Phys. Lett. 79(9), 1342–1344 (2001).
[Crossref]

J. Chiles, M. Malinowski, A. Rao, S. Novak, K. Richardson, and S. Fathpour, “Low-loss, submicron chalcogenide integrated photonics with chlorine plasma etching,” Appl. Phys. Lett. 106, 111110 (2015).

IEEE J. Sel. Top. Quantum Electron. (2)

D. L. K. Eng, S. T. Kozacik, I. V. Kosilkin, J. P. Wilson, D. D. Ross, S. Shi, L. Dalton, B. C. Olbricht, and D. W. Prather, “Simple fabrication and processing of an all-polymer electrooptic modulator,” IEEE J. Sel. Top. Quantum Electron. 19(6), 190–195 (2013).
[Crossref]

A. Rao and S. Fathpour, “Compact lithium niobate electrooptic modulators,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–14 (2018).
[Crossref]

IEEE Photonics Technol. Lett. (1)

D. L. K. Eng, Z. Aranda, B. C. Olbricht, S. Shi, and D. W. Prather, “Heterogeneous packaging of organic electro-optic modulators with RF substrates,” IEEE Photonics Technol. Lett. 28(6), 613–616 (2016).
[Crossref]

IEEE Trans. Instrum. Meas. (1)

D. K. Ghodgaonkar, V. V. Varadan, and V. K. Varadan, “A free-space method for measurement of dielectric constants and loss tangents at microwave frequencies,” IEEE Trans. Instrum. Meas. 37(3), 789–793 (1989).
[Crossref]

IEEE Trans. Microw. Theory Tech. (2)

M. Y. Frankel, S. Gupta, J. A. Valdmanis, and G. A. Mourou, “Terahertz attenuation and dispersion characteristics of coplanar transmission lines,” IEEE Trans. Microw. Theory Tech. 39(6), 910–916 (1991).
[Crossref]

Y. Shi, “Micromachined wide-band lithium-niobate electrooptic Modulators,” IEEE Trans. Microw. Theory Tech. 54(2), 810–815 (2006).
[Crossref]

Int. J. Pharm. (1)

Y. C. Shen, “Terahertz pulsed spectroscopy and imaging for pharmaceutical applications: A review,” Int. J. Pharm. 417(1-2), 48–60 (2011).
[Crossref] [PubMed]

J. Lightwave Technol. (1)

Jpn. J. Appl. Phys. (1)

K. Aoki, J. Kondou, O. Mitomi, and M. Minakata, “Velocity-matching conditions for ultrahigh-speed optical LiNbO3 modulators with traveling-wave electrode,” Jpn. J. Appl. Phys. 45(11), 8696–8698 (2006).
[Crossref]

Laser Photonics Rev. (1)

G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photonics Rev. 6(4), 488–503 (2012).
[Crossref]

Microw. Opt. Technol. Lett. (1)

D. L. K. Eng, B. C. Olbricht, S. Shi, and D. W. Prather, “Dielectric characterization of thin films using microstrip ring resonators,” Microw. Opt. Technol. Lett. 57(10), 2306–2310 (2015).
[Crossref]

Nat. Photonics (2)

T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photonics 10(6), 371–379 (2016).
[Crossref]

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro–optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
[Crossref]

Opt. Commun. (1)

M. De Micheli, J. Botineau, P. Sibillot, D. B. Ostrowsky, and M. Papuchon, “Fabrication and characterization of titanium indiffused proton exchanged (TIPE) waveguides in lithium niobate,” Opt. Commun. 42(2), 101–103 (1982).
[Crossref]

Opt. Express (8)

C. Wang, M. Zhang, B. Stern, M. Lipson, and M. Lončar, “Nanophotonic lithium niobate electro-optic modulators,” Opt. Express 26(2), 1547–1555 (2018).
[Crossref] [PubMed]

A. J. Mercante, P. Yao, S. Shi, G. Schneider, J. Murakowski, and D. W. Prather, “110 GHz CMOS compatible thin film LiNbO3 modulator on silicon,” Opt. Express 24(14), 15590–15595 (2016).
[Crossref] [PubMed]

L. Cai, Y. Kang, and H. Hu, “Electric-optical property of the proton exchanged phase modulator in single-crystal lithium niobate thin film,” Opt. Express 24(5), 4640–4647 (2016).
[Crossref] [PubMed]

L. Chen, J. Chen, J. Nagy, and R. M. Reano, “Highly linear ring modulator from hybrid silicon and lithium niobate,” Opt. Express 23(10), 13255–13264 (2015).
[Crossref] [PubMed]

L. Chen, M. G. Wood, and R. M. Reano, “12.5 pm/V hybrid silicon and lithium niobate optical microring resonator with integrated electrodes,” Opt. Express 21(22), 27003–27010 (2013).
[Crossref] [PubMed]

J. Macario, P. Yao, S. Shi, A. Zablocki, C. Harrity, R. D. Martin, C. A. Schuetz, and D. W. Prather, “Full spectrum millimeter-wave modulation,” Opt. Express 20(21), 23623–23629 (2012).
[Crossref] [PubMed]

D. Shrekenhamer, C. M. Watts, and W. J. Padilla, “Terahertz single pixel imaging with an optically controlled dynamic spatial light modulator,” Opt. Express 21(10), 12507–12518 (2013).
[Crossref] [PubMed]

I. Krasnokutska, J. J. Tambasco, X. Li, and A. Peruzzo, “Ultra-low loss photonic circuits in lithium niobate on insulator,” Opt. Express 26(2), 897–904 (2018).
[Crossref] [PubMed]

Opt. Lett. (2)

Optica (2)

Sci. Rep. (1)

P. O. Weigel, M. Savanier, C. T. DeRose, A. T. Pomerene, A. L. Starbuck, A. L. Lentine, V. Stenger, and S. Mookherjea, “Lightwave circuits in lithium niobate through hybrid waveguides with silicon photonics,” Sci. Rep. 6(1), 22301 (2016).
[Crossref] [PubMed]

Other (5)

P. O. Weigel, J. Zhao, K. Fang, H. Al-Rubaye, D. Trotter, and D. Hood, “Hybrid silicon photonic – lithium niobate electro-optic Mach-Zehnder modulator beyond 100 GHz,” arXiv:1803.10365 (2018).

V. Stenger, J. Toney, A. Pollick, J. Busch, J. Scholl, P. Pontius, and S. Sriram, “Engineered thin film lithium niobate substrate for high gain-bandwidth electro-optic modulators,” in CLEO: Science and Innovations (Optical Society of America, 2013).

V. Stenger, J. Toney, A. Pollick, J. Busch, J. Scholl, P. Pontius, and S. Sriram, “Integrated RF photonic devices based on crystal ion sliced lithium niobate,” in L. P. Sadwick and C. M. O. Sullivan, eds. (2013), pp. 86240I 1–8.

M. C. Kemp, P. F. Taday, B. E. Cole, J. A. Cluff, A. J. Fitzgerald, and W. R. Tribe, “Security applications of terahertz technology,” in R. J. Hwu and D. L. Woolard, eds. (2003), pp. 44–52.

C. J. Huang, C. A. Schuetz, R. Shireen, S. Shi, and D. W. Prather, “LiNbO 3 optical modulator for MMW sensing and imaging,” in R. Appleby and D. A. Wikner, eds. (2007), pp. 65480I–1–9.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a,b) SEM images of a fabricated device’s air-clad launch and interaction regions. (c) Cross-sectional schematic of the modulator’s interaction region. Simulated results for both a modulating RF electric field at 110 GHz and a guided optical carrier possessing a wavelength of 1550 nm are overlaid onto the illustration. Data for the optical mode simulation is normalized to its maximum value, while the simulated RF field assumes that 1 V is applied across the GSG electrodes.
Fig. 2
Fig. 2 Simulated effective indices, three traces are plotted. The red and blue traces represent the simulated RF effective phase indices of a device under two different cladding circumstances. The green trace is the simulated optical group index of a UV15 cladded optical waveguide at an optical wavelength of 1550 nm.
Fig. 3
Fig. 3 Normalized optical modulation spectra of a 1550 nm optical carrier modulated up to 500 GHz. This is a symmetric spectrum but for clarity only the upper portion is displayed.
Fig. 4
Fig. 4 (a) Measured and calculated modulator half-wave voltages are presented. The measured trace is extracted from the sideband measurements. The calculated trace is based on the simulated DC-Vπ, the measured/extrapolated S21 transmission parameter, and the simulated effective indices. (b) Measured transmission S21 and reflection S11 parameters of a fabricated device’s CPW electrodes.

Metrics