Abstract

We consider a modified version of the spin-flip model (SFM) that describes optically pumped quantum dot (QD) spin-polarized vertical-cavity surface-emitting lasers (VCSELs). Maps showing different dynamical regions and those consisting of various key bifurcations are constructed by direct numerical simulations and a numerical path continuation technique, respectively. A comparison between them clarifies the physical mechanism that governs the underlying dynamics as well as routes to chaos in QD spin-VCSELs. Detailed numerical simulations illustrate the role played by the capture rate from wetting layer (WL) to QD ground state, the gain parameter, and the amplitude-phase coupling. By tuning the aforementioned key parameters in turn we show how the dynamical regions evolve as a function of the intensity and polarization of the optical pump, as well as in the plane of the spin relaxation rate and linear birefringence rate, which is of importance in the design of spin lasers promising potential applications. By increasing the capture rate from WL to QD our simulation accurately describes the transition from the QD spin-VCSEL to the quantum well case, in agreement with a previous mathematical derivation, and thus validates the modified SFM equations.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Analysis of SFM dynamics in solitary and optically-injected VCSELs

A. Homayounfar and M. J. Adams
Opt. Express 15(17) 10504-10519 (2007)

Instabilities in quantum-dot spin-VCSELs

Dimitris Alexandropoulos, Rihab Al-Seyab, Ian Henning, and Mike Adams
Opt. Lett. 37(10) 1700-1702 (2012)

Dynamics and polarization of conventional and spin-VCSELs in the presence of an axial magnetic field

Rihab K. Al-Seyab, Michael J. Adams, and Ian D. Henning
J. Opt. Soc. Am. B 32(4) 683-691 (2015)

References

  • View by:
  • |
  • |
  • |

  1. G. H. M. van Tartwijk and D. Lenstra, “Semiconductor lasers with optical injection and feedback,” Quantum Semiclass. Opt. 7(2), 87–143 (1995).
    [Crossref]
  2. M. C. Soriano, J. García-Ojalvo, C. R. Mirasso, and I. Fischer, “Complex photonics: dynamics and applications of delay-coupled semiconductor lasers,” Rev. Mod. Phys. 85(1), 421–470 (2013).
    [Crossref]
  3. M. Sciamanna and K. A. Shore, “Physics and applications of laser diode chaos,” Nat. Photonics 9(3), 151–162 (2015).
    [Crossref]
  4. A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438, 343–346 (2005).
    [Crossref] [PubMed]
  5. N. Jiang, C. P. Xue, Y. X. Lv, and K. Qiu, “Physically enhanced secure wavelength division multiplexing chaos communication using multimode semiconductor lasers,” Nonlinear Dynamics 86(3), 1937–1949 (2016).
    [Crossref]
  6. A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
    [Crossref]
  7. X. Z. Li, S. S. Li, and S. C. Chan, “Correlated random bit generation using chaotic semiconductor laser under unidirectional optical injection,” IEEE Photon. J. 9(5), 1505411 (2017).
    [Crossref]
  8. F. Y. Lin and J. M. Liu, “Chaotic lidar,” IEEE J. Sel. Topics Quantum Electron. 10(5), 991–997 (2004).
    [Crossref]
  9. K.H. Lo, S.K. Hwang, and S. Donati, “Numerical study of ultrashort-optical-feedback-enhanced photonic microwave generation using optically injected semiconductor lasers at period-one nonlinear dynamics,” Opt. Express 25(25), 31595–31611 (2017).
    [Crossref] [PubMed]
  10. L. Larger, M. C. Soriano, D. Brunner, L. Appeltant, J. M. Gutierrez, L. Pesquera, C. R. Mirasso, and I. Fischer, “Photonic information processing beyond Turing: an optoelectronic implementation of reservoir computing,” Opt. Express 20(3), 3241–3249 (2012).
    [Crossref] [PubMed]
  11. D. Rontani, D. Choi, C. Y. Chang, A. Locquet, and D. S. Citrin, “Compressive sensing with optical chaos,” Sci. Rep. 6, 35206 (2016).
    [Crossref] [PubMed]
  12. L. Jumpertz, K. Schires, M. Carras, M. Sciamanna, and F. Grillot, “Chaotic light at mid-infrared wavelength,” Light Sci. Appl. 5(6), e16088 (2016).
    [Crossref]
  13. H. Han and K. A. Shore, “Dynamics and stability of mutually coupled Nano lasers,” IEEE J. Quantum Electron. 52(11), 2000306 (2016).
    [Crossref]
  14. M. Virte, K. Panajotov, H. Thienpont, and M. Sciamanna, “Deterministic polarization chaos from a laser diode,” Nat. Photonics 7, 60–65 (2013).
    [Crossref]
  15. T. R. Raddo, K. Panajotov, B. H. V. Borges, and M. Virte, “Strain induced polarization chaos in a solitary VCSEL,” Sci. Rep. 7, 14032 (2017).
    [Crossref] [PubMed]
  16. Y. Yu, W. Q. Xue, E. Semenova, K. Yvind, and J. Mørk, “Demonstration of a self-pulsing photonic crystal Fano laser,” Nat. Photonics 11, 81–84 (2017).
    [Crossref]
  17. K. E. Chlouverakis and M. J. Adams, “Stability maps of injection-locked laser diodes using the largest Lyapunov exponent,” Opt. Commun. 216(4), 405–412 (2003).
    [Crossref]
  18. X. X. Guo, S. Y. Xiang, Y. H. Zhang, A. J. Wen, and Y. Hao, “Information-theory-based complexity quantifier for chaotic semiconductor laser with double time delays,” IEEE J. Quantum Electron. 54(1), 2000308, 2018.
    [Crossref]
  19. J. P. Toomey, D. M. Kane, S. Valling, and A. M. Lindberg, “Automated correlation dimension analysis of optically injected solid state lasers,” Opt. Exp. 17(9), 7592–7608 (2009).
    [Crossref]
  20. J. P. Toomey, A. Argyris, C. McMahon, D. Syvridis, and D. M. Kane, “Time-scale independent permutation entropy of a photonic integrated Device,” J. Lightw. Technol. 35(1), 88–95 (2017).
    [Crossref]
  21. S. Valling, T. Fordell, and A. M. Lindberg, “Maps of the dynamics of an optically injected solid-state laser,” Phys. Rev. A 72(3), 033810 (2005).
    [Crossref]
  22. T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” Quantum Semiclassic. Opt. 9(5), 765 (1997).
    [Crossref]
  23. A. Valle, M. Sciamanna, and K. Panajotov, “Nonlinear dynamics of the polarization of multitransverse mode vertical-cavity surface-emitting lasers under current modulation,” Phys. Rev. E 76, 046206 (2007).
    [Crossref]
  24. C. Schelte, K. Panajotov, M. Tlidi, and S. V. Gurevich, “Bifurcation structure of cavity soliton dynamics in a vertical-cavity surface-emitting laser with a saturable absorber and time-delayed feedback,” Phys. Rev. A 96, 023807 (2017).
    [Crossref]
  25. B. Lingnau, W. W Chow, E. Schöll, and K. Lüdge, “Feedback and injection locking instabilities in quantum-dot lasers: a microscopically based bifurcation analysis,” New J. Phys. 15, 093031(2013).
    [Crossref]
  26. S. Wieczorek, B. Krauskopf, T. B. Simpson, and D. Lenstra, “The dynamical complexity of optically injected lasers,” Phys. Rep. 416(1), 1–128 (2005).
    [Crossref]
  27. R. Al-Seyab, D. Alexandropoulos, I. D. Henning, and M. J. Adams, “Instabilities in spin-polarized vertical-cavity surface-emitting lasers,” IEEE Photon. J. 3(5), 799–809 (2011).
    [Crossref]
  28. N. C. Gerhardt and M. R. Hofmann, “Spin-controlled vertical-cavity surface-emitting lasers,” Adv. Opt. Technol. 2012, 268949 (2012).
    [Crossref]
  29. M. J. Adams and D. Alexandropoulos, “Parametric analysis of spin-polarized VCSELs,” IEEE J. Quantum Electron. 45(6), 744–749 (2009).
    [Crossref]
  30. M. Holub, J. Shin, D. Saha, and P. Bhattacharya, “Electrical spin injection and threshold reduction in a semiconductor laser,” Phys. Rev. Lett. 98(14), 146603 (2007).
    [Crossref] [PubMed]
  31. S. S. Alharthi, A. Hurtado, R. K. Al Seyab, V.-M. Korpijärvi, M. Guina, I. D. Henning, and M. J. Adams, “Control of emitted light polarization in a 1310 nm dilute nitride spin-vertical cavity surface emitting laser subject to circularly polarized optical injection,” Appl. Phys. Lett. 105(18), 181106 (2014).
    [Crossref]
  32. S. S. Alharthi, J. Orchard, E. Clarke, I. D. Henning, and M. J. Adams, “1300 nm optically pumped quantum dot spin vertical external-cavity surface-emitting laser,” Appl. Phys. Lett. 107(15), 151109 (2015).
    [Crossref]
  33. J. Rudolph, D. Hägele, H. M. Gibbs, G. Khitrova, and M. Oestreich, “Laser threshold reduction in a spintronic device,” Appl. Phys. Lett. 82(25), 4516–4518 (2003).
    [Crossref]
  34. D. Basu, D. Saha, and P. Bhattacharya, “Optical polarization modulation and gain anisotropy in an electrically injected spin laser,” Phys. Rev. Lett. 102(9), 093904 (2009); Erratum Phys. Rev. Lett. 102 (12), 129901 (2009).
    [Crossref] [PubMed]
  35. K. Schires, R. K. Al Seyab, A. Hurtado, V.-M. Korpijärvi, M. Guina, I. D. Henning, and M. J. Adams, “Optically-pumped dilute nitride spin-VCSEL,” Opt. Express 20(4), 3550–3555 (2012).
    [Crossref] [PubMed]
  36. H. Susanto, K. Schires, M. J. Adams, and I. D. Henning, “Spin-flip model of spin-polarized vertical-cavity surface-emitting lasers: Asymptotic analysis, numerics, and experiments,” Phys. Rev. A 92(6), 063838 (2015).
    [Crossref]
  37. N. Q. Li, D. Alexandropoulos, I. D. Henning, and M. J. Adams, “Stability analysis of quantum-dot spin-VCSELs,” Electronics 5(4), 83 (2016).
    [Crossref]
  38. N. Q. Li, D. Alexandropoulos, H. Susanto, I. D. Henning, and M. J. Adams, “Quantum dot spin-V (E) CSELs: polarization switching and periodic oscillations,” Proc. SPIE 10357, 103572G (2017).
  39. J. Lee, R. Oszwałdowski, C. Gøthgen, and I. Žutić, “Mapping between quantum dot and quantum well lasers: From conventional to spin lasers,” Phys. Rev. B 85, 045314 (2012).
    [Crossref]
  40. A. Gahl, S. Balle, and M. San Miguel, “Polarization dynamics of optically pumped VCSELs,” IEEE J. Quantum Electron. 35(3), 342–351 (1999).
    [Crossref]
  41. M. Lindemann, T. Pusch, R. Michalzik, N. C. Gerhardt, and M. R. Hofmann, “Frequency tuning of polarization oscillations: Toward high-speed spin-lasers,” Appl. Phys. Lett. 108(4), 042404 (2016).
    [Crossref]
  42. M. S. Torre, H. Susanto, N. Q. Li, K. Schires, M. F. Salvide, I. D. Henning, A. Hurtado, and M. J. Adams, ”High frequency continuous birefringence-induced oscillations in spin-polarized vertical-cavity surface-emitting lasers,” Opt. Lett. 42(8), 1628–1631 (2017).
    [Crossref] [PubMed]
  43. N. C. Gerhardt, M. Lindemann, T. Pusch, R. Michalzik, and M. R. Hofmann, “High-frequency polarization dynamics in spin-lasers: pushing the limits,” Proc. SPIE 10357, 103572F (2017).
  44. P. Bhattacharya, D. Basu, A. Das, and D. Saha, “Quantum dot polarized light sources,” Semicond. Sci. Technol. 26, 014002 (2011).
    [Crossref]
  45. D. Basu, D. Saha, C. C. Wu, M. Holub, Z. Mi, and P. Bhattacharya, ”Electrically injected InAs/GaAs quantum dot spin laser operating at 200 K,” Appl. Phys. Lett. 92(9), 091119 (2008).
    [Crossref]
  46. N. Yokota, R. Takeuchi, H. Yasaka, and K. Ikeda, “Lasing polarization characteristics in 1.55-μm spin-injected VCSELs,” IEEE Photon. Technol. Lett. 29, (9)711–714 (2017).
    [Crossref]
  47. N. Q. Li, H. Susanto, B. R. Cemlyn, I. D. Henning, and M. J. Adams, “Stability and bifurcation analysis of spin-polarized vertical-cavity surface-emitting lasers,” Phys. Rev. A 96, 013840 (2017).
    [Crossref]
  48. M. J. Adams and D. Alexandropoulos, “Analysis of quantum-dot spin-VCSELs,” IEEE Photon. J. 4(4), 1124–1132 (2012).
    [Crossref]
  49. D. Alexandropoulos, R. Al-Seyab, I. Henning, and M. Adams, “Instabilities in quantum-dot spin-VCSELs,” Opt. Lett. 37(10), 1700–1702 (2012).
    [Crossref] [PubMed]
  50. O. Qasaimeh, “Novel closed-form solution for spin-polarization in quantum dot VCSEL,” Opt. Commun. 350, 83–89 (2015).
    [Crossref]
  51. E. J. Doedel, A. R. Champneys, T. Fairgrieve, Y. Kuznetsov, B. Oldeman, R. Pfaffenroth, B. Sandastede, X. Wang, and C. Zhang, AUTO-07p: Continuation and Bifurcation Software for Ordinary Differential Equations (Concordia University, Montreal, 2008).
  52. G. A. Gottwald and I. Melbourne, “On the implementation of the 0–1 test for chaos,” SIAM J. Appl. Dyn. Syst. 8(1), 129–145 (2009).
    [Crossref]
  53. M. San Miguel, Q. Feng, and J. V. Moloney, “Light-polarization dynamics in surface-emitting semiconductor lasers,” Phys. Rev. A 52(2), 1728–1739 (1995).
    [Crossref] [PubMed]
  54. H. Erzgräber, S. Wieczorek, and B. Krauskopf, “Dynamics of two laterally coupled semiconductor lasers: Strong- and weak-coupling theory,” Phys. Rev. E 78(6), 066201 (2008).
    [Crossref]
  55. N. Q. Li, H. Susanto, B. R. Cemlyn, I. D. Henning, and M. J. Adams, “Locking bandwidth of two laterally-coupled lasers subjected to optical injection,” Sci. Rep. 8(109), 1–10 (2018).
  56. N. Q. Li, W. Pan, A. Locquet, and D. S. Citrin, “Time-delay concealment and complexity enhancement of an external-cavity laser through optical injection,” Opt. Lett. 40(19), 4416–4419 (2015).
    [Crossref] [PubMed]

2018 (2)

X. X. Guo, S. Y. Xiang, Y. H. Zhang, A. J. Wen, and Y. Hao, “Information-theory-based complexity quantifier for chaotic semiconductor laser with double time delays,” IEEE J. Quantum Electron. 54(1), 2000308, 2018.
[Crossref]

N. Q. Li, H. Susanto, B. R. Cemlyn, I. D. Henning, and M. J. Adams, “Locking bandwidth of two laterally-coupled lasers subjected to optical injection,” Sci. Rep. 8(109), 1–10 (2018).

2017 (11)

M. S. Torre, H. Susanto, N. Q. Li, K. Schires, M. F. Salvide, I. D. Henning, A. Hurtado, and M. J. Adams, ”High frequency continuous birefringence-induced oscillations in spin-polarized vertical-cavity surface-emitting lasers,” Opt. Lett. 42(8), 1628–1631 (2017).
[Crossref] [PubMed]

K.H. Lo, S.K. Hwang, and S. Donati, “Numerical study of ultrashort-optical-feedback-enhanced photonic microwave generation using optically injected semiconductor lasers at period-one nonlinear dynamics,” Opt. Express 25(25), 31595–31611 (2017).
[Crossref] [PubMed]

N. C. Gerhardt, M. Lindemann, T. Pusch, R. Michalzik, and M. R. Hofmann, “High-frequency polarization dynamics in spin-lasers: pushing the limits,” Proc. SPIE 10357, 103572F (2017).

N. Yokota, R. Takeuchi, H. Yasaka, and K. Ikeda, “Lasing polarization characteristics in 1.55-μm spin-injected VCSELs,” IEEE Photon. Technol. Lett. 29, (9)711–714 (2017).
[Crossref]

N. Q. Li, H. Susanto, B. R. Cemlyn, I. D. Henning, and M. J. Adams, “Stability and bifurcation analysis of spin-polarized vertical-cavity surface-emitting lasers,” Phys. Rev. A 96, 013840 (2017).
[Crossref]

T. R. Raddo, K. Panajotov, B. H. V. Borges, and M. Virte, “Strain induced polarization chaos in a solitary VCSEL,” Sci. Rep. 7, 14032 (2017).
[Crossref] [PubMed]

Y. Yu, W. Q. Xue, E. Semenova, K. Yvind, and J. Mørk, “Demonstration of a self-pulsing photonic crystal Fano laser,” Nat. Photonics 11, 81–84 (2017).
[Crossref]

J. P. Toomey, A. Argyris, C. McMahon, D. Syvridis, and D. M. Kane, “Time-scale independent permutation entropy of a photonic integrated Device,” J. Lightw. Technol. 35(1), 88–95 (2017).
[Crossref]

C. Schelte, K. Panajotov, M. Tlidi, and S. V. Gurevich, “Bifurcation structure of cavity soliton dynamics in a vertical-cavity surface-emitting laser with a saturable absorber and time-delayed feedback,” Phys. Rev. A 96, 023807 (2017).
[Crossref]

X. Z. Li, S. S. Li, and S. C. Chan, “Correlated random bit generation using chaotic semiconductor laser under unidirectional optical injection,” IEEE Photon. J. 9(5), 1505411 (2017).
[Crossref]

N. Q. Li, D. Alexandropoulos, H. Susanto, I. D. Henning, and M. J. Adams, “Quantum dot spin-V (E) CSELs: polarization switching and periodic oscillations,” Proc. SPIE 10357, 103572G (2017).

2016 (6)

N. Q. Li, D. Alexandropoulos, I. D. Henning, and M. J. Adams, “Stability analysis of quantum-dot spin-VCSELs,” Electronics 5(4), 83 (2016).
[Crossref]

N. Jiang, C. P. Xue, Y. X. Lv, and K. Qiu, “Physically enhanced secure wavelength division multiplexing chaos communication using multimode semiconductor lasers,” Nonlinear Dynamics 86(3), 1937–1949 (2016).
[Crossref]

D. Rontani, D. Choi, C. Y. Chang, A. Locquet, and D. S. Citrin, “Compressive sensing with optical chaos,” Sci. Rep. 6, 35206 (2016).
[Crossref] [PubMed]

L. Jumpertz, K. Schires, M. Carras, M. Sciamanna, and F. Grillot, “Chaotic light at mid-infrared wavelength,” Light Sci. Appl. 5(6), e16088 (2016).
[Crossref]

H. Han and K. A. Shore, “Dynamics and stability of mutually coupled Nano lasers,” IEEE J. Quantum Electron. 52(11), 2000306 (2016).
[Crossref]

M. Lindemann, T. Pusch, R. Michalzik, N. C. Gerhardt, and M. R. Hofmann, “Frequency tuning of polarization oscillations: Toward high-speed spin-lasers,” Appl. Phys. Lett. 108(4), 042404 (2016).
[Crossref]

2015 (5)

O. Qasaimeh, “Novel closed-form solution for spin-polarization in quantum dot VCSEL,” Opt. Commun. 350, 83–89 (2015).
[Crossref]

N. Q. Li, W. Pan, A. Locquet, and D. S. Citrin, “Time-delay concealment and complexity enhancement of an external-cavity laser through optical injection,” Opt. Lett. 40(19), 4416–4419 (2015).
[Crossref] [PubMed]

H. Susanto, K. Schires, M. J. Adams, and I. D. Henning, “Spin-flip model of spin-polarized vertical-cavity surface-emitting lasers: Asymptotic analysis, numerics, and experiments,” Phys. Rev. A 92(6), 063838 (2015).
[Crossref]

S. S. Alharthi, J. Orchard, E. Clarke, I. D. Henning, and M. J. Adams, “1300 nm optically pumped quantum dot spin vertical external-cavity surface-emitting laser,” Appl. Phys. Lett. 107(15), 151109 (2015).
[Crossref]

M. Sciamanna and K. A. Shore, “Physics and applications of laser diode chaos,” Nat. Photonics 9(3), 151–162 (2015).
[Crossref]

2014 (1)

S. S. Alharthi, A. Hurtado, R. K. Al Seyab, V.-M. Korpijärvi, M. Guina, I. D. Henning, and M. J. Adams, “Control of emitted light polarization in a 1310 nm dilute nitride spin-vertical cavity surface emitting laser subject to circularly polarized optical injection,” Appl. Phys. Lett. 105(18), 181106 (2014).
[Crossref]

2013 (3)

M. C. Soriano, J. García-Ojalvo, C. R. Mirasso, and I. Fischer, “Complex photonics: dynamics and applications of delay-coupled semiconductor lasers,” Rev. Mod. Phys. 85(1), 421–470 (2013).
[Crossref]

M. Virte, K. Panajotov, H. Thienpont, and M. Sciamanna, “Deterministic polarization chaos from a laser diode,” Nat. Photonics 7, 60–65 (2013).
[Crossref]

B. Lingnau, W. W Chow, E. Schöll, and K. Lüdge, “Feedback and injection locking instabilities in quantum-dot lasers: a microscopically based bifurcation analysis,” New J. Phys. 15, 093031(2013).
[Crossref]

2012 (6)

2011 (2)

P. Bhattacharya, D. Basu, A. Das, and D. Saha, “Quantum dot polarized light sources,” Semicond. Sci. Technol. 26, 014002 (2011).
[Crossref]

R. Al-Seyab, D. Alexandropoulos, I. D. Henning, and M. J. Adams, “Instabilities in spin-polarized vertical-cavity surface-emitting lasers,” IEEE Photon. J. 3(5), 799–809 (2011).
[Crossref]

2009 (4)

M. J. Adams and D. Alexandropoulos, “Parametric analysis of spin-polarized VCSELs,” IEEE J. Quantum Electron. 45(6), 744–749 (2009).
[Crossref]

J. P. Toomey, D. M. Kane, S. Valling, and A. M. Lindberg, “Automated correlation dimension analysis of optically injected solid state lasers,” Opt. Exp. 17(9), 7592–7608 (2009).
[Crossref]

D. Basu, D. Saha, and P. Bhattacharya, “Optical polarization modulation and gain anisotropy in an electrically injected spin laser,” Phys. Rev. Lett. 102(9), 093904 (2009); Erratum Phys. Rev. Lett. 102 (12), 129901 (2009).
[Crossref] [PubMed]

G. A. Gottwald and I. Melbourne, “On the implementation of the 0–1 test for chaos,” SIAM J. Appl. Dyn. Syst. 8(1), 129–145 (2009).
[Crossref]

2008 (3)

H. Erzgräber, S. Wieczorek, and B. Krauskopf, “Dynamics of two laterally coupled semiconductor lasers: Strong- and weak-coupling theory,” Phys. Rev. E 78(6), 066201 (2008).
[Crossref]

D. Basu, D. Saha, C. C. Wu, M. Holub, Z. Mi, and P. Bhattacharya, ”Electrically injected InAs/GaAs quantum dot spin laser operating at 200 K,” Appl. Phys. Lett. 92(9), 091119 (2008).
[Crossref]

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[Crossref]

2007 (2)

M. Holub, J. Shin, D. Saha, and P. Bhattacharya, “Electrical spin injection and threshold reduction in a semiconductor laser,” Phys. Rev. Lett. 98(14), 146603 (2007).
[Crossref] [PubMed]

A. Valle, M. Sciamanna, and K. Panajotov, “Nonlinear dynamics of the polarization of multitransverse mode vertical-cavity surface-emitting lasers under current modulation,” Phys. Rev. E 76, 046206 (2007).
[Crossref]

2005 (3)

S. Wieczorek, B. Krauskopf, T. B. Simpson, and D. Lenstra, “The dynamical complexity of optically injected lasers,” Phys. Rep. 416(1), 1–128 (2005).
[Crossref]

S. Valling, T. Fordell, and A. M. Lindberg, “Maps of the dynamics of an optically injected solid-state laser,” Phys. Rev. A 72(3), 033810 (2005).
[Crossref]

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438, 343–346 (2005).
[Crossref] [PubMed]

2004 (1)

F. Y. Lin and J. M. Liu, “Chaotic lidar,” IEEE J. Sel. Topics Quantum Electron. 10(5), 991–997 (2004).
[Crossref]

2003 (2)

J. Rudolph, D. Hägele, H. M. Gibbs, G. Khitrova, and M. Oestreich, “Laser threshold reduction in a spintronic device,” Appl. Phys. Lett. 82(25), 4516–4518 (2003).
[Crossref]

K. E. Chlouverakis and M. J. Adams, “Stability maps of injection-locked laser diodes using the largest Lyapunov exponent,” Opt. Commun. 216(4), 405–412 (2003).
[Crossref]

1999 (1)

A. Gahl, S. Balle, and M. San Miguel, “Polarization dynamics of optically pumped VCSELs,” IEEE J. Quantum Electron. 35(3), 342–351 (1999).
[Crossref]

1997 (1)

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” Quantum Semiclassic. Opt. 9(5), 765 (1997).
[Crossref]

1995 (2)

G. H. M. van Tartwijk and D. Lenstra, “Semiconductor lasers with optical injection and feedback,” Quantum Semiclass. Opt. 7(2), 87–143 (1995).
[Crossref]

M. San Miguel, Q. Feng, and J. V. Moloney, “Light-polarization dynamics in surface-emitting semiconductor lasers,” Phys. Rev. A 52(2), 1728–1739 (1995).
[Crossref] [PubMed]

Adams, M.

Adams, M. J.

N. Q. Li, H. Susanto, B. R. Cemlyn, I. D. Henning, and M. J. Adams, “Locking bandwidth of two laterally-coupled lasers subjected to optical injection,” Sci. Rep. 8(109), 1–10 (2018).

N. Q. Li, H. Susanto, B. R. Cemlyn, I. D. Henning, and M. J. Adams, “Stability and bifurcation analysis of spin-polarized vertical-cavity surface-emitting lasers,” Phys. Rev. A 96, 013840 (2017).
[Crossref]

N. Q. Li, D. Alexandropoulos, H. Susanto, I. D. Henning, and M. J. Adams, “Quantum dot spin-V (E) CSELs: polarization switching and periodic oscillations,” Proc. SPIE 10357, 103572G (2017).

M. S. Torre, H. Susanto, N. Q. Li, K. Schires, M. F. Salvide, I. D. Henning, A. Hurtado, and M. J. Adams, ”High frequency continuous birefringence-induced oscillations in spin-polarized vertical-cavity surface-emitting lasers,” Opt. Lett. 42(8), 1628–1631 (2017).
[Crossref] [PubMed]

N. Q. Li, D. Alexandropoulos, I. D. Henning, and M. J. Adams, “Stability analysis of quantum-dot spin-VCSELs,” Electronics 5(4), 83 (2016).
[Crossref]

H. Susanto, K. Schires, M. J. Adams, and I. D. Henning, “Spin-flip model of spin-polarized vertical-cavity surface-emitting lasers: Asymptotic analysis, numerics, and experiments,” Phys. Rev. A 92(6), 063838 (2015).
[Crossref]

S. S. Alharthi, J. Orchard, E. Clarke, I. D. Henning, and M. J. Adams, “1300 nm optically pumped quantum dot spin vertical external-cavity surface-emitting laser,” Appl. Phys. Lett. 107(15), 151109 (2015).
[Crossref]

S. S. Alharthi, A. Hurtado, R. K. Al Seyab, V.-M. Korpijärvi, M. Guina, I. D. Henning, and M. J. Adams, “Control of emitted light polarization in a 1310 nm dilute nitride spin-vertical cavity surface emitting laser subject to circularly polarized optical injection,” Appl. Phys. Lett. 105(18), 181106 (2014).
[Crossref]

K. Schires, R. K. Al Seyab, A. Hurtado, V.-M. Korpijärvi, M. Guina, I. D. Henning, and M. J. Adams, “Optically-pumped dilute nitride spin-VCSEL,” Opt. Express 20(4), 3550–3555 (2012).
[Crossref] [PubMed]

M. J. Adams and D. Alexandropoulos, “Analysis of quantum-dot spin-VCSELs,” IEEE Photon. J. 4(4), 1124–1132 (2012).
[Crossref]

R. Al-Seyab, D. Alexandropoulos, I. D. Henning, and M. J. Adams, “Instabilities in spin-polarized vertical-cavity surface-emitting lasers,” IEEE Photon. J. 3(5), 799–809 (2011).
[Crossref]

M. J. Adams and D. Alexandropoulos, “Parametric analysis of spin-polarized VCSELs,” IEEE J. Quantum Electron. 45(6), 744–749 (2009).
[Crossref]

K. E. Chlouverakis and M. J. Adams, “Stability maps of injection-locked laser diodes using the largest Lyapunov exponent,” Opt. Commun. 216(4), 405–412 (2003).
[Crossref]

Al Seyab, R. K.

S. S. Alharthi, A. Hurtado, R. K. Al Seyab, V.-M. Korpijärvi, M. Guina, I. D. Henning, and M. J. Adams, “Control of emitted light polarization in a 1310 nm dilute nitride spin-vertical cavity surface emitting laser subject to circularly polarized optical injection,” Appl. Phys. Lett. 105(18), 181106 (2014).
[Crossref]

K. Schires, R. K. Al Seyab, A. Hurtado, V.-M. Korpijärvi, M. Guina, I. D. Henning, and M. J. Adams, “Optically-pumped dilute nitride spin-VCSEL,” Opt. Express 20(4), 3550–3555 (2012).
[Crossref] [PubMed]

Alexandropoulos, D.

N. Q. Li, D. Alexandropoulos, H. Susanto, I. D. Henning, and M. J. Adams, “Quantum dot spin-V (E) CSELs: polarization switching and periodic oscillations,” Proc. SPIE 10357, 103572G (2017).

N. Q. Li, D. Alexandropoulos, I. D. Henning, and M. J. Adams, “Stability analysis of quantum-dot spin-VCSELs,” Electronics 5(4), 83 (2016).
[Crossref]

M. J. Adams and D. Alexandropoulos, “Analysis of quantum-dot spin-VCSELs,” IEEE Photon. J. 4(4), 1124–1132 (2012).
[Crossref]

D. Alexandropoulos, R. Al-Seyab, I. Henning, and M. Adams, “Instabilities in quantum-dot spin-VCSELs,” Opt. Lett. 37(10), 1700–1702 (2012).
[Crossref] [PubMed]

R. Al-Seyab, D. Alexandropoulos, I. D. Henning, and M. J. Adams, “Instabilities in spin-polarized vertical-cavity surface-emitting lasers,” IEEE Photon. J. 3(5), 799–809 (2011).
[Crossref]

M. J. Adams and D. Alexandropoulos, “Parametric analysis of spin-polarized VCSELs,” IEEE J. Quantum Electron. 45(6), 744–749 (2009).
[Crossref]

Alharthi, S. S.

S. S. Alharthi, J. Orchard, E. Clarke, I. D. Henning, and M. J. Adams, “1300 nm optically pumped quantum dot spin vertical external-cavity surface-emitting laser,” Appl. Phys. Lett. 107(15), 151109 (2015).
[Crossref]

S. S. Alharthi, A. Hurtado, R. K. Al Seyab, V.-M. Korpijärvi, M. Guina, I. D. Henning, and M. J. Adams, “Control of emitted light polarization in a 1310 nm dilute nitride spin-vertical cavity surface emitting laser subject to circularly polarized optical injection,” Appl. Phys. Lett. 105(18), 181106 (2014).
[Crossref]

Al-Seyab, R.

D. Alexandropoulos, R. Al-Seyab, I. Henning, and M. Adams, “Instabilities in quantum-dot spin-VCSELs,” Opt. Lett. 37(10), 1700–1702 (2012).
[Crossref] [PubMed]

R. Al-Seyab, D. Alexandropoulos, I. D. Henning, and M. J. Adams, “Instabilities in spin-polarized vertical-cavity surface-emitting lasers,” IEEE Photon. J. 3(5), 799–809 (2011).
[Crossref]

Amano, K.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[Crossref]

Annovazzi-Lodi, V.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438, 343–346 (2005).
[Crossref] [PubMed]

Appeltant, L.

Argyris, A.

J. P. Toomey, A. Argyris, C. McMahon, D. Syvridis, and D. M. Kane, “Time-scale independent permutation entropy of a photonic integrated Device,” J. Lightw. Technol. 35(1), 88–95 (2017).
[Crossref]

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438, 343–346 (2005).
[Crossref] [PubMed]

Balle, S.

A. Gahl, S. Balle, and M. San Miguel, “Polarization dynamics of optically pumped VCSELs,” IEEE J. Quantum Electron. 35(3), 342–351 (1999).
[Crossref]

Basu, D.

P. Bhattacharya, D. Basu, A. Das, and D. Saha, “Quantum dot polarized light sources,” Semicond. Sci. Technol. 26, 014002 (2011).
[Crossref]

D. Basu, D. Saha, and P. Bhattacharya, “Optical polarization modulation and gain anisotropy in an electrically injected spin laser,” Phys. Rev. Lett. 102(9), 093904 (2009); Erratum Phys. Rev. Lett. 102 (12), 129901 (2009).
[Crossref] [PubMed]

D. Basu, D. Saha, C. C. Wu, M. Holub, Z. Mi, and P. Bhattacharya, ”Electrically injected InAs/GaAs quantum dot spin laser operating at 200 K,” Appl. Phys. Lett. 92(9), 091119 (2008).
[Crossref]

Bhattacharya, P.

P. Bhattacharya, D. Basu, A. Das, and D. Saha, “Quantum dot polarized light sources,” Semicond. Sci. Technol. 26, 014002 (2011).
[Crossref]

D. Basu, D. Saha, and P. Bhattacharya, “Optical polarization modulation and gain anisotropy in an electrically injected spin laser,” Phys. Rev. Lett. 102(9), 093904 (2009); Erratum Phys. Rev. Lett. 102 (12), 129901 (2009).
[Crossref] [PubMed]

D. Basu, D. Saha, C. C. Wu, M. Holub, Z. Mi, and P. Bhattacharya, ”Electrically injected InAs/GaAs quantum dot spin laser operating at 200 K,” Appl. Phys. Lett. 92(9), 091119 (2008).
[Crossref]

M. Holub, J. Shin, D. Saha, and P. Bhattacharya, “Electrical spin injection and threshold reduction in a semiconductor laser,” Phys. Rev. Lett. 98(14), 146603 (2007).
[Crossref] [PubMed]

Borges, B. H. V.

T. R. Raddo, K. Panajotov, B. H. V. Borges, and M. Virte, “Strain induced polarization chaos in a solitary VCSEL,” Sci. Rep. 7, 14032 (2017).
[Crossref] [PubMed]

Brunner, D.

Carras, M.

L. Jumpertz, K. Schires, M. Carras, M. Sciamanna, and F. Grillot, “Chaotic light at mid-infrared wavelength,” Light Sci. Appl. 5(6), e16088 (2016).
[Crossref]

Cemlyn, B. R.

N. Q. Li, H. Susanto, B. R. Cemlyn, I. D. Henning, and M. J. Adams, “Locking bandwidth of two laterally-coupled lasers subjected to optical injection,” Sci. Rep. 8(109), 1–10 (2018).

N. Q. Li, H. Susanto, B. R. Cemlyn, I. D. Henning, and M. J. Adams, “Stability and bifurcation analysis of spin-polarized vertical-cavity surface-emitting lasers,” Phys. Rev. A 96, 013840 (2017).
[Crossref]

Champneys, A. R.

E. J. Doedel, A. R. Champneys, T. Fairgrieve, Y. Kuznetsov, B. Oldeman, R. Pfaffenroth, B. Sandastede, X. Wang, and C. Zhang, AUTO-07p: Continuation and Bifurcation Software for Ordinary Differential Equations (Concordia University, Montreal, 2008).

Chan, S. C.

X. Z. Li, S. S. Li, and S. C. Chan, “Correlated random bit generation using chaotic semiconductor laser under unidirectional optical injection,” IEEE Photon. J. 9(5), 1505411 (2017).
[Crossref]

Chang, C. Y.

D. Rontani, D. Choi, C. Y. Chang, A. Locquet, and D. S. Citrin, “Compressive sensing with optical chaos,” Sci. Rep. 6, 35206 (2016).
[Crossref] [PubMed]

Chlouverakis, K. E.

K. E. Chlouverakis and M. J. Adams, “Stability maps of injection-locked laser diodes using the largest Lyapunov exponent,” Opt. Commun. 216(4), 405–412 (2003).
[Crossref]

Choi, D.

D. Rontani, D. Choi, C. Y. Chang, A. Locquet, and D. S. Citrin, “Compressive sensing with optical chaos,” Sci. Rep. 6, 35206 (2016).
[Crossref] [PubMed]

Chow, W. W

B. Lingnau, W. W Chow, E. Schöll, and K. Lüdge, “Feedback and injection locking instabilities in quantum-dot lasers: a microscopically based bifurcation analysis,” New J. Phys. 15, 093031(2013).
[Crossref]

Citrin, D. S.

Clarke, E.

S. S. Alharthi, J. Orchard, E. Clarke, I. D. Henning, and M. J. Adams, “1300 nm optically pumped quantum dot spin vertical external-cavity surface-emitting laser,” Appl. Phys. Lett. 107(15), 151109 (2015).
[Crossref]

Colet, P.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438, 343–346 (2005).
[Crossref] [PubMed]

Das, A.

P. Bhattacharya, D. Basu, A. Das, and D. Saha, “Quantum dot polarized light sources,” Semicond. Sci. Technol. 26, 014002 (2011).
[Crossref]

Davis, P.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[Crossref]

Doedel, E. J.

E. J. Doedel, A. R. Champneys, T. Fairgrieve, Y. Kuznetsov, B. Oldeman, R. Pfaffenroth, B. Sandastede, X. Wang, and C. Zhang, AUTO-07p: Continuation and Bifurcation Software for Ordinary Differential Equations (Concordia University, Montreal, 2008).

Donati, S.

Erzgräber, H.

H. Erzgräber, S. Wieczorek, and B. Krauskopf, “Dynamics of two laterally coupled semiconductor lasers: Strong- and weak-coupling theory,” Phys. Rev. E 78(6), 066201 (2008).
[Crossref]

Fairgrieve, T.

E. J. Doedel, A. R. Champneys, T. Fairgrieve, Y. Kuznetsov, B. Oldeman, R. Pfaffenroth, B. Sandastede, X. Wang, and C. Zhang, AUTO-07p: Continuation and Bifurcation Software for Ordinary Differential Equations (Concordia University, Montreal, 2008).

Feng, Q.

M. San Miguel, Q. Feng, and J. V. Moloney, “Light-polarization dynamics in surface-emitting semiconductor lasers,” Phys. Rev. A 52(2), 1728–1739 (1995).
[Crossref] [PubMed]

Fischer, I.

M. C. Soriano, J. García-Ojalvo, C. R. Mirasso, and I. Fischer, “Complex photonics: dynamics and applications of delay-coupled semiconductor lasers,” Rev. Mod. Phys. 85(1), 421–470 (2013).
[Crossref]

L. Larger, M. C. Soriano, D. Brunner, L. Appeltant, J. M. Gutierrez, L. Pesquera, C. R. Mirasso, and I. Fischer, “Photonic information processing beyond Turing: an optoelectronic implementation of reservoir computing,” Opt. Express 20(3), 3241–3249 (2012).
[Crossref] [PubMed]

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438, 343–346 (2005).
[Crossref] [PubMed]

Fordell, T.

S. Valling, T. Fordell, and A. M. Lindberg, “Maps of the dynamics of an optically injected solid-state laser,” Phys. Rev. A 72(3), 033810 (2005).
[Crossref]

Gahl, A.

A. Gahl, S. Balle, and M. San Miguel, “Polarization dynamics of optically pumped VCSELs,” IEEE J. Quantum Electron. 35(3), 342–351 (1999).
[Crossref]

García-Ojalvo, J.

M. C. Soriano, J. García-Ojalvo, C. R. Mirasso, and I. Fischer, “Complex photonics: dynamics and applications of delay-coupled semiconductor lasers,” Rev. Mod. Phys. 85(1), 421–470 (2013).
[Crossref]

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438, 343–346 (2005).
[Crossref] [PubMed]

Gerhardt, N. C.

N. C. Gerhardt, M. Lindemann, T. Pusch, R. Michalzik, and M. R. Hofmann, “High-frequency polarization dynamics in spin-lasers: pushing the limits,” Proc. SPIE 10357, 103572F (2017).

M. Lindemann, T. Pusch, R. Michalzik, N. C. Gerhardt, and M. R. Hofmann, “Frequency tuning of polarization oscillations: Toward high-speed spin-lasers,” Appl. Phys. Lett. 108(4), 042404 (2016).
[Crossref]

N. C. Gerhardt and M. R. Hofmann, “Spin-controlled vertical-cavity surface-emitting lasers,” Adv. Opt. Technol. 2012, 268949 (2012).
[Crossref]

Gibbs, H. M.

J. Rudolph, D. Hägele, H. M. Gibbs, G. Khitrova, and M. Oestreich, “Laser threshold reduction in a spintronic device,” Appl. Phys. Lett. 82(25), 4516–4518 (2003).
[Crossref]

Gøthgen, C.

J. Lee, R. Oszwałdowski, C. Gøthgen, and I. Žutić, “Mapping between quantum dot and quantum well lasers: From conventional to spin lasers,” Phys. Rev. B 85, 045314 (2012).
[Crossref]

Gottwald, G. A.

G. A. Gottwald and I. Melbourne, “On the implementation of the 0–1 test for chaos,” SIAM J. Appl. Dyn. Syst. 8(1), 129–145 (2009).
[Crossref]

Grillot, F.

L. Jumpertz, K. Schires, M. Carras, M. Sciamanna, and F. Grillot, “Chaotic light at mid-infrared wavelength,” Light Sci. Appl. 5(6), e16088 (2016).
[Crossref]

Guina, M.

S. S. Alharthi, A. Hurtado, R. K. Al Seyab, V.-M. Korpijärvi, M. Guina, I. D. Henning, and M. J. Adams, “Control of emitted light polarization in a 1310 nm dilute nitride spin-vertical cavity surface emitting laser subject to circularly polarized optical injection,” Appl. Phys. Lett. 105(18), 181106 (2014).
[Crossref]

K. Schires, R. K. Al Seyab, A. Hurtado, V.-M. Korpijärvi, M. Guina, I. D. Henning, and M. J. Adams, “Optically-pumped dilute nitride spin-VCSEL,” Opt. Express 20(4), 3550–3555 (2012).
[Crossref] [PubMed]

Guo, X. X.

X. X. Guo, S. Y. Xiang, Y. H. Zhang, A. J. Wen, and Y. Hao, “Information-theory-based complexity quantifier for chaotic semiconductor laser with double time delays,” IEEE J. Quantum Electron. 54(1), 2000308, 2018.
[Crossref]

Gurevich, S. V.

C. Schelte, K. Panajotov, M. Tlidi, and S. V. Gurevich, “Bifurcation structure of cavity soliton dynamics in a vertical-cavity surface-emitting laser with a saturable absorber and time-delayed feedback,” Phys. Rev. A 96, 023807 (2017).
[Crossref]

Gutierrez, J. M.

Hägele, D.

J. Rudolph, D. Hägele, H. M. Gibbs, G. Khitrova, and M. Oestreich, “Laser threshold reduction in a spintronic device,” Appl. Phys. Lett. 82(25), 4516–4518 (2003).
[Crossref]

Han, H.

H. Han and K. A. Shore, “Dynamics and stability of mutually coupled Nano lasers,” IEEE J. Quantum Electron. 52(11), 2000306 (2016).
[Crossref]

Hao, Y.

X. X. Guo, S. Y. Xiang, Y. H. Zhang, A. J. Wen, and Y. Hao, “Information-theory-based complexity quantifier for chaotic semiconductor laser with double time delays,” IEEE J. Quantum Electron. 54(1), 2000308, 2018.
[Crossref]

Henning, I.

Henning, I. D.

N. Q. Li, H. Susanto, B. R. Cemlyn, I. D. Henning, and M. J. Adams, “Locking bandwidth of two laterally-coupled lasers subjected to optical injection,” Sci. Rep. 8(109), 1–10 (2018).

N. Q. Li, H. Susanto, B. R. Cemlyn, I. D. Henning, and M. J. Adams, “Stability and bifurcation analysis of spin-polarized vertical-cavity surface-emitting lasers,” Phys. Rev. A 96, 013840 (2017).
[Crossref]

N. Q. Li, D. Alexandropoulos, H. Susanto, I. D. Henning, and M. J. Adams, “Quantum dot spin-V (E) CSELs: polarization switching and periodic oscillations,” Proc. SPIE 10357, 103572G (2017).

M. S. Torre, H. Susanto, N. Q. Li, K. Schires, M. F. Salvide, I. D. Henning, A. Hurtado, and M. J. Adams, ”High frequency continuous birefringence-induced oscillations in spin-polarized vertical-cavity surface-emitting lasers,” Opt. Lett. 42(8), 1628–1631 (2017).
[Crossref] [PubMed]

N. Q. Li, D. Alexandropoulos, I. D. Henning, and M. J. Adams, “Stability analysis of quantum-dot spin-VCSELs,” Electronics 5(4), 83 (2016).
[Crossref]

H. Susanto, K. Schires, M. J. Adams, and I. D. Henning, “Spin-flip model of spin-polarized vertical-cavity surface-emitting lasers: Asymptotic analysis, numerics, and experiments,” Phys. Rev. A 92(6), 063838 (2015).
[Crossref]

S. S. Alharthi, J. Orchard, E. Clarke, I. D. Henning, and M. J. Adams, “1300 nm optically pumped quantum dot spin vertical external-cavity surface-emitting laser,” Appl. Phys. Lett. 107(15), 151109 (2015).
[Crossref]

S. S. Alharthi, A. Hurtado, R. K. Al Seyab, V.-M. Korpijärvi, M. Guina, I. D. Henning, and M. J. Adams, “Control of emitted light polarization in a 1310 nm dilute nitride spin-vertical cavity surface emitting laser subject to circularly polarized optical injection,” Appl. Phys. Lett. 105(18), 181106 (2014).
[Crossref]

K. Schires, R. K. Al Seyab, A. Hurtado, V.-M. Korpijärvi, M. Guina, I. D. Henning, and M. J. Adams, “Optically-pumped dilute nitride spin-VCSEL,” Opt. Express 20(4), 3550–3555 (2012).
[Crossref] [PubMed]

R. Al-Seyab, D. Alexandropoulos, I. D. Henning, and M. J. Adams, “Instabilities in spin-polarized vertical-cavity surface-emitting lasers,” IEEE Photon. J. 3(5), 799–809 (2011).
[Crossref]

Hirano, K.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[Crossref]

Hofmann, M. R.

N. C. Gerhardt, M. Lindemann, T. Pusch, R. Michalzik, and M. R. Hofmann, “High-frequency polarization dynamics in spin-lasers: pushing the limits,” Proc. SPIE 10357, 103572F (2017).

M. Lindemann, T. Pusch, R. Michalzik, N. C. Gerhardt, and M. R. Hofmann, “Frequency tuning of polarization oscillations: Toward high-speed spin-lasers,” Appl. Phys. Lett. 108(4), 042404 (2016).
[Crossref]

N. C. Gerhardt and M. R. Hofmann, “Spin-controlled vertical-cavity surface-emitting lasers,” Adv. Opt. Technol. 2012, 268949 (2012).
[Crossref]

Holub, M.

D. Basu, D. Saha, C. C. Wu, M. Holub, Z. Mi, and P. Bhattacharya, ”Electrically injected InAs/GaAs quantum dot spin laser operating at 200 K,” Appl. Phys. Lett. 92(9), 091119 (2008).
[Crossref]

M. Holub, J. Shin, D. Saha, and P. Bhattacharya, “Electrical spin injection and threshold reduction in a semiconductor laser,” Phys. Rev. Lett. 98(14), 146603 (2007).
[Crossref] [PubMed]

Huang, K. F.

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” Quantum Semiclassic. Opt. 9(5), 765 (1997).
[Crossref]

Hurtado, A.

Hwang, S.K.

Ikeda, K.

N. Yokota, R. Takeuchi, H. Yasaka, and K. Ikeda, “Lasing polarization characteristics in 1.55-μm spin-injected VCSELs,” IEEE Photon. Technol. Lett. 29, (9)711–714 (2017).
[Crossref]

Inoue, M.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[Crossref]

Jiang, N.

N. Jiang, C. P. Xue, Y. X. Lv, and K. Qiu, “Physically enhanced secure wavelength division multiplexing chaos communication using multimode semiconductor lasers,” Nonlinear Dynamics 86(3), 1937–1949 (2016).
[Crossref]

Jumpertz, L.

L. Jumpertz, K. Schires, M. Carras, M. Sciamanna, and F. Grillot, “Chaotic light at mid-infrared wavelength,” Light Sci. Appl. 5(6), e16088 (2016).
[Crossref]

Kane, D. M.

J. P. Toomey, A. Argyris, C. McMahon, D. Syvridis, and D. M. Kane, “Time-scale independent permutation entropy of a photonic integrated Device,” J. Lightw. Technol. 35(1), 88–95 (2017).
[Crossref]

J. P. Toomey, D. M. Kane, S. Valling, and A. M. Lindberg, “Automated correlation dimension analysis of optically injected solid state lasers,” Opt. Exp. 17(9), 7592–7608 (2009).
[Crossref]

Khitrova, G.

J. Rudolph, D. Hägele, H. M. Gibbs, G. Khitrova, and M. Oestreich, “Laser threshold reduction in a spintronic device,” Appl. Phys. Lett. 82(25), 4516–4518 (2003).
[Crossref]

Korpijärvi, V.-M.

S. S. Alharthi, A. Hurtado, R. K. Al Seyab, V.-M. Korpijärvi, M. Guina, I. D. Henning, and M. J. Adams, “Control of emitted light polarization in a 1310 nm dilute nitride spin-vertical cavity surface emitting laser subject to circularly polarized optical injection,” Appl. Phys. Lett. 105(18), 181106 (2014).
[Crossref]

K. Schires, R. K. Al Seyab, A. Hurtado, V.-M. Korpijärvi, M. Guina, I. D. Henning, and M. J. Adams, “Optically-pumped dilute nitride spin-VCSEL,” Opt. Express 20(4), 3550–3555 (2012).
[Crossref] [PubMed]

Krauskopf, B.

H. Erzgräber, S. Wieczorek, and B. Krauskopf, “Dynamics of two laterally coupled semiconductor lasers: Strong- and weak-coupling theory,” Phys. Rev. E 78(6), 066201 (2008).
[Crossref]

S. Wieczorek, B. Krauskopf, T. B. Simpson, and D. Lenstra, “The dynamical complexity of optically injected lasers,” Phys. Rep. 416(1), 1–128 (2005).
[Crossref]

Kurashige, T.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[Crossref]

Kuznetsov, Y.

E. J. Doedel, A. R. Champneys, T. Fairgrieve, Y. Kuznetsov, B. Oldeman, R. Pfaffenroth, B. Sandastede, X. Wang, and C. Zhang, AUTO-07p: Continuation and Bifurcation Software for Ordinary Differential Equations (Concordia University, Montreal, 2008).

Larger, L.

L. Larger, M. C. Soriano, D. Brunner, L. Appeltant, J. M. Gutierrez, L. Pesquera, C. R. Mirasso, and I. Fischer, “Photonic information processing beyond Turing: an optoelectronic implementation of reservoir computing,” Opt. Express 20(3), 3241–3249 (2012).
[Crossref] [PubMed]

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438, 343–346 (2005).
[Crossref] [PubMed]

Lee, J.

J. Lee, R. Oszwałdowski, C. Gøthgen, and I. Žutić, “Mapping between quantum dot and quantum well lasers: From conventional to spin lasers,” Phys. Rev. B 85, 045314 (2012).
[Crossref]

Lenstra, D.

S. Wieczorek, B. Krauskopf, T. B. Simpson, and D. Lenstra, “The dynamical complexity of optically injected lasers,” Phys. Rep. 416(1), 1–128 (2005).
[Crossref]

G. H. M. van Tartwijk and D. Lenstra, “Semiconductor lasers with optical injection and feedback,” Quantum Semiclass. Opt. 7(2), 87–143 (1995).
[Crossref]

Li, N. Q.

N. Q. Li, H. Susanto, B. R. Cemlyn, I. D. Henning, and M. J. Adams, “Locking bandwidth of two laterally-coupled lasers subjected to optical injection,” Sci. Rep. 8(109), 1–10 (2018).

N. Q. Li, H. Susanto, B. R. Cemlyn, I. D. Henning, and M. J. Adams, “Stability and bifurcation analysis of spin-polarized vertical-cavity surface-emitting lasers,” Phys. Rev. A 96, 013840 (2017).
[Crossref]

M. S. Torre, H. Susanto, N. Q. Li, K. Schires, M. F. Salvide, I. D. Henning, A. Hurtado, and M. J. Adams, ”High frequency continuous birefringence-induced oscillations in spin-polarized vertical-cavity surface-emitting lasers,” Opt. Lett. 42(8), 1628–1631 (2017).
[Crossref] [PubMed]

N. Q. Li, D. Alexandropoulos, H. Susanto, I. D. Henning, and M. J. Adams, “Quantum dot spin-V (E) CSELs: polarization switching and periodic oscillations,” Proc. SPIE 10357, 103572G (2017).

N. Q. Li, D. Alexandropoulos, I. D. Henning, and M. J. Adams, “Stability analysis of quantum-dot spin-VCSELs,” Electronics 5(4), 83 (2016).
[Crossref]

N. Q. Li, W. Pan, A. Locquet, and D. S. Citrin, “Time-delay concealment and complexity enhancement of an external-cavity laser through optical injection,” Opt. Lett. 40(19), 4416–4419 (2015).
[Crossref] [PubMed]

Li, S. S.

X. Z. Li, S. S. Li, and S. C. Chan, “Correlated random bit generation using chaotic semiconductor laser under unidirectional optical injection,” IEEE Photon. J. 9(5), 1505411 (2017).
[Crossref]

Li, X. Z.

X. Z. Li, S. S. Li, and S. C. Chan, “Correlated random bit generation using chaotic semiconductor laser under unidirectional optical injection,” IEEE Photon. J. 9(5), 1505411 (2017).
[Crossref]

Lin, F. Y.

F. Y. Lin and J. M. Liu, “Chaotic lidar,” IEEE J. Sel. Topics Quantum Electron. 10(5), 991–997 (2004).
[Crossref]

Lindberg, A. M.

J. P. Toomey, D. M. Kane, S. Valling, and A. M. Lindberg, “Automated correlation dimension analysis of optically injected solid state lasers,” Opt. Exp. 17(9), 7592–7608 (2009).
[Crossref]

S. Valling, T. Fordell, and A. M. Lindberg, “Maps of the dynamics of an optically injected solid-state laser,” Phys. Rev. A 72(3), 033810 (2005).
[Crossref]

Lindemann, M.

N. C. Gerhardt, M. Lindemann, T. Pusch, R. Michalzik, and M. R. Hofmann, “High-frequency polarization dynamics in spin-lasers: pushing the limits,” Proc. SPIE 10357, 103572F (2017).

M. Lindemann, T. Pusch, R. Michalzik, N. C. Gerhardt, and M. R. Hofmann, “Frequency tuning of polarization oscillations: Toward high-speed spin-lasers,” Appl. Phys. Lett. 108(4), 042404 (2016).
[Crossref]

Lingnau, B.

B. Lingnau, W. W Chow, E. Schöll, and K. Lüdge, “Feedback and injection locking instabilities in quantum-dot lasers: a microscopically based bifurcation analysis,” New J. Phys. 15, 093031(2013).
[Crossref]

Liu, J. M.

F. Y. Lin and J. M. Liu, “Chaotic lidar,” IEEE J. Sel. Topics Quantum Electron. 10(5), 991–997 (2004).
[Crossref]

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” Quantum Semiclassic. Opt. 9(5), 765 (1997).
[Crossref]

Lo, K.H.

Locquet, A.

Lüdge, K.

B. Lingnau, W. W Chow, E. Schöll, and K. Lüdge, “Feedback and injection locking instabilities in quantum-dot lasers: a microscopically based bifurcation analysis,” New J. Phys. 15, 093031(2013).
[Crossref]

Lv, Y. X.

N. Jiang, C. P. Xue, Y. X. Lv, and K. Qiu, “Physically enhanced secure wavelength division multiplexing chaos communication using multimode semiconductor lasers,” Nonlinear Dynamics 86(3), 1937–1949 (2016).
[Crossref]

McMahon, C.

J. P. Toomey, A. Argyris, C. McMahon, D. Syvridis, and D. M. Kane, “Time-scale independent permutation entropy of a photonic integrated Device,” J. Lightw. Technol. 35(1), 88–95 (2017).
[Crossref]

Melbourne, I.

G. A. Gottwald and I. Melbourne, “On the implementation of the 0–1 test for chaos,” SIAM J. Appl. Dyn. Syst. 8(1), 129–145 (2009).
[Crossref]

Mi, Z.

D. Basu, D. Saha, C. C. Wu, M. Holub, Z. Mi, and P. Bhattacharya, ”Electrically injected InAs/GaAs quantum dot spin laser operating at 200 K,” Appl. Phys. Lett. 92(9), 091119 (2008).
[Crossref]

Michalzik, R.

N. C. Gerhardt, M. Lindemann, T. Pusch, R. Michalzik, and M. R. Hofmann, “High-frequency polarization dynamics in spin-lasers: pushing the limits,” Proc. SPIE 10357, 103572F (2017).

M. Lindemann, T. Pusch, R. Michalzik, N. C. Gerhardt, and M. R. Hofmann, “Frequency tuning of polarization oscillations: Toward high-speed spin-lasers,” Appl. Phys. Lett. 108(4), 042404 (2016).
[Crossref]

Mirasso, C. R.

M. C. Soriano, J. García-Ojalvo, C. R. Mirasso, and I. Fischer, “Complex photonics: dynamics and applications of delay-coupled semiconductor lasers,” Rev. Mod. Phys. 85(1), 421–470 (2013).
[Crossref]

L. Larger, M. C. Soriano, D. Brunner, L. Appeltant, J. M. Gutierrez, L. Pesquera, C. R. Mirasso, and I. Fischer, “Photonic information processing beyond Turing: an optoelectronic implementation of reservoir computing,” Opt. Express 20(3), 3241–3249 (2012).
[Crossref] [PubMed]

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438, 343–346 (2005).
[Crossref] [PubMed]

Moloney, J. V.

M. San Miguel, Q. Feng, and J. V. Moloney, “Light-polarization dynamics in surface-emitting semiconductor lasers,” Phys. Rev. A 52(2), 1728–1739 (1995).
[Crossref] [PubMed]

Mørk, J.

Y. Yu, W. Q. Xue, E. Semenova, K. Yvind, and J. Mørk, “Demonstration of a self-pulsing photonic crystal Fano laser,” Nat. Photonics 11, 81–84 (2017).
[Crossref]

Naito, S.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[Crossref]

Oestreich, M.

J. Rudolph, D. Hägele, H. M. Gibbs, G. Khitrova, and M. Oestreich, “Laser threshold reduction in a spintronic device,” Appl. Phys. Lett. 82(25), 4516–4518 (2003).
[Crossref]

Oldeman, B.

E. J. Doedel, A. R. Champneys, T. Fairgrieve, Y. Kuznetsov, B. Oldeman, R. Pfaffenroth, B. Sandastede, X. Wang, and C. Zhang, AUTO-07p: Continuation and Bifurcation Software for Ordinary Differential Equations (Concordia University, Montreal, 2008).

Oowada, I.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[Crossref]

Orchard, J.

S. S. Alharthi, J. Orchard, E. Clarke, I. D. Henning, and M. J. Adams, “1300 nm optically pumped quantum dot spin vertical external-cavity surface-emitting laser,” Appl. Phys. Lett. 107(15), 151109 (2015).
[Crossref]

Oszwaldowski, R.

J. Lee, R. Oszwałdowski, C. Gøthgen, and I. Žutić, “Mapping between quantum dot and quantum well lasers: From conventional to spin lasers,” Phys. Rev. B 85, 045314 (2012).
[Crossref]

Pan, W.

Panajotov, K.

T. R. Raddo, K. Panajotov, B. H. V. Borges, and M. Virte, “Strain induced polarization chaos in a solitary VCSEL,” Sci. Rep. 7, 14032 (2017).
[Crossref] [PubMed]

C. Schelte, K. Panajotov, M. Tlidi, and S. V. Gurevich, “Bifurcation structure of cavity soliton dynamics in a vertical-cavity surface-emitting laser with a saturable absorber and time-delayed feedback,” Phys. Rev. A 96, 023807 (2017).
[Crossref]

M. Virte, K. Panajotov, H. Thienpont, and M. Sciamanna, “Deterministic polarization chaos from a laser diode,” Nat. Photonics 7, 60–65 (2013).
[Crossref]

A. Valle, M. Sciamanna, and K. Panajotov, “Nonlinear dynamics of the polarization of multitransverse mode vertical-cavity surface-emitting lasers under current modulation,” Phys. Rev. E 76, 046206 (2007).
[Crossref]

Pesquera, L.

L. Larger, M. C. Soriano, D. Brunner, L. Appeltant, J. M. Gutierrez, L. Pesquera, C. R. Mirasso, and I. Fischer, “Photonic information processing beyond Turing: an optoelectronic implementation of reservoir computing,” Opt. Express 20(3), 3241–3249 (2012).
[Crossref] [PubMed]

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438, 343–346 (2005).
[Crossref] [PubMed]

Pfaffenroth, R.

E. J. Doedel, A. R. Champneys, T. Fairgrieve, Y. Kuznetsov, B. Oldeman, R. Pfaffenroth, B. Sandastede, X. Wang, and C. Zhang, AUTO-07p: Continuation and Bifurcation Software for Ordinary Differential Equations (Concordia University, Montreal, 2008).

Pusch, T.

N. C. Gerhardt, M. Lindemann, T. Pusch, R. Michalzik, and M. R. Hofmann, “High-frequency polarization dynamics in spin-lasers: pushing the limits,” Proc. SPIE 10357, 103572F (2017).

M. Lindemann, T. Pusch, R. Michalzik, N. C. Gerhardt, and M. R. Hofmann, “Frequency tuning of polarization oscillations: Toward high-speed spin-lasers,” Appl. Phys. Lett. 108(4), 042404 (2016).
[Crossref]

Qasaimeh, O.

O. Qasaimeh, “Novel closed-form solution for spin-polarization in quantum dot VCSEL,” Opt. Commun. 350, 83–89 (2015).
[Crossref]

Qiu, K.

N. Jiang, C. P. Xue, Y. X. Lv, and K. Qiu, “Physically enhanced secure wavelength division multiplexing chaos communication using multimode semiconductor lasers,” Nonlinear Dynamics 86(3), 1937–1949 (2016).
[Crossref]

Raddo, T. R.

T. R. Raddo, K. Panajotov, B. H. V. Borges, and M. Virte, “Strain induced polarization chaos in a solitary VCSEL,” Sci. Rep. 7, 14032 (2017).
[Crossref] [PubMed]

Rontani, D.

D. Rontani, D. Choi, C. Y. Chang, A. Locquet, and D. S. Citrin, “Compressive sensing with optical chaos,” Sci. Rep. 6, 35206 (2016).
[Crossref] [PubMed]

Rudolph, J.

J. Rudolph, D. Hägele, H. M. Gibbs, G. Khitrova, and M. Oestreich, “Laser threshold reduction in a spintronic device,” Appl. Phys. Lett. 82(25), 4516–4518 (2003).
[Crossref]

Saha, D.

P. Bhattacharya, D. Basu, A. Das, and D. Saha, “Quantum dot polarized light sources,” Semicond. Sci. Technol. 26, 014002 (2011).
[Crossref]

D. Basu, D. Saha, and P. Bhattacharya, “Optical polarization modulation and gain anisotropy in an electrically injected spin laser,” Phys. Rev. Lett. 102(9), 093904 (2009); Erratum Phys. Rev. Lett. 102 (12), 129901 (2009).
[Crossref] [PubMed]

D. Basu, D. Saha, C. C. Wu, M. Holub, Z. Mi, and P. Bhattacharya, ”Electrically injected InAs/GaAs quantum dot spin laser operating at 200 K,” Appl. Phys. Lett. 92(9), 091119 (2008).
[Crossref]

M. Holub, J. Shin, D. Saha, and P. Bhattacharya, “Electrical spin injection and threshold reduction in a semiconductor laser,” Phys. Rev. Lett. 98(14), 146603 (2007).
[Crossref] [PubMed]

Salvide, M. F.

San Miguel, M.

A. Gahl, S. Balle, and M. San Miguel, “Polarization dynamics of optically pumped VCSELs,” IEEE J. Quantum Electron. 35(3), 342–351 (1999).
[Crossref]

M. San Miguel, Q. Feng, and J. V. Moloney, “Light-polarization dynamics in surface-emitting semiconductor lasers,” Phys. Rev. A 52(2), 1728–1739 (1995).
[Crossref] [PubMed]

Sandastede, B.

E. J. Doedel, A. R. Champneys, T. Fairgrieve, Y. Kuznetsov, B. Oldeman, R. Pfaffenroth, B. Sandastede, X. Wang, and C. Zhang, AUTO-07p: Continuation and Bifurcation Software for Ordinary Differential Equations (Concordia University, Montreal, 2008).

Schelte, C.

C. Schelte, K. Panajotov, M. Tlidi, and S. V. Gurevich, “Bifurcation structure of cavity soliton dynamics in a vertical-cavity surface-emitting laser with a saturable absorber and time-delayed feedback,” Phys. Rev. A 96, 023807 (2017).
[Crossref]

Schires, K.

M. S. Torre, H. Susanto, N. Q. Li, K. Schires, M. F. Salvide, I. D. Henning, A. Hurtado, and M. J. Adams, ”High frequency continuous birefringence-induced oscillations in spin-polarized vertical-cavity surface-emitting lasers,” Opt. Lett. 42(8), 1628–1631 (2017).
[Crossref] [PubMed]

L. Jumpertz, K. Schires, M. Carras, M. Sciamanna, and F. Grillot, “Chaotic light at mid-infrared wavelength,” Light Sci. Appl. 5(6), e16088 (2016).
[Crossref]

H. Susanto, K. Schires, M. J. Adams, and I. D. Henning, “Spin-flip model of spin-polarized vertical-cavity surface-emitting lasers: Asymptotic analysis, numerics, and experiments,” Phys. Rev. A 92(6), 063838 (2015).
[Crossref]

K. Schires, R. K. Al Seyab, A. Hurtado, V.-M. Korpijärvi, M. Guina, I. D. Henning, and M. J. Adams, “Optically-pumped dilute nitride spin-VCSEL,” Opt. Express 20(4), 3550–3555 (2012).
[Crossref] [PubMed]

Schöll, E.

B. Lingnau, W. W Chow, E. Schöll, and K. Lüdge, “Feedback and injection locking instabilities in quantum-dot lasers: a microscopically based bifurcation analysis,” New J. Phys. 15, 093031(2013).
[Crossref]

Sciamanna, M.

L. Jumpertz, K. Schires, M. Carras, M. Sciamanna, and F. Grillot, “Chaotic light at mid-infrared wavelength,” Light Sci. Appl. 5(6), e16088 (2016).
[Crossref]

M. Sciamanna and K. A. Shore, “Physics and applications of laser diode chaos,” Nat. Photonics 9(3), 151–162 (2015).
[Crossref]

M. Virte, K. Panajotov, H. Thienpont, and M. Sciamanna, “Deterministic polarization chaos from a laser diode,” Nat. Photonics 7, 60–65 (2013).
[Crossref]

A. Valle, M. Sciamanna, and K. Panajotov, “Nonlinear dynamics of the polarization of multitransverse mode vertical-cavity surface-emitting lasers under current modulation,” Phys. Rev. E 76, 046206 (2007).
[Crossref]

Semenova, E.

Y. Yu, W. Q. Xue, E. Semenova, K. Yvind, and J. Mørk, “Demonstration of a self-pulsing photonic crystal Fano laser,” Nat. Photonics 11, 81–84 (2017).
[Crossref]

Shiki, M.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[Crossref]

Shin, J.

M. Holub, J. Shin, D. Saha, and P. Bhattacharya, “Electrical spin injection and threshold reduction in a semiconductor laser,” Phys. Rev. Lett. 98(14), 146603 (2007).
[Crossref] [PubMed]

Shore, K. A.

H. Han and K. A. Shore, “Dynamics and stability of mutually coupled Nano lasers,” IEEE J. Quantum Electron. 52(11), 2000306 (2016).
[Crossref]

M. Sciamanna and K. A. Shore, “Physics and applications of laser diode chaos,” Nat. Photonics 9(3), 151–162 (2015).
[Crossref]

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438, 343–346 (2005).
[Crossref] [PubMed]

Simpson, T. B.

S. Wieczorek, B. Krauskopf, T. B. Simpson, and D. Lenstra, “The dynamical complexity of optically injected lasers,” Phys. Rep. 416(1), 1–128 (2005).
[Crossref]

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” Quantum Semiclassic. Opt. 9(5), 765 (1997).
[Crossref]

Someya, H.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[Crossref]

Soriano, M. C.

M. C. Soriano, J. García-Ojalvo, C. R. Mirasso, and I. Fischer, “Complex photonics: dynamics and applications of delay-coupled semiconductor lasers,” Rev. Mod. Phys. 85(1), 421–470 (2013).
[Crossref]

L. Larger, M. C. Soriano, D. Brunner, L. Appeltant, J. M. Gutierrez, L. Pesquera, C. R. Mirasso, and I. Fischer, “Photonic information processing beyond Turing: an optoelectronic implementation of reservoir computing,” Opt. Express 20(3), 3241–3249 (2012).
[Crossref] [PubMed]

Susanto, H.

N. Q. Li, H. Susanto, B. R. Cemlyn, I. D. Henning, and M. J. Adams, “Locking bandwidth of two laterally-coupled lasers subjected to optical injection,” Sci. Rep. 8(109), 1–10 (2018).

N. Q. Li, D. Alexandropoulos, H. Susanto, I. D. Henning, and M. J. Adams, “Quantum dot spin-V (E) CSELs: polarization switching and periodic oscillations,” Proc. SPIE 10357, 103572G (2017).

N. Q. Li, H. Susanto, B. R. Cemlyn, I. D. Henning, and M. J. Adams, “Stability and bifurcation analysis of spin-polarized vertical-cavity surface-emitting lasers,” Phys. Rev. A 96, 013840 (2017).
[Crossref]

M. S. Torre, H. Susanto, N. Q. Li, K. Schires, M. F. Salvide, I. D. Henning, A. Hurtado, and M. J. Adams, ”High frequency continuous birefringence-induced oscillations in spin-polarized vertical-cavity surface-emitting lasers,” Opt. Lett. 42(8), 1628–1631 (2017).
[Crossref] [PubMed]

H. Susanto, K. Schires, M. J. Adams, and I. D. Henning, “Spin-flip model of spin-polarized vertical-cavity surface-emitting lasers: Asymptotic analysis, numerics, and experiments,” Phys. Rev. A 92(6), 063838 (2015).
[Crossref]

Syvridis, D.

J. P. Toomey, A. Argyris, C. McMahon, D. Syvridis, and D. M. Kane, “Time-scale independent permutation entropy of a photonic integrated Device,” J. Lightw. Technol. 35(1), 88–95 (2017).
[Crossref]

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438, 343–346 (2005).
[Crossref] [PubMed]

Tai, K.

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” Quantum Semiclassic. Opt. 9(5), 765 (1997).
[Crossref]

Takeuchi, R.

N. Yokota, R. Takeuchi, H. Yasaka, and K. Ikeda, “Lasing polarization characteristics in 1.55-μm spin-injected VCSELs,” IEEE Photon. Technol. Lett. 29, (9)711–714 (2017).
[Crossref]

Thienpont, H.

M. Virte, K. Panajotov, H. Thienpont, and M. Sciamanna, “Deterministic polarization chaos from a laser diode,” Nat. Photonics 7, 60–65 (2013).
[Crossref]

Tlidi, M.

C. Schelte, K. Panajotov, M. Tlidi, and S. V. Gurevich, “Bifurcation structure of cavity soliton dynamics in a vertical-cavity surface-emitting laser with a saturable absorber and time-delayed feedback,” Phys. Rev. A 96, 023807 (2017).
[Crossref]

Toomey, J. P.

J. P. Toomey, A. Argyris, C. McMahon, D. Syvridis, and D. M. Kane, “Time-scale independent permutation entropy of a photonic integrated Device,” J. Lightw. Technol. 35(1), 88–95 (2017).
[Crossref]

J. P. Toomey, D. M. Kane, S. Valling, and A. M. Lindberg, “Automated correlation dimension analysis of optically injected solid state lasers,” Opt. Exp. 17(9), 7592–7608 (2009).
[Crossref]

Torre, M. S.

Uchida, A.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[Crossref]

Valle, A.

A. Valle, M. Sciamanna, and K. Panajotov, “Nonlinear dynamics of the polarization of multitransverse mode vertical-cavity surface-emitting lasers under current modulation,” Phys. Rev. E 76, 046206 (2007).
[Crossref]

Valling, S.

J. P. Toomey, D. M. Kane, S. Valling, and A. M. Lindberg, “Automated correlation dimension analysis of optically injected solid state lasers,” Opt. Exp. 17(9), 7592–7608 (2009).
[Crossref]

S. Valling, T. Fordell, and A. M. Lindberg, “Maps of the dynamics of an optically injected solid-state laser,” Phys. Rev. A 72(3), 033810 (2005).
[Crossref]

van Tartwijk, G. H. M.

G. H. M. van Tartwijk and D. Lenstra, “Semiconductor lasers with optical injection and feedback,” Quantum Semiclass. Opt. 7(2), 87–143 (1995).
[Crossref]

Virte, M.

T. R. Raddo, K. Panajotov, B. H. V. Borges, and M. Virte, “Strain induced polarization chaos in a solitary VCSEL,” Sci. Rep. 7, 14032 (2017).
[Crossref] [PubMed]

M. Virte, K. Panajotov, H. Thienpont, and M. Sciamanna, “Deterministic polarization chaos from a laser diode,” Nat. Photonics 7, 60–65 (2013).
[Crossref]

Wang, X.

E. J. Doedel, A. R. Champneys, T. Fairgrieve, Y. Kuznetsov, B. Oldeman, R. Pfaffenroth, B. Sandastede, X. Wang, and C. Zhang, AUTO-07p: Continuation and Bifurcation Software for Ordinary Differential Equations (Concordia University, Montreal, 2008).

Wen, A. J.

X. X. Guo, S. Y. Xiang, Y. H. Zhang, A. J. Wen, and Y. Hao, “Information-theory-based complexity quantifier for chaotic semiconductor laser with double time delays,” IEEE J. Quantum Electron. 54(1), 2000308, 2018.
[Crossref]

Wieczorek, S.

H. Erzgräber, S. Wieczorek, and B. Krauskopf, “Dynamics of two laterally coupled semiconductor lasers: Strong- and weak-coupling theory,” Phys. Rev. E 78(6), 066201 (2008).
[Crossref]

S. Wieczorek, B. Krauskopf, T. B. Simpson, and D. Lenstra, “The dynamical complexity of optically injected lasers,” Phys. Rep. 416(1), 1–128 (2005).
[Crossref]

Wu, C. C.

D. Basu, D. Saha, C. C. Wu, M. Holub, Z. Mi, and P. Bhattacharya, ”Electrically injected InAs/GaAs quantum dot spin laser operating at 200 K,” Appl. Phys. Lett. 92(9), 091119 (2008).
[Crossref]

Xiang, S. Y.

X. X. Guo, S. Y. Xiang, Y. H. Zhang, A. J. Wen, and Y. Hao, “Information-theory-based complexity quantifier for chaotic semiconductor laser with double time delays,” IEEE J. Quantum Electron. 54(1), 2000308, 2018.
[Crossref]

Xue, C. P.

N. Jiang, C. P. Xue, Y. X. Lv, and K. Qiu, “Physically enhanced secure wavelength division multiplexing chaos communication using multimode semiconductor lasers,” Nonlinear Dynamics 86(3), 1937–1949 (2016).
[Crossref]

Xue, W. Q.

Y. Yu, W. Q. Xue, E. Semenova, K. Yvind, and J. Mørk, “Demonstration of a self-pulsing photonic crystal Fano laser,” Nat. Photonics 11, 81–84 (2017).
[Crossref]

Yasaka, H.

N. Yokota, R. Takeuchi, H. Yasaka, and K. Ikeda, “Lasing polarization characteristics in 1.55-μm spin-injected VCSELs,” IEEE Photon. Technol. Lett. 29, (9)711–714 (2017).
[Crossref]

Yokota, N.

N. Yokota, R. Takeuchi, H. Yasaka, and K. Ikeda, “Lasing polarization characteristics in 1.55-μm spin-injected VCSELs,” IEEE Photon. Technol. Lett. 29, (9)711–714 (2017).
[Crossref]

Yoshimori, S.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[Crossref]

Yoshimura, K.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[Crossref]

Yu, Y.

Y. Yu, W. Q. Xue, E. Semenova, K. Yvind, and J. Mørk, “Demonstration of a self-pulsing photonic crystal Fano laser,” Nat. Photonics 11, 81–84 (2017).
[Crossref]

Yvind, K.

Y. Yu, W. Q. Xue, E. Semenova, K. Yvind, and J. Mørk, “Demonstration of a self-pulsing photonic crystal Fano laser,” Nat. Photonics 11, 81–84 (2017).
[Crossref]

Zhang, C.

E. J. Doedel, A. R. Champneys, T. Fairgrieve, Y. Kuznetsov, B. Oldeman, R. Pfaffenroth, B. Sandastede, X. Wang, and C. Zhang, AUTO-07p: Continuation and Bifurcation Software for Ordinary Differential Equations (Concordia University, Montreal, 2008).

Zhang, Y. H.

X. X. Guo, S. Y. Xiang, Y. H. Zhang, A. J. Wen, and Y. Hao, “Information-theory-based complexity quantifier for chaotic semiconductor laser with double time delays,” IEEE J. Quantum Electron. 54(1), 2000308, 2018.
[Crossref]

Žutic, I.

J. Lee, R. Oszwałdowski, C. Gøthgen, and I. Žutić, “Mapping between quantum dot and quantum well lasers: From conventional to spin lasers,” Phys. Rev. B 85, 045314 (2012).
[Crossref]

Adv. Opt. Technol. (1)

N. C. Gerhardt and M. R. Hofmann, “Spin-controlled vertical-cavity surface-emitting lasers,” Adv. Opt. Technol. 2012, 268949 (2012).
[Crossref]

Appl. Phys. Lett. (5)

S. S. Alharthi, A. Hurtado, R. K. Al Seyab, V.-M. Korpijärvi, M. Guina, I. D. Henning, and M. J. Adams, “Control of emitted light polarization in a 1310 nm dilute nitride spin-vertical cavity surface emitting laser subject to circularly polarized optical injection,” Appl. Phys. Lett. 105(18), 181106 (2014).
[Crossref]

S. S. Alharthi, J. Orchard, E. Clarke, I. D. Henning, and M. J. Adams, “1300 nm optically pumped quantum dot spin vertical external-cavity surface-emitting laser,” Appl. Phys. Lett. 107(15), 151109 (2015).
[Crossref]

J. Rudolph, D. Hägele, H. M. Gibbs, G. Khitrova, and M. Oestreich, “Laser threshold reduction in a spintronic device,” Appl. Phys. Lett. 82(25), 4516–4518 (2003).
[Crossref]

M. Lindemann, T. Pusch, R. Michalzik, N. C. Gerhardt, and M. R. Hofmann, “Frequency tuning of polarization oscillations: Toward high-speed spin-lasers,” Appl. Phys. Lett. 108(4), 042404 (2016).
[Crossref]

D. Basu, D. Saha, C. C. Wu, M. Holub, Z. Mi, and P. Bhattacharya, ”Electrically injected InAs/GaAs quantum dot spin laser operating at 200 K,” Appl. Phys. Lett. 92(9), 091119 (2008).
[Crossref]

Electronics (1)

N. Q. Li, D. Alexandropoulos, I. D. Henning, and M. J. Adams, “Stability analysis of quantum-dot spin-VCSELs,” Electronics 5(4), 83 (2016).
[Crossref]

IEEE J. Quantum Electron. (4)

A. Gahl, S. Balle, and M. San Miguel, “Polarization dynamics of optically pumped VCSELs,” IEEE J. Quantum Electron. 35(3), 342–351 (1999).
[Crossref]

M. J. Adams and D. Alexandropoulos, “Parametric analysis of spin-polarized VCSELs,” IEEE J. Quantum Electron. 45(6), 744–749 (2009).
[Crossref]

H. Han and K. A. Shore, “Dynamics and stability of mutually coupled Nano lasers,” IEEE J. Quantum Electron. 52(11), 2000306 (2016).
[Crossref]

X. X. Guo, S. Y. Xiang, Y. H. Zhang, A. J. Wen, and Y. Hao, “Information-theory-based complexity quantifier for chaotic semiconductor laser with double time delays,” IEEE J. Quantum Electron. 54(1), 2000308, 2018.
[Crossref]

IEEE J. Sel. Topics Quantum Electron. (1)

F. Y. Lin and J. M. Liu, “Chaotic lidar,” IEEE J. Sel. Topics Quantum Electron. 10(5), 991–997 (2004).
[Crossref]

IEEE Photon. J. (3)

X. Z. Li, S. S. Li, and S. C. Chan, “Correlated random bit generation using chaotic semiconductor laser under unidirectional optical injection,” IEEE Photon. J. 9(5), 1505411 (2017).
[Crossref]

R. Al-Seyab, D. Alexandropoulos, I. D. Henning, and M. J. Adams, “Instabilities in spin-polarized vertical-cavity surface-emitting lasers,” IEEE Photon. J. 3(5), 799–809 (2011).
[Crossref]

M. J. Adams and D. Alexandropoulos, “Analysis of quantum-dot spin-VCSELs,” IEEE Photon. J. 4(4), 1124–1132 (2012).
[Crossref]

IEEE Photon. Technol. Lett. (1)

N. Yokota, R. Takeuchi, H. Yasaka, and K. Ikeda, “Lasing polarization characteristics in 1.55-μm spin-injected VCSELs,” IEEE Photon. Technol. Lett. 29, (9)711–714 (2017).
[Crossref]

J. Lightw. Technol. (1)

J. P. Toomey, A. Argyris, C. McMahon, D. Syvridis, and D. M. Kane, “Time-scale independent permutation entropy of a photonic integrated Device,” J. Lightw. Technol. 35(1), 88–95 (2017).
[Crossref]

Light Sci. Appl. (1)

L. Jumpertz, K. Schires, M. Carras, M. Sciamanna, and F. Grillot, “Chaotic light at mid-infrared wavelength,” Light Sci. Appl. 5(6), e16088 (2016).
[Crossref]

Nat. Photonics (4)

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[Crossref]

M. Virte, K. Panajotov, H. Thienpont, and M. Sciamanna, “Deterministic polarization chaos from a laser diode,” Nat. Photonics 7, 60–65 (2013).
[Crossref]

Y. Yu, W. Q. Xue, E. Semenova, K. Yvind, and J. Mørk, “Demonstration of a self-pulsing photonic crystal Fano laser,” Nat. Photonics 11, 81–84 (2017).
[Crossref]

M. Sciamanna and K. A. Shore, “Physics and applications of laser diode chaos,” Nat. Photonics 9(3), 151–162 (2015).
[Crossref]

Nature (1)

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438, 343–346 (2005).
[Crossref] [PubMed]

New J. Phys. (1)

B. Lingnau, W. W Chow, E. Schöll, and K. Lüdge, “Feedback and injection locking instabilities in quantum-dot lasers: a microscopically based bifurcation analysis,” New J. Phys. 15, 093031(2013).
[Crossref]

Nonlinear Dynamics (1)

N. Jiang, C. P. Xue, Y. X. Lv, and K. Qiu, “Physically enhanced secure wavelength division multiplexing chaos communication using multimode semiconductor lasers,” Nonlinear Dynamics 86(3), 1937–1949 (2016).
[Crossref]

Opt. Commun. (2)

K. E. Chlouverakis and M. J. Adams, “Stability maps of injection-locked laser diodes using the largest Lyapunov exponent,” Opt. Commun. 216(4), 405–412 (2003).
[Crossref]

O. Qasaimeh, “Novel closed-form solution for spin-polarization in quantum dot VCSEL,” Opt. Commun. 350, 83–89 (2015).
[Crossref]

Opt. Exp. (1)

J. P. Toomey, D. M. Kane, S. Valling, and A. M. Lindberg, “Automated correlation dimension analysis of optically injected solid state lasers,” Opt. Exp. 17(9), 7592–7608 (2009).
[Crossref]

Opt. Express (3)

Opt. Lett. (3)

Phys. Rep. (1)

S. Wieczorek, B. Krauskopf, T. B. Simpson, and D. Lenstra, “The dynamical complexity of optically injected lasers,” Phys. Rep. 416(1), 1–128 (2005).
[Crossref]

Phys. Rev. A (5)

C. Schelte, K. Panajotov, M. Tlidi, and S. V. Gurevich, “Bifurcation structure of cavity soliton dynamics in a vertical-cavity surface-emitting laser with a saturable absorber and time-delayed feedback,” Phys. Rev. A 96, 023807 (2017).
[Crossref]

S. Valling, T. Fordell, and A. M. Lindberg, “Maps of the dynamics of an optically injected solid-state laser,” Phys. Rev. A 72(3), 033810 (2005).
[Crossref]

H. Susanto, K. Schires, M. J. Adams, and I. D. Henning, “Spin-flip model of spin-polarized vertical-cavity surface-emitting lasers: Asymptotic analysis, numerics, and experiments,” Phys. Rev. A 92(6), 063838 (2015).
[Crossref]

N. Q. Li, H. Susanto, B. R. Cemlyn, I. D. Henning, and M. J. Adams, “Stability and bifurcation analysis of spin-polarized vertical-cavity surface-emitting lasers,” Phys. Rev. A 96, 013840 (2017).
[Crossref]

M. San Miguel, Q. Feng, and J. V. Moloney, “Light-polarization dynamics in surface-emitting semiconductor lasers,” Phys. Rev. A 52(2), 1728–1739 (1995).
[Crossref] [PubMed]

Phys. Rev. B (1)

J. Lee, R. Oszwałdowski, C. Gøthgen, and I. Žutić, “Mapping between quantum dot and quantum well lasers: From conventional to spin lasers,” Phys. Rev. B 85, 045314 (2012).
[Crossref]

Phys. Rev. E (2)

H. Erzgräber, S. Wieczorek, and B. Krauskopf, “Dynamics of two laterally coupled semiconductor lasers: Strong- and weak-coupling theory,” Phys. Rev. E 78(6), 066201 (2008).
[Crossref]

A. Valle, M. Sciamanna, and K. Panajotov, “Nonlinear dynamics of the polarization of multitransverse mode vertical-cavity surface-emitting lasers under current modulation,” Phys. Rev. E 76, 046206 (2007).
[Crossref]

Phys. Rev. Lett. (2)

M. Holub, J. Shin, D. Saha, and P. Bhattacharya, “Electrical spin injection and threshold reduction in a semiconductor laser,” Phys. Rev. Lett. 98(14), 146603 (2007).
[Crossref] [PubMed]

D. Basu, D. Saha, and P. Bhattacharya, “Optical polarization modulation and gain anisotropy in an electrically injected spin laser,” Phys. Rev. Lett. 102(9), 093904 (2009); Erratum Phys. Rev. Lett. 102 (12), 129901 (2009).
[Crossref] [PubMed]

Proc. SPIE (2)

N. Q. Li, D. Alexandropoulos, H. Susanto, I. D. Henning, and M. J. Adams, “Quantum dot spin-V (E) CSELs: polarization switching and periodic oscillations,” Proc. SPIE 10357, 103572G (2017).

N. C. Gerhardt, M. Lindemann, T. Pusch, R. Michalzik, and M. R. Hofmann, “High-frequency polarization dynamics in spin-lasers: pushing the limits,” Proc. SPIE 10357, 103572F (2017).

Quantum Semiclass. Opt. (1)

G. H. M. van Tartwijk and D. Lenstra, “Semiconductor lasers with optical injection and feedback,” Quantum Semiclass. Opt. 7(2), 87–143 (1995).
[Crossref]

Quantum Semiclassic. Opt. (1)

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” Quantum Semiclassic. Opt. 9(5), 765 (1997).
[Crossref]

Rev. Mod. Phys. (1)

M. C. Soriano, J. García-Ojalvo, C. R. Mirasso, and I. Fischer, “Complex photonics: dynamics and applications of delay-coupled semiconductor lasers,” Rev. Mod. Phys. 85(1), 421–470 (2013).
[Crossref]

Sci. Rep. (3)

D. Rontani, D. Choi, C. Y. Chang, A. Locquet, and D. S. Citrin, “Compressive sensing with optical chaos,” Sci. Rep. 6, 35206 (2016).
[Crossref] [PubMed]

T. R. Raddo, K. Panajotov, B. H. V. Borges, and M. Virte, “Strain induced polarization chaos in a solitary VCSEL,” Sci. Rep. 7, 14032 (2017).
[Crossref] [PubMed]

N. Q. Li, H. Susanto, B. R. Cemlyn, I. D. Henning, and M. J. Adams, “Locking bandwidth of two laterally-coupled lasers subjected to optical injection,” Sci. Rep. 8(109), 1–10 (2018).

Semicond. Sci. Technol. (1)

P. Bhattacharya, D. Basu, A. Das, and D. Saha, “Quantum dot polarized light sources,” Semicond. Sci. Technol. 26, 014002 (2011).
[Crossref]

SIAM J. Appl. Dyn. Syst. (1)

G. A. Gottwald and I. Melbourne, “On the implementation of the 0–1 test for chaos,” SIAM J. Appl. Dyn. Syst. 8(1), 129–145 (2009).
[Crossref]

Other (1)

E. J. Doedel, A. R. Champneys, T. Fairgrieve, Y. Kuznetsov, B. Oldeman, R. Pfaffenroth, B. Sandastede, X. Wang, and C. Zhang, AUTO-07p: Continuation and Bifurcation Software for Ordinary Differential Equations (Concordia University, Montreal, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) The eigenvalues λ of the in-phase solution in the complex plane as P increases from 0 to 1, with the trajectory direction of the critical eigenvalues λ indicated by the arrows. (b) The real parts of the critical eigenvalues λ for the in-phase (with positive slope) and out-of-phase (negative slope) solution as a function of P. In both panels, η = 1.5.
Fig. 2
Fig. 2 Bifurcation diagram with η as the control parameter calculated for (a) P = 1, (b) P = 0.6, (c) P = 0.4, and (d) P = 0.1. In all panels, the extrema (maxima and minima) of the intensity time series are shown as dots. Other parameters are the same as those given at the end of section 2.
Fig. 3
Fig. 3 Bifurcation diagrams for the Hopf bifurcation (instability threshold) in the (η, P) plane. In (a), three values of γo are considered: γo = 400 ns−1, 600 ns−1, and 1000 ns−1, and h = 1.1995. In (b), three values of h are considered: h = 1.1995, 2 and 4, and γo = 400 ns−1. In both panels, the upper limit (H1) occurs on the branch of the out-of-phase solution, while the lower limit (H2) stems from the in-phase solution. Other parameters are the same as those given at the end of section 2.
Fig. 4
Fig. 4 Bifurcation diagrams obtained by using the package AUTO and (c,d) obtained from direct numerical simulations and represented in colors in the (η, P) plane. (e,f) maps obtained by using the 0–1 test for chaos. Left: γo = 400 ns−1; right: γo = 600 ns−1. In (c,d), purple stands for cw, blue for P1, cyan for P2, and other colors for complicated dynamics. In (e,f), red for chaos, and others for nonchaotic states. Other parameters are the same as those given at the end of section 2.
Fig. 5
Fig. 5 Bifurcation diagrams obtained from direct numerical simulations and represented in colors in the (η, P) plane for (a) the QD spin-VCSEL with γo = 7000 ns−1 and (b) the QW spin-VCSEL. Other parameters are the same as those given at the end of section 2 and color codes are the same as in Fig. 4.
Fig. 6
Fig. 6 Bifurcation diagrams obtained from direct numerical simulations and represented in colors in the (η, P) plane for (a) h = 2 and (b) 10. Other parameters are the same as those given at the end of section 2 and color codes are the same as in Fig. 4.
Fig. 7
Fig. 7 Bifurcation diagrams obtained from direct numerical simulations and represented in colors in the (γj, γp) plane for (a–c) h = 1.1995 and (d–f) 2, where (a,d) P = 1, (b,e) 0.6, and (c,f) 0.2. In all panels η = 3. Other parameters are the same as those given at the end of section 2 and color codes are the same as in Fig. 4.
Fig. 8
Fig. 8 Bifurcation diagrams obtained from direct numerical simulations and represented in colors in the (η, P) plane for (a–c) h = 1.1995 and (d–f) 2, where (a,d) α = 4, (b,e) 2, and (c,f) 1. Other parameters are the same as those given at the end of section 2 and color codes are the same as in Fig. 4.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

d E ¯ ± d t = κ ( n QD ± 1 ) ( 1 + i α ) E ¯ ± ( γ a + i γ p ) E ¯ ,
d n W L ± d t = η ± γ n + h γ n 2 γ o n W L ± [ h n QD ± 2 h ] γ j ( n W L + n W L ) ,
d n QD ± d t = γ o n W L ± h ( h + n QD ± ) γ n ( h + n QD ± ) γ j ( n QD + n QD ) 2 γ n n QD ± | E ¯ ± | 2 .
Ω = | E ¯ + | 2 | E ¯ | 2 ,
Q = E ¯ E ¯ + * .
d Ω d t = κ ( n QD + + n QD 2 ) Ω + κ ( n QD + n QD ) Ω 2 + 4 | Q | 2 + 4 γ p Q I ,
d Q R d t = κ ( n QD + 1 ) ( Q R α Q I ) + κ ( n QD 1 ) ( Q R α Q I ) γ a Ω 2 + 4 | Q | 2 .
d Q I d t = κ ( n QD + 1 ) ( Q I α Q R ) + κ ( n QD 1 ) ( Q I + α Q R ) γ p Ω .

Metrics