Abstract

A non-axial-scanning multi-plane microscopic system incorporating multiplexed volume holographic gratings and slit array detection to simultaneously acquire optically sectioned images from different depths is presented. The proposed microscopic system is configured such that multiplexed volume holographic gratings are utilized to selectively produce axial focal points in two or more planes inside the sample, and then to use confocal slit apertures to simultaneously image these multiple planes onto corresponding detection areas of a CCD. We describe the design, implementation, and experimental data demonstrating this microscopic system’s ability to obtain optically sectioned multi-plane images of fluorescently labeled standard micro-spheres and tissue samples without scanning in axial directions.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Speckle-based volume holographic microscopy for optically sectioned multi-plane fluorescent imaging

Hsi-Hsun Chen, Vijay Raj Singh, and Yuan Luo
Opt. Express 23(6) 7075-7084 (2015)

Non-axial-scanning multifocal confocal microscopy with multiplexed volume holographic gratings

Po-Hao Wang, Vijay Raj Singh, Jau-Min Wong, Kung-Bin Sung, and Yuan Luo
Opt. Lett. 42(2) 346-349 (2017)

Dual-detection confocal fluorescence microscopy: fluorescence axial imaging without axial scanning

Dong-Ryoung Lee, Young-Duk Kim, Dae-Gab Gweon, and Hongki Yoo
Opt. Express 21(15) 17839-17848 (2013)

References

  • View by:
  • |
  • |
  • |

  1. J. Pawley and B. R. Masters, “Handbook of biological confocal microscopy,” Opt. Eng. 35(9), 2765–2766 (1996).
    [Crossref]
  2. M. Tavakoli, P. Hossain, and R. A. Malik, “Clinical applications of corneal confocal microscopy,” Clin. Ophthalmol. 2(2), 435–445 (2008).
    [PubMed]
  3. Y. S. Sabharwal, A. R. Rouse, L. Donaldson, M. F. Hopkins, and A. F. Gmitro, “Slit-scanning confocal microendoscope for high-resolution in vivo imaging,” Appl. Opt. 38(34), 7133–7144 (1999).
    [Crossref] [PubMed]
  4. M. Minsky, Microscopy apparatus US patent 3013467. USP Office, Ed. US (1961).
  5. C. Sheppard and A. Choudhury, “Image formation in the scanning microscope,” J. Mod. Opt. 24(10), 1051–1073 (1977).
  6. J. A. Conchello and J. W. Lichtman, “Optical sectioning microscopy,” Nat. Methods 2(12), 920–931 (2005).
    [Crossref] [PubMed]
  7. C. Sheppard and X. Mao, “Confocal microscopes with slit apertures,” J. Mod. Opt. 35(7), 1169–1185 (1988).
    [Crossref]
  8. A. Jesacher, S. Bernet, and M. Ritsch-Marte, “Colored point spread function engineering for parallel confocal microscopy,” Opt. Express 24(24), 27395–27402 (2016).
    [Crossref] [PubMed]
  9. P. H. Wang, V. R. Singh, J. M. Wong, K. B. Sung, and Y. Luo, “Non-axial-scanning multifocal confocal microscopy with multiplexed volume holographic gratings,” Opt. Lett. 42(2), 346–349 (2017).
    [Crossref] [PubMed]
  10. A. Nakano, “Spinning-disk confocal microscopy - a cutting-edge tool for imaging of membrane traffic,” Cell Struct. Funct. 27(5), 349–355 (2002).
    [Crossref] [PubMed]
  11. F. P. Martial and N. A. Hartell, “Programmable illumination and high-speed, multi-wavelength, confocal microscopy using a digital micromirror,” PLoS One 7(8), e43942 (2012).
    [Crossref] [PubMed]
  12. A. A. Tanbakuchi, J. A. Udovich, A. R. Rouse, K. D. Hatch, and A. F. Gmitro, “In vivo imaging of ovarian tissue using a novel confocal microlaparoscope,” Am. J. Obstet. Gynecol. 202(1), 90 (2010).
  13. C. C. Wang, D. j. Tang, and T. Hefner, Design, Calibration and Application of a Seafloor Laser Scanner, in Laser Scanning, Theory and Applications. InTech (2011).
  14. C. J. Koester, “Scanning mirror microscope with optical sectioning characteristics: applications in ophthalmology,” Appl. Opt. 19(11), 1749–1757 (1980).
    [Crossref] [PubMed]
  15. B. R. Masters and A. A. Thaer, “Real-time scanning slit confocal microscopy of the in vivo human cornea,” Appl. Opt. 33(4), 695–701 (1994).
    [Crossref] [PubMed]
  16. D. M. Maurice, “A scanning slit optical microscope,” Invest. Ophthalmol. 13(12), 1033–1037 (1974).
    [PubMed]
  17. H. Cang, C. S. Xu, D. Montiel, and H. Yang, “Guiding a confocal microscope by single fluorescent nanoparticles,” Opt. Lett. 32(18), 2729–2731 (2007).
    [Crossref] [PubMed]
  18. J. Kim, D. Kang, and D. Gweon, “Spectrally encoded slit confocal microscopy,” Opt. Lett. 31(11), 1687–1689 (2006).
    [Crossref] [PubMed]
  19. M. Hughes and G. Z. Yang, “High speed, line-scanning, fiber bundle fluorescence confocal endomicroscopy for improved mosaicking,” Biomed. Opt. Express 6(4), 1241–1252 (2015).
    [Crossref] [PubMed]
  20. K. B. Im, S. Han, H. Park, D. Kim, and B. M. Kim, “Simple high-speed confocal line-scanning microscope,” Opt. Express 13(13), 5151–5156 (2005).
    [Crossref] [PubMed]
  21. P. J. Dwyer, C. A. DiMarzio, and M. Rajadhyaksha, “Confocal theta line-scanning microscope for imaging human tissues,” Appl. Opt. 46(10), 1843–1851 (2007).
    [Crossref] [PubMed]
  22. Z. Yang, L. Mei, F. Xia, Q. Luo, L. Fu, and H. Gong, “Dual-slit confocal light sheet microscopy for in vivo whole-brain imaging of zebrafish,” Biomed. Opt. Express 6(5), 1797–1811 (2015).
    [Crossref] [PubMed]
  23. J. W. Goodman, Introduction to Fourier Optics (Roberts and Company Publishers, 2005).
  24. Y. Luo, P. J. Gelsinger, J. K. Barton, G. Barbastathis, and R. K. Kostuk, “Optimization of multiplexed holographic gratings in PQ-PMMA for spectral-spatial imaging filters,” Opt. Lett. 33(6), 566–568 (2008).
    [Crossref] [PubMed]
  25. S. Pacheco, C. Wang, M. K. Chawla, M. Nguyen, B. K. Baggett, U. Utzinger, C. A. Barnes, and R. Liang, “High resolution, high speed, long working distance, large field of view confocal fluorescence microscope,” Sci. Rep. 7(1), 13349 (2017).
    [Crossref] [PubMed]
  26. S. Massenot, J.-L. Kaiser, M. C. Perez, R. Chevallier, and J.-L. de Bougrenet de la Tocnaye, “Multiplexed holographic transmission gratings recorded in holographic polymer-dispersed liquid crystals: static and dynamic studies,” Appl. Opt. 44(25), 5273–5280 (2005).
    [Crossref] [PubMed]
  27. L. Cao, Z. Wang, S. Zong, S. Zhang, F. Zhang, and G. Jin, “Volume holographic polymer of photochromic diarylethene for updatable three-dimensional display,” J. Polym. Sci., B, Polym. Phys. 54(20), 2050–2058 (2016).
    [Crossref]
  28. L. Cao, Z. Wang, H. Zhang, G. Jin, and C. Gu, “Volume holographic printing using unconventional angular multiplexing for three-dimensional display,” Appl. Opt. 55(22), 6046–6051 (2016).
    [Crossref] [PubMed]
  29. A. Trofimova, S. Nazarov, A. Tolstik, U. Mahilniy, E. Tolstik, and R. Heintzmann, “Multiplexed holograms in phenanthrenequinone–polymethylmethacrylate composite for microscopic applications,” Opt. Mater. Express 7(5), 1446–1452 (2017).
    [Crossref]
  30. V. Navarro-Fuster, M. Ortuño, R. Fernández, S. Gallego, A. Márquez, A. Beléndez, and I. Pascual, “Peristrophic multiplexed holograms recorded in a low toxicity photopolymer,” Opt. Mater. Express 7(1), 133–147 (2017).
    [Crossref]
  31. S. B. Purnapatra, S. Bera, and P. P. Mondal, “Spatial Filter Based Bessel-Like Beam for Improved Penetration Depth Imaging in Fluorescence Microscopy,” Sci. Rep. 2(1), 692 (2012).
    [Crossref] [PubMed]
  32. S. Vyas, P. H. Wang, and Y. Luo, “Spatial mode multiplexing using volume holographic gratings,” Opt. Express 25(20), 23726–23737 (2017).
    [Crossref] [PubMed]

2017 (5)

2016 (3)

2015 (2)

2012 (2)

S. B. Purnapatra, S. Bera, and P. P. Mondal, “Spatial Filter Based Bessel-Like Beam for Improved Penetration Depth Imaging in Fluorescence Microscopy,” Sci. Rep. 2(1), 692 (2012).
[Crossref] [PubMed]

F. P. Martial and N. A. Hartell, “Programmable illumination and high-speed, multi-wavelength, confocal microscopy using a digital micromirror,” PLoS One 7(8), e43942 (2012).
[Crossref] [PubMed]

2010 (1)

A. A. Tanbakuchi, J. A. Udovich, A. R. Rouse, K. D. Hatch, and A. F. Gmitro, “In vivo imaging of ovarian tissue using a novel confocal microlaparoscope,” Am. J. Obstet. Gynecol. 202(1), 90 (2010).

2008 (2)

2007 (2)

2006 (1)

2005 (3)

2002 (1)

A. Nakano, “Spinning-disk confocal microscopy - a cutting-edge tool for imaging of membrane traffic,” Cell Struct. Funct. 27(5), 349–355 (2002).
[Crossref] [PubMed]

1999 (1)

1996 (1)

J. Pawley and B. R. Masters, “Handbook of biological confocal microscopy,” Opt. Eng. 35(9), 2765–2766 (1996).
[Crossref]

1994 (1)

1988 (1)

C. Sheppard and X. Mao, “Confocal microscopes with slit apertures,” J. Mod. Opt. 35(7), 1169–1185 (1988).
[Crossref]

1980 (1)

1977 (1)

C. Sheppard and A. Choudhury, “Image formation in the scanning microscope,” J. Mod. Opt. 24(10), 1051–1073 (1977).

1974 (1)

D. M. Maurice, “A scanning slit optical microscope,” Invest. Ophthalmol. 13(12), 1033–1037 (1974).
[PubMed]

Baggett, B. K.

S. Pacheco, C. Wang, M. K. Chawla, M. Nguyen, B. K. Baggett, U. Utzinger, C. A. Barnes, and R. Liang, “High resolution, high speed, long working distance, large field of view confocal fluorescence microscope,” Sci. Rep. 7(1), 13349 (2017).
[Crossref] [PubMed]

Barbastathis, G.

Barnes, C. A.

S. Pacheco, C. Wang, M. K. Chawla, M. Nguyen, B. K. Baggett, U. Utzinger, C. A. Barnes, and R. Liang, “High resolution, high speed, long working distance, large field of view confocal fluorescence microscope,” Sci. Rep. 7(1), 13349 (2017).
[Crossref] [PubMed]

Barton, J. K.

Beléndez, A.

Bera, S.

S. B. Purnapatra, S. Bera, and P. P. Mondal, “Spatial Filter Based Bessel-Like Beam for Improved Penetration Depth Imaging in Fluorescence Microscopy,” Sci. Rep. 2(1), 692 (2012).
[Crossref] [PubMed]

Bernet, S.

Cang, H.

Cao, L.

L. Cao, Z. Wang, S. Zong, S. Zhang, F. Zhang, and G. Jin, “Volume holographic polymer of photochromic diarylethene for updatable three-dimensional display,” J. Polym. Sci., B, Polym. Phys. 54(20), 2050–2058 (2016).
[Crossref]

L. Cao, Z. Wang, H. Zhang, G. Jin, and C. Gu, “Volume holographic printing using unconventional angular multiplexing for three-dimensional display,” Appl. Opt. 55(22), 6046–6051 (2016).
[Crossref] [PubMed]

Chawla, M. K.

S. Pacheco, C. Wang, M. K. Chawla, M. Nguyen, B. K. Baggett, U. Utzinger, C. A. Barnes, and R. Liang, “High resolution, high speed, long working distance, large field of view confocal fluorescence microscope,” Sci. Rep. 7(1), 13349 (2017).
[Crossref] [PubMed]

Chevallier, R.

Choudhury, A.

C. Sheppard and A. Choudhury, “Image formation in the scanning microscope,” J. Mod. Opt. 24(10), 1051–1073 (1977).

Conchello, J. A.

J. A. Conchello and J. W. Lichtman, “Optical sectioning microscopy,” Nat. Methods 2(12), 920–931 (2005).
[Crossref] [PubMed]

de Bougrenet de la Tocnaye, J.-L.

DiMarzio, C. A.

Donaldson, L.

Dwyer, P. J.

Fernández, R.

Fu, L.

Gallego, S.

Gelsinger, P. J.

Gmitro, A. F.

A. A. Tanbakuchi, J. A. Udovich, A. R. Rouse, K. D. Hatch, and A. F. Gmitro, “In vivo imaging of ovarian tissue using a novel confocal microlaparoscope,” Am. J. Obstet. Gynecol. 202(1), 90 (2010).

Y. S. Sabharwal, A. R. Rouse, L. Donaldson, M. F. Hopkins, and A. F. Gmitro, “Slit-scanning confocal microendoscope for high-resolution in vivo imaging,” Appl. Opt. 38(34), 7133–7144 (1999).
[Crossref] [PubMed]

Gong, H.

Gu, C.

Gweon, D.

Han, S.

Hartell, N. A.

F. P. Martial and N. A. Hartell, “Programmable illumination and high-speed, multi-wavelength, confocal microscopy using a digital micromirror,” PLoS One 7(8), e43942 (2012).
[Crossref] [PubMed]

Hatch, K. D.

A. A. Tanbakuchi, J. A. Udovich, A. R. Rouse, K. D. Hatch, and A. F. Gmitro, “In vivo imaging of ovarian tissue using a novel confocal microlaparoscope,” Am. J. Obstet. Gynecol. 202(1), 90 (2010).

Heintzmann, R.

Hopkins, M. F.

Hossain, P.

M. Tavakoli, P. Hossain, and R. A. Malik, “Clinical applications of corneal confocal microscopy,” Clin. Ophthalmol. 2(2), 435–445 (2008).
[PubMed]

Hughes, M.

Im, K. B.

Jesacher, A.

Jin, G.

L. Cao, Z. Wang, H. Zhang, G. Jin, and C. Gu, “Volume holographic printing using unconventional angular multiplexing for three-dimensional display,” Appl. Opt. 55(22), 6046–6051 (2016).
[Crossref] [PubMed]

L. Cao, Z. Wang, S. Zong, S. Zhang, F. Zhang, and G. Jin, “Volume holographic polymer of photochromic diarylethene for updatable three-dimensional display,” J. Polym. Sci., B, Polym. Phys. 54(20), 2050–2058 (2016).
[Crossref]

Kaiser, J.-L.

Kang, D.

Kim, B. M.

Kim, D.

Kim, J.

Koester, C. J.

Kostuk, R. K.

Liang, R.

S. Pacheco, C. Wang, M. K. Chawla, M. Nguyen, B. K. Baggett, U. Utzinger, C. A. Barnes, and R. Liang, “High resolution, high speed, long working distance, large field of view confocal fluorescence microscope,” Sci. Rep. 7(1), 13349 (2017).
[Crossref] [PubMed]

Lichtman, J. W.

J. A. Conchello and J. W. Lichtman, “Optical sectioning microscopy,” Nat. Methods 2(12), 920–931 (2005).
[Crossref] [PubMed]

Luo, Q.

Luo, Y.

Mahilniy, U.

Malik, R. A.

M. Tavakoli, P. Hossain, and R. A. Malik, “Clinical applications of corneal confocal microscopy,” Clin. Ophthalmol. 2(2), 435–445 (2008).
[PubMed]

Mao, X.

C. Sheppard and X. Mao, “Confocal microscopes with slit apertures,” J. Mod. Opt. 35(7), 1169–1185 (1988).
[Crossref]

Márquez, A.

Martial, F. P.

F. P. Martial and N. A. Hartell, “Programmable illumination and high-speed, multi-wavelength, confocal microscopy using a digital micromirror,” PLoS One 7(8), e43942 (2012).
[Crossref] [PubMed]

Massenot, S.

Masters, B. R.

J. Pawley and B. R. Masters, “Handbook of biological confocal microscopy,” Opt. Eng. 35(9), 2765–2766 (1996).
[Crossref]

B. R. Masters and A. A. Thaer, “Real-time scanning slit confocal microscopy of the in vivo human cornea,” Appl. Opt. 33(4), 695–701 (1994).
[Crossref] [PubMed]

Maurice, D. M.

D. M. Maurice, “A scanning slit optical microscope,” Invest. Ophthalmol. 13(12), 1033–1037 (1974).
[PubMed]

Mei, L.

Mondal, P. P.

S. B. Purnapatra, S. Bera, and P. P. Mondal, “Spatial Filter Based Bessel-Like Beam for Improved Penetration Depth Imaging in Fluorescence Microscopy,” Sci. Rep. 2(1), 692 (2012).
[Crossref] [PubMed]

Montiel, D.

Nakano, A.

A. Nakano, “Spinning-disk confocal microscopy - a cutting-edge tool for imaging of membrane traffic,” Cell Struct. Funct. 27(5), 349–355 (2002).
[Crossref] [PubMed]

Navarro-Fuster, V.

Nazarov, S.

Nguyen, M.

S. Pacheco, C. Wang, M. K. Chawla, M. Nguyen, B. K. Baggett, U. Utzinger, C. A. Barnes, and R. Liang, “High resolution, high speed, long working distance, large field of view confocal fluorescence microscope,” Sci. Rep. 7(1), 13349 (2017).
[Crossref] [PubMed]

Ortuño, M.

Pacheco, S.

S. Pacheco, C. Wang, M. K. Chawla, M. Nguyen, B. K. Baggett, U. Utzinger, C. A. Barnes, and R. Liang, “High resolution, high speed, long working distance, large field of view confocal fluorescence microscope,” Sci. Rep. 7(1), 13349 (2017).
[Crossref] [PubMed]

Park, H.

Pascual, I.

Pawley, J.

J. Pawley and B. R. Masters, “Handbook of biological confocal microscopy,” Opt. Eng. 35(9), 2765–2766 (1996).
[Crossref]

Perez, M. C.

Purnapatra, S. B.

S. B. Purnapatra, S. Bera, and P. P. Mondal, “Spatial Filter Based Bessel-Like Beam for Improved Penetration Depth Imaging in Fluorescence Microscopy,” Sci. Rep. 2(1), 692 (2012).
[Crossref] [PubMed]

Rajadhyaksha, M.

Ritsch-Marte, M.

Rouse, A. R.

A. A. Tanbakuchi, J. A. Udovich, A. R. Rouse, K. D. Hatch, and A. F. Gmitro, “In vivo imaging of ovarian tissue using a novel confocal microlaparoscope,” Am. J. Obstet. Gynecol. 202(1), 90 (2010).

Y. S. Sabharwal, A. R. Rouse, L. Donaldson, M. F. Hopkins, and A. F. Gmitro, “Slit-scanning confocal microendoscope for high-resolution in vivo imaging,” Appl. Opt. 38(34), 7133–7144 (1999).
[Crossref] [PubMed]

Sabharwal, Y. S.

Sheppard, C.

C. Sheppard and X. Mao, “Confocal microscopes with slit apertures,” J. Mod. Opt. 35(7), 1169–1185 (1988).
[Crossref]

C. Sheppard and A. Choudhury, “Image formation in the scanning microscope,” J. Mod. Opt. 24(10), 1051–1073 (1977).

Singh, V. R.

Sung, K. B.

Tanbakuchi, A. A.

A. A. Tanbakuchi, J. A. Udovich, A. R. Rouse, K. D. Hatch, and A. F. Gmitro, “In vivo imaging of ovarian tissue using a novel confocal microlaparoscope,” Am. J. Obstet. Gynecol. 202(1), 90 (2010).

Tavakoli, M.

M. Tavakoli, P. Hossain, and R. A. Malik, “Clinical applications of corneal confocal microscopy,” Clin. Ophthalmol. 2(2), 435–445 (2008).
[PubMed]

Thaer, A. A.

Tolstik, A.

Tolstik, E.

Trofimova, A.

Udovich, J. A.

A. A. Tanbakuchi, J. A. Udovich, A. R. Rouse, K. D. Hatch, and A. F. Gmitro, “In vivo imaging of ovarian tissue using a novel confocal microlaparoscope,” Am. J. Obstet. Gynecol. 202(1), 90 (2010).

Utzinger, U.

S. Pacheco, C. Wang, M. K. Chawla, M. Nguyen, B. K. Baggett, U. Utzinger, C. A. Barnes, and R. Liang, “High resolution, high speed, long working distance, large field of view confocal fluorescence microscope,” Sci. Rep. 7(1), 13349 (2017).
[Crossref] [PubMed]

Vyas, S.

Wang, C.

S. Pacheco, C. Wang, M. K. Chawla, M. Nguyen, B. K. Baggett, U. Utzinger, C. A. Barnes, and R. Liang, “High resolution, high speed, long working distance, large field of view confocal fluorescence microscope,” Sci. Rep. 7(1), 13349 (2017).
[Crossref] [PubMed]

Wang, P. H.

Wang, Z.

L. Cao, Z. Wang, H. Zhang, G. Jin, and C. Gu, “Volume holographic printing using unconventional angular multiplexing for three-dimensional display,” Appl. Opt. 55(22), 6046–6051 (2016).
[Crossref] [PubMed]

L. Cao, Z. Wang, S. Zong, S. Zhang, F. Zhang, and G. Jin, “Volume holographic polymer of photochromic diarylethene for updatable three-dimensional display,” J. Polym. Sci., B, Polym. Phys. 54(20), 2050–2058 (2016).
[Crossref]

Wong, J. M.

Xia, F.

Xu, C. S.

Yang, G. Z.

Yang, H.

Yang, Z.

Zhang, F.

L. Cao, Z. Wang, S. Zong, S. Zhang, F. Zhang, and G. Jin, “Volume holographic polymer of photochromic diarylethene for updatable three-dimensional display,” J. Polym. Sci., B, Polym. Phys. 54(20), 2050–2058 (2016).
[Crossref]

Zhang, H.

Zhang, S.

L. Cao, Z. Wang, S. Zong, S. Zhang, F. Zhang, and G. Jin, “Volume holographic polymer of photochromic diarylethene for updatable three-dimensional display,” J. Polym. Sci., B, Polym. Phys. 54(20), 2050–2058 (2016).
[Crossref]

Zong, S.

L. Cao, Z. Wang, S. Zong, S. Zhang, F. Zhang, and G. Jin, “Volume holographic polymer of photochromic diarylethene for updatable three-dimensional display,” J. Polym. Sci., B, Polym. Phys. 54(20), 2050–2058 (2016).
[Crossref]

Am. J. Obstet. Gynecol. (1)

A. A. Tanbakuchi, J. A. Udovich, A. R. Rouse, K. D. Hatch, and A. F. Gmitro, “In vivo imaging of ovarian tissue using a novel confocal microlaparoscope,” Am. J. Obstet. Gynecol. 202(1), 90 (2010).

Appl. Opt. (6)

Biomed. Opt. Express (2)

Cell Struct. Funct. (1)

A. Nakano, “Spinning-disk confocal microscopy - a cutting-edge tool for imaging of membrane traffic,” Cell Struct. Funct. 27(5), 349–355 (2002).
[Crossref] [PubMed]

Clin. Ophthalmol. (1)

M. Tavakoli, P. Hossain, and R. A. Malik, “Clinical applications of corneal confocal microscopy,” Clin. Ophthalmol. 2(2), 435–445 (2008).
[PubMed]

Invest. Ophthalmol. (1)

D. M. Maurice, “A scanning slit optical microscope,” Invest. Ophthalmol. 13(12), 1033–1037 (1974).
[PubMed]

J. Mod. Opt. (2)

C. Sheppard and A. Choudhury, “Image formation in the scanning microscope,” J. Mod. Opt. 24(10), 1051–1073 (1977).

C. Sheppard and X. Mao, “Confocal microscopes with slit apertures,” J. Mod. Opt. 35(7), 1169–1185 (1988).
[Crossref]

J. Polym. Sci., B, Polym. Phys. (1)

L. Cao, Z. Wang, S. Zong, S. Zhang, F. Zhang, and G. Jin, “Volume holographic polymer of photochromic diarylethene for updatable three-dimensional display,” J. Polym. Sci., B, Polym. Phys. 54(20), 2050–2058 (2016).
[Crossref]

Nat. Methods (1)

J. A. Conchello and J. W. Lichtman, “Optical sectioning microscopy,” Nat. Methods 2(12), 920–931 (2005).
[Crossref] [PubMed]

Opt. Eng. (1)

J. Pawley and B. R. Masters, “Handbook of biological confocal microscopy,” Opt. Eng. 35(9), 2765–2766 (1996).
[Crossref]

Opt. Express (3)

Opt. Lett. (4)

Opt. Mater. Express (2)

PLoS One (1)

F. P. Martial and N. A. Hartell, “Programmable illumination and high-speed, multi-wavelength, confocal microscopy using a digital micromirror,” PLoS One 7(8), e43942 (2012).
[Crossref] [PubMed]

Sci. Rep. (2)

S. Pacheco, C. Wang, M. K. Chawla, M. Nguyen, B. K. Baggett, U. Utzinger, C. A. Barnes, and R. Liang, “High resolution, high speed, long working distance, large field of view confocal fluorescence microscope,” Sci. Rep. 7(1), 13349 (2017).
[Crossref] [PubMed]

S. B. Purnapatra, S. Bera, and P. P. Mondal, “Spatial Filter Based Bessel-Like Beam for Improved Penetration Depth Imaging in Fluorescence Microscopy,” Sci. Rep. 2(1), 692 (2012).
[Crossref] [PubMed]

Other (3)

J. W. Goodman, Introduction to Fourier Optics (Roberts and Company Publishers, 2005).

C. C. Wang, D. j. Tang, and T. Hefner, Design, Calibration and Application of a Seafloor Laser Scanner, in Laser Scanning, Theory and Applications. InTech (2011).

M. Minsky, Microscopy apparatus US patent 3013467. USP Office, Ed. US (1961).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic diagram of the proposed multi-plane slit confocal approach. Focused lines at two different depths are simultaneously generated by diffraction of the Bragg-matched MVHGs, and probed by corresponding confocal slit apertures. Optically sectioned images at multiple depths are acquired using a CCD in detection without axial scanning.
Fig. 2
Fig. 2 (a) Recording design based on K-sphere diagram. ksig, i = 1,2 and kref, i = 1,2 are respective signal and reference beams to form MVHGs. (b) Reconstruction under Bragg-matched condition. Probe beams satisfying K-sphere diagram to simultaneously produce two diffracted beams, kdiff,1 and kdiff,2, which produce different foci at different planes at the sample space through an objective lens.
Fig. 3
Fig. 3 (a,i) Images of a 1951 USAF bar chart through the system. The line width of the smallest element in group 9 is 0.78 μm, and (a,ii) profile plots of smallest line pairs (a,i) in both vertical and horizontal direction. (b) The normalized axial resolution of the MVHG-based multi-plane slit confocal system, measured by scanning a 1 µm fluorescent microsphere. The full width of half maximum (FWHM) at different depths is ~3µm (Depth 1) and 3.5µm (Depth 2), respectively; the distance between the two depths is ~10 µm.
Fig. 4
Fig. 4 (a,b) Optically sectioned images of sparsely distributed 5 µm fluorescent microspheres simultaneously acquired from two planes separated axially by 10 µm: (a) fluorescent microspheres located at Depth 1, and (b) microspheres located at Depth 2.
Fig. 5
Fig. 5 Images of densely distributed 25 μm microspheres embedded in a agarose-gel. (a) The images of the beads are taken using standard wide-field condition. (b) Optically sectioned images are simultaneously acquired from two planes separated axially by 10 μm, using the MVHG-based multi-plane slit confocal system. (c) Comparison of intensity profiles between standard wide-view and our approach for out-of-focus background rejection.
Fig. 6
Fig. 6 Resultant images of fluorescently labeled rabbit corneal samples acquired from two axially separated planes (Depths 1and 2), using the MVHG-based multi-plane slit confocal imaging.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

k s i g , i k r e f , i = K i , a n d i = 1 , 2 , ... , M .
k d i f f , i k p r o , i = K i , a n d | k d i f f , i | = | k p r o , i | = 2 π n λ p r o , i
P S F ( v x , v y , u ) = | 1 1 d k y exp { j u 2 ( k y + v y u ) 2 } | 2 × s s d v y | h o b j ( v x , v ' y v y , u ) | 2 .

Metrics