Abstract

In the recent past, optical spectroscopy and imaging methods for biomedical diagnosis and target enhancing have been widely researched. The challenge to improve the performance of these methods is to know the sensitive depth of the backwards detected light well. Former research mainly employed a Monte Carlo method to run simulations to statistically describe the light sensitive depth. An experimental method for investigating the sensitive depth was developed and is presented here. An absorption plate was employed to remove all the light that may have travelled deeper than the plate, leaving only the light which cannot reach the plate. By measuring the received backwards light intensity and the depth between the probe and the plate, the light intensity distribution along the depth dimension can be achieved. The depth with the maximum light intensity was recorded as the sensitive depth. The experimental results showed that the maximum light intensity was nearly the same in a short depth range. It could be deduced that the sensitive depth was a range, rather than a single depth. This sensitive depth range as well as its central depth increased consistently with the increasing source-detection distance. Relationships between sensitive depth and optical properties were also investigated. It also showed that the reduced scattering coefficient affects the central sensitive depth and the range of the sensitive depth more than the absorption coefficient, so they cannot be simply added as reduced distinct coefficients to describe the sensitive depth. This study provides an efficient method for investigation of sensitive depth. It may facilitate the development of spectroscopy and imaging techniques for biomedical diagnosis and underwater imaging.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Monte Carlo study of pathlength distribution of polarized light in turbid media

Xinxin Guo, Michael F. G. Wood, and Alex Vitkin
Opt. Express 15(3) 1348-1360 (2007)

References

  • View by:
  • |
  • |
  • |

  1. Y. N. Mirabal, S. K. Chang, E. N. Atkinson, A. Malpica, M. Follen, and R. Richards-Kortum, “Reflectance spectroscopy for in vivo detection of cervical precancer,” J. Biomed. Opt. 7(4), 587–594 (2002).
    [Crossref] [PubMed]
  2. P. Farzam, E. M. Buckley, P. Y. Lin, K. Hagan, P. E. Grant, T. E. Inder, S. A. Carp, and M. A. Franceschini, “Shedding light on the neonatal brain: probing cerebral hemodynamics by diffuse optical spectroscopic methods,” Sci. Rep. 7(1), 15786 (2017).
    [Crossref] [PubMed]
  3. I. J. Bigio, S. G. Bown, G. Briggs, C. Kelley, S. Lakhani, D. Pickard, P. M. Ripley, I. G. Rose, and C. Saunders, “Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results,” J. Biomed. Opt. 5(2), 221–228 (2000).
    [Crossref] [PubMed]
  4. R. Wu, A. Jarabo, J. Suo, F. Dai, Y. Zhang, Q. Dai, and D. Gutierrez, “Adaptive polarization-difference transient imaging for depth estimation in scattering media,” Opt. Lett. 43(6), 1299–1302 (2018).
    [Crossref] [PubMed]
  5. H. Tian, J. Zhu, S. Tan, Y. Zhang, and X. Hou, “Influence of the particle size on polarization-based range-gated imaging in turbid media,” AIP Adv. 7(9), 095310 (2017).
    [Crossref]
  6. W. Kohler and G. C. Papanicolaou, “Power statistics for wave-propagation in one dimension and comparison with radiative transport-theory,” J. Math. Phys. 14(12), 1733–1745 (1973).
    [Crossref]
  7. C. Zhu and Q. Liu, “Validity of the semi-infinite tumor model in diffuse reflectance spectroscopy for epithelial cancer diagnosis: a Monte Carlo study,” Opt. Express 19(18), 17799–17812 (2011).
    [Crossref] [PubMed]
  8. T. Binzoni, A. Sassaroli, A. Torricelli, L. Spinelli, A. Farina, T. Durduran, S. Cavalieri, A. Pifferi, and F. Martelli, “Depth sensitivity of frequency domain optical measurements in diffusive media,” Biomed. Opt. Express 8(6), 2990–3004 (2017).
    [Crossref] [PubMed]
  9. J. Eichler, J. Knof, and H. Lenz, “Measurements on the depth of penetration of light (0.35-1.0 mu-m) in tissue,” Radiat. Environ. Biophys. 14(3), 239–242 (1977).
    [Crossref] [PubMed]
  10. A. J. Gomes, V. Turzhitsky, S. Ruderman, and V. Backman, “Monte Carlo model of the penetration depth for polarization gating spectroscopy: influence of illumination-collection geometry and sample optical properties,” Appl. Opt. 51(20), 4627–4637 (2012).
    [Crossref] [PubMed]
  11. G. Zonios, “Investigation of reflectance sampling depth in biological tissues for various common illumination/collection configurations,” J. Biomed. Opt. 19(9), 097001 (2014).
    [Crossref] [PubMed]
  12. Z. Qian, S. Victor, Y. Gu, C. Giller, and H. Liu, “Look-Ahead Distance of a fiber probe used to assist neurosurgery: Phantom and Monte Carlo study,” Opt. Express 11(16), 1844–1855 (2003).
    [Crossref] [PubMed]
  13. X. Guo, M. F. G. Wood, and A. Vitkin, “Monte Carlo study of pathlength distribution of polarized light in turbid media,” Opt. Express 15(3), 1348–1360 (2007).
    [Crossref] [PubMed]
  14. S. H. Tseng, C. Hayakawa, J. Spanier, and A. J. Durkin, “Investigation of a probe design for facilitating the uses of the standard photon diffusion equation at short source-detector separations: Monte Carlo simulations,” J. Biomed. Opt. 14(5), 054043 (2009).
    [Crossref] [PubMed]
  15. Y. Zhang, J. Zhu, W. Cui, W. Nie, J. Li, and Z. Xu, “Monte Carlo analysis on probe performance for endoscopic diffuse optical spectroscopy of tubular organ,” Opt. Commun. 339, 129–136 (2015).
    [Crossref]
  16. F. Martelli, T. Binzoni, A. Pifferi, L. Spinelli, A. Farina, and A. Torricelli, “There’s plenty of light at the bottom: statistics of photon penetration depth in random media,” Sci. Rep. 6(1), 27057 (2016).
    [Crossref] [PubMed]
  17. A. J. Gomes and V. Backman, “Analytical light reflectance models for overlapping illumination and collection area geometries,” Appl. Opt. 51(33), 8013–8021 (2012).
    [Crossref] [PubMed]
  18. A. N. Bahadur, C. A. Giller, D. Kashyap, and H. Liu, “Determination of optical probe interrogation field of near-infrared reflectance: phantom and Monte Carlo study,” Appl. Opt. 46(23), 5552–5561 (2007).
    [Crossref] [PubMed]
  19. H. J. van Staveren, C. J. M. Moes, J. van Marie, S. A. Prahl, and M. J. C. van Gemert, “Light scattering in intralipid-10-percent in the wavelength range of 400-1100 nm,” Appl. Opt. 30(31), 4507–4514 (1991).
    [Crossref] [PubMed]
  20. L. Spinelli, M. Botwicz, N. Zolek, M. Kacprzak, D. Milej, P. Sawosz, A. Liebert, U. Weigel, T. Durduran, F. Foschum, A. Kienle, F. Baribeau, S. Leclair, J. P. Bouchard, I. Noiseux, P. Gallant, O. Mermut, A. Farina, A. Pifferi, A. Torricelli, R. Cubeddu, H. C. Ho, M. Mazurenka, H. Wabnitz, K. Klauenberg, O. Bodnar, C. Elster, M. Bénazech-Lavoué, Y. Bérubé-Lauzière, F. Lesage, D. Khoptyar, A. A. Subash, S. Andersson-Engels, P. Di Ninni, F. Martelli, and G. Zaccanti, “Determination of reference values for optical properties of liquid phantoms based on Intralipid and India ink,” Biomed. Opt. Express 5(7), 2037–2053 (2014).
    [Crossref] [PubMed]

2018 (1)

2017 (3)

T. Binzoni, A. Sassaroli, A. Torricelli, L. Spinelli, A. Farina, T. Durduran, S. Cavalieri, A. Pifferi, and F. Martelli, “Depth sensitivity of frequency domain optical measurements in diffusive media,” Biomed. Opt. Express 8(6), 2990–3004 (2017).
[Crossref] [PubMed]

P. Farzam, E. M. Buckley, P. Y. Lin, K. Hagan, P. E. Grant, T. E. Inder, S. A. Carp, and M. A. Franceschini, “Shedding light on the neonatal brain: probing cerebral hemodynamics by diffuse optical spectroscopic methods,” Sci. Rep. 7(1), 15786 (2017).
[Crossref] [PubMed]

H. Tian, J. Zhu, S. Tan, Y. Zhang, and X. Hou, “Influence of the particle size on polarization-based range-gated imaging in turbid media,” AIP Adv. 7(9), 095310 (2017).
[Crossref]

2016 (1)

F. Martelli, T. Binzoni, A. Pifferi, L. Spinelli, A. Farina, and A. Torricelli, “There’s plenty of light at the bottom: statistics of photon penetration depth in random media,” Sci. Rep. 6(1), 27057 (2016).
[Crossref] [PubMed]

2015 (1)

Y. Zhang, J. Zhu, W. Cui, W. Nie, J. Li, and Z. Xu, “Monte Carlo analysis on probe performance for endoscopic diffuse optical spectroscopy of tubular organ,” Opt. Commun. 339, 129–136 (2015).
[Crossref]

2014 (2)

2012 (2)

2011 (1)

2009 (1)

S. H. Tseng, C. Hayakawa, J. Spanier, and A. J. Durkin, “Investigation of a probe design for facilitating the uses of the standard photon diffusion equation at short source-detector separations: Monte Carlo simulations,” J. Biomed. Opt. 14(5), 054043 (2009).
[Crossref] [PubMed]

2007 (2)

2003 (1)

2002 (1)

Y. N. Mirabal, S. K. Chang, E. N. Atkinson, A. Malpica, M. Follen, and R. Richards-Kortum, “Reflectance spectroscopy for in vivo detection of cervical precancer,” J. Biomed. Opt. 7(4), 587–594 (2002).
[Crossref] [PubMed]

2000 (1)

I. J. Bigio, S. G. Bown, G. Briggs, C. Kelley, S. Lakhani, D. Pickard, P. M. Ripley, I. G. Rose, and C. Saunders, “Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results,” J. Biomed. Opt. 5(2), 221–228 (2000).
[Crossref] [PubMed]

1991 (1)

1977 (1)

J. Eichler, J. Knof, and H. Lenz, “Measurements on the depth of penetration of light (0.35-1.0 mu-m) in tissue,” Radiat. Environ. Biophys. 14(3), 239–242 (1977).
[Crossref] [PubMed]

1973 (1)

W. Kohler and G. C. Papanicolaou, “Power statistics for wave-propagation in one dimension and comparison with radiative transport-theory,” J. Math. Phys. 14(12), 1733–1745 (1973).
[Crossref]

Andersson-Engels, S.

Atkinson, E. N.

Y. N. Mirabal, S. K. Chang, E. N. Atkinson, A. Malpica, M. Follen, and R. Richards-Kortum, “Reflectance spectroscopy for in vivo detection of cervical precancer,” J. Biomed. Opt. 7(4), 587–594 (2002).
[Crossref] [PubMed]

Backman, V.

Bahadur, A. N.

Baribeau, F.

Bénazech-Lavoué, M.

Bérubé-Lauzière, Y.

Bigio, I. J.

I. J. Bigio, S. G. Bown, G. Briggs, C. Kelley, S. Lakhani, D. Pickard, P. M. Ripley, I. G. Rose, and C. Saunders, “Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results,” J. Biomed. Opt. 5(2), 221–228 (2000).
[Crossref] [PubMed]

Binzoni, T.

T. Binzoni, A. Sassaroli, A. Torricelli, L. Spinelli, A. Farina, T. Durduran, S. Cavalieri, A. Pifferi, and F. Martelli, “Depth sensitivity of frequency domain optical measurements in diffusive media,” Biomed. Opt. Express 8(6), 2990–3004 (2017).
[Crossref] [PubMed]

F. Martelli, T. Binzoni, A. Pifferi, L. Spinelli, A. Farina, and A. Torricelli, “There’s plenty of light at the bottom: statistics of photon penetration depth in random media,” Sci. Rep. 6(1), 27057 (2016).
[Crossref] [PubMed]

Bodnar, O.

Botwicz, M.

Bouchard, J. P.

Bown, S. G.

I. J. Bigio, S. G. Bown, G. Briggs, C. Kelley, S. Lakhani, D. Pickard, P. M. Ripley, I. G. Rose, and C. Saunders, “Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results,” J. Biomed. Opt. 5(2), 221–228 (2000).
[Crossref] [PubMed]

Briggs, G.

I. J. Bigio, S. G. Bown, G. Briggs, C. Kelley, S. Lakhani, D. Pickard, P. M. Ripley, I. G. Rose, and C. Saunders, “Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results,” J. Biomed. Opt. 5(2), 221–228 (2000).
[Crossref] [PubMed]

Buckley, E. M.

P. Farzam, E. M. Buckley, P. Y. Lin, K. Hagan, P. E. Grant, T. E. Inder, S. A. Carp, and M. A. Franceschini, “Shedding light on the neonatal brain: probing cerebral hemodynamics by diffuse optical spectroscopic methods,” Sci. Rep. 7(1), 15786 (2017).
[Crossref] [PubMed]

Carp, S. A.

P. Farzam, E. M. Buckley, P. Y. Lin, K. Hagan, P. E. Grant, T. E. Inder, S. A. Carp, and M. A. Franceschini, “Shedding light on the neonatal brain: probing cerebral hemodynamics by diffuse optical spectroscopic methods,” Sci. Rep. 7(1), 15786 (2017).
[Crossref] [PubMed]

Cavalieri, S.

Chang, S. K.

Y. N. Mirabal, S. K. Chang, E. N. Atkinson, A. Malpica, M. Follen, and R. Richards-Kortum, “Reflectance spectroscopy for in vivo detection of cervical precancer,” J. Biomed. Opt. 7(4), 587–594 (2002).
[Crossref] [PubMed]

Cubeddu, R.

Cui, W.

Y. Zhang, J. Zhu, W. Cui, W. Nie, J. Li, and Z. Xu, “Monte Carlo analysis on probe performance for endoscopic diffuse optical spectroscopy of tubular organ,” Opt. Commun. 339, 129–136 (2015).
[Crossref]

Dai, F.

Dai, Q.

Di Ninni, P.

Durduran, T.

Durkin, A. J.

S. H. Tseng, C. Hayakawa, J. Spanier, and A. J. Durkin, “Investigation of a probe design for facilitating the uses of the standard photon diffusion equation at short source-detector separations: Monte Carlo simulations,” J. Biomed. Opt. 14(5), 054043 (2009).
[Crossref] [PubMed]

Eichler, J.

J. Eichler, J. Knof, and H. Lenz, “Measurements on the depth of penetration of light (0.35-1.0 mu-m) in tissue,” Radiat. Environ. Biophys. 14(3), 239–242 (1977).
[Crossref] [PubMed]

Elster, C.

Farina, A.

Farzam, P.

P. Farzam, E. M. Buckley, P. Y. Lin, K. Hagan, P. E. Grant, T. E. Inder, S. A. Carp, and M. A. Franceschini, “Shedding light on the neonatal brain: probing cerebral hemodynamics by diffuse optical spectroscopic methods,” Sci. Rep. 7(1), 15786 (2017).
[Crossref] [PubMed]

Follen, M.

Y. N. Mirabal, S. K. Chang, E. N. Atkinson, A. Malpica, M. Follen, and R. Richards-Kortum, “Reflectance spectroscopy for in vivo detection of cervical precancer,” J. Biomed. Opt. 7(4), 587–594 (2002).
[Crossref] [PubMed]

Foschum, F.

Franceschini, M. A.

P. Farzam, E. M. Buckley, P. Y. Lin, K. Hagan, P. E. Grant, T. E. Inder, S. A. Carp, and M. A. Franceschini, “Shedding light on the neonatal brain: probing cerebral hemodynamics by diffuse optical spectroscopic methods,” Sci. Rep. 7(1), 15786 (2017).
[Crossref] [PubMed]

Gallant, P.

Giller, C.

Giller, C. A.

Gomes, A. J.

Grant, P. E.

P. Farzam, E. M. Buckley, P. Y. Lin, K. Hagan, P. E. Grant, T. E. Inder, S. A. Carp, and M. A. Franceschini, “Shedding light on the neonatal brain: probing cerebral hemodynamics by diffuse optical spectroscopic methods,” Sci. Rep. 7(1), 15786 (2017).
[Crossref] [PubMed]

Gu, Y.

Guo, X.

Gutierrez, D.

Hagan, K.

P. Farzam, E. M. Buckley, P. Y. Lin, K. Hagan, P. E. Grant, T. E. Inder, S. A. Carp, and M. A. Franceschini, “Shedding light on the neonatal brain: probing cerebral hemodynamics by diffuse optical spectroscopic methods,” Sci. Rep. 7(1), 15786 (2017).
[Crossref] [PubMed]

Hayakawa, C.

S. H. Tseng, C. Hayakawa, J. Spanier, and A. J. Durkin, “Investigation of a probe design for facilitating the uses of the standard photon diffusion equation at short source-detector separations: Monte Carlo simulations,” J. Biomed. Opt. 14(5), 054043 (2009).
[Crossref] [PubMed]

Ho, H. C.

Hou, X.

H. Tian, J. Zhu, S. Tan, Y. Zhang, and X. Hou, “Influence of the particle size on polarization-based range-gated imaging in turbid media,” AIP Adv. 7(9), 095310 (2017).
[Crossref]

Inder, T. E.

P. Farzam, E. M. Buckley, P. Y. Lin, K. Hagan, P. E. Grant, T. E. Inder, S. A. Carp, and M. A. Franceschini, “Shedding light on the neonatal brain: probing cerebral hemodynamics by diffuse optical spectroscopic methods,” Sci. Rep. 7(1), 15786 (2017).
[Crossref] [PubMed]

Jarabo, A.

Kacprzak, M.

Kashyap, D.

Kelley, C.

I. J. Bigio, S. G. Bown, G. Briggs, C. Kelley, S. Lakhani, D. Pickard, P. M. Ripley, I. G. Rose, and C. Saunders, “Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results,” J. Biomed. Opt. 5(2), 221–228 (2000).
[Crossref] [PubMed]

Khoptyar, D.

Kienle, A.

Klauenberg, K.

Knof, J.

J. Eichler, J. Knof, and H. Lenz, “Measurements on the depth of penetration of light (0.35-1.0 mu-m) in tissue,” Radiat. Environ. Biophys. 14(3), 239–242 (1977).
[Crossref] [PubMed]

Kohler, W.

W. Kohler and G. C. Papanicolaou, “Power statistics for wave-propagation in one dimension and comparison with radiative transport-theory,” J. Math. Phys. 14(12), 1733–1745 (1973).
[Crossref]

Lakhani, S.

I. J. Bigio, S. G. Bown, G. Briggs, C. Kelley, S. Lakhani, D. Pickard, P. M. Ripley, I. G. Rose, and C. Saunders, “Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results,” J. Biomed. Opt. 5(2), 221–228 (2000).
[Crossref] [PubMed]

Leclair, S.

Lenz, H.

J. Eichler, J. Knof, and H. Lenz, “Measurements on the depth of penetration of light (0.35-1.0 mu-m) in tissue,” Radiat. Environ. Biophys. 14(3), 239–242 (1977).
[Crossref] [PubMed]

Lesage, F.

Li, J.

Y. Zhang, J. Zhu, W. Cui, W. Nie, J. Li, and Z. Xu, “Monte Carlo analysis on probe performance for endoscopic diffuse optical spectroscopy of tubular organ,” Opt. Commun. 339, 129–136 (2015).
[Crossref]

Liebert, A.

Lin, P. Y.

P. Farzam, E. M. Buckley, P. Y. Lin, K. Hagan, P. E. Grant, T. E. Inder, S. A. Carp, and M. A. Franceschini, “Shedding light on the neonatal brain: probing cerebral hemodynamics by diffuse optical spectroscopic methods,” Sci. Rep. 7(1), 15786 (2017).
[Crossref] [PubMed]

Liu, H.

Liu, Q.

Malpica, A.

Y. N. Mirabal, S. K. Chang, E. N. Atkinson, A. Malpica, M. Follen, and R. Richards-Kortum, “Reflectance spectroscopy for in vivo detection of cervical precancer,” J. Biomed. Opt. 7(4), 587–594 (2002).
[Crossref] [PubMed]

Martelli, F.

Mazurenka, M.

Mermut, O.

Milej, D.

Mirabal, Y. N.

Y. N. Mirabal, S. K. Chang, E. N. Atkinson, A. Malpica, M. Follen, and R. Richards-Kortum, “Reflectance spectroscopy for in vivo detection of cervical precancer,” J. Biomed. Opt. 7(4), 587–594 (2002).
[Crossref] [PubMed]

Moes, C. J. M.

Nie, W.

Y. Zhang, J. Zhu, W. Cui, W. Nie, J. Li, and Z. Xu, “Monte Carlo analysis on probe performance for endoscopic diffuse optical spectroscopy of tubular organ,” Opt. Commun. 339, 129–136 (2015).
[Crossref]

Noiseux, I.

Papanicolaou, G. C.

W. Kohler and G. C. Papanicolaou, “Power statistics for wave-propagation in one dimension and comparison with radiative transport-theory,” J. Math. Phys. 14(12), 1733–1745 (1973).
[Crossref]

Pickard, D.

I. J. Bigio, S. G. Bown, G. Briggs, C. Kelley, S. Lakhani, D. Pickard, P. M. Ripley, I. G. Rose, and C. Saunders, “Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results,” J. Biomed. Opt. 5(2), 221–228 (2000).
[Crossref] [PubMed]

Pifferi, A.

Prahl, S. A.

Qian, Z.

Richards-Kortum, R.

Y. N. Mirabal, S. K. Chang, E. N. Atkinson, A. Malpica, M. Follen, and R. Richards-Kortum, “Reflectance spectroscopy for in vivo detection of cervical precancer,” J. Biomed. Opt. 7(4), 587–594 (2002).
[Crossref] [PubMed]

Ripley, P. M.

I. J. Bigio, S. G. Bown, G. Briggs, C. Kelley, S. Lakhani, D. Pickard, P. M. Ripley, I. G. Rose, and C. Saunders, “Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results,” J. Biomed. Opt. 5(2), 221–228 (2000).
[Crossref] [PubMed]

Rose, I. G.

I. J. Bigio, S. G. Bown, G. Briggs, C. Kelley, S. Lakhani, D. Pickard, P. M. Ripley, I. G. Rose, and C. Saunders, “Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results,” J. Biomed. Opt. 5(2), 221–228 (2000).
[Crossref] [PubMed]

Ruderman, S.

Sassaroli, A.

Saunders, C.

I. J. Bigio, S. G. Bown, G. Briggs, C. Kelley, S. Lakhani, D. Pickard, P. M. Ripley, I. G. Rose, and C. Saunders, “Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results,” J. Biomed. Opt. 5(2), 221–228 (2000).
[Crossref] [PubMed]

Sawosz, P.

Spanier, J.

S. H. Tseng, C. Hayakawa, J. Spanier, and A. J. Durkin, “Investigation of a probe design for facilitating the uses of the standard photon diffusion equation at short source-detector separations: Monte Carlo simulations,” J. Biomed. Opt. 14(5), 054043 (2009).
[Crossref] [PubMed]

Spinelli, L.

Subash, A. A.

Suo, J.

Tan, S.

H. Tian, J. Zhu, S. Tan, Y. Zhang, and X. Hou, “Influence of the particle size on polarization-based range-gated imaging in turbid media,” AIP Adv. 7(9), 095310 (2017).
[Crossref]

Tian, H.

H. Tian, J. Zhu, S. Tan, Y. Zhang, and X. Hou, “Influence of the particle size on polarization-based range-gated imaging in turbid media,” AIP Adv. 7(9), 095310 (2017).
[Crossref]

Torricelli, A.

Tseng, S. H.

S. H. Tseng, C. Hayakawa, J. Spanier, and A. J. Durkin, “Investigation of a probe design for facilitating the uses of the standard photon diffusion equation at short source-detector separations: Monte Carlo simulations,” J. Biomed. Opt. 14(5), 054043 (2009).
[Crossref] [PubMed]

Turzhitsky, V.

van Gemert, M. J. C.

van Marie, J.

van Staveren, H. J.

Victor, S.

Vitkin, A.

Wabnitz, H.

Weigel, U.

Wood, M. F. G.

Wu, R.

Xu, Z.

Y. Zhang, J. Zhu, W. Cui, W. Nie, J. Li, and Z. Xu, “Monte Carlo analysis on probe performance for endoscopic diffuse optical spectroscopy of tubular organ,” Opt. Commun. 339, 129–136 (2015).
[Crossref]

Zaccanti, G.

Zhang, Y.

R. Wu, A. Jarabo, J. Suo, F. Dai, Y. Zhang, Q. Dai, and D. Gutierrez, “Adaptive polarization-difference transient imaging for depth estimation in scattering media,” Opt. Lett. 43(6), 1299–1302 (2018).
[Crossref] [PubMed]

H. Tian, J. Zhu, S. Tan, Y. Zhang, and X. Hou, “Influence of the particle size on polarization-based range-gated imaging in turbid media,” AIP Adv. 7(9), 095310 (2017).
[Crossref]

Y. Zhang, J. Zhu, W. Cui, W. Nie, J. Li, and Z. Xu, “Monte Carlo analysis on probe performance for endoscopic diffuse optical spectroscopy of tubular organ,” Opt. Commun. 339, 129–136 (2015).
[Crossref]

Zhu, C.

Zhu, J.

H. Tian, J. Zhu, S. Tan, Y. Zhang, and X. Hou, “Influence of the particle size on polarization-based range-gated imaging in turbid media,” AIP Adv. 7(9), 095310 (2017).
[Crossref]

Y. Zhang, J. Zhu, W. Cui, W. Nie, J. Li, and Z. Xu, “Monte Carlo analysis on probe performance for endoscopic diffuse optical spectroscopy of tubular organ,” Opt. Commun. 339, 129–136 (2015).
[Crossref]

Zolek, N.

Zonios, G.

G. Zonios, “Investigation of reflectance sampling depth in biological tissues for various common illumination/collection configurations,” J. Biomed. Opt. 19(9), 097001 (2014).
[Crossref] [PubMed]

AIP Adv. (1)

H. Tian, J. Zhu, S. Tan, Y. Zhang, and X. Hou, “Influence of the particle size on polarization-based range-gated imaging in turbid media,” AIP Adv. 7(9), 095310 (2017).
[Crossref]

Appl. Opt. (4)

Biomed. Opt. Express (2)

J. Biomed. Opt. (4)

Y. N. Mirabal, S. K. Chang, E. N. Atkinson, A. Malpica, M. Follen, and R. Richards-Kortum, “Reflectance spectroscopy for in vivo detection of cervical precancer,” J. Biomed. Opt. 7(4), 587–594 (2002).
[Crossref] [PubMed]

I. J. Bigio, S. G. Bown, G. Briggs, C. Kelley, S. Lakhani, D. Pickard, P. M. Ripley, I. G. Rose, and C. Saunders, “Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results,” J. Biomed. Opt. 5(2), 221–228 (2000).
[Crossref] [PubMed]

G. Zonios, “Investigation of reflectance sampling depth in biological tissues for various common illumination/collection configurations,” J. Biomed. Opt. 19(9), 097001 (2014).
[Crossref] [PubMed]

S. H. Tseng, C. Hayakawa, J. Spanier, and A. J. Durkin, “Investigation of a probe design for facilitating the uses of the standard photon diffusion equation at short source-detector separations: Monte Carlo simulations,” J. Biomed. Opt. 14(5), 054043 (2009).
[Crossref] [PubMed]

J. Math. Phys. (1)

W. Kohler and G. C. Papanicolaou, “Power statistics for wave-propagation in one dimension and comparison with radiative transport-theory,” J. Math. Phys. 14(12), 1733–1745 (1973).
[Crossref]

Opt. Commun. (1)

Y. Zhang, J. Zhu, W. Cui, W. Nie, J. Li, and Z. Xu, “Monte Carlo analysis on probe performance for endoscopic diffuse optical spectroscopy of tubular organ,” Opt. Commun. 339, 129–136 (2015).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Radiat. Environ. Biophys. (1)

J. Eichler, J. Knof, and H. Lenz, “Measurements on the depth of penetration of light (0.35-1.0 mu-m) in tissue,” Radiat. Environ. Biophys. 14(3), 239–242 (1977).
[Crossref] [PubMed]

Sci. Rep. (2)

P. Farzam, E. M. Buckley, P. Y. Lin, K. Hagan, P. E. Grant, T. E. Inder, S. A. Carp, and M. A. Franceschini, “Shedding light on the neonatal brain: probing cerebral hemodynamics by diffuse optical spectroscopic methods,” Sci. Rep. 7(1), 15786 (2017).
[Crossref] [PubMed]

F. Martelli, T. Binzoni, A. Pifferi, L. Spinelli, A. Farina, and A. Torricelli, “There’s plenty of light at the bottom: statistics of photon penetration depth in random media,” Sci. Rep. 6(1), 27057 (2016).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic for the penetration depth measurement using absorption plate.
Fig. 2
Fig. 2 Experimental setup. 1. Fiber probe; 2. Phantom; 3. Absorption plate; 4. Translation stage 5. Laser diode module; 6. Amplified photodetector; 7. Digital oscilloscope; 8. PC; 9. Probe cross-section
Fig. 3
Fig. 3 Normalized light intensity collected by fibers with different SDs.
Fig. 4
Fig. 4 Backwards detected light distribution along the z-axis.
Fig. 5
Fig. 5 Normalized slope versus depth for different SDs with absorption coefficient (a) 0.01 mm−1, (b) 0.04 mm−1, (c) 0.06 mm−1, (d) 0.08 mm−1, (e) 0.10 mm−1, and (f) 0.15 mm−1.
Fig. 6
Fig. 6 Normalized slope versus depth for different SDs with reduced scattering coefficient (a) 0.1 mm−1, (b) 0.5 mm−1, (c) 0.8 mm−1, (d) 1 mm−1, and (e) 1.5 mm−1, and (f) 2 mm−1.

Tables (3)

Tables Icon

Table 1 Sensitive depth

Tables Icon

Table 2 Sensitive depths for different absorption coefficients and SDs

Tables Icon

Table 3 Sensitive depths for different reduced scattering coefficients and SDs

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

μ s =2×25.4× 10 9 λ 2.4 ,
g=1.110.58× 10 3 λ,
S n = N I n+1 N I n D A n+1 D A n ;

Metrics