M. V. Afonso, J. M. Bioucas-Dias, and M. A. T. Figueiredo, “Fast image recovery using variable splitting and constrained optimization,” IEEE Trans. Image Process. 19, 2345–2356 (2010).

[Crossref]
[PubMed]

T. Zhang, C. Godavarthi, P. C. Chaumet, G. Maire, H. Giovannini, A. Talneau, M. Allain, K. Belkebir, and A. Sentenac, “Far-field diffraction microscopy at λ/10 resolution,” Optica 3, 609–612 (2016).

[Crossref]

D. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in International Conference on Learning Representations (ICLR), (San Diego, 2015).

Y. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Optical diffraction tomography for high resolution live cell imaging,” Opt. Express 17, 266–277 (2009).

[Crossref]
[PubMed]

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717–719 (2007).

[Crossref]
[PubMed]

A. Mousavi, A. B. Patel, and R. G. Baraniuk, “A deep learning approach to structured signal recovery,” in Proceedings of the Allerton Conference on Communication, Control, and Computing, (Allerton Park, IL, USA, 2015), pp. 1336–1343.

A. Beck and M. Teboulle, “Fast gradient-based algorithm for constrained total variation image denoising and deblurring problems,” IEEE Trans. Image Process. 18, 2419–2434 (2009).

[Crossref]
[PubMed]

T. Zhang, C. Godavarthi, P. C. Chaumet, G. Maire, H. Giovannini, A. Talneau, M. Allain, K. Belkebir, and A. Sentenac, “Far-field diffraction microscopy at λ/10 resolution,” Optica 3, 609–612 (2016).

[Crossref]

E. Mudry, P. C. Chaumet, K. Belkebir, and A. Sentenac, “Electromagnetic wave imaging of three-dimensional targets using a hybrid iterative inversion method,” Inv. Probl. 28, 065007 (2012).

[Crossref]

K. Belkebir, P. C. Chaumet, and A. Sentenac, “Superresolution in total internal reflection tomography,” J. Opt. Soc. Am. A 22, 1889–1897 (2005).

[Crossref]

K. Belkebir and A. Sentenac, “High-resolution optical diffraction microscopy,” J. Opt. Soc. Am. A 20, 1223–1229 (2003).

[Crossref]

M. V. Afonso, J. M. Bioucas-Dias, and M. A. T. Figueiredo, “Fast image recovery using variable splitting and constrained optimization,” IEEE Trans. Image Process. 19, 2345–2356 (2010).

[Crossref]
[PubMed]

M. Borgerding and P. Schniter, “Onsanger-corrected deep networks for sparse linear inverse problems,” in Proceedings of the IEEE Global Conference on Signal Processing and Information Processing (GlobalSIP), (Washington, DC, USA, 2016).

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University Press, 2003), pp. 695–734.

H.-Y. Liu, D. Liu, H. Mansour, P. T. Boufounos, L. Waller, and U. S. Kamilov, “SEAGLE: Sparsity-driven image reconstruction under multiple scattering,” IEEE Trans. Comput. Imaging 4, 73–86 (2018).

[Crossref]

U. S. Kamilov, D. Liu, H. Mansour, and P. T. Boufounos, “A recursive Born approach to nonlinear inverse scattering,” IEEE Signal Process. Lett. 23, 1052–1056 (2016).

[Crossref]

Y. Ma, H. Mansour, D. Liu, P. T. Boufounos, and U. S. Kamilov, “Accelerated image reconstruction for nonlinear diffractive imaging,” in Proceedings of the IEEE Int. Conference on Acoustics, Speech and Signal Processing (ICASSP 2018), (Calgary, Canada, 2018).

S. Sreehari, S. V. Venkatakrishnan, B. Wohlberg, G. T. Buzzard, L. F. Drummy, J. P. Simmons, and C. A. Bouman, “Plug-and-play priors for bright field electron tomography and sparse interpolation,” IEEE Trans. Comp. Imag. 2, 408–423 (2016).

S. V. Venkatakrishnan, C. A. Bouman, and B. Wohlberg, “Plug-and-play priors for model based reconstruction,” in Proceedings of the IEEE Global Conference on Signal Processing and Information Processing (GlobalSIP), (Austin, TX, USA, 2013), pp. 945–948.

O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” in “Medical Image Computing and Computer-Assisted Intervention (MICCAI),”, vol. 9351 of LNCS (Springer, 2015), pp. 234–241.

S. Sreehari, S. V. Venkatakrishnan, B. Wohlberg, G. T. Buzzard, L. F. Drummy, J. P. Simmons, and C. A. Bouman, “Plug-and-play priors for bright field electron tomography and sparse interpolation,” IEEE Trans. Comp. Imag. 2, 408–423 (2016).

E. J. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52, 489–509 (2006).

[Crossref]

J. C. Ye, Y. Han, and E. Cha, “Deep convolutional framelets: A general deep learning framework for inverse problems,” SIAM J. Imaging Sci. 11, 991–1048 (2018).

[Crossref]

S. H. Chan, X. Wang, and O. A. Elgendy, “Plug-and-play ADMM for image restoration: Fixed-point convergence and applications,” IEEE Trans. Comp. Imag. 3, 84–98 (2017).

[Crossref]

E. Kang, W. Chang, J. Yoo, and J. C. Ye, “Deep convolutional framelet denosing for low-dose ct via wavelet residual network,” IEEE Trans. Med. Imaging, (in press) (2018).

[Crossref]

T. Zhang, C. Godavarthi, P. C. Chaumet, G. Maire, H. Giovannini, A. Talneau, M. Allain, K. Belkebir, and A. Sentenac, “Far-field diffraction microscopy at λ/10 resolution,” Optica 3, 609–612 (2016).

[Crossref]

E. Mudry, P. C. Chaumet, K. Belkebir, and A. Sentenac, “Electromagnetic wave imaging of three-dimensional targets using a hybrid iterative inversion method,” Inv. Probl. 28, 065007 (2012).

[Crossref]

K. Belkebir, P. C. Chaumet, and A. Sentenac, “Superresolution in total internal reflection tomography,” J. Opt. Soc. Am. A 22, 1889–1897 (2005).

[Crossref]

Y. Chen, W. Yu, and T. Pock, “On learning optimized reaction diffuction processes for effective image restoration,” in Proceedings of te IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (Boston, MA, USA, 2015), pp. 5261–5269.

Y. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Optical diffraction tomography for high resolution live cell imaging,” Opt. Express 17, 266–277 (2009).

[Crossref]
[PubMed]

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717–719 (2007).

[Crossref]
[PubMed]

K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by sparse 3-D transform-domain collaborative filtering,” IEEE Trans. Image Process. 16, 2080–2095 (2007).

[Crossref]
[PubMed]

Y. Sung and R. R. Dasari, “Deterministic regularization of three-dimensional optical diffraction tomography,” J. Opt. Soc. Am. A 28, 1554–1561 (2011).

[Crossref]

Y. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Optical diffraction tomography for high resolution live cell imaging,” Opt. Express 17, 266–277 (2009).

[Crossref]
[PubMed]

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717–719 (2007).

[Crossref]
[PubMed]

C. Dong, C. C. Loy, K. He, and X. Tang, “Learning a deep convolutional network for image super-resolution,” in Proceedings of ECCV, (Zurich, Switzerland, 2014), pp. 184–199.

D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory 52, 1289–1306 (2006).

[Crossref]

S. Sreehari, S. V. Venkatakrishnan, B. Wohlberg, G. T. Buzzard, L. F. Drummy, J. P. Simmons, and C. A. Bouman, “Plug-and-play priors for bright field electron tomography and sparse interpolation,” IEEE Trans. Comp. Imag. 2, 408–423 (2016).

K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by sparse 3-D transform-domain collaborative filtering,” IEEE Trans. Image Process. 16, 2080–2095 (2007).

[Crossref]
[PubMed]

S. H. Chan, X. Wang, and O. A. Elgendy, “Plug-and-play ADMM for image restoration: Fixed-point convergence and applications,” IEEE Trans. Comp. Imag. 3, 84–98 (2017).

[Crossref]

J.-M. Geffrin, P. Sabouroux, and C. Eyraud, “Free space experimental scattering database continuation: experimental set-up and measurement precision,” Inv. Probl. 21, S117–S130 (2005).

[Crossref]

Y. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Optical diffraction tomography for high resolution live cell imaging,” Opt. Express 17, 266–277 (2009).

[Crossref]
[PubMed]

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717–719 (2007).

[Crossref]
[PubMed]

L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithms,” Phys. D 60, 259–268 (1992).

[Crossref]

Y. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Optical diffraction tomography for high resolution live cell imaging,” Opt. Express 17, 266–277 (2009).

[Crossref]
[PubMed]

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717–719 (2007).

[Crossref]
[PubMed]

M. V. Afonso, J. M. Bioucas-Dias, and M. A. T. Figueiredo, “Fast image recovery using variable splitting and constrained optimization,” IEEE Trans. Image Process. 19, 2345–2356 (2010).

[Crossref]
[PubMed]

O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” in “Medical Image Computing and Computer-Assisted Intervention (MICCAI),”, vol. 9351 of LNCS (Springer, 2015), pp. 234–241.

K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by sparse 3-D transform-domain collaborative filtering,” IEEE Trans. Image Process. 16, 2080–2095 (2007).

[Crossref]
[PubMed]

K. H. Jin, M. T. McCann, E. Froustey, and M. Unser, “Deep convolutional neural network for inverse problems in imaging,” IEEE Trans. Image Process. 26, 4509–4522 (2017).

[Crossref]

J.-M. Geffrin, P. Sabouroux, and C. Eyraud, “Free space experimental scattering database continuation: experimental set-up and measurement precision,” Inv. Probl. 21, S117–S130 (2005).

[Crossref]

T. Zhang, C. Godavarthi, P. C. Chaumet, G. Maire, H. Giovannini, A. Talneau, M. Allain, K. Belkebir, and A. Sentenac, “Far-field diffraction microscopy at λ/10 resolution,” Optica 3, 609–612 (2016).

[Crossref]

T. Zhang, C. Godavarthi, P. C. Chaumet, G. Maire, H. Giovannini, A. Talneau, M. Allain, K. Belkebir, and A. Sentenac, “Far-field diffraction microscopy at λ/10 resolution,” Optica 3, 609–612 (2016).

[Crossref]

T.-A. Pham, E. Soubies, A. Goy, J. Lim, F. Soulez, D. Psaltis, and M. Unser, “Versatile reconstruction framework for diffraction tomography with intensity measurements and multiple scattering,” Opt. Express 26, 2749–2763 (2018).

[Crossref]
[PubMed]

U. S. Kamilov, I. N. Papadopoulos, M. H. Shoreh, A. Goy, C. Vonesch, M. Unser, and D. Psaltis, “Optical tomographic image reconstruction based on beam propagation and sparse regularization,” IEEE Trans. Comp. Imag. 2, 59–70, (2016).

[Crossref]

U. S. Kamilov, I. N. Papadopoulos, M. H. Shoreh, A. Goy, C. Vonesch, M. Unser, and D. Psaltis, “Learning approach to optical tomography,” Optica 2, 517–522 (2015).

[Crossref]

J. C. Ye, Y. Han, and E. Cha, “Deep convolutional framelets: A general deep learning framework for inverse problems,” SIAM J. Imaging Sci. 11, 991–1048 (2018).

[Crossref]

C. Dong, C. C. Loy, K. He, and X. Tang, “Learning a deep convolutional network for image super-resolution,” in Proceedings of ECCV, (Zurich, Switzerland, 2014), pp. 184–199.

K. H. Jin, M. T. McCann, E. Froustey, and M. Unser, “Deep convolutional neural network for inverse problems in imaging,” IEEE Trans. Image Process. 26, 4509–4522 (2017).

[Crossref]

J. W. Lim, K. R. Lee, K. H. Jin, S. Shin, S. E. Lee, Y. K. Park, and J. C. Ye, “Comparative study of iterative reconstruction algorithms for missing cone problems in optical diffraction tomography,” Opt. Express 23, 16933–16948 (2015).

[Crossref]
[PubMed]

H.-Y. Liu, D. Liu, H. Mansour, P. T. Boufounos, L. Waller, and U. S. Kamilov, “SEAGLE: Sparsity-driven image reconstruction under multiple scattering,” IEEE Trans. Comput. Imaging 4, 73–86 (2018).

[Crossref]

U. S. Kamilov, H. Mansour, and B. Wohlberg, “A plug-and-play priors approach for solving nonlinear imaging inverse problems,” IEEE Signal. Proc. Let. 24, 1872–1876 (2017).

[Crossref]

U. S. Kamilov, D. Liu, H. Mansour, and P. T. Boufounos, “A recursive Born approach to nonlinear inverse scattering,” IEEE Signal Process. Lett. 23, 1052–1056 (2016).

[Crossref]

U. S. Kamilov, I. N. Papadopoulos, M. H. Shoreh, A. Goy, C. Vonesch, M. Unser, and D. Psaltis, “Optical tomographic image reconstruction based on beam propagation and sparse regularization,” IEEE Trans. Comp. Imag. 2, 59–70, (2016).

[Crossref]

U. S. Kamilov and H. Mansour, “Learning optimal nonlinearities for iterative thresholding algorithms,” IEEE Signal Process. Lett. 23, 747–751 (2016).

[Crossref]

U. S. Kamilov, I. N. Papadopoulos, M. H. Shoreh, A. Goy, C. Vonesch, M. Unser, and D. Psaltis, “Learning approach to optical tomography,” Optica 2, 517–522 (2015).

[Crossref]

Y. Ma, H. Mansour, D. Liu, P. T. Boufounos, and U. S. Kamilov, “Accelerated image reconstruction for nonlinear diffractive imaging,” in Proceedings of the IEEE Int. Conference on Acoustics, Speech and Signal Processing (ICASSP 2018), (Calgary, Canada, 2018).

E. Kang, W. Chang, J. Yoo, and J. C. Ye, “Deep convolutional framelet denosing for low-dose ct via wavelet residual network,” IEEE Trans. Med. Imaging, (in press) (2018).

[Crossref]

K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by sparse 3-D transform-domain collaborative filtering,” IEEE Trans. Image Process. 16, 2080–2095 (2007).

[Crossref]
[PubMed]

D. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in International Conference on Learning Representations (ICLR), (San Diego, 2015).

H.-Y. Liu, D. Liu, H. Mansour, P. T. Boufounos, L. Waller, and U. S. Kamilov, “SEAGLE: Sparsity-driven image reconstruction under multiple scattering,” IEEE Trans. Comput. Imaging 4, 73–86 (2018).

[Crossref]

U. S. Kamilov, D. Liu, H. Mansour, and P. T. Boufounos, “A recursive Born approach to nonlinear inverse scattering,” IEEE Signal Process. Lett. 23, 1052–1056 (2016).

[Crossref]

Y. Ma, H. Mansour, D. Liu, P. T. Boufounos, and U. S. Kamilov, “Accelerated image reconstruction for nonlinear diffractive imaging,” in Proceedings of the IEEE Int. Conference on Acoustics, Speech and Signal Processing (ICASSP 2018), (Calgary, Canada, 2018).

H.-Y. Liu, D. Liu, H. Mansour, P. T. Boufounos, L. Waller, and U. S. Kamilov, “SEAGLE: Sparsity-driven image reconstruction under multiple scattering,” IEEE Trans. Comput. Imaging 4, 73–86 (2018).

[Crossref]

Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep learning face attributes in the wild,” in Proceedings of the International Conference on Computer Vision (ICCV), (Santiago, 2015).

C. Dong, C. C. Loy, K. He, and X. Tang, “Learning a deep convolutional network for image super-resolution,” in Proceedings of ECCV, (Zurich, Switzerland, 2014), pp. 184–199.

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717–719 (2007).

[Crossref]
[PubMed]

Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep learning face attributes in the wild,” in Proceedings of the International Conference on Computer Vision (ICCV), (Santiago, 2015).

Y. Ma, H. Mansour, D. Liu, P. T. Boufounos, and U. S. Kamilov, “Accelerated image reconstruction for nonlinear diffractive imaging,” in Proceedings of the IEEE Int. Conference on Acoustics, Speech and Signal Processing (ICASSP 2018), (Calgary, Canada, 2018).

T. Zhang, C. Godavarthi, P. C. Chaumet, G. Maire, H. Giovannini, A. Talneau, M. Allain, K. Belkebir, and A. Sentenac, “Far-field diffraction microscopy at λ/10 resolution,” Optica 3, 609–612 (2016).

[Crossref]

H.-Y. Liu, D. Liu, H. Mansour, P. T. Boufounos, L. Waller, and U. S. Kamilov, “SEAGLE: Sparsity-driven image reconstruction under multiple scattering,” IEEE Trans. Comput. Imaging 4, 73–86 (2018).

[Crossref]

U. S. Kamilov, H. Mansour, and B. Wohlberg, “A plug-and-play priors approach for solving nonlinear imaging inverse problems,” IEEE Signal. Proc. Let. 24, 1872–1876 (2017).

[Crossref]

U. S. Kamilov, D. Liu, H. Mansour, and P. T. Boufounos, “A recursive Born approach to nonlinear inverse scattering,” IEEE Signal Process. Lett. 23, 1052–1056 (2016).

[Crossref]

U. S. Kamilov and H. Mansour, “Learning optimal nonlinearities for iterative thresholding algorithms,” IEEE Signal Process. Lett. 23, 747–751 (2016).

[Crossref]

Y. Ma, H. Mansour, D. Liu, P. T. Boufounos, and U. S. Kamilov, “Accelerated image reconstruction for nonlinear diffractive imaging,” in Proceedings of the IEEE Int. Conference on Acoustics, Speech and Signal Processing (ICASSP 2018), (Calgary, Canada, 2018).

K. H. Jin, M. T. McCann, E. Froustey, and M. Unser, “Deep convolutional neural network for inverse problems in imaging,” IEEE Trans. Image Process. 26, 4509–4522 (2017).

[Crossref]

A. Mousavi, A. B. Patel, and R. G. Baraniuk, “A deep learning approach to structured signal recovery,” in Proceedings of the Allerton Conference on Communication, Control, and Computing, (Allerton Park, IL, USA, 2015), pp. 1336–1343.

E. Mudry, P. C. Chaumet, K. Belkebir, and A. Sentenac, “Electromagnetic wave imaging of three-dimensional targets using a hybrid iterative inversion method,” Inv. Probl. 28, 065007 (2012).

[Crossref]

Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic Course (Kluwer Academic Publishers, 2004).

[Crossref]

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717–719 (2007).

[Crossref]
[PubMed]

L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithms,” Phys. D 60, 259–268 (1992).

[Crossref]

U. S. Kamilov, I. N. Papadopoulos, M. H. Shoreh, A. Goy, C. Vonesch, M. Unser, and D. Psaltis, “Optical tomographic image reconstruction based on beam propagation and sparse regularization,” IEEE Trans. Comp. Imag. 2, 59–70, (2016).

[Crossref]

U. S. Kamilov, I. N. Papadopoulos, M. H. Shoreh, A. Goy, C. Vonesch, M. Unser, and D. Psaltis, “Learning approach to optical tomography,” Optica 2, 517–522 (2015).

[Crossref]

A. Mousavi, A. B. Patel, and R. G. Baraniuk, “A deep learning approach to structured signal recovery,” in Proceedings of the Allerton Conference on Communication, Control, and Computing, (Allerton Park, IL, USA, 2015), pp. 1336–1343.

T.-A. Pham, E. Soubies, A. Goy, J. Lim, F. Soulez, D. Psaltis, and M. Unser, “Versatile reconstruction framework for diffraction tomography with intensity measurements and multiple scattering,” Opt. Express 26, 2749–2763 (2018).

[Crossref]
[PubMed]

E. Soubies, T.-A. Pham, and M. Unser, “Efficient inversion of multiple-scattering model for optical diffraction tomography,” Opt. Express 25, 21786–21800 (2017).

[Crossref]
[PubMed]

Y. Chen, W. Yu, and T. Pock, “On learning optimized reaction diffuction processes for effective image restoration,” in Proceedings of te IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (Boston, MA, USA, 2015), pp. 5261–5269.

T.-A. Pham, E. Soubies, A. Goy, J. Lim, F. Soulez, D. Psaltis, and M. Unser, “Versatile reconstruction framework for diffraction tomography with intensity measurements and multiple scattering,” Opt. Express 26, 2749–2763 (2018).

[Crossref]
[PubMed]

U. S. Kamilov, I. N. Papadopoulos, M. H. Shoreh, A. Goy, C. Vonesch, M. Unser, and D. Psaltis, “Optical tomographic image reconstruction based on beam propagation and sparse regularization,” IEEE Trans. Comp. Imag. 2, 59–70, (2016).

[Crossref]

U. S. Kamilov, I. N. Papadopoulos, M. H. Shoreh, A. Goy, C. Vonesch, M. Unser, and D. Psaltis, “Learning approach to optical tomography,” Optica 2, 517–522 (2015).

[Crossref]

A. Ribés and F. Schmitt, “Linear inverse problems in imaging,” IEEE Signal Process. Mag. 25, 84–99 (2008).

[Crossref]

E. J. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52, 489–509 (2006).

[Crossref]

O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” in “Medical Image Computing and Computer-Assisted Intervention (MICCAI),”, vol. 9351 of LNCS (Springer, 2015), pp. 234–241.

U. Schmidt and S. Roth, “Shrinkage fields for effective image restoration,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (Columbus, OH, USA, 2014), pp. 2774–2781.

L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithms,” Phys. D 60, 259–268 (1992).

[Crossref]

J.-M. Geffrin, P. Sabouroux, and C. Eyraud, “Free space experimental scattering database continuation: experimental set-up and measurement precision,” Inv. Probl. 21, S117–S130 (2005).

[Crossref]

U. Schmidt and S. Roth, “Shrinkage fields for effective image restoration,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (Columbus, OH, USA, 2014), pp. 2774–2781.

A. Ribés and F. Schmitt, “Linear inverse problems in imaging,” IEEE Signal Process. Mag. 25, 84–99 (2008).

[Crossref]

M. Borgerding and P. Schniter, “Onsanger-corrected deep networks for sparse linear inverse problems,” in Proceedings of the IEEE Global Conference on Signal Processing and Information Processing (GlobalSIP), (Washington, DC, USA, 2016).

T. Zhang, C. Godavarthi, P. C. Chaumet, G. Maire, H. Giovannini, A. Talneau, M. Allain, K. Belkebir, and A. Sentenac, “Far-field diffraction microscopy at λ/10 resolution,” Optica 3, 609–612 (2016).

[Crossref]

E. Mudry, P. C. Chaumet, K. Belkebir, and A. Sentenac, “Electromagnetic wave imaging of three-dimensional targets using a hybrid iterative inversion method,” Inv. Probl. 28, 065007 (2012).

[Crossref]

K. Belkebir, P. C. Chaumet, and A. Sentenac, “Superresolution in total internal reflection tomography,” J. Opt. Soc. Am. A 22, 1889–1897 (2005).

[Crossref]

K. Belkebir and A. Sentenac, “High-resolution optical diffraction microscopy,” J. Opt. Soc. Am. A 20, 1223–1229 (2003).

[Crossref]

U. S. Kamilov, I. N. Papadopoulos, M. H. Shoreh, A. Goy, C. Vonesch, M. Unser, and D. Psaltis, “Optical tomographic image reconstruction based on beam propagation and sparse regularization,” IEEE Trans. Comp. Imag. 2, 59–70, (2016).

[Crossref]

U. S. Kamilov, I. N. Papadopoulos, M. H. Shoreh, A. Goy, C. Vonesch, M. Unser, and D. Psaltis, “Learning approach to optical tomography,” Optica 2, 517–522 (2015).

[Crossref]

S. Sreehari, S. V. Venkatakrishnan, B. Wohlberg, G. T. Buzzard, L. F. Drummy, J. P. Simmons, and C. A. Bouman, “Plug-and-play priors for bright field electron tomography and sparse interpolation,” IEEE Trans. Comp. Imag. 2, 408–423 (2016).

T.-A. Pham, E. Soubies, A. Goy, J. Lim, F. Soulez, D. Psaltis, and M. Unser, “Versatile reconstruction framework for diffraction tomography with intensity measurements and multiple scattering,” Opt. Express 26, 2749–2763 (2018).

[Crossref]
[PubMed]

E. Soubies, T.-A. Pham, and M. Unser, “Efficient inversion of multiple-scattering model for optical diffraction tomography,” Opt. Express 25, 21786–21800 (2017).

[Crossref]
[PubMed]

S. Sreehari, S. V. Venkatakrishnan, B. Wohlberg, G. T. Buzzard, L. F. Drummy, J. P. Simmons, and C. A. Bouman, “Plug-and-play priors for bright field electron tomography and sparse interpolation,” IEEE Trans. Comp. Imag. 2, 408–423 (2016).

Y. Sung and R. R. Dasari, “Deterministic regularization of three-dimensional optical diffraction tomography,” J. Opt. Soc. Am. A 28, 1554–1561 (2011).

[Crossref]

Y. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Optical diffraction tomography for high resolution live cell imaging,” Opt. Express 17, 266–277 (2009).

[Crossref]
[PubMed]

T. Zhang, C. Godavarthi, P. C. Chaumet, G. Maire, H. Giovannini, A. Talneau, M. Allain, K. Belkebir, and A. Sentenac, “Far-field diffraction microscopy at λ/10 resolution,” Optica 3, 609–612 (2016).

[Crossref]

Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep learning face attributes in the wild,” in Proceedings of the International Conference on Computer Vision (ICCV), (Santiago, 2015).

C. Dong, C. C. Loy, K. He, and X. Tang, “Learning a deep convolutional network for image super-resolution,” in Proceedings of ECCV, (Zurich, Switzerland, 2014), pp. 184–199.

E. J. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52, 489–509 (2006).

[Crossref]

A. Beck and M. Teboulle, “Fast gradient-based algorithm for constrained total variation image denoising and deblurring problems,” IEEE Trans. Image Process. 18, 2419–2434 (2009).

[Crossref]
[PubMed]

T.-A. Pham, E. Soubies, A. Goy, J. Lim, F. Soulez, D. Psaltis, and M. Unser, “Versatile reconstruction framework for diffraction tomography with intensity measurements and multiple scattering,” Opt. Express 26, 2749–2763 (2018).

[Crossref]
[PubMed]

E. Soubies, T.-A. Pham, and M. Unser, “Efficient inversion of multiple-scattering model for optical diffraction tomography,” Opt. Express 25, 21786–21800 (2017).

[Crossref]
[PubMed]

K. H. Jin, M. T. McCann, E. Froustey, and M. Unser, “Deep convolutional neural network for inverse problems in imaging,” IEEE Trans. Image Process. 26, 4509–4522 (2017).

[Crossref]

U. S. Kamilov, I. N. Papadopoulos, M. H. Shoreh, A. Goy, C. Vonesch, M. Unser, and D. Psaltis, “Optical tomographic image reconstruction based on beam propagation and sparse regularization,” IEEE Trans. Comp. Imag. 2, 59–70, (2016).

[Crossref]

U. S. Kamilov, I. N. Papadopoulos, M. H. Shoreh, A. Goy, C. Vonesch, M. Unser, and D. Psaltis, “Learning approach to optical tomography,” Optica 2, 517–522 (2015).

[Crossref]

S. Sreehari, S. V. Venkatakrishnan, B. Wohlberg, G. T. Buzzard, L. F. Drummy, J. P. Simmons, and C. A. Bouman, “Plug-and-play priors for bright field electron tomography and sparse interpolation,” IEEE Trans. Comp. Imag. 2, 408–423 (2016).

S. V. Venkatakrishnan, C. A. Bouman, and B. Wohlberg, “Plug-and-play priors for model based reconstruction,” in Proceedings of the IEEE Global Conference on Signal Processing and Information Processing (GlobalSIP), (Austin, TX, USA, 2013), pp. 945–948.

U. S. Kamilov, I. N. Papadopoulos, M. H. Shoreh, A. Goy, C. Vonesch, M. Unser, and D. Psaltis, “Optical tomographic image reconstruction based on beam propagation and sparse regularization,” IEEE Trans. Comp. Imag. 2, 59–70, (2016).

[Crossref]

U. S. Kamilov, I. N. Papadopoulos, M. H. Shoreh, A. Goy, C. Vonesch, M. Unser, and D. Psaltis, “Learning approach to optical tomography,” Optica 2, 517–522 (2015).

[Crossref]

H.-Y. Liu, D. Liu, H. Mansour, P. T. Boufounos, L. Waller, and U. S. Kamilov, “SEAGLE: Sparsity-driven image reconstruction under multiple scattering,” IEEE Trans. Comput. Imaging 4, 73–86 (2018).

[Crossref]

L. Tian and L. Waller, “3D intensity and phase imaging from light field measurements in an LED array microscope,” Optica 2, 104–111 (2015).

[Crossref]

S. H. Chan, X. Wang, and O. A. Elgendy, “Plug-and-play ADMM for image restoration: Fixed-point convergence and applications,” IEEE Trans. Comp. Imag. 3, 84–98 (2017).

[Crossref]

Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep learning face attributes in the wild,” in Proceedings of the International Conference on Computer Vision (ICCV), (Santiago, 2015).

U. S. Kamilov, H. Mansour, and B. Wohlberg, “A plug-and-play priors approach for solving nonlinear imaging inverse problems,” IEEE Signal. Proc. Let. 24, 1872–1876 (2017).

[Crossref]

S. Sreehari, S. V. Venkatakrishnan, B. Wohlberg, G. T. Buzzard, L. F. Drummy, J. P. Simmons, and C. A. Bouman, “Plug-and-play priors for bright field electron tomography and sparse interpolation,” IEEE Trans. Comp. Imag. 2, 408–423 (2016).

S. V. Venkatakrishnan, C. A. Bouman, and B. Wohlberg, “Plug-and-play priors for model based reconstruction,” in Proceedings of the IEEE Global Conference on Signal Processing and Information Processing (GlobalSIP), (Austin, TX, USA, 2013), pp. 945–948.

E. Wolf, “Three-dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun. 1, 153–156 (1969).

[Crossref]

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University Press, 2003), pp. 695–734.

J. C. Ye, Y. Han, and E. Cha, “Deep convolutional framelets: A general deep learning framework for inverse problems,” SIAM J. Imaging Sci. 11, 991–1048 (2018).

[Crossref]

J. W. Lim, K. R. Lee, K. H. Jin, S. Shin, S. E. Lee, Y. K. Park, and J. C. Ye, “Comparative study of iterative reconstruction algorithms for missing cone problems in optical diffraction tomography,” Opt. Express 23, 16933–16948 (2015).

[Crossref]
[PubMed]

E. Kang, W. Chang, J. Yoo, and J. C. Ye, “Deep convolutional framelet denosing for low-dose ct via wavelet residual network,” IEEE Trans. Med. Imaging, (in press) (2018).

[Crossref]

E. Kang, W. Chang, J. Yoo, and J. C. Ye, “Deep convolutional framelet denosing for low-dose ct via wavelet residual network,” IEEE Trans. Med. Imaging, (in press) (2018).

[Crossref]

Y. Chen, W. Yu, and T. Pock, “On learning optimized reaction diffuction processes for effective image restoration,” in Proceedings of te IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (Boston, MA, USA, 2015), pp. 5261–5269.

T. Zhang, C. Godavarthi, P. C. Chaumet, G. Maire, H. Giovannini, A. Talneau, M. Allain, K. Belkebir, and A. Sentenac, “Far-field diffraction microscopy at λ/10 resolution,” Optica 3, 609–612 (2016).

[Crossref]

U. S. Kamilov, D. Liu, H. Mansour, and P. T. Boufounos, “A recursive Born approach to nonlinear inverse scattering,” IEEE Signal Process. Lett. 23, 1052–1056 (2016).

[Crossref]

U. S. Kamilov and H. Mansour, “Learning optimal nonlinearities for iterative thresholding algorithms,” IEEE Signal Process. Lett. 23, 747–751 (2016).

[Crossref]

A. Ribés and F. Schmitt, “Linear inverse problems in imaging,” IEEE Signal Process. Mag. 25, 84–99 (2008).

[Crossref]

U. S. Kamilov, H. Mansour, and B. Wohlberg, “A plug-and-play priors approach for solving nonlinear imaging inverse problems,” IEEE Signal. Proc. Let. 24, 1872–1876 (2017).

[Crossref]

U. S. Kamilov, I. N. Papadopoulos, M. H. Shoreh, A. Goy, C. Vonesch, M. Unser, and D. Psaltis, “Optical tomographic image reconstruction based on beam propagation and sparse regularization,” IEEE Trans. Comp. Imag. 2, 59–70, (2016).

[Crossref]

S. Sreehari, S. V. Venkatakrishnan, B. Wohlberg, G. T. Buzzard, L. F. Drummy, J. P. Simmons, and C. A. Bouman, “Plug-and-play priors for bright field electron tomography and sparse interpolation,” IEEE Trans. Comp. Imag. 2, 408–423 (2016).

S. H. Chan, X. Wang, and O. A. Elgendy, “Plug-and-play ADMM for image restoration: Fixed-point convergence and applications,” IEEE Trans. Comp. Imag. 3, 84–98 (2017).

[Crossref]

H.-Y. Liu, D. Liu, H. Mansour, P. T. Boufounos, L. Waller, and U. S. Kamilov, “SEAGLE: Sparsity-driven image reconstruction under multiple scattering,” IEEE Trans. Comput. Imaging 4, 73–86 (2018).

[Crossref]

K. H. Jin, M. T. McCann, E. Froustey, and M. Unser, “Deep convolutional neural network for inverse problems in imaging,” IEEE Trans. Image Process. 26, 4509–4522 (2017).

[Crossref]

A. Beck and M. Teboulle, “Fast gradient-based algorithm for constrained total variation image denoising and deblurring problems,” IEEE Trans. Image Process. 18, 2419–2434 (2009).

[Crossref]
[PubMed]

M. V. Afonso, J. M. Bioucas-Dias, and M. A. T. Figueiredo, “Fast image recovery using variable splitting and constrained optimization,” IEEE Trans. Image Process. 19, 2345–2356 (2010).

[Crossref]
[PubMed]

K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by sparse 3-D transform-domain collaborative filtering,” IEEE Trans. Image Process. 16, 2080–2095 (2007).

[Crossref]
[PubMed]

E. J. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52, 489–509 (2006).

[Crossref]

D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory 52, 1289–1306 (2006).

[Crossref]

J.-M. Geffrin, P. Sabouroux, and C. Eyraud, “Free space experimental scattering database continuation: experimental set-up and measurement precision,” Inv. Probl. 21, S117–S130 (2005).

[Crossref]

E. Mudry, P. C. Chaumet, K. Belkebir, and A. Sentenac, “Electromagnetic wave imaging of three-dimensional targets using a hybrid iterative inversion method,” Inv. Probl. 28, 065007 (2012).

[Crossref]

K. Belkebir and A. Sentenac, “High-resolution optical diffraction microscopy,” J. Opt. Soc. Am. A 20, 1223–1229 (2003).

[Crossref]

K. Belkebir, P. C. Chaumet, and A. Sentenac, “Superresolution in total internal reflection tomography,” J. Opt. Soc. Am. A 22, 1889–1897 (2005).

[Crossref]

Y. Sung and R. R. Dasari, “Deterministic regularization of three-dimensional optical diffraction tomography,” J. Opt. Soc. Am. A 28, 1554–1561 (2011).

[Crossref]

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717–719 (2007).

[Crossref]
[PubMed]

E. Wolf, “Three-dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun. 1, 153–156 (1969).

[Crossref]

D. J. Brady, K. Choi, D. L. Marks, R. Horisaki, and S. Lim, “Compressive holography,” Opt. Express 17, 13040–13049 (2009).

[Crossref]
[PubMed]

J. W. Lim, K. R. Lee, K. H. Jin, S. Shin, S. E. Lee, Y. K. Park, and J. C. Ye, “Comparative study of iterative reconstruction algorithms for missing cone problems in optical diffraction tomography,” Opt. Express 23, 16933–16948 (2015).

[Crossref]
[PubMed]

T.-A. Pham, E. Soubies, A. Goy, J. Lim, F. Soulez, D. Psaltis, and M. Unser, “Versatile reconstruction framework for diffraction tomography with intensity measurements and multiple scattering,” Opt. Express 26, 2749–2763 (2018).

[Crossref]
[PubMed]

E. Soubies, T.-A. Pham, and M. Unser, “Efficient inversion of multiple-scattering model for optical diffraction tomography,” Opt. Express 25, 21786–21800 (2017).

[Crossref]
[PubMed]

Y. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Optical diffraction tomography for high resolution live cell imaging,” Opt. Express 17, 266–277 (2009).

[Crossref]
[PubMed]

L. Tian and L. Waller, “3D intensity and phase imaging from light field measurements in an LED array microscope,” Optica 2, 104–111 (2015).

[Crossref]

U. S. Kamilov, I. N. Papadopoulos, M. H. Shoreh, A. Goy, C. Vonesch, M. Unser, and D. Psaltis, “Learning approach to optical tomography,” Optica 2, 517–522 (2015).

[Crossref]

T. Zhang, C. Godavarthi, P. C. Chaumet, G. Maire, H. Giovannini, A. Talneau, M. Allain, K. Belkebir, and A. Sentenac, “Far-field diffraction microscopy at λ/10 resolution,” Optica 3, 609–612 (2016).

[Crossref]

A. Sinha, J. Lee, S. Li, and G. Barbastathis, “Lensless computational imaging through deep learning,” Optica 4, 1117–1125 (2017).

[Crossref]

L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithms,” Phys. D 60, 259–268 (1992).

[Crossref]

J. C. Ye, Y. Han, and E. Cha, “Deep convolutional framelets: A general deep learning framework for inverse problems,” SIAM J. Imaging Sci. 11, 991–1048 (2018).

[Crossref]

E. Kang, W. Chang, J. Yoo, and J. C. Ye, “Deep convolutional framelet denosing for low-dose ct via wavelet residual network,” IEEE Trans. Med. Imaging, (in press) (2018).

[Crossref]

J. Yoo, S. Sabir, D. Heo, K. H. Kim, A. Wahab, Y. Choi, S.-I. Lee, E. Y. Chae, H. H. Kim, Y. M. Bae, Y.-W. Choi, S. Cho, and J. C. Ye, “Deep learning can reverse photon migration for diffuse optical tomography,” https://arxiv.org/abs/171200912 .

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University Press, 2003), pp. 695–734.

C. Dong, C. C. Loy, K. He, and X. Tang, “Learning a deep convolutional network for image super-resolution,” in Proceedings of ECCV, (Zurich, Switzerland, 2014), pp. 184–199.

U. Schmidt and S. Roth, “Shrinkage fields for effective image restoration,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (Columbus, OH, USA, 2014), pp. 2774–2781.

A. Mousavi, A. B. Patel, and R. G. Baraniuk, “A deep learning approach to structured signal recovery,” in Proceedings of the Allerton Conference on Communication, Control, and Computing, (Allerton Park, IL, USA, 2015), pp. 1336–1343.

Y. Chen, W. Yu, and T. Pock, “On learning optimized reaction diffuction processes for effective image restoration,” in Proceedings of te IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (Boston, MA, USA, 2015), pp. 5261–5269.

M. Borgerding and P. Schniter, “Onsanger-corrected deep networks for sparse linear inverse problems,” in Proceedings of the IEEE Global Conference on Signal Processing and Information Processing (GlobalSIP), (Washington, DC, USA, 2016).

“Deep residual learning for compressed sensing CT reconstruction via persistent homology analysis,” https://arxiv.org/abs/161106391 .

Y. Ma, H. Mansour, D. Liu, P. T. Boufounos, and U. S. Kamilov, “Accelerated image reconstruction for nonlinear diffractive imaging,” in Proceedings of the IEEE Int. Conference on Acoustics, Speech and Signal Processing (ICASSP 2018), (Calgary, Canada, 2018).

Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep learning face attributes in the wild,” in Proceedings of the International Conference on Computer Vision (ICCV), (Santiago, 2015).

D. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in International Conference on Learning Representations (ICLR), (San Diego, 2015).

S. V. Venkatakrishnan, C. A. Bouman, and B. Wohlberg, “Plug-and-play priors for model based reconstruction,” in Proceedings of the IEEE Global Conference on Signal Processing and Information Processing (GlobalSIP), (Austin, TX, USA, 2013), pp. 945–948.

O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” in “Medical Image Computing and Computer-Assisted Intervention (MICCAI),”, vol. 9351 of LNCS (Springer, 2015), pp. 234–241.

Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic Course (Kluwer Academic Publishers, 2004).

[Crossref]