Abstract

Antireflective structures, inspired from moth eyes, are still reserved for practical use due to their large-area nanofabrication and mechanical stability. Here we report an antireflective optical lens with large-area glass nanoholes. The nanoholes increase light transmission due to the antireflective effect, depending on geometric parameters such as fill factor and height. The glass nanoholes of low effective refractive index are achieved by using solid-state dewetting of ultrathin silver film, reactive ion etching, and wet etching. An ultrathin silver film is transformed into nanoholes for an etch mask in reactive ion etching after thermal annealing at a low temperature. Unlike conventional nanopillars, nanoholes exhibit high light transmittance with enhancement of ~4% over the full visible range as well as high mechanical hardness. Also, an antireflective glass lens is achieved by directly employing nanoholes on the lens surface. Glass nanoholes of highly enhanced optical and mechanical performance can be directly utilized for commercial glass lenses in various imaging and lighting applications.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Enhancement of optical transmission with random nanohole structures

Jaesung Son, Lalit Kumar Verma, Aaron James Danner, Charanjit Singh Bhatia, and Hyunsoo Yang
Opt. Express 19(S1) A35-A40 (2011)

Omnidirectional antireflection polymer films nanoimprinted by density-graded nanoporous silicon and image improvement in display panel

Yu-Hsuan Ho, Kuan-Han Ting, Kuan-Yu Chen, Shun-Wei Liu, Wei-Cheng Tian, and Pei-Kuen Wei
Opt. Express 21(24) 29827-29835 (2013)

References

  • View by:
  • |
  • |
  • |

  1. C. G. Bernhard, “Structural and functional adaptation in a visual system,” Endeavor 26, 79–84 (1967).
  2. J. J. Kim, Y. Lee, H. G. Kim, K. J. Choi, H. S. Kweon, S. Park, and K. H. Jeong, “Biologically inspired LED lens from cuticular nanostructures of firefly lantern,” Proc. Natl. Acad. Sci. U.S.A. 109(46), 18674–18678 (2012).
    [Crossref] [PubMed]
  3. H. Jung and K. H. Jeong, “Monolithic polymer microlens arrays with antireflective nanostructures,” Appl. Phys. Lett. 101(20), 203102 (2012).
    [Crossref]
  4. M. Ibn-Elhaj and M. Schadt, “Optical polymer thin films with isotropic and anisotropic nano-corrugated surface topologies,” Nature 410(6830), 796–799 (2001).
    [Crossref] [PubMed]
  5. X. Li, J. P. Gao, L. J. Xue, and Y. C. Han, “Porous Polymer Films with Gradient-Refractive-Index Structure for Broadband and Omnidirectional Antireflection Coatings,” Adv. Funct. Mater. 20(2), 259–265 (2010).
    [Crossref]
  6. D. Tahk, T. I. Kim, H. Yoon, M. Choi, K. Shin, and K. Y. Suh, “Fabrication of Antireflection and Antifogging Polymer Sheet by Partial Photopolymerization and Dry Etching,” Langmuir 26(4), 2240–2243 (2010).
    [Crossref] [PubMed]
  7. K. Choi, S. H. Park, Y. M. Song, Y. T. Lee, C. K. Hwangbo, H. Yang, and H. S. Lee, “Nano-tailoring the Surface Structure for the Monolithic High-Performance Antireflection Polymer Film,” Adv. Mater. 22(33), 3713–3718 (2010).
    [Crossref] [PubMed]
  8. K. X. Z. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption Enhancement in Ultrathin Crystalline Silicon Solar Cells with Antireflection and Light-Trapping Nanocone Gratings,” Nano Lett. 12(3), 1616–1619 (2012).
    [Crossref] [PubMed]
  9. K. S. Han, H. Lee, D. Kim, and H. Lee, “Fabrication of anti-reflection structure on protective layer of solar cells by hot-embossing method,” Sol. Energy Mater. Sol. Cells 93(8), 1214–1217 (2009).
    [Crossref]
  10. M. M. Tavakoli, K. H. Tsui, Q. Zhang, J. He, Y. Yao, D. Li, and Z. Fan, “Highly Efficient Flexible Perovskite Solar Cells with Antireflection and Self-Cleaning Nanostructures,” ACS Nano 9(10), 10287–10295 (2015).
    [Crossref] [PubMed]
  11. Y. J. Oh, J. J. Kim, and K. H. Jeong, “Biologically Inspired Biophotonic Surfaces with Self-Antireflection,” Small 10(13), 2558–2563 (2014).
    [Crossref] [PubMed]
  12. B. Daglar, T. Khudiyev, G. B. Demirel, F. Buyukserin, and M. Bayindir, “Soft biomimetic tapered nanostructures for large-area antireflective surfaces and SERS sensing,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(47), 7842–7848 (2013).
    [Crossref]
  13. Y. Kanamori, M. Sasaki, and K. Hane, “Broadband antireflection gratings fabricated upon silicon substrates,” Opt. Lett. 24(20), 1422–1424 (1999).
    [Crossref] [PubMed]
  14. K. Hadobás, S. Kirsch, A. Carl, M. Acet, and E. F. Wassermann, “Reflection properties of nanostructure-arrayed silicon surfaces,” Nanotechnology 11(3), 161–164 (2000).
    [Crossref]
  15. Y. M. Song, H. J. Choi, J. S. Yu, and Y. T. Lee, “Design of highly transparent glasses with broadband antireflective subwavelength structures,” Opt. Express 18(12), 13063–13071 (2010).
    [Crossref] [PubMed]
  16. P. C. Yu, C. H. Chang, C. H. Chiu, C. S. Yang, J. C. Yu, H. C. Kuo, S. H. Hsu, and Y. C. Chang, “Efficiency Enhancement of GaAs Photovoltaics Employing Antireflective Indium Tin Oxide Nanocolumns,” Adv. Mater. 21(16), 1618–1621 (2009).
    [Crossref]
  17. S. R. Kennedy and M. J. Brett, “Porous broadband antireflection coating by glancing angle deposition,” Appl. Opt. 42(22), 4573–4579 (2003).
    [Crossref] [PubMed]
  18. J. Li, J. Zhu, and X. Gao, “Bio-Inspired High-Performance Antireflection and Antifogging Polymer Films,” Small 10(13), 2578–2582 (2014).
    [Crossref] [PubMed]
  19. T. Yanagishita, K. Nishio, and H. Masuda, “Anti-Reflection Structures on Lenses by Nanoimprinting Using Ordered Anodic Porous Alumina,” Appl. Phys. Express 2, 022001 (2009).
    [Crossref]
  20. S. Ji, J. Park, and H. Lim, “Improved antireflection properties of moth eye mimicking nanopillars on transparent glass: flat antireflection and color tuning,” Nanoscale 4(15), 4603–4610 (2012).
    [Crossref] [PubMed]
  21. Y. Luo, L. Wang, Y. Ding, L. Li, and J. Shi, “High light-extracting efficiency for OLED directly fabricated on double-side nanotextured silica substrate,” Opt. Lett. 38(14), 2394–2396 (2013).
    [Crossref] [PubMed]
  22. C. Yeo, J. B. Kim, Y. M. Song, and Y. T. Lee, “Antireflective silicon nanostructures with hydrophobicity by metal-assisted chemical etching for solar cell applications,” Nanoscale Res. Lett. 8(1), 159 (2013).
    [Crossref] [PubMed]
  23. D. Qi, N. Lu, H. Xu, B. Yang, C. Huang, M. Xu, L. Gao, Z. Wang, and L. Chi, “Simple Approach to Wafer-Scale Self-Cleaning Antireflective Silicon Surfaces,” Langmuir 25(14), 7769–7772 (2009).
    [Crossref] [PubMed]
  24. J. W. Leem, Y. Yeh, and J. S. Yu, “Enhanced transmittance and hydrophilicity of nanostructured glass substrates with antireflective properties using disordered gold nanopatterns,” Opt. Express 20(4), 4056–4066 (2012).
    [Crossref] [PubMed]
  25. Y. M. Song, G. C. Park, E. K. Kang, C. I. Yeo, and Y. T. Lee, “Antireflective grassy surface on glass substrates with self-masked dry etching,” Nanoscale Res. Lett. 8(1), 505 (2013).
    [Crossref] [PubMed]
  26. Y. M. Song, Y. Jeong, C. I. Yeo, and Y. T. Lee, “Enhanced power generation in concentrated photovoltaics using broadband antireflective coverglasses with moth eye structures,” Opt. Express 20(S6), A916–A923 (2012).
    [Crossref]
  27. T. Yanagishita, T. Hidaka, M. Suzuki, and H. Masuda, “Polymer lenses with antireflection structures prepared using anodic porous alumina molds,” J. Vac. Sci. Technol. B 34, 021804 (2016).
  28. D. Di, X. Z. Wu, P. T. Dong, C. G. Wang, J. Chen, H. X. Wang, J. F. Wang, and S. Y. Li, “Simple, Fast, and Cost-Effective Fabrication of Wafer-Scale Nanohole Arrays on Silicon for Antireflection,” J. Nanomater. 2014, 1–6 (2014).
    [Crossref]
  29. J. W. Leem, S. Kim, S. H. Lee, J. A. Rogers, E. Kim, and J. S. Yu, “Efficiency Enhancement of Organic Solar Cells Using Hydrophobic Antireflective Inverted Moth-Eye Nanopatterned PDMS Films,” Adv. Energy Mater. 4(8), 1301315 (2014).
    [Crossref]
  30. K. Q. Peng, X. Wang, L. Li, X. L. Wu, and S. T. Lee, “High-Performance Silicon Nanohole Solar Cells,” J. Am. Chem. Soc. 132(20), 6872–6873 (2010).
    [Crossref] [PubMed]
  31. F. J. Rousseau, A. Perry, L. Farkas, J. Kodas, T. T. Hampden-Smith, M. J. Paffett, M. Muenchausen, R., “New approaches for dry etching metal oxides at low temperature and high rates,” in Material Research Society (MRS) spring meeting, (Materials Research Society, 1992)
  32. E. Yu, S. C. Kim, H. J. Lee, K. H. Oh, and M. W. Moon, “Extreme wettability of nanostructured glass fabricated by non-lithographic, anisotropic etching,” Sci. Rep. 5, 9362 (2015).
  33. M. Bass, C. DeCusatis, J. Enoch, V. Lakshminarayanan, G. Li, C. Macdonald, V. Mahajan, and E. V. Stryland, Handbook of Optics, Third Edition Volume II: Design, Fabrication and Testing, Sources and Detectors, Radiometry and Photometry (McGraw-Hill, Inc., 2010), p. 1264.
  34. C. V. Thompson, “Solid-State Dewetting of Thin Films,” Annu. Rev. Mater. Res. 42(1), 399–434 (2012).
    [Crossref]
  35. K. R. Williams, K. Gupta, and M. Wasilik, “Etch rates for micromachining processing, Part II,” J. Microelectromech. Syst. 12(6), 761–778 (2003).
    [Crossref]

2016 (1)

T. Yanagishita, T. Hidaka, M. Suzuki, and H. Masuda, “Polymer lenses with antireflection structures prepared using anodic porous alumina molds,” J. Vac. Sci. Technol. B 34, 021804 (2016).

2015 (2)

E. Yu, S. C. Kim, H. J. Lee, K. H. Oh, and M. W. Moon, “Extreme wettability of nanostructured glass fabricated by non-lithographic, anisotropic etching,” Sci. Rep. 5, 9362 (2015).

M. M. Tavakoli, K. H. Tsui, Q. Zhang, J. He, Y. Yao, D. Li, and Z. Fan, “Highly Efficient Flexible Perovskite Solar Cells with Antireflection and Self-Cleaning Nanostructures,” ACS Nano 9(10), 10287–10295 (2015).
[Crossref] [PubMed]

2014 (4)

Y. J. Oh, J. J. Kim, and K. H. Jeong, “Biologically Inspired Biophotonic Surfaces with Self-Antireflection,” Small 10(13), 2558–2563 (2014).
[Crossref] [PubMed]

J. Li, J. Zhu, and X. Gao, “Bio-Inspired High-Performance Antireflection and Antifogging Polymer Films,” Small 10(13), 2578–2582 (2014).
[Crossref] [PubMed]

D. Di, X. Z. Wu, P. T. Dong, C. G. Wang, J. Chen, H. X. Wang, J. F. Wang, and S. Y. Li, “Simple, Fast, and Cost-Effective Fabrication of Wafer-Scale Nanohole Arrays on Silicon for Antireflection,” J. Nanomater. 2014, 1–6 (2014).
[Crossref]

J. W. Leem, S. Kim, S. H. Lee, J. A. Rogers, E. Kim, and J. S. Yu, “Efficiency Enhancement of Organic Solar Cells Using Hydrophobic Antireflective Inverted Moth-Eye Nanopatterned PDMS Films,” Adv. Energy Mater. 4(8), 1301315 (2014).
[Crossref]

2013 (4)

Y. M. Song, G. C. Park, E. K. Kang, C. I. Yeo, and Y. T. Lee, “Antireflective grassy surface on glass substrates with self-masked dry etching,” Nanoscale Res. Lett. 8(1), 505 (2013).
[Crossref] [PubMed]

Y. Luo, L. Wang, Y. Ding, L. Li, and J. Shi, “High light-extracting efficiency for OLED directly fabricated on double-side nanotextured silica substrate,” Opt. Lett. 38(14), 2394–2396 (2013).
[Crossref] [PubMed]

C. Yeo, J. B. Kim, Y. M. Song, and Y. T. Lee, “Antireflective silicon nanostructures with hydrophobicity by metal-assisted chemical etching for solar cell applications,” Nanoscale Res. Lett. 8(1), 159 (2013).
[Crossref] [PubMed]

B. Daglar, T. Khudiyev, G. B. Demirel, F. Buyukserin, and M. Bayindir, “Soft biomimetic tapered nanostructures for large-area antireflective surfaces and SERS sensing,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(47), 7842–7848 (2013).
[Crossref]

2012 (7)

J. J. Kim, Y. Lee, H. G. Kim, K. J. Choi, H. S. Kweon, S. Park, and K. H. Jeong, “Biologically inspired LED lens from cuticular nanostructures of firefly lantern,” Proc. Natl. Acad. Sci. U.S.A. 109(46), 18674–18678 (2012).
[Crossref] [PubMed]

H. Jung and K. H. Jeong, “Monolithic polymer microlens arrays with antireflective nanostructures,” Appl. Phys. Lett. 101(20), 203102 (2012).
[Crossref]

K. X. Z. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption Enhancement in Ultrathin Crystalline Silicon Solar Cells with Antireflection and Light-Trapping Nanocone Gratings,” Nano Lett. 12(3), 1616–1619 (2012).
[Crossref] [PubMed]

J. W. Leem, Y. Yeh, and J. S. Yu, “Enhanced transmittance and hydrophilicity of nanostructured glass substrates with antireflective properties using disordered gold nanopatterns,” Opt. Express 20(4), 4056–4066 (2012).
[Crossref] [PubMed]

Y. M. Song, Y. Jeong, C. I. Yeo, and Y. T. Lee, “Enhanced power generation in concentrated photovoltaics using broadband antireflective coverglasses with moth eye structures,” Opt. Express 20(S6), A916–A923 (2012).
[Crossref]

S. Ji, J. Park, and H. Lim, “Improved antireflection properties of moth eye mimicking nanopillars on transparent glass: flat antireflection and color tuning,” Nanoscale 4(15), 4603–4610 (2012).
[Crossref] [PubMed]

C. V. Thompson, “Solid-State Dewetting of Thin Films,” Annu. Rev. Mater. Res. 42(1), 399–434 (2012).
[Crossref]

2010 (5)

K. Q. Peng, X. Wang, L. Li, X. L. Wu, and S. T. Lee, “High-Performance Silicon Nanohole Solar Cells,” J. Am. Chem. Soc. 132(20), 6872–6873 (2010).
[Crossref] [PubMed]

Y. M. Song, H. J. Choi, J. S. Yu, and Y. T. Lee, “Design of highly transparent glasses with broadband antireflective subwavelength structures,” Opt. Express 18(12), 13063–13071 (2010).
[Crossref] [PubMed]

X. Li, J. P. Gao, L. J. Xue, and Y. C. Han, “Porous Polymer Films with Gradient-Refractive-Index Structure for Broadband and Omnidirectional Antireflection Coatings,” Adv. Funct. Mater. 20(2), 259–265 (2010).
[Crossref]

D. Tahk, T. I. Kim, H. Yoon, M. Choi, K. Shin, and K. Y. Suh, “Fabrication of Antireflection and Antifogging Polymer Sheet by Partial Photopolymerization and Dry Etching,” Langmuir 26(4), 2240–2243 (2010).
[Crossref] [PubMed]

K. Choi, S. H. Park, Y. M. Song, Y. T. Lee, C. K. Hwangbo, H. Yang, and H. S. Lee, “Nano-tailoring the Surface Structure for the Monolithic High-Performance Antireflection Polymer Film,” Adv. Mater. 22(33), 3713–3718 (2010).
[Crossref] [PubMed]

2009 (4)

K. S. Han, H. Lee, D. Kim, and H. Lee, “Fabrication of anti-reflection structure on protective layer of solar cells by hot-embossing method,” Sol. Energy Mater. Sol. Cells 93(8), 1214–1217 (2009).
[Crossref]

P. C. Yu, C. H. Chang, C. H. Chiu, C. S. Yang, J. C. Yu, H. C. Kuo, S. H. Hsu, and Y. C. Chang, “Efficiency Enhancement of GaAs Photovoltaics Employing Antireflective Indium Tin Oxide Nanocolumns,” Adv. Mater. 21(16), 1618–1621 (2009).
[Crossref]

D. Qi, N. Lu, H. Xu, B. Yang, C. Huang, M. Xu, L. Gao, Z. Wang, and L. Chi, “Simple Approach to Wafer-Scale Self-Cleaning Antireflective Silicon Surfaces,” Langmuir 25(14), 7769–7772 (2009).
[Crossref] [PubMed]

T. Yanagishita, K. Nishio, and H. Masuda, “Anti-Reflection Structures on Lenses by Nanoimprinting Using Ordered Anodic Porous Alumina,” Appl. Phys. Express 2, 022001 (2009).
[Crossref]

2003 (2)

S. R. Kennedy and M. J. Brett, “Porous broadband antireflection coating by glancing angle deposition,” Appl. Opt. 42(22), 4573–4579 (2003).
[Crossref] [PubMed]

K. R. Williams, K. Gupta, and M. Wasilik, “Etch rates for micromachining processing, Part II,” J. Microelectromech. Syst. 12(6), 761–778 (2003).
[Crossref]

2001 (1)

M. Ibn-Elhaj and M. Schadt, “Optical polymer thin films with isotropic and anisotropic nano-corrugated surface topologies,” Nature 410(6830), 796–799 (2001).
[Crossref] [PubMed]

2000 (1)

K. Hadobás, S. Kirsch, A. Carl, M. Acet, and E. F. Wassermann, “Reflection properties of nanostructure-arrayed silicon surfaces,” Nanotechnology 11(3), 161–164 (2000).
[Crossref]

1999 (1)

1967 (1)

C. G. Bernhard, “Structural and functional adaptation in a visual system,” Endeavor 26, 79–84 (1967).

Acet, M.

K. Hadobás, S. Kirsch, A. Carl, M. Acet, and E. F. Wassermann, “Reflection properties of nanostructure-arrayed silicon surfaces,” Nanotechnology 11(3), 161–164 (2000).
[Crossref]

Bayindir, M.

B. Daglar, T. Khudiyev, G. B. Demirel, F. Buyukserin, and M. Bayindir, “Soft biomimetic tapered nanostructures for large-area antireflective surfaces and SERS sensing,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(47), 7842–7848 (2013).
[Crossref]

Bernhard, C. G.

C. G. Bernhard, “Structural and functional adaptation in a visual system,” Endeavor 26, 79–84 (1967).

Brett, M. J.

Buyukserin, F.

B. Daglar, T. Khudiyev, G. B. Demirel, F. Buyukserin, and M. Bayindir, “Soft biomimetic tapered nanostructures for large-area antireflective surfaces and SERS sensing,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(47), 7842–7848 (2013).
[Crossref]

Carl, A.

K. Hadobás, S. Kirsch, A. Carl, M. Acet, and E. F. Wassermann, “Reflection properties of nanostructure-arrayed silicon surfaces,” Nanotechnology 11(3), 161–164 (2000).
[Crossref]

Chang, C. H.

P. C. Yu, C. H. Chang, C. H. Chiu, C. S. Yang, J. C. Yu, H. C. Kuo, S. H. Hsu, and Y. C. Chang, “Efficiency Enhancement of GaAs Photovoltaics Employing Antireflective Indium Tin Oxide Nanocolumns,” Adv. Mater. 21(16), 1618–1621 (2009).
[Crossref]

Chang, Y. C.

P. C. Yu, C. H. Chang, C. H. Chiu, C. S. Yang, J. C. Yu, H. C. Kuo, S. H. Hsu, and Y. C. Chang, “Efficiency Enhancement of GaAs Photovoltaics Employing Antireflective Indium Tin Oxide Nanocolumns,” Adv. Mater. 21(16), 1618–1621 (2009).
[Crossref]

Chen, J.

D. Di, X. Z. Wu, P. T. Dong, C. G. Wang, J. Chen, H. X. Wang, J. F. Wang, and S. Y. Li, “Simple, Fast, and Cost-Effective Fabrication of Wafer-Scale Nanohole Arrays on Silicon for Antireflection,” J. Nanomater. 2014, 1–6 (2014).
[Crossref]

Chi, L.

D. Qi, N. Lu, H. Xu, B. Yang, C. Huang, M. Xu, L. Gao, Z. Wang, and L. Chi, “Simple Approach to Wafer-Scale Self-Cleaning Antireflective Silicon Surfaces,” Langmuir 25(14), 7769–7772 (2009).
[Crossref] [PubMed]

Chiu, C. H.

P. C. Yu, C. H. Chang, C. H. Chiu, C. S. Yang, J. C. Yu, H. C. Kuo, S. H. Hsu, and Y. C. Chang, “Efficiency Enhancement of GaAs Photovoltaics Employing Antireflective Indium Tin Oxide Nanocolumns,” Adv. Mater. 21(16), 1618–1621 (2009).
[Crossref]

Choi, H. J.

Choi, K.

K. Choi, S. H. Park, Y. M. Song, Y. T. Lee, C. K. Hwangbo, H. Yang, and H. S. Lee, “Nano-tailoring the Surface Structure for the Monolithic High-Performance Antireflection Polymer Film,” Adv. Mater. 22(33), 3713–3718 (2010).
[Crossref] [PubMed]

Choi, K. J.

J. J. Kim, Y. Lee, H. G. Kim, K. J. Choi, H. S. Kweon, S. Park, and K. H. Jeong, “Biologically inspired LED lens from cuticular nanostructures of firefly lantern,” Proc. Natl. Acad. Sci. U.S.A. 109(46), 18674–18678 (2012).
[Crossref] [PubMed]

Choi, M.

D. Tahk, T. I. Kim, H. Yoon, M. Choi, K. Shin, and K. Y. Suh, “Fabrication of Antireflection and Antifogging Polymer Sheet by Partial Photopolymerization and Dry Etching,” Langmuir 26(4), 2240–2243 (2010).
[Crossref] [PubMed]

Cui, Y.

K. X. Z. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption Enhancement in Ultrathin Crystalline Silicon Solar Cells with Antireflection and Light-Trapping Nanocone Gratings,” Nano Lett. 12(3), 1616–1619 (2012).
[Crossref] [PubMed]

Daglar, B.

B. Daglar, T. Khudiyev, G. B. Demirel, F. Buyukserin, and M. Bayindir, “Soft biomimetic tapered nanostructures for large-area antireflective surfaces and SERS sensing,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(47), 7842–7848 (2013).
[Crossref]

Demirel, G. B.

B. Daglar, T. Khudiyev, G. B. Demirel, F. Buyukserin, and M. Bayindir, “Soft biomimetic tapered nanostructures for large-area antireflective surfaces and SERS sensing,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(47), 7842–7848 (2013).
[Crossref]

Di, D.

D. Di, X. Z. Wu, P. T. Dong, C. G. Wang, J. Chen, H. X. Wang, J. F. Wang, and S. Y. Li, “Simple, Fast, and Cost-Effective Fabrication of Wafer-Scale Nanohole Arrays on Silicon for Antireflection,” J. Nanomater. 2014, 1–6 (2014).
[Crossref]

Ding, Y.

Dong, P. T.

D. Di, X. Z. Wu, P. T. Dong, C. G. Wang, J. Chen, H. X. Wang, J. F. Wang, and S. Y. Li, “Simple, Fast, and Cost-Effective Fabrication of Wafer-Scale Nanohole Arrays on Silicon for Antireflection,” J. Nanomater. 2014, 1–6 (2014).
[Crossref]

Fan, S.

K. X. Z. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption Enhancement in Ultrathin Crystalline Silicon Solar Cells with Antireflection and Light-Trapping Nanocone Gratings,” Nano Lett. 12(3), 1616–1619 (2012).
[Crossref] [PubMed]

Fan, Z.

M. M. Tavakoli, K. H. Tsui, Q. Zhang, J. He, Y. Yao, D. Li, and Z. Fan, “Highly Efficient Flexible Perovskite Solar Cells with Antireflection and Self-Cleaning Nanostructures,” ACS Nano 9(10), 10287–10295 (2015).
[Crossref] [PubMed]

Gao, J. P.

X. Li, J. P. Gao, L. J. Xue, and Y. C. Han, “Porous Polymer Films with Gradient-Refractive-Index Structure for Broadband and Omnidirectional Antireflection Coatings,” Adv. Funct. Mater. 20(2), 259–265 (2010).
[Crossref]

Gao, L.

D. Qi, N. Lu, H. Xu, B. Yang, C. Huang, M. Xu, L. Gao, Z. Wang, and L. Chi, “Simple Approach to Wafer-Scale Self-Cleaning Antireflective Silicon Surfaces,” Langmuir 25(14), 7769–7772 (2009).
[Crossref] [PubMed]

Gao, X.

J. Li, J. Zhu, and X. Gao, “Bio-Inspired High-Performance Antireflection and Antifogging Polymer Films,” Small 10(13), 2578–2582 (2014).
[Crossref] [PubMed]

Gupta, K.

K. R. Williams, K. Gupta, and M. Wasilik, “Etch rates for micromachining processing, Part II,” J. Microelectromech. Syst. 12(6), 761–778 (2003).
[Crossref]

Hadobás, K.

K. Hadobás, S. Kirsch, A. Carl, M. Acet, and E. F. Wassermann, “Reflection properties of nanostructure-arrayed silicon surfaces,” Nanotechnology 11(3), 161–164 (2000).
[Crossref]

Han, K. S.

K. S. Han, H. Lee, D. Kim, and H. Lee, “Fabrication of anti-reflection structure on protective layer of solar cells by hot-embossing method,” Sol. Energy Mater. Sol. Cells 93(8), 1214–1217 (2009).
[Crossref]

Han, Y. C.

X. Li, J. P. Gao, L. J. Xue, and Y. C. Han, “Porous Polymer Films with Gradient-Refractive-Index Structure for Broadband and Omnidirectional Antireflection Coatings,” Adv. Funct. Mater. 20(2), 259–265 (2010).
[Crossref]

Hane, K.

He, J.

M. M. Tavakoli, K. H. Tsui, Q. Zhang, J. He, Y. Yao, D. Li, and Z. Fan, “Highly Efficient Flexible Perovskite Solar Cells with Antireflection and Self-Cleaning Nanostructures,” ACS Nano 9(10), 10287–10295 (2015).
[Crossref] [PubMed]

Hidaka, T.

T. Yanagishita, T. Hidaka, M. Suzuki, and H. Masuda, “Polymer lenses with antireflection structures prepared using anodic porous alumina molds,” J. Vac. Sci. Technol. B 34, 021804 (2016).

Hsu, S. H.

P. C. Yu, C. H. Chang, C. H. Chiu, C. S. Yang, J. C. Yu, H. C. Kuo, S. H. Hsu, and Y. C. Chang, “Efficiency Enhancement of GaAs Photovoltaics Employing Antireflective Indium Tin Oxide Nanocolumns,” Adv. Mater. 21(16), 1618–1621 (2009).
[Crossref]

Huang, C.

D. Qi, N. Lu, H. Xu, B. Yang, C. Huang, M. Xu, L. Gao, Z. Wang, and L. Chi, “Simple Approach to Wafer-Scale Self-Cleaning Antireflective Silicon Surfaces,” Langmuir 25(14), 7769–7772 (2009).
[Crossref] [PubMed]

Hwangbo, C. K.

K. Choi, S. H. Park, Y. M. Song, Y. T. Lee, C. K. Hwangbo, H. Yang, and H. S. Lee, “Nano-tailoring the Surface Structure for the Monolithic High-Performance Antireflection Polymer Film,” Adv. Mater. 22(33), 3713–3718 (2010).
[Crossref] [PubMed]

Ibn-Elhaj, M.

M. Ibn-Elhaj and M. Schadt, “Optical polymer thin films with isotropic and anisotropic nano-corrugated surface topologies,” Nature 410(6830), 796–799 (2001).
[Crossref] [PubMed]

Jeong, K. H.

Y. J. Oh, J. J. Kim, and K. H. Jeong, “Biologically Inspired Biophotonic Surfaces with Self-Antireflection,” Small 10(13), 2558–2563 (2014).
[Crossref] [PubMed]

H. Jung and K. H. Jeong, “Monolithic polymer microlens arrays with antireflective nanostructures,” Appl. Phys. Lett. 101(20), 203102 (2012).
[Crossref]

J. J. Kim, Y. Lee, H. G. Kim, K. J. Choi, H. S. Kweon, S. Park, and K. H. Jeong, “Biologically inspired LED lens from cuticular nanostructures of firefly lantern,” Proc. Natl. Acad. Sci. U.S.A. 109(46), 18674–18678 (2012).
[Crossref] [PubMed]

Jeong, Y.

Ji, S.

S. Ji, J. Park, and H. Lim, “Improved antireflection properties of moth eye mimicking nanopillars on transparent glass: flat antireflection and color tuning,” Nanoscale 4(15), 4603–4610 (2012).
[Crossref] [PubMed]

Jung, H.

H. Jung and K. H. Jeong, “Monolithic polymer microlens arrays with antireflective nanostructures,” Appl. Phys. Lett. 101(20), 203102 (2012).
[Crossref]

Kanamori, Y.

Kang, E. K.

Y. M. Song, G. C. Park, E. K. Kang, C. I. Yeo, and Y. T. Lee, “Antireflective grassy surface on glass substrates with self-masked dry etching,” Nanoscale Res. Lett. 8(1), 505 (2013).
[Crossref] [PubMed]

Kennedy, S. R.

Khudiyev, T.

B. Daglar, T. Khudiyev, G. B. Demirel, F. Buyukserin, and M. Bayindir, “Soft biomimetic tapered nanostructures for large-area antireflective surfaces and SERS sensing,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(47), 7842–7848 (2013).
[Crossref]

Kim, D.

K. S. Han, H. Lee, D. Kim, and H. Lee, “Fabrication of anti-reflection structure on protective layer of solar cells by hot-embossing method,” Sol. Energy Mater. Sol. Cells 93(8), 1214–1217 (2009).
[Crossref]

Kim, E.

J. W. Leem, S. Kim, S. H. Lee, J. A. Rogers, E. Kim, and J. S. Yu, “Efficiency Enhancement of Organic Solar Cells Using Hydrophobic Antireflective Inverted Moth-Eye Nanopatterned PDMS Films,” Adv. Energy Mater. 4(8), 1301315 (2014).
[Crossref]

Kim, H. G.

J. J. Kim, Y. Lee, H. G. Kim, K. J. Choi, H. S. Kweon, S. Park, and K. H. Jeong, “Biologically inspired LED lens from cuticular nanostructures of firefly lantern,” Proc. Natl. Acad. Sci. U.S.A. 109(46), 18674–18678 (2012).
[Crossref] [PubMed]

Kim, J. B.

C. Yeo, J. B. Kim, Y. M. Song, and Y. T. Lee, “Antireflective silicon nanostructures with hydrophobicity by metal-assisted chemical etching for solar cell applications,” Nanoscale Res. Lett. 8(1), 159 (2013).
[Crossref] [PubMed]

Kim, J. J.

Y. J. Oh, J. J. Kim, and K. H. Jeong, “Biologically Inspired Biophotonic Surfaces with Self-Antireflection,” Small 10(13), 2558–2563 (2014).
[Crossref] [PubMed]

J. J. Kim, Y. Lee, H. G. Kim, K. J. Choi, H. S. Kweon, S. Park, and K. H. Jeong, “Biologically inspired LED lens from cuticular nanostructures of firefly lantern,” Proc. Natl. Acad. Sci. U.S.A. 109(46), 18674–18678 (2012).
[Crossref] [PubMed]

Kim, S.

J. W. Leem, S. Kim, S. H. Lee, J. A. Rogers, E. Kim, and J. S. Yu, “Efficiency Enhancement of Organic Solar Cells Using Hydrophobic Antireflective Inverted Moth-Eye Nanopatterned PDMS Films,” Adv. Energy Mater. 4(8), 1301315 (2014).
[Crossref]

Kim, S. C.

E. Yu, S. C. Kim, H. J. Lee, K. H. Oh, and M. W. Moon, “Extreme wettability of nanostructured glass fabricated by non-lithographic, anisotropic etching,” Sci. Rep. 5, 9362 (2015).

Kim, T. I.

D. Tahk, T. I. Kim, H. Yoon, M. Choi, K. Shin, and K. Y. Suh, “Fabrication of Antireflection and Antifogging Polymer Sheet by Partial Photopolymerization and Dry Etching,” Langmuir 26(4), 2240–2243 (2010).
[Crossref] [PubMed]

Kirsch, S.

K. Hadobás, S. Kirsch, A. Carl, M. Acet, and E. F. Wassermann, “Reflection properties of nanostructure-arrayed silicon surfaces,” Nanotechnology 11(3), 161–164 (2000).
[Crossref]

Kuo, H. C.

P. C. Yu, C. H. Chang, C. H. Chiu, C. S. Yang, J. C. Yu, H. C. Kuo, S. H. Hsu, and Y. C. Chang, “Efficiency Enhancement of GaAs Photovoltaics Employing Antireflective Indium Tin Oxide Nanocolumns,” Adv. Mater. 21(16), 1618–1621 (2009).
[Crossref]

Kweon, H. S.

J. J. Kim, Y. Lee, H. G. Kim, K. J. Choi, H. S. Kweon, S. Park, and K. H. Jeong, “Biologically inspired LED lens from cuticular nanostructures of firefly lantern,” Proc. Natl. Acad. Sci. U.S.A. 109(46), 18674–18678 (2012).
[Crossref] [PubMed]

Lee, H.

K. S. Han, H. Lee, D. Kim, and H. Lee, “Fabrication of anti-reflection structure on protective layer of solar cells by hot-embossing method,” Sol. Energy Mater. Sol. Cells 93(8), 1214–1217 (2009).
[Crossref]

K. S. Han, H. Lee, D. Kim, and H. Lee, “Fabrication of anti-reflection structure on protective layer of solar cells by hot-embossing method,” Sol. Energy Mater. Sol. Cells 93(8), 1214–1217 (2009).
[Crossref]

Lee, H. J.

E. Yu, S. C. Kim, H. J. Lee, K. H. Oh, and M. W. Moon, “Extreme wettability of nanostructured glass fabricated by non-lithographic, anisotropic etching,” Sci. Rep. 5, 9362 (2015).

Lee, H. S.

K. Choi, S. H. Park, Y. M. Song, Y. T. Lee, C. K. Hwangbo, H. Yang, and H. S. Lee, “Nano-tailoring the Surface Structure for the Monolithic High-Performance Antireflection Polymer Film,” Adv. Mater. 22(33), 3713–3718 (2010).
[Crossref] [PubMed]

Lee, S. H.

J. W. Leem, S. Kim, S. H. Lee, J. A. Rogers, E. Kim, and J. S. Yu, “Efficiency Enhancement of Organic Solar Cells Using Hydrophobic Antireflective Inverted Moth-Eye Nanopatterned PDMS Films,” Adv. Energy Mater. 4(8), 1301315 (2014).
[Crossref]

Lee, S. T.

K. Q. Peng, X. Wang, L. Li, X. L. Wu, and S. T. Lee, “High-Performance Silicon Nanohole Solar Cells,” J. Am. Chem. Soc. 132(20), 6872–6873 (2010).
[Crossref] [PubMed]

Lee, Y.

J. J. Kim, Y. Lee, H. G. Kim, K. J. Choi, H. S. Kweon, S. Park, and K. H. Jeong, “Biologically inspired LED lens from cuticular nanostructures of firefly lantern,” Proc. Natl. Acad. Sci. U.S.A. 109(46), 18674–18678 (2012).
[Crossref] [PubMed]

Lee, Y. T.

Y. M. Song, G. C. Park, E. K. Kang, C. I. Yeo, and Y. T. Lee, “Antireflective grassy surface on glass substrates with self-masked dry etching,” Nanoscale Res. Lett. 8(1), 505 (2013).
[Crossref] [PubMed]

C. Yeo, J. B. Kim, Y. M. Song, and Y. T. Lee, “Antireflective silicon nanostructures with hydrophobicity by metal-assisted chemical etching for solar cell applications,” Nanoscale Res. Lett. 8(1), 159 (2013).
[Crossref] [PubMed]

Y. M. Song, Y. Jeong, C. I. Yeo, and Y. T. Lee, “Enhanced power generation in concentrated photovoltaics using broadband antireflective coverglasses with moth eye structures,” Opt. Express 20(S6), A916–A923 (2012).
[Crossref]

Y. M. Song, H. J. Choi, J. S. Yu, and Y. T. Lee, “Design of highly transparent glasses with broadband antireflective subwavelength structures,” Opt. Express 18(12), 13063–13071 (2010).
[Crossref] [PubMed]

K. Choi, S. H. Park, Y. M. Song, Y. T. Lee, C. K. Hwangbo, H. Yang, and H. S. Lee, “Nano-tailoring the Surface Structure for the Monolithic High-Performance Antireflection Polymer Film,” Adv. Mater. 22(33), 3713–3718 (2010).
[Crossref] [PubMed]

Leem, J. W.

J. W. Leem, S. Kim, S. H. Lee, J. A. Rogers, E. Kim, and J. S. Yu, “Efficiency Enhancement of Organic Solar Cells Using Hydrophobic Antireflective Inverted Moth-Eye Nanopatterned PDMS Films,” Adv. Energy Mater. 4(8), 1301315 (2014).
[Crossref]

J. W. Leem, Y. Yeh, and J. S. Yu, “Enhanced transmittance and hydrophilicity of nanostructured glass substrates with antireflective properties using disordered gold nanopatterns,” Opt. Express 20(4), 4056–4066 (2012).
[Crossref] [PubMed]

Li, D.

M. M. Tavakoli, K. H. Tsui, Q. Zhang, J. He, Y. Yao, D. Li, and Z. Fan, “Highly Efficient Flexible Perovskite Solar Cells with Antireflection and Self-Cleaning Nanostructures,” ACS Nano 9(10), 10287–10295 (2015).
[Crossref] [PubMed]

Li, J.

J. Li, J. Zhu, and X. Gao, “Bio-Inspired High-Performance Antireflection and Antifogging Polymer Films,” Small 10(13), 2578–2582 (2014).
[Crossref] [PubMed]

Li, L.

Li, S. Y.

D. Di, X. Z. Wu, P. T. Dong, C. G. Wang, J. Chen, H. X. Wang, J. F. Wang, and S. Y. Li, “Simple, Fast, and Cost-Effective Fabrication of Wafer-Scale Nanohole Arrays on Silicon for Antireflection,” J. Nanomater. 2014, 1–6 (2014).
[Crossref]

Li, X.

X. Li, J. P. Gao, L. J. Xue, and Y. C. Han, “Porous Polymer Films with Gradient-Refractive-Index Structure for Broadband and Omnidirectional Antireflection Coatings,” Adv. Funct. Mater. 20(2), 259–265 (2010).
[Crossref]

Lim, H.

S. Ji, J. Park, and H. Lim, “Improved antireflection properties of moth eye mimicking nanopillars on transparent glass: flat antireflection and color tuning,” Nanoscale 4(15), 4603–4610 (2012).
[Crossref] [PubMed]

Liu, V.

K. X. Z. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption Enhancement in Ultrathin Crystalline Silicon Solar Cells with Antireflection and Light-Trapping Nanocone Gratings,” Nano Lett. 12(3), 1616–1619 (2012).
[Crossref] [PubMed]

Lu, N.

D. Qi, N. Lu, H. Xu, B. Yang, C. Huang, M. Xu, L. Gao, Z. Wang, and L. Chi, “Simple Approach to Wafer-Scale Self-Cleaning Antireflective Silicon Surfaces,” Langmuir 25(14), 7769–7772 (2009).
[Crossref] [PubMed]

Luo, Y.

Masuda, H.

T. Yanagishita, T. Hidaka, M. Suzuki, and H. Masuda, “Polymer lenses with antireflection structures prepared using anodic porous alumina molds,” J. Vac. Sci. Technol. B 34, 021804 (2016).

T. Yanagishita, K. Nishio, and H. Masuda, “Anti-Reflection Structures on Lenses by Nanoimprinting Using Ordered Anodic Porous Alumina,” Appl. Phys. Express 2, 022001 (2009).
[Crossref]

Moon, M. W.

E. Yu, S. C. Kim, H. J. Lee, K. H. Oh, and M. W. Moon, “Extreme wettability of nanostructured glass fabricated by non-lithographic, anisotropic etching,” Sci. Rep. 5, 9362 (2015).

Nishio, K.

T. Yanagishita, K. Nishio, and H. Masuda, “Anti-Reflection Structures on Lenses by Nanoimprinting Using Ordered Anodic Porous Alumina,” Appl. Phys. Express 2, 022001 (2009).
[Crossref]

Oh, K. H.

E. Yu, S. C. Kim, H. J. Lee, K. H. Oh, and M. W. Moon, “Extreme wettability of nanostructured glass fabricated by non-lithographic, anisotropic etching,” Sci. Rep. 5, 9362 (2015).

Oh, Y. J.

Y. J. Oh, J. J. Kim, and K. H. Jeong, “Biologically Inspired Biophotonic Surfaces with Self-Antireflection,” Small 10(13), 2558–2563 (2014).
[Crossref] [PubMed]

Park, G. C.

Y. M. Song, G. C. Park, E. K. Kang, C. I. Yeo, and Y. T. Lee, “Antireflective grassy surface on glass substrates with self-masked dry etching,” Nanoscale Res. Lett. 8(1), 505 (2013).
[Crossref] [PubMed]

Park, J.

S. Ji, J. Park, and H. Lim, “Improved antireflection properties of moth eye mimicking nanopillars on transparent glass: flat antireflection and color tuning,” Nanoscale 4(15), 4603–4610 (2012).
[Crossref] [PubMed]

Park, S.

J. J. Kim, Y. Lee, H. G. Kim, K. J. Choi, H. S. Kweon, S. Park, and K. H. Jeong, “Biologically inspired LED lens from cuticular nanostructures of firefly lantern,” Proc. Natl. Acad. Sci. U.S.A. 109(46), 18674–18678 (2012).
[Crossref] [PubMed]

Park, S. H.

K. Choi, S. H. Park, Y. M. Song, Y. T. Lee, C. K. Hwangbo, H. Yang, and H. S. Lee, “Nano-tailoring the Surface Structure for the Monolithic High-Performance Antireflection Polymer Film,” Adv. Mater. 22(33), 3713–3718 (2010).
[Crossref] [PubMed]

Peng, K. Q.

K. Q. Peng, X. Wang, L. Li, X. L. Wu, and S. T. Lee, “High-Performance Silicon Nanohole Solar Cells,” J. Am. Chem. Soc. 132(20), 6872–6873 (2010).
[Crossref] [PubMed]

Qi, D.

D. Qi, N. Lu, H. Xu, B. Yang, C. Huang, M. Xu, L. Gao, Z. Wang, and L. Chi, “Simple Approach to Wafer-Scale Self-Cleaning Antireflective Silicon Surfaces,” Langmuir 25(14), 7769–7772 (2009).
[Crossref] [PubMed]

Rogers, J. A.

J. W. Leem, S. Kim, S. H. Lee, J. A. Rogers, E. Kim, and J. S. Yu, “Efficiency Enhancement of Organic Solar Cells Using Hydrophobic Antireflective Inverted Moth-Eye Nanopatterned PDMS Films,” Adv. Energy Mater. 4(8), 1301315 (2014).
[Crossref]

Sasaki, M.

Schadt, M.

M. Ibn-Elhaj and M. Schadt, “Optical polymer thin films with isotropic and anisotropic nano-corrugated surface topologies,” Nature 410(6830), 796–799 (2001).
[Crossref] [PubMed]

Shi, J.

Shin, K.

D. Tahk, T. I. Kim, H. Yoon, M. Choi, K. Shin, and K. Y. Suh, “Fabrication of Antireflection and Antifogging Polymer Sheet by Partial Photopolymerization and Dry Etching,” Langmuir 26(4), 2240–2243 (2010).
[Crossref] [PubMed]

Song, Y. M.

Y. M. Song, G. C. Park, E. K. Kang, C. I. Yeo, and Y. T. Lee, “Antireflective grassy surface on glass substrates with self-masked dry etching,” Nanoscale Res. Lett. 8(1), 505 (2013).
[Crossref] [PubMed]

C. Yeo, J. B. Kim, Y. M. Song, and Y. T. Lee, “Antireflective silicon nanostructures with hydrophobicity by metal-assisted chemical etching for solar cell applications,” Nanoscale Res. Lett. 8(1), 159 (2013).
[Crossref] [PubMed]

Y. M. Song, Y. Jeong, C. I. Yeo, and Y. T. Lee, “Enhanced power generation in concentrated photovoltaics using broadband antireflective coverglasses with moth eye structures,” Opt. Express 20(S6), A916–A923 (2012).
[Crossref]

Y. M. Song, H. J. Choi, J. S. Yu, and Y. T. Lee, “Design of highly transparent glasses with broadband antireflective subwavelength structures,” Opt. Express 18(12), 13063–13071 (2010).
[Crossref] [PubMed]

K. Choi, S. H. Park, Y. M. Song, Y. T. Lee, C. K. Hwangbo, H. Yang, and H. S. Lee, “Nano-tailoring the Surface Structure for the Monolithic High-Performance Antireflection Polymer Film,” Adv. Mater. 22(33), 3713–3718 (2010).
[Crossref] [PubMed]

Suh, K. Y.

D. Tahk, T. I. Kim, H. Yoon, M. Choi, K. Shin, and K. Y. Suh, “Fabrication of Antireflection and Antifogging Polymer Sheet by Partial Photopolymerization and Dry Etching,” Langmuir 26(4), 2240–2243 (2010).
[Crossref] [PubMed]

Suzuki, M.

T. Yanagishita, T. Hidaka, M. Suzuki, and H. Masuda, “Polymer lenses with antireflection structures prepared using anodic porous alumina molds,” J. Vac. Sci. Technol. B 34, 021804 (2016).

Tahk, D.

D. Tahk, T. I. Kim, H. Yoon, M. Choi, K. Shin, and K. Y. Suh, “Fabrication of Antireflection and Antifogging Polymer Sheet by Partial Photopolymerization and Dry Etching,” Langmuir 26(4), 2240–2243 (2010).
[Crossref] [PubMed]

Tavakoli, M. M.

M. M. Tavakoli, K. H. Tsui, Q. Zhang, J. He, Y. Yao, D. Li, and Z. Fan, “Highly Efficient Flexible Perovskite Solar Cells with Antireflection and Self-Cleaning Nanostructures,” ACS Nano 9(10), 10287–10295 (2015).
[Crossref] [PubMed]

Thompson, C. V.

C. V. Thompson, “Solid-State Dewetting of Thin Films,” Annu. Rev. Mater. Res. 42(1), 399–434 (2012).
[Crossref]

Tsui, K. H.

M. M. Tavakoli, K. H. Tsui, Q. Zhang, J. He, Y. Yao, D. Li, and Z. Fan, “Highly Efficient Flexible Perovskite Solar Cells with Antireflection and Self-Cleaning Nanostructures,” ACS Nano 9(10), 10287–10295 (2015).
[Crossref] [PubMed]

Wang, C. G.

D. Di, X. Z. Wu, P. T. Dong, C. G. Wang, J. Chen, H. X. Wang, J. F. Wang, and S. Y. Li, “Simple, Fast, and Cost-Effective Fabrication of Wafer-Scale Nanohole Arrays on Silicon for Antireflection,” J. Nanomater. 2014, 1–6 (2014).
[Crossref]

Wang, H. X.

D. Di, X. Z. Wu, P. T. Dong, C. G. Wang, J. Chen, H. X. Wang, J. F. Wang, and S. Y. Li, “Simple, Fast, and Cost-Effective Fabrication of Wafer-Scale Nanohole Arrays on Silicon for Antireflection,” J. Nanomater. 2014, 1–6 (2014).
[Crossref]

Wang, J. F.

D. Di, X. Z. Wu, P. T. Dong, C. G. Wang, J. Chen, H. X. Wang, J. F. Wang, and S. Y. Li, “Simple, Fast, and Cost-Effective Fabrication of Wafer-Scale Nanohole Arrays on Silicon for Antireflection,” J. Nanomater. 2014, 1–6 (2014).
[Crossref]

Wang, K. X. Z.

K. X. Z. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption Enhancement in Ultrathin Crystalline Silicon Solar Cells with Antireflection and Light-Trapping Nanocone Gratings,” Nano Lett. 12(3), 1616–1619 (2012).
[Crossref] [PubMed]

Wang, L.

Wang, X.

K. Q. Peng, X. Wang, L. Li, X. L. Wu, and S. T. Lee, “High-Performance Silicon Nanohole Solar Cells,” J. Am. Chem. Soc. 132(20), 6872–6873 (2010).
[Crossref] [PubMed]

Wang, Z.

D. Qi, N. Lu, H. Xu, B. Yang, C. Huang, M. Xu, L. Gao, Z. Wang, and L. Chi, “Simple Approach to Wafer-Scale Self-Cleaning Antireflective Silicon Surfaces,” Langmuir 25(14), 7769–7772 (2009).
[Crossref] [PubMed]

Wasilik, M.

K. R. Williams, K. Gupta, and M. Wasilik, “Etch rates for micromachining processing, Part II,” J. Microelectromech. Syst. 12(6), 761–778 (2003).
[Crossref]

Wassermann, E. F.

K. Hadobás, S. Kirsch, A. Carl, M. Acet, and E. F. Wassermann, “Reflection properties of nanostructure-arrayed silicon surfaces,” Nanotechnology 11(3), 161–164 (2000).
[Crossref]

Williams, K. R.

K. R. Williams, K. Gupta, and M. Wasilik, “Etch rates for micromachining processing, Part II,” J. Microelectromech. Syst. 12(6), 761–778 (2003).
[Crossref]

Wu, X. L.

K. Q. Peng, X. Wang, L. Li, X. L. Wu, and S. T. Lee, “High-Performance Silicon Nanohole Solar Cells,” J. Am. Chem. Soc. 132(20), 6872–6873 (2010).
[Crossref] [PubMed]

Wu, X. Z.

D. Di, X. Z. Wu, P. T. Dong, C. G. Wang, J. Chen, H. X. Wang, J. F. Wang, and S. Y. Li, “Simple, Fast, and Cost-Effective Fabrication of Wafer-Scale Nanohole Arrays on Silicon for Antireflection,” J. Nanomater. 2014, 1–6 (2014).
[Crossref]

Xu, H.

D. Qi, N. Lu, H. Xu, B. Yang, C. Huang, M. Xu, L. Gao, Z. Wang, and L. Chi, “Simple Approach to Wafer-Scale Self-Cleaning Antireflective Silicon Surfaces,” Langmuir 25(14), 7769–7772 (2009).
[Crossref] [PubMed]

Xu, M.

D. Qi, N. Lu, H. Xu, B. Yang, C. Huang, M. Xu, L. Gao, Z. Wang, and L. Chi, “Simple Approach to Wafer-Scale Self-Cleaning Antireflective Silicon Surfaces,” Langmuir 25(14), 7769–7772 (2009).
[Crossref] [PubMed]

Xue, L. J.

X. Li, J. P. Gao, L. J. Xue, and Y. C. Han, “Porous Polymer Films with Gradient-Refractive-Index Structure for Broadband and Omnidirectional Antireflection Coatings,” Adv. Funct. Mater. 20(2), 259–265 (2010).
[Crossref]

Yanagishita, T.

T. Yanagishita, T. Hidaka, M. Suzuki, and H. Masuda, “Polymer lenses with antireflection structures prepared using anodic porous alumina molds,” J. Vac. Sci. Technol. B 34, 021804 (2016).

T. Yanagishita, K. Nishio, and H. Masuda, “Anti-Reflection Structures on Lenses by Nanoimprinting Using Ordered Anodic Porous Alumina,” Appl. Phys. Express 2, 022001 (2009).
[Crossref]

Yang, B.

D. Qi, N. Lu, H. Xu, B. Yang, C. Huang, M. Xu, L. Gao, Z. Wang, and L. Chi, “Simple Approach to Wafer-Scale Self-Cleaning Antireflective Silicon Surfaces,” Langmuir 25(14), 7769–7772 (2009).
[Crossref] [PubMed]

Yang, C. S.

P. C. Yu, C. H. Chang, C. H. Chiu, C. S. Yang, J. C. Yu, H. C. Kuo, S. H. Hsu, and Y. C. Chang, “Efficiency Enhancement of GaAs Photovoltaics Employing Antireflective Indium Tin Oxide Nanocolumns,” Adv. Mater. 21(16), 1618–1621 (2009).
[Crossref]

Yang, H.

K. Choi, S. H. Park, Y. M. Song, Y. T. Lee, C. K. Hwangbo, H. Yang, and H. S. Lee, “Nano-tailoring the Surface Structure for the Monolithic High-Performance Antireflection Polymer Film,” Adv. Mater. 22(33), 3713–3718 (2010).
[Crossref] [PubMed]

Yao, Y.

M. M. Tavakoli, K. H. Tsui, Q. Zhang, J. He, Y. Yao, D. Li, and Z. Fan, “Highly Efficient Flexible Perovskite Solar Cells with Antireflection and Self-Cleaning Nanostructures,” ACS Nano 9(10), 10287–10295 (2015).
[Crossref] [PubMed]

Yeh, Y.

Yeo, C.

C. Yeo, J. B. Kim, Y. M. Song, and Y. T. Lee, “Antireflective silicon nanostructures with hydrophobicity by metal-assisted chemical etching for solar cell applications,” Nanoscale Res. Lett. 8(1), 159 (2013).
[Crossref] [PubMed]

Yeo, C. I.

Y. M. Song, G. C. Park, E. K. Kang, C. I. Yeo, and Y. T. Lee, “Antireflective grassy surface on glass substrates with self-masked dry etching,” Nanoscale Res. Lett. 8(1), 505 (2013).
[Crossref] [PubMed]

Y. M. Song, Y. Jeong, C. I. Yeo, and Y. T. Lee, “Enhanced power generation in concentrated photovoltaics using broadband antireflective coverglasses with moth eye structures,” Opt. Express 20(S6), A916–A923 (2012).
[Crossref]

Yoon, H.

D. Tahk, T. I. Kim, H. Yoon, M. Choi, K. Shin, and K. Y. Suh, “Fabrication of Antireflection and Antifogging Polymer Sheet by Partial Photopolymerization and Dry Etching,” Langmuir 26(4), 2240–2243 (2010).
[Crossref] [PubMed]

Yu, E.

E. Yu, S. C. Kim, H. J. Lee, K. H. Oh, and M. W. Moon, “Extreme wettability of nanostructured glass fabricated by non-lithographic, anisotropic etching,” Sci. Rep. 5, 9362 (2015).

Yu, J. C.

P. C. Yu, C. H. Chang, C. H. Chiu, C. S. Yang, J. C. Yu, H. C. Kuo, S. H. Hsu, and Y. C. Chang, “Efficiency Enhancement of GaAs Photovoltaics Employing Antireflective Indium Tin Oxide Nanocolumns,” Adv. Mater. 21(16), 1618–1621 (2009).
[Crossref]

Yu, J. S.

Yu, P. C.

P. C. Yu, C. H. Chang, C. H. Chiu, C. S. Yang, J. C. Yu, H. C. Kuo, S. H. Hsu, and Y. C. Chang, “Efficiency Enhancement of GaAs Photovoltaics Employing Antireflective Indium Tin Oxide Nanocolumns,” Adv. Mater. 21(16), 1618–1621 (2009).
[Crossref]

Yu, Z.

K. X. Z. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption Enhancement in Ultrathin Crystalline Silicon Solar Cells with Antireflection and Light-Trapping Nanocone Gratings,” Nano Lett. 12(3), 1616–1619 (2012).
[Crossref] [PubMed]

Zhang, Q.

M. M. Tavakoli, K. H. Tsui, Q. Zhang, J. He, Y. Yao, D. Li, and Z. Fan, “Highly Efficient Flexible Perovskite Solar Cells with Antireflection and Self-Cleaning Nanostructures,” ACS Nano 9(10), 10287–10295 (2015).
[Crossref] [PubMed]

Zhu, J.

J. Li, J. Zhu, and X. Gao, “Bio-Inspired High-Performance Antireflection and Antifogging Polymer Films,” Small 10(13), 2578–2582 (2014).
[Crossref] [PubMed]

ACS Nano (1)

M. M. Tavakoli, K. H. Tsui, Q. Zhang, J. He, Y. Yao, D. Li, and Z. Fan, “Highly Efficient Flexible Perovskite Solar Cells with Antireflection and Self-Cleaning Nanostructures,” ACS Nano 9(10), 10287–10295 (2015).
[Crossref] [PubMed]

Adv. Energy Mater. (1)

J. W. Leem, S. Kim, S. H. Lee, J. A. Rogers, E. Kim, and J. S. Yu, “Efficiency Enhancement of Organic Solar Cells Using Hydrophobic Antireflective Inverted Moth-Eye Nanopatterned PDMS Films,” Adv. Energy Mater. 4(8), 1301315 (2014).
[Crossref]

Adv. Funct. Mater. (1)

X. Li, J. P. Gao, L. J. Xue, and Y. C. Han, “Porous Polymer Films with Gradient-Refractive-Index Structure for Broadband and Omnidirectional Antireflection Coatings,” Adv. Funct. Mater. 20(2), 259–265 (2010).
[Crossref]

Adv. Mater. (2)

K. Choi, S. H. Park, Y. M. Song, Y. T. Lee, C. K. Hwangbo, H. Yang, and H. S. Lee, “Nano-tailoring the Surface Structure for the Monolithic High-Performance Antireflection Polymer Film,” Adv. Mater. 22(33), 3713–3718 (2010).
[Crossref] [PubMed]

P. C. Yu, C. H. Chang, C. H. Chiu, C. S. Yang, J. C. Yu, H. C. Kuo, S. H. Hsu, and Y. C. Chang, “Efficiency Enhancement of GaAs Photovoltaics Employing Antireflective Indium Tin Oxide Nanocolumns,” Adv. Mater. 21(16), 1618–1621 (2009).
[Crossref]

Annu. Rev. Mater. Res. (1)

C. V. Thompson, “Solid-State Dewetting of Thin Films,” Annu. Rev. Mater. Res. 42(1), 399–434 (2012).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Express (1)

T. Yanagishita, K. Nishio, and H. Masuda, “Anti-Reflection Structures on Lenses by Nanoimprinting Using Ordered Anodic Porous Alumina,” Appl. Phys. Express 2, 022001 (2009).
[Crossref]

Appl. Phys. Lett. (1)

H. Jung and K. H. Jeong, “Monolithic polymer microlens arrays with antireflective nanostructures,” Appl. Phys. Lett. 101(20), 203102 (2012).
[Crossref]

Endeavor (1)

C. G. Bernhard, “Structural and functional adaptation in a visual system,” Endeavor 26, 79–84 (1967).

J. Am. Chem. Soc. (1)

K. Q. Peng, X. Wang, L. Li, X. L. Wu, and S. T. Lee, “High-Performance Silicon Nanohole Solar Cells,” J. Am. Chem. Soc. 132(20), 6872–6873 (2010).
[Crossref] [PubMed]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

B. Daglar, T. Khudiyev, G. B. Demirel, F. Buyukserin, and M. Bayindir, “Soft biomimetic tapered nanostructures for large-area antireflective surfaces and SERS sensing,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(47), 7842–7848 (2013).
[Crossref]

J. Microelectromech. Syst. (1)

K. R. Williams, K. Gupta, and M. Wasilik, “Etch rates for micromachining processing, Part II,” J. Microelectromech. Syst. 12(6), 761–778 (2003).
[Crossref]

J. Nanomater. (1)

D. Di, X. Z. Wu, P. T. Dong, C. G. Wang, J. Chen, H. X. Wang, J. F. Wang, and S. Y. Li, “Simple, Fast, and Cost-Effective Fabrication of Wafer-Scale Nanohole Arrays on Silicon for Antireflection,” J. Nanomater. 2014, 1–6 (2014).
[Crossref]

J. Vac. Sci. Technol. B (1)

T. Yanagishita, T. Hidaka, M. Suzuki, and H. Masuda, “Polymer lenses with antireflection structures prepared using anodic porous alumina molds,” J. Vac. Sci. Technol. B 34, 021804 (2016).

Langmuir (2)

D. Qi, N. Lu, H. Xu, B. Yang, C. Huang, M. Xu, L. Gao, Z. Wang, and L. Chi, “Simple Approach to Wafer-Scale Self-Cleaning Antireflective Silicon Surfaces,” Langmuir 25(14), 7769–7772 (2009).
[Crossref] [PubMed]

D. Tahk, T. I. Kim, H. Yoon, M. Choi, K. Shin, and K. Y. Suh, “Fabrication of Antireflection and Antifogging Polymer Sheet by Partial Photopolymerization and Dry Etching,” Langmuir 26(4), 2240–2243 (2010).
[Crossref] [PubMed]

Nano Lett. (1)

K. X. Z. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption Enhancement in Ultrathin Crystalline Silicon Solar Cells with Antireflection and Light-Trapping Nanocone Gratings,” Nano Lett. 12(3), 1616–1619 (2012).
[Crossref] [PubMed]

Nanoscale (1)

S. Ji, J. Park, and H. Lim, “Improved antireflection properties of moth eye mimicking nanopillars on transparent glass: flat antireflection and color tuning,” Nanoscale 4(15), 4603–4610 (2012).
[Crossref] [PubMed]

Nanoscale Res. Lett. (2)

Y. M. Song, G. C. Park, E. K. Kang, C. I. Yeo, and Y. T. Lee, “Antireflective grassy surface on glass substrates with self-masked dry etching,” Nanoscale Res. Lett. 8(1), 505 (2013).
[Crossref] [PubMed]

C. Yeo, J. B. Kim, Y. M. Song, and Y. T. Lee, “Antireflective silicon nanostructures with hydrophobicity by metal-assisted chemical etching for solar cell applications,” Nanoscale Res. Lett. 8(1), 159 (2013).
[Crossref] [PubMed]

Nanotechnology (1)

K. Hadobás, S. Kirsch, A. Carl, M. Acet, and E. F. Wassermann, “Reflection properties of nanostructure-arrayed silicon surfaces,” Nanotechnology 11(3), 161–164 (2000).
[Crossref]

Nature (1)

M. Ibn-Elhaj and M. Schadt, “Optical polymer thin films with isotropic and anisotropic nano-corrugated surface topologies,” Nature 410(6830), 796–799 (2001).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (2)

Proc. Natl. Acad. Sci. U.S.A. (1)

J. J. Kim, Y. Lee, H. G. Kim, K. J. Choi, H. S. Kweon, S. Park, and K. H. Jeong, “Biologically inspired LED lens from cuticular nanostructures of firefly lantern,” Proc. Natl. Acad. Sci. U.S.A. 109(46), 18674–18678 (2012).
[Crossref] [PubMed]

Sci. Rep. (1)

E. Yu, S. C. Kim, H. J. Lee, K. H. Oh, and M. W. Moon, “Extreme wettability of nanostructured glass fabricated by non-lithographic, anisotropic etching,” Sci. Rep. 5, 9362 (2015).

Small (2)

Y. J. Oh, J. J. Kim, and K. H. Jeong, “Biologically Inspired Biophotonic Surfaces with Self-Antireflection,” Small 10(13), 2558–2563 (2014).
[Crossref] [PubMed]

J. Li, J. Zhu, and X. Gao, “Bio-Inspired High-Performance Antireflection and Antifogging Polymer Films,” Small 10(13), 2578–2582 (2014).
[Crossref] [PubMed]

Sol. Energy Mater. Sol. Cells (1)

K. S. Han, H. Lee, D. Kim, and H. Lee, “Fabrication of anti-reflection structure on protective layer of solar cells by hot-embossing method,” Sol. Energy Mater. Sol. Cells 93(8), 1214–1217 (2009).
[Crossref]

Other (2)

M. Bass, C. DeCusatis, J. Enoch, V. Lakshminarayanan, G. Li, C. Macdonald, V. Mahajan, and E. V. Stryland, Handbook of Optics, Third Edition Volume II: Design, Fabrication and Testing, Sources and Detectors, Radiometry and Photometry (McGraw-Hill, Inc., 2010), p. 1264.

F. J. Rousseau, A. Perry, L. Farkas, J. Kodas, T. T. Hampden-Smith, M. J. Paffett, M. Muenchausen, R., “New approaches for dry etching metal oxides at low temperature and high rates,” in Material Research Society (MRS) spring meeting, (Materials Research Society, 1992)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Large-scale glass nanoholes for antireflective structures. (a) The optical image of perspective view of “Morpho butterfly” through the glass wafer with a half nanoholes surface and a half flat surface. (b) A schematic illustration of nanoholes with subwavelength dimensions for antireflective structures. (c) A schematic diagram of numerical analysis for light transmission through the glass nanoholes by using the finite different time domain (FDTD) method. (d) Numerical results of average transmittance at the visible region (400 ~700 nm) through the glass nanoholes with different fill factors and thicknesses for the fixed period of 250 nm.
Fig. 2
Fig. 2 Nanofabrication of nanoholes on a glass substrate. (a) Nanofabrication procedures of glass nanoholes by using solid-state dewetting of ultrathin silver film, reactive ion etching (RIE), and wet etching. The top-view SEM images and the size distribution of silver nanoholes (AgNHs) mask (b), glass nanoholes without widening (c), and glass nanoholes with widening (d).
Fig. 3
Fig. 3 (a) Transmittance of bare and antireflective substrates with different thicknesses of nanoholes at visible region. Nanoholes increase the transmittance by up to 4% compared to the bare glass substrate. (b) The transmittance and hardness of bare glass, glass nanoholes and glass nanopillars.
Fig. 4
Fig. 4 The antireflective optical lens with glass nanoholes. (a) The optical images of perspective view of letters and picture through a bare lens and a lens with SiO2 nanoholes. (b) The SEM images of glass nanoholes at the center and the edge of lens. (c) A schematic illustration of measurement system for light transmission of an optical lens using a white light LED source, an integrating sphere, and a spectrometer. (d) The transmittance of bare lens and AR lens at the visible region.