Abstract

The development of portable haematology analysers receives increased attention due to their deployability in resource-limited or emergency settings. Lens-free in-line holographic microscopy is one of the technologies that is being pushed forward in this regard as it eliminates complex and expensive optics, making miniaturisation and integration with microfluidics possible. On-chip flow cytometry enables high-speed capturing of individual cells in suspension, giving rise to high-throughput cell counting and classification. To perform a real-time analysis on this high-throughput content, we propose a fast and robust framework for the classification of leukocytes. The raw data consists of holographic acquisitions of leukocytes, captured with a high-speed camera as they are flowing through a microfluidic chip. Three different types of leukocytes are considered: granulocytes, monocytes and T-lymphocytes. The proposed method bypasses the reconstruction of the holographic data altogether by extracting Zernike moments directly from the frequency domain. By doing so, we introduce robustness to translations and rotations of cells, as well as to changes in distance of a cell with respect to the image sensor, achieving classification accuracies up to 96.8%. Furthermore, the reduced computational complexity of this approach, compared to traditional frameworks that involve the reconstruction of the holographic data, allows for very fast processing and classification, making it applicable in high-throughput flow cytometry setups.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
On-chip light-sheet fluorescence imaging flow cytometry at a high flow speed of 1 m/s

Taichi Miura, Hideharu Mikami, Akihiro Isozaki, Takuro Ito, Yasuyuki Ozeki, and Keisuke Goda
Biomed. Opt. Express 9(7) 3424-3433 (2018)

High-throughput time-stretch imaging flow cytometry for multi-class classification of phytoplankton

Queenie T. K. Lai, Kelvin C. M. Lee, Anson H. L. Tang, Kenneth K. Y. Wong, Hayden K. H. So, and Kevin K. Tsia
Opt. Express 24(25) 28170-28184 (2016)

Automatic classification of acute and chronic myeloid leukemic cells with wide-angle label-free static cytometry

Linyan Xie, Qiao Liu, Changshun Shao, and Xuantao Su
Opt. Express 25(23) 29365-29373 (2017)

References

  • View by:
  • |
  • |
  • |

  1. N. Vajpayee, S. S. Graham, and S. Bem, “Basic examination of blood and bone marrow,” in “Henry’s Clinical Diagnosis and Management by Laboratory Methods,” R. McPherson and M. Pincus, eds. (Elsevier Saunders, Philadelphia, 2011), chap. 30, pp. 509–535.
    [Crossref]
  2. B. Schneider, G. Vanmeerbeeck, R. Stahl, L. Lagae, J. Dambre, and P. Bienstman, “Neural network for blood cell classification in a holographic microscopy system,” in “Proceedings of 17th International Conference on Transparent Optical Networks,” (IEEE, 2015), pp. 1–4.
  3. H. Zhu, S. O. Isikman, O. Mudanyali, A. Greenbaum, and A. Ozcan, “Optical Imaging Techniques for Point-of-care Diagnostics,” Lab Chip 13, 51–67 (2013).
    [Crossref]
  4. D. Gabor, “Microscopy by Reconstructed Wave-Fronts,” Proc. Royal Soc. Lond. A: Math. Phys. Eng. Sci. 197, 454–487 (1949).
    [Crossref]
  5. W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. United States Am. 98, 11301–11305 (2001).
    [Crossref]
  6. X. Cui, L. M. Lee, X. Heng, W. Zhong, P. W. Sternberg, D. Psaltis, and C. Yang, “Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging,” Proc. Natl. Acad. Sci. 105, 10670–10675 (2008).
    [Crossref] [PubMed]
  7. J. Garcia-Sucerquia, W. Xu, S. K. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45, 836–850 (2006).
    [Crossref] [PubMed]
  8. S. B. Kim, H. Bae, K.-i. Koo, M. R. Dokmeci, A. Ozcan, and A. Khademhosseini, “Lens-Free Imaging for Biological Applications,” J. Lab. Autom. 17, 43–49 (2012).
    [Crossref] [PubMed]
  9. J. Wu, G. Zheng, and L. M. Lee, “Optical imaging techniques in microfluidics and their applications,” Lab Chip 12, 3566–3575 (2012).
    [Crossref] [PubMed]
  10. D. Vercruysse, A. Dusa, R. Stahl, G. Vanmeerbeeck, K. de Wijs, C. Liu, D. Prodanov, P. Peumans, and L. Lagae, “Three-part differential of unlabeled leukocytes with a compact lens-free imaging flow cytometer,” Lab Chip 15, 1123–1132 (2015).
    [Crossref]
  11. K. De Wijs, C. Liu, A. Dusa, D. Vercruysse, B. Majeed, D. S. Tezcan, K. Blaszkiewicz, J. Loo, and L. Lagae, “Micro vapor bubble jet flow for safe and high-rate fluorescence-activated cell sorting,” Lab Chip 17, 1287–1296 (2017).
    [Crossref] [PubMed]
  12. Y. Li, B. Cornelis, G. Vanmeerbeeck, A. Dusa, D. Vercruysse, E. Sohn, K. Blaszkiewicz, P. Schelkens, and L. Lagae, “Accurate label-free white blood cell 3-part recognition with a lens-free holographic imaging flow cytometer,” Comp. Biol. Med. 11 (2018).
    [Crossref]
  13. J. W. Goodman, Introduction to Fourier optics (Roberts and Company Publishers, 2005).
  14. J. A. Ratcliffe, “Some Aspects of Diffraction Theory and their Application to the Ionosphere,” Rep. Prog. Phys. 19, 188 (1956).
    [Crossref]
  15. A. Khotanzad and Y. H. Hong, “Invariant image recognition by zernike moments,” IEEE Trans. Pattern Anal. Mach. Intell. 12, 489–497 (1990).
    [Crossref]
  16. D. R. Iskander, M. J. Collins, and B. Davis, “Optimal modeling of corneal surfaces with zernike polynomials,” IEEE Trans. Biomed. Eng 48, 87–95 (2001).
    [Crossref] [PubMed]
  17. A. Tahmasbi, F. Saki, and S. B. Shokouhi, “Classification of benign and malignant masses based on zernike moments,” Comp. Biol. Med. 41, 726–735 (2011).
    [Crossref]
  18. E. Alizadeh, S. M. Lyons, J. M. Castle, and A. Prasad, “Measuring systematic changes in invasive cancer cell shape using Zernike moments,” Integr. Biol. 8, 1183–1193 (2016).
    [Crossref]
  19. P. Ferraro, A. Wax, and Z. Zalevsky, Coherent light microscopy: imaging and quantitative phase analysis, vol. 46 of Springer Series in Surface Sciences (Springer, 2011).
  20. E. S. R. Fonseca, P. T. Fiadeiro, M. Pereira, and A. Pinheiro, “Comparative analysis of autofocus functions in digital in-line phase-shifting holography,” Appl. Opt. 55, 7663–7674 (2016).
    [Crossref] [PubMed]
  21. Z. Ren, N. Chen, and E. Y. Lam, “Extended focused imaging and depth map reconstruction in optical scanning holography,” Appl. Opt. 55, 1040–1047 (2016).
    [Crossref] [PubMed]
  22. J. M. Bioucas-Dias and G. Valadao, “Phase unwrapping via graph cuts,” IEEE Trans. Image Process. 16, 698–709 (2007).
    [Crossref] [PubMed]
  23. N. Otsu, “A threshold selection method from gray-level histograms,” IEEE Trans. Syst., Man, Cybern. A, Syst., Humans 9, 62–66 (1979).
    [Crossref]
  24. R. M. Haralick and K. Shanmugam, “Textural features for image classification,” IEEE Trans. Syst., Man, Cybern. A, Syst., Humans 3, 610–621 (1973).
    [Crossref]
  25. L. Breiman, “Random forests,” Mach. learning 45, 5–32 (2001).
    [Crossref]

2018 (1)

Y. Li, B. Cornelis, G. Vanmeerbeeck, A. Dusa, D. Vercruysse, E. Sohn, K. Blaszkiewicz, P. Schelkens, and L. Lagae, “Accurate label-free white blood cell 3-part recognition with a lens-free holographic imaging flow cytometer,” Comp. Biol. Med. 11 (2018).
[Crossref]

2017 (1)

K. De Wijs, C. Liu, A. Dusa, D. Vercruysse, B. Majeed, D. S. Tezcan, K. Blaszkiewicz, J. Loo, and L. Lagae, “Micro vapor bubble jet flow for safe and high-rate fluorescence-activated cell sorting,” Lab Chip 17, 1287–1296 (2017).
[Crossref] [PubMed]

2016 (3)

2015 (1)

D. Vercruysse, A. Dusa, R. Stahl, G. Vanmeerbeeck, K. de Wijs, C. Liu, D. Prodanov, P. Peumans, and L. Lagae, “Three-part differential of unlabeled leukocytes with a compact lens-free imaging flow cytometer,” Lab Chip 15, 1123–1132 (2015).
[Crossref]

2013 (1)

H. Zhu, S. O. Isikman, O. Mudanyali, A. Greenbaum, and A. Ozcan, “Optical Imaging Techniques for Point-of-care Diagnostics,” Lab Chip 13, 51–67 (2013).
[Crossref]

2012 (2)

S. B. Kim, H. Bae, K.-i. Koo, M. R. Dokmeci, A. Ozcan, and A. Khademhosseini, “Lens-Free Imaging for Biological Applications,” J. Lab. Autom. 17, 43–49 (2012).
[Crossref] [PubMed]

J. Wu, G. Zheng, and L. M. Lee, “Optical imaging techniques in microfluidics and their applications,” Lab Chip 12, 3566–3575 (2012).
[Crossref] [PubMed]

2011 (1)

A. Tahmasbi, F. Saki, and S. B. Shokouhi, “Classification of benign and malignant masses based on zernike moments,” Comp. Biol. Med. 41, 726–735 (2011).
[Crossref]

2008 (1)

X. Cui, L. M. Lee, X. Heng, W. Zhong, P. W. Sternberg, D. Psaltis, and C. Yang, “Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging,” Proc. Natl. Acad. Sci. 105, 10670–10675 (2008).
[Crossref] [PubMed]

2007 (1)

J. M. Bioucas-Dias and G. Valadao, “Phase unwrapping via graph cuts,” IEEE Trans. Image Process. 16, 698–709 (2007).
[Crossref] [PubMed]

2006 (1)

2001 (3)

L. Breiman, “Random forests,” Mach. learning 45, 5–32 (2001).
[Crossref]

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. United States Am. 98, 11301–11305 (2001).
[Crossref]

D. R. Iskander, M. J. Collins, and B. Davis, “Optimal modeling of corneal surfaces with zernike polynomials,” IEEE Trans. Biomed. Eng 48, 87–95 (2001).
[Crossref] [PubMed]

1990 (1)

A. Khotanzad and Y. H. Hong, “Invariant image recognition by zernike moments,” IEEE Trans. Pattern Anal. Mach. Intell. 12, 489–497 (1990).
[Crossref]

1979 (1)

N. Otsu, “A threshold selection method from gray-level histograms,” IEEE Trans. Syst., Man, Cybern. A, Syst., Humans 9, 62–66 (1979).
[Crossref]

1973 (1)

R. M. Haralick and K. Shanmugam, “Textural features for image classification,” IEEE Trans. Syst., Man, Cybern. A, Syst., Humans 3, 610–621 (1973).
[Crossref]

1956 (1)

J. A. Ratcliffe, “Some Aspects of Diffraction Theory and their Application to the Ionosphere,” Rep. Prog. Phys. 19, 188 (1956).
[Crossref]

1949 (1)

D. Gabor, “Microscopy by Reconstructed Wave-Fronts,” Proc. Royal Soc. Lond. A: Math. Phys. Eng. Sci. 197, 454–487 (1949).
[Crossref]

Alizadeh, E.

E. Alizadeh, S. M. Lyons, J. M. Castle, and A. Prasad, “Measuring systematic changes in invasive cancer cell shape using Zernike moments,” Integr. Biol. 8, 1183–1193 (2016).
[Crossref]

Bae, H.

S. B. Kim, H. Bae, K.-i. Koo, M. R. Dokmeci, A. Ozcan, and A. Khademhosseini, “Lens-Free Imaging for Biological Applications,” J. Lab. Autom. 17, 43–49 (2012).
[Crossref] [PubMed]

Bem, S.

N. Vajpayee, S. S. Graham, and S. Bem, “Basic examination of blood and bone marrow,” in “Henry’s Clinical Diagnosis and Management by Laboratory Methods,” R. McPherson and M. Pincus, eds. (Elsevier Saunders, Philadelphia, 2011), chap. 30, pp. 509–535.
[Crossref]

Bienstman, P.

B. Schneider, G. Vanmeerbeeck, R. Stahl, L. Lagae, J. Dambre, and P. Bienstman, “Neural network for blood cell classification in a holographic microscopy system,” in “Proceedings of 17th International Conference on Transparent Optical Networks,” (IEEE, 2015), pp. 1–4.

Bioucas-Dias, J. M.

J. M. Bioucas-Dias and G. Valadao, “Phase unwrapping via graph cuts,” IEEE Trans. Image Process. 16, 698–709 (2007).
[Crossref] [PubMed]

Blaszkiewicz, K.

Y. Li, B. Cornelis, G. Vanmeerbeeck, A. Dusa, D. Vercruysse, E. Sohn, K. Blaszkiewicz, P. Schelkens, and L. Lagae, “Accurate label-free white blood cell 3-part recognition with a lens-free holographic imaging flow cytometer,” Comp. Biol. Med. 11 (2018).
[Crossref]

K. De Wijs, C. Liu, A. Dusa, D. Vercruysse, B. Majeed, D. S. Tezcan, K. Blaszkiewicz, J. Loo, and L. Lagae, “Micro vapor bubble jet flow for safe and high-rate fluorescence-activated cell sorting,” Lab Chip 17, 1287–1296 (2017).
[Crossref] [PubMed]

Breiman, L.

L. Breiman, “Random forests,” Mach. learning 45, 5–32 (2001).
[Crossref]

Castle, J. M.

E. Alizadeh, S. M. Lyons, J. M. Castle, and A. Prasad, “Measuring systematic changes in invasive cancer cell shape using Zernike moments,” Integr. Biol. 8, 1183–1193 (2016).
[Crossref]

Chen, N.

Collins, M. J.

D. R. Iskander, M. J. Collins, and B. Davis, “Optimal modeling of corneal surfaces with zernike polynomials,” IEEE Trans. Biomed. Eng 48, 87–95 (2001).
[Crossref] [PubMed]

Cornelis, B.

Y. Li, B. Cornelis, G. Vanmeerbeeck, A. Dusa, D. Vercruysse, E. Sohn, K. Blaszkiewicz, P. Schelkens, and L. Lagae, “Accurate label-free white blood cell 3-part recognition with a lens-free holographic imaging flow cytometer,” Comp. Biol. Med. 11 (2018).
[Crossref]

Cui, X.

X. Cui, L. M. Lee, X. Heng, W. Zhong, P. W. Sternberg, D. Psaltis, and C. Yang, “Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging,” Proc. Natl. Acad. Sci. 105, 10670–10675 (2008).
[Crossref] [PubMed]

Dambre, J.

B. Schneider, G. Vanmeerbeeck, R. Stahl, L. Lagae, J. Dambre, and P. Bienstman, “Neural network for blood cell classification in a holographic microscopy system,” in “Proceedings of 17th International Conference on Transparent Optical Networks,” (IEEE, 2015), pp. 1–4.

Davis, B.

D. R. Iskander, M. J. Collins, and B. Davis, “Optimal modeling of corneal surfaces with zernike polynomials,” IEEE Trans. Biomed. Eng 48, 87–95 (2001).
[Crossref] [PubMed]

de Wijs, K.

D. Vercruysse, A. Dusa, R. Stahl, G. Vanmeerbeeck, K. de Wijs, C. Liu, D. Prodanov, P. Peumans, and L. Lagae, “Three-part differential of unlabeled leukocytes with a compact lens-free imaging flow cytometer,” Lab Chip 15, 1123–1132 (2015).
[Crossref]

Dokmeci, M. R.

S. B. Kim, H. Bae, K.-i. Koo, M. R. Dokmeci, A. Ozcan, and A. Khademhosseini, “Lens-Free Imaging for Biological Applications,” J. Lab. Autom. 17, 43–49 (2012).
[Crossref] [PubMed]

Dusa, A.

Y. Li, B. Cornelis, G. Vanmeerbeeck, A. Dusa, D. Vercruysse, E. Sohn, K. Blaszkiewicz, P. Schelkens, and L. Lagae, “Accurate label-free white blood cell 3-part recognition with a lens-free holographic imaging flow cytometer,” Comp. Biol. Med. 11 (2018).
[Crossref]

K. De Wijs, C. Liu, A. Dusa, D. Vercruysse, B. Majeed, D. S. Tezcan, K. Blaszkiewicz, J. Loo, and L. Lagae, “Micro vapor bubble jet flow for safe and high-rate fluorescence-activated cell sorting,” Lab Chip 17, 1287–1296 (2017).
[Crossref] [PubMed]

D. Vercruysse, A. Dusa, R. Stahl, G. Vanmeerbeeck, K. de Wijs, C. Liu, D. Prodanov, P. Peumans, and L. Lagae, “Three-part differential of unlabeled leukocytes with a compact lens-free imaging flow cytometer,” Lab Chip 15, 1123–1132 (2015).
[Crossref]

Ferraro, P.

P. Ferraro, A. Wax, and Z. Zalevsky, Coherent light microscopy: imaging and quantitative phase analysis, vol. 46 of Springer Series in Surface Sciences (Springer, 2011).

Fiadeiro, P. T.

Fonseca, E. S. R.

Gabor, D.

D. Gabor, “Microscopy by Reconstructed Wave-Fronts,” Proc. Royal Soc. Lond. A: Math. Phys. Eng. Sci. 197, 454–487 (1949).
[Crossref]

Garcia-Sucerquia, J.

Goodman, J. W.

J. W. Goodman, Introduction to Fourier optics (Roberts and Company Publishers, 2005).

Graham, S. S.

N. Vajpayee, S. S. Graham, and S. Bem, “Basic examination of blood and bone marrow,” in “Henry’s Clinical Diagnosis and Management by Laboratory Methods,” R. McPherson and M. Pincus, eds. (Elsevier Saunders, Philadelphia, 2011), chap. 30, pp. 509–535.
[Crossref]

Greenbaum, A.

H. Zhu, S. O. Isikman, O. Mudanyali, A. Greenbaum, and A. Ozcan, “Optical Imaging Techniques for Point-of-care Diagnostics,” Lab Chip 13, 51–67 (2013).
[Crossref]

Haralick, R. M.

R. M. Haralick and K. Shanmugam, “Textural features for image classification,” IEEE Trans. Syst., Man, Cybern. A, Syst., Humans 3, 610–621 (1973).
[Crossref]

Heng, X.

X. Cui, L. M. Lee, X. Heng, W. Zhong, P. W. Sternberg, D. Psaltis, and C. Yang, “Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging,” Proc. Natl. Acad. Sci. 105, 10670–10675 (2008).
[Crossref] [PubMed]

Hong, Y. H.

A. Khotanzad and Y. H. Hong, “Invariant image recognition by zernike moments,” IEEE Trans. Pattern Anal. Mach. Intell. 12, 489–497 (1990).
[Crossref]

Isikman, S. O.

H. Zhu, S. O. Isikman, O. Mudanyali, A. Greenbaum, and A. Ozcan, “Optical Imaging Techniques for Point-of-care Diagnostics,” Lab Chip 13, 51–67 (2013).
[Crossref]

Iskander, D. R.

D. R. Iskander, M. J. Collins, and B. Davis, “Optimal modeling of corneal surfaces with zernike polynomials,” IEEE Trans. Biomed. Eng 48, 87–95 (2001).
[Crossref] [PubMed]

Jericho, M. H.

J. Garcia-Sucerquia, W. Xu, S. K. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45, 836–850 (2006).
[Crossref] [PubMed]

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. United States Am. 98, 11301–11305 (2001).
[Crossref]

Jericho, S. K.

Khademhosseini, A.

S. B. Kim, H. Bae, K.-i. Koo, M. R. Dokmeci, A. Ozcan, and A. Khademhosseini, “Lens-Free Imaging for Biological Applications,” J. Lab. Autom. 17, 43–49 (2012).
[Crossref] [PubMed]

Khotanzad, A.

A. Khotanzad and Y. H. Hong, “Invariant image recognition by zernike moments,” IEEE Trans. Pattern Anal. Mach. Intell. 12, 489–497 (1990).
[Crossref]

Kim, S. B.

S. B. Kim, H. Bae, K.-i. Koo, M. R. Dokmeci, A. Ozcan, and A. Khademhosseini, “Lens-Free Imaging for Biological Applications,” J. Lab. Autom. 17, 43–49 (2012).
[Crossref] [PubMed]

Klages, P.

Koo, K.-i.

S. B. Kim, H. Bae, K.-i. Koo, M. R. Dokmeci, A. Ozcan, and A. Khademhosseini, “Lens-Free Imaging for Biological Applications,” J. Lab. Autom. 17, 43–49 (2012).
[Crossref] [PubMed]

Kreuzer, H. J.

J. Garcia-Sucerquia, W. Xu, S. K. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45, 836–850 (2006).
[Crossref] [PubMed]

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. United States Am. 98, 11301–11305 (2001).
[Crossref]

Lagae, L.

Y. Li, B. Cornelis, G. Vanmeerbeeck, A. Dusa, D. Vercruysse, E. Sohn, K. Blaszkiewicz, P. Schelkens, and L. Lagae, “Accurate label-free white blood cell 3-part recognition with a lens-free holographic imaging flow cytometer,” Comp. Biol. Med. 11 (2018).
[Crossref]

K. De Wijs, C. Liu, A. Dusa, D. Vercruysse, B. Majeed, D. S. Tezcan, K. Blaszkiewicz, J. Loo, and L. Lagae, “Micro vapor bubble jet flow for safe and high-rate fluorescence-activated cell sorting,” Lab Chip 17, 1287–1296 (2017).
[Crossref] [PubMed]

D. Vercruysse, A. Dusa, R. Stahl, G. Vanmeerbeeck, K. de Wijs, C. Liu, D. Prodanov, P. Peumans, and L. Lagae, “Three-part differential of unlabeled leukocytes with a compact lens-free imaging flow cytometer,” Lab Chip 15, 1123–1132 (2015).
[Crossref]

B. Schneider, G. Vanmeerbeeck, R. Stahl, L. Lagae, J. Dambre, and P. Bienstman, “Neural network for blood cell classification in a holographic microscopy system,” in “Proceedings of 17th International Conference on Transparent Optical Networks,” (IEEE, 2015), pp. 1–4.

Lam, E. Y.

Lee, L. M.

J. Wu, G. Zheng, and L. M. Lee, “Optical imaging techniques in microfluidics and their applications,” Lab Chip 12, 3566–3575 (2012).
[Crossref] [PubMed]

X. Cui, L. M. Lee, X. Heng, W. Zhong, P. W. Sternberg, D. Psaltis, and C. Yang, “Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging,” Proc. Natl. Acad. Sci. 105, 10670–10675 (2008).
[Crossref] [PubMed]

Li, Y.

Y. Li, B. Cornelis, G. Vanmeerbeeck, A. Dusa, D. Vercruysse, E. Sohn, K. Blaszkiewicz, P. Schelkens, and L. Lagae, “Accurate label-free white blood cell 3-part recognition with a lens-free holographic imaging flow cytometer,” Comp. Biol. Med. 11 (2018).
[Crossref]

Liu, C.

K. De Wijs, C. Liu, A. Dusa, D. Vercruysse, B. Majeed, D. S. Tezcan, K. Blaszkiewicz, J. Loo, and L. Lagae, “Micro vapor bubble jet flow for safe and high-rate fluorescence-activated cell sorting,” Lab Chip 17, 1287–1296 (2017).
[Crossref] [PubMed]

D. Vercruysse, A. Dusa, R. Stahl, G. Vanmeerbeeck, K. de Wijs, C. Liu, D. Prodanov, P. Peumans, and L. Lagae, “Three-part differential of unlabeled leukocytes with a compact lens-free imaging flow cytometer,” Lab Chip 15, 1123–1132 (2015).
[Crossref]

Loo, J.

K. De Wijs, C. Liu, A. Dusa, D. Vercruysse, B. Majeed, D. S. Tezcan, K. Blaszkiewicz, J. Loo, and L. Lagae, “Micro vapor bubble jet flow for safe and high-rate fluorescence-activated cell sorting,” Lab Chip 17, 1287–1296 (2017).
[Crossref] [PubMed]

Lyons, S. M.

E. Alizadeh, S. M. Lyons, J. M. Castle, and A. Prasad, “Measuring systematic changes in invasive cancer cell shape using Zernike moments,” Integr. Biol. 8, 1183–1193 (2016).
[Crossref]

Majeed, B.

K. De Wijs, C. Liu, A. Dusa, D. Vercruysse, B. Majeed, D. S. Tezcan, K. Blaszkiewicz, J. Loo, and L. Lagae, “Micro vapor bubble jet flow for safe and high-rate fluorescence-activated cell sorting,” Lab Chip 17, 1287–1296 (2017).
[Crossref] [PubMed]

Meinertzhagen, I. A.

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. United States Am. 98, 11301–11305 (2001).
[Crossref]

Mudanyali, O.

H. Zhu, S. O. Isikman, O. Mudanyali, A. Greenbaum, and A. Ozcan, “Optical Imaging Techniques for Point-of-care Diagnostics,” Lab Chip 13, 51–67 (2013).
[Crossref]

Otsu, N.

N. Otsu, “A threshold selection method from gray-level histograms,” IEEE Trans. Syst., Man, Cybern. A, Syst., Humans 9, 62–66 (1979).
[Crossref]

Ozcan, A.

H. Zhu, S. O. Isikman, O. Mudanyali, A. Greenbaum, and A. Ozcan, “Optical Imaging Techniques for Point-of-care Diagnostics,” Lab Chip 13, 51–67 (2013).
[Crossref]

S. B. Kim, H. Bae, K.-i. Koo, M. R. Dokmeci, A. Ozcan, and A. Khademhosseini, “Lens-Free Imaging for Biological Applications,” J. Lab. Autom. 17, 43–49 (2012).
[Crossref] [PubMed]

Pereira, M.

Peumans, P.

D. Vercruysse, A. Dusa, R. Stahl, G. Vanmeerbeeck, K. de Wijs, C. Liu, D. Prodanov, P. Peumans, and L. Lagae, “Three-part differential of unlabeled leukocytes with a compact lens-free imaging flow cytometer,” Lab Chip 15, 1123–1132 (2015).
[Crossref]

Pinheiro, A.

Prasad, A.

E. Alizadeh, S. M. Lyons, J. M. Castle, and A. Prasad, “Measuring systematic changes in invasive cancer cell shape using Zernike moments,” Integr. Biol. 8, 1183–1193 (2016).
[Crossref]

Prodanov, D.

D. Vercruysse, A. Dusa, R. Stahl, G. Vanmeerbeeck, K. de Wijs, C. Liu, D. Prodanov, P. Peumans, and L. Lagae, “Three-part differential of unlabeled leukocytes with a compact lens-free imaging flow cytometer,” Lab Chip 15, 1123–1132 (2015).
[Crossref]

Psaltis, D.

X. Cui, L. M. Lee, X. Heng, W. Zhong, P. W. Sternberg, D. Psaltis, and C. Yang, “Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging,” Proc. Natl. Acad. Sci. 105, 10670–10675 (2008).
[Crossref] [PubMed]

Ratcliffe, J. A.

J. A. Ratcliffe, “Some Aspects of Diffraction Theory and their Application to the Ionosphere,” Rep. Prog. Phys. 19, 188 (1956).
[Crossref]

Ren, Z.

Saki, F.

A. Tahmasbi, F. Saki, and S. B. Shokouhi, “Classification of benign and malignant masses based on zernike moments,” Comp. Biol. Med. 41, 726–735 (2011).
[Crossref]

Schelkens, P.

Y. Li, B. Cornelis, G. Vanmeerbeeck, A. Dusa, D. Vercruysse, E. Sohn, K. Blaszkiewicz, P. Schelkens, and L. Lagae, “Accurate label-free white blood cell 3-part recognition with a lens-free holographic imaging flow cytometer,” Comp. Biol. Med. 11 (2018).
[Crossref]

Schneider, B.

B. Schneider, G. Vanmeerbeeck, R. Stahl, L. Lagae, J. Dambre, and P. Bienstman, “Neural network for blood cell classification in a holographic microscopy system,” in “Proceedings of 17th International Conference on Transparent Optical Networks,” (IEEE, 2015), pp. 1–4.

Shanmugam, K.

R. M. Haralick and K. Shanmugam, “Textural features for image classification,” IEEE Trans. Syst., Man, Cybern. A, Syst., Humans 3, 610–621 (1973).
[Crossref]

Shokouhi, S. B.

A. Tahmasbi, F. Saki, and S. B. Shokouhi, “Classification of benign and malignant masses based on zernike moments,” Comp. Biol. Med. 41, 726–735 (2011).
[Crossref]

Sohn, E.

Y. Li, B. Cornelis, G. Vanmeerbeeck, A. Dusa, D. Vercruysse, E. Sohn, K. Blaszkiewicz, P. Schelkens, and L. Lagae, “Accurate label-free white blood cell 3-part recognition with a lens-free holographic imaging flow cytometer,” Comp. Biol. Med. 11 (2018).
[Crossref]

Stahl, R.

D. Vercruysse, A. Dusa, R. Stahl, G. Vanmeerbeeck, K. de Wijs, C. Liu, D. Prodanov, P. Peumans, and L. Lagae, “Three-part differential of unlabeled leukocytes with a compact lens-free imaging flow cytometer,” Lab Chip 15, 1123–1132 (2015).
[Crossref]

B. Schneider, G. Vanmeerbeeck, R. Stahl, L. Lagae, J. Dambre, and P. Bienstman, “Neural network for blood cell classification in a holographic microscopy system,” in “Proceedings of 17th International Conference on Transparent Optical Networks,” (IEEE, 2015), pp. 1–4.

Sternberg, P. W.

X. Cui, L. M. Lee, X. Heng, W. Zhong, P. W. Sternberg, D. Psaltis, and C. Yang, “Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging,” Proc. Natl. Acad. Sci. 105, 10670–10675 (2008).
[Crossref] [PubMed]

Tahmasbi, A.

A. Tahmasbi, F. Saki, and S. B. Shokouhi, “Classification of benign and malignant masses based on zernike moments,” Comp. Biol. Med. 41, 726–735 (2011).
[Crossref]

Tezcan, D. S.

K. De Wijs, C. Liu, A. Dusa, D. Vercruysse, B. Majeed, D. S. Tezcan, K. Blaszkiewicz, J. Loo, and L. Lagae, “Micro vapor bubble jet flow for safe and high-rate fluorescence-activated cell sorting,” Lab Chip 17, 1287–1296 (2017).
[Crossref] [PubMed]

Vajpayee, N.

N. Vajpayee, S. S. Graham, and S. Bem, “Basic examination of blood and bone marrow,” in “Henry’s Clinical Diagnosis and Management by Laboratory Methods,” R. McPherson and M. Pincus, eds. (Elsevier Saunders, Philadelphia, 2011), chap. 30, pp. 509–535.
[Crossref]

Valadao, G.

J. M. Bioucas-Dias and G. Valadao, “Phase unwrapping via graph cuts,” IEEE Trans. Image Process. 16, 698–709 (2007).
[Crossref] [PubMed]

Vanmeerbeeck, G.

Y. Li, B. Cornelis, G. Vanmeerbeeck, A. Dusa, D. Vercruysse, E. Sohn, K. Blaszkiewicz, P. Schelkens, and L. Lagae, “Accurate label-free white blood cell 3-part recognition with a lens-free holographic imaging flow cytometer,” Comp. Biol. Med. 11 (2018).
[Crossref]

D. Vercruysse, A. Dusa, R. Stahl, G. Vanmeerbeeck, K. de Wijs, C. Liu, D. Prodanov, P. Peumans, and L. Lagae, “Three-part differential of unlabeled leukocytes with a compact lens-free imaging flow cytometer,” Lab Chip 15, 1123–1132 (2015).
[Crossref]

B. Schneider, G. Vanmeerbeeck, R. Stahl, L. Lagae, J. Dambre, and P. Bienstman, “Neural network for blood cell classification in a holographic microscopy system,” in “Proceedings of 17th International Conference on Transparent Optical Networks,” (IEEE, 2015), pp. 1–4.

Vercruysse, D.

Y. Li, B. Cornelis, G. Vanmeerbeeck, A. Dusa, D. Vercruysse, E. Sohn, K. Blaszkiewicz, P. Schelkens, and L. Lagae, “Accurate label-free white blood cell 3-part recognition with a lens-free holographic imaging flow cytometer,” Comp. Biol. Med. 11 (2018).
[Crossref]

K. De Wijs, C. Liu, A. Dusa, D. Vercruysse, B. Majeed, D. S. Tezcan, K. Blaszkiewicz, J. Loo, and L. Lagae, “Micro vapor bubble jet flow for safe and high-rate fluorescence-activated cell sorting,” Lab Chip 17, 1287–1296 (2017).
[Crossref] [PubMed]

D. Vercruysse, A. Dusa, R. Stahl, G. Vanmeerbeeck, K. de Wijs, C. Liu, D. Prodanov, P. Peumans, and L. Lagae, “Three-part differential of unlabeled leukocytes with a compact lens-free imaging flow cytometer,” Lab Chip 15, 1123–1132 (2015).
[Crossref]

Wax, A.

P. Ferraro, A. Wax, and Z. Zalevsky, Coherent light microscopy: imaging and quantitative phase analysis, vol. 46 of Springer Series in Surface Sciences (Springer, 2011).

Wijs, K. De

K. De Wijs, C. Liu, A. Dusa, D. Vercruysse, B. Majeed, D. S. Tezcan, K. Blaszkiewicz, J. Loo, and L. Lagae, “Micro vapor bubble jet flow for safe and high-rate fluorescence-activated cell sorting,” Lab Chip 17, 1287–1296 (2017).
[Crossref] [PubMed]

Wu, J.

J. Wu, G. Zheng, and L. M. Lee, “Optical imaging techniques in microfluidics and their applications,” Lab Chip 12, 3566–3575 (2012).
[Crossref] [PubMed]

Xu, W.

J. Garcia-Sucerquia, W. Xu, S. K. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45, 836–850 (2006).
[Crossref] [PubMed]

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. United States Am. 98, 11301–11305 (2001).
[Crossref]

Yang, C.

X. Cui, L. M. Lee, X. Heng, W. Zhong, P. W. Sternberg, D. Psaltis, and C. Yang, “Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging,” Proc. Natl. Acad. Sci. 105, 10670–10675 (2008).
[Crossref] [PubMed]

Zalevsky, Z.

P. Ferraro, A. Wax, and Z. Zalevsky, Coherent light microscopy: imaging and quantitative phase analysis, vol. 46 of Springer Series in Surface Sciences (Springer, 2011).

Zheng, G.

J. Wu, G. Zheng, and L. M. Lee, “Optical imaging techniques in microfluidics and their applications,” Lab Chip 12, 3566–3575 (2012).
[Crossref] [PubMed]

Zhong, W.

X. Cui, L. M. Lee, X. Heng, W. Zhong, P. W. Sternberg, D. Psaltis, and C. Yang, “Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging,” Proc. Natl. Acad. Sci. 105, 10670–10675 (2008).
[Crossref] [PubMed]

Zhu, H.

H. Zhu, S. O. Isikman, O. Mudanyali, A. Greenbaum, and A. Ozcan, “Optical Imaging Techniques for Point-of-care Diagnostics,” Lab Chip 13, 51–67 (2013).
[Crossref]

Appl. Opt. (3)

Comp. Biol. Med. (2)

Y. Li, B. Cornelis, G. Vanmeerbeeck, A. Dusa, D. Vercruysse, E. Sohn, K. Blaszkiewicz, P. Schelkens, and L. Lagae, “Accurate label-free white blood cell 3-part recognition with a lens-free holographic imaging flow cytometer,” Comp. Biol. Med. 11 (2018).
[Crossref]

A. Tahmasbi, F. Saki, and S. B. Shokouhi, “Classification of benign and malignant masses based on zernike moments,” Comp. Biol. Med. 41, 726–735 (2011).
[Crossref]

IEEE Trans. Biomed. Eng (1)

D. R. Iskander, M. J. Collins, and B. Davis, “Optimal modeling of corneal surfaces with zernike polynomials,” IEEE Trans. Biomed. Eng 48, 87–95 (2001).
[Crossref] [PubMed]

IEEE Trans. Image Process. (1)

J. M. Bioucas-Dias and G. Valadao, “Phase unwrapping via graph cuts,” IEEE Trans. Image Process. 16, 698–709 (2007).
[Crossref] [PubMed]

IEEE Trans. Pattern Anal. Mach. Intell. (1)

A. Khotanzad and Y. H. Hong, “Invariant image recognition by zernike moments,” IEEE Trans. Pattern Anal. Mach. Intell. 12, 489–497 (1990).
[Crossref]

IEEE Trans. Syst., Man, Cybern. A, Syst., Humans (2)

N. Otsu, “A threshold selection method from gray-level histograms,” IEEE Trans. Syst., Man, Cybern. A, Syst., Humans 9, 62–66 (1979).
[Crossref]

R. M. Haralick and K. Shanmugam, “Textural features for image classification,” IEEE Trans. Syst., Man, Cybern. A, Syst., Humans 3, 610–621 (1973).
[Crossref]

Integr. Biol. (1)

E. Alizadeh, S. M. Lyons, J. M. Castle, and A. Prasad, “Measuring systematic changes in invasive cancer cell shape using Zernike moments,” Integr. Biol. 8, 1183–1193 (2016).
[Crossref]

J. Lab. Autom. (1)

S. B. Kim, H. Bae, K.-i. Koo, M. R. Dokmeci, A. Ozcan, and A. Khademhosseini, “Lens-Free Imaging for Biological Applications,” J. Lab. Autom. 17, 43–49 (2012).
[Crossref] [PubMed]

Lab Chip (4)

J. Wu, G. Zheng, and L. M. Lee, “Optical imaging techniques in microfluidics and their applications,” Lab Chip 12, 3566–3575 (2012).
[Crossref] [PubMed]

D. Vercruysse, A. Dusa, R. Stahl, G. Vanmeerbeeck, K. de Wijs, C. Liu, D. Prodanov, P. Peumans, and L. Lagae, “Three-part differential of unlabeled leukocytes with a compact lens-free imaging flow cytometer,” Lab Chip 15, 1123–1132 (2015).
[Crossref]

K. De Wijs, C. Liu, A. Dusa, D. Vercruysse, B. Majeed, D. S. Tezcan, K. Blaszkiewicz, J. Loo, and L. Lagae, “Micro vapor bubble jet flow for safe and high-rate fluorescence-activated cell sorting,” Lab Chip 17, 1287–1296 (2017).
[Crossref] [PubMed]

H. Zhu, S. O. Isikman, O. Mudanyali, A. Greenbaum, and A. Ozcan, “Optical Imaging Techniques for Point-of-care Diagnostics,” Lab Chip 13, 51–67 (2013).
[Crossref]

Mach. learning (1)

L. Breiman, “Random forests,” Mach. learning 45, 5–32 (2001).
[Crossref]

Proc. Natl. Acad. Sci. (1)

X. Cui, L. M. Lee, X. Heng, W. Zhong, P. W. Sternberg, D. Psaltis, and C. Yang, “Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging,” Proc. Natl. Acad. Sci. 105, 10670–10675 (2008).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. United States Am. (1)

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. United States Am. 98, 11301–11305 (2001).
[Crossref]

Proc. Royal Soc. Lond. A: Math. Phys. Eng. Sci. (1)

D. Gabor, “Microscopy by Reconstructed Wave-Fronts,” Proc. Royal Soc. Lond. A: Math. Phys. Eng. Sci. 197, 454–487 (1949).
[Crossref]

Rep. Prog. Phys. (1)

J. A. Ratcliffe, “Some Aspects of Diffraction Theory and their Application to the Ionosphere,” Rep. Prog. Phys. 19, 188 (1956).
[Crossref]

Other (4)

J. W. Goodman, Introduction to Fourier optics (Roberts and Company Publishers, 2005).

P. Ferraro, A. Wax, and Z. Zalevsky, Coherent light microscopy: imaging and quantitative phase analysis, vol. 46 of Springer Series in Surface Sciences (Springer, 2011).

N. Vajpayee, S. S. Graham, and S. Bem, “Basic examination of blood and bone marrow,” in “Henry’s Clinical Diagnosis and Management by Laboratory Methods,” R. McPherson and M. Pincus, eds. (Elsevier Saunders, Philadelphia, 2011), chap. 30, pp. 509–535.
[Crossref]

B. Schneider, G. Vanmeerbeeck, R. Stahl, L. Lagae, J. Dambre, and P. Bienstman, “Neural network for blood cell classification in a holographic microscopy system,” in “Proceedings of 17th International Conference on Transparent Optical Networks,” (IEEE, 2015), pp. 1–4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic of the digital in-line holographic microscope (DIHM) setup.
Fig. 2
Fig. 2 Schematic representation of the cell sorting platform architecture of [11].
Fig. 3
Fig. 3 Example of acquisitions taken with setup from [12]: Content image (left) - Background image (middle) - Background subtracted image (right).
Fig. 4
Fig. 4 Flowchart with the different processing steps for traditional pipeline.
Fig. 5
Fig. 5 Examples of reconstructed leukocytes with the ASM.
Fig. 6
Fig. 6 Scatter plot of leukocytes features radius mean and homogeneity.

Tables (4)

Tables Icon

Table 1 Confusion matrix (with reconstruction).

Tables Icon

Table 2 Confusion matrix using all Zernike polynomials (up to order n = 6).

Tables Icon

Table 3 Confusion matrix using all Zernike polynomials (up to order n = 22).

Tables Icon

Table 4 Confusion matrix using a reduced set of 10 Zernike polynomials (up to order v n = 22).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

U ( x , y , z ) = U ( x , y , 0 ) * H z ( x , y ) = 1 { { U ( x , y , 0 ) } exp ( i π z λ 2 ω x 2 ω y 2 ) } ,
Z n m ( ρ , φ ) = R n m ( ρ ) cos ( m φ ) and Z n m ( ρ , φ ) = R n m ( ρ ) sin ( m φ ) ,
R n m ( ρ ) = k = 0 n m 2 ( 1 ) k ( n k ) ! k ! ( n + m 2 k ) ! ( n m 2 k ) ! ρ n 2 k .

Metrics