Abstract

A multi-actuator adaptive lens (AL) was incorporated into a multi-photon (MP) microscope to improve the quality of images of thick samples. Through a hill-climbing procedure the AL corrected for the specimen-induced aberrations enhancing MP images. The final images hardly differed when two different metrics were used, although the sets of Zernike coefficients were not identical. The optimized MP images acquired with the AL were also compared with those obtained with a liquid-crystal-on-silicon spatial light modulator. Results have shown that both devices lead to similar images, which corroborates the usefulness of this AL for MP imaging.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Wavefront correction and high-resolution in vivo OCT imaging with an objective integrated multi-actuator adaptive lens

Stefano Bonora, Yifan Jian, Pengfei Zhang, Azhar Zam, Edward N. Pugh, Robert J. Zawadzki, and Marinko V. Sarunic
Opt. Express 23(17) 21931-21941 (2015)

Wavefront sensorless adaptive optics temporal focusing-based multiphoton microscopy

Chia-Yuan Chang, Li-Chung Cheng, Hung-Wei Su, Yvonne Yuling Hu, Keng-Chi Cho, Wei-Chung Yen, Chris Xu, Chen Yuan Dong, and Shean-Jen Chen
Biomed. Opt. Express 5(6) 1768-1777 (2014)

Wavefront sensorless adaptive optics OCT with the DONE algorithm for in vivo human retinal imaging [Invited]

Hans R. G. W. Verstraete, Morgan Heisler, Myeong Jin Ju, Daniel Wahl, Laurens Bliek, Jeroen Kalkman, Stefano Bonora, Yifan Jian, Michel Verhaegen, and Marinko V. Sarunic
Biomed. Opt. Express 8(4) 2261-2275 (2017)

References

  • View by:
  • |
  • |
  • |

  1. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
    [Crossref] [PubMed]
  2. F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
    [Crossref] [PubMed]
  3. O. Albert, L. Sherman, G. Mourou, T. B. Norris, and G. Vdovin, “Smart microscope: an adaptive optics learning system for aberration correction in multiphoton confocal microscopy,” Opt. Lett. 25(1), 52–54 (2000).
    [Crossref] [PubMed]
  4. M. A. A. Neil, R. Juskaitis, M. J. Booth, T. Wilson, T. Tanaka, S. Kawata, and R. Juškaitis, “Adaptive aberration correction in a two-photon microscope,” J. Microsc. 200(2), 105–108 (2000).
    [Crossref] [PubMed]
  5. L. Sherman, J. Y. Ye, O. Albert, and T. B. Norris, “Adaptive correction of depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror,” J. Microsc. 206(1), 65–71 (2002).
    [Crossref] [PubMed]
  6. M. Rueckel, J. A. Mack-Bucher, and W. Denk, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17137–17142 (2006).
    [Crossref] [PubMed]
  7. J. W. Cha, J. Ballesta, and P. T. C. So, “Shack-Hartmann wavefront-sensor-based adaptive optics system for multiphoton microscopy,” J. Biomed. Opt. 15(4), 046022 (2010).
    [Crossref] [PubMed]
  8. R. Aviles-Espinosa, J. Andilla, R. Porcar-Guezenec, O. E. Olarte, M. Nieto, X. Levecq, D. Artigas, and P. Loza-Alvarez, “Measurement and correction of in vivo sample aberrations employing a nonlinear guide-star in two-photon excited fluorescence microscopy,” Biomed. Opt. Express 2(11), 3135–3149 (2011).
    [Crossref] [PubMed]
  9. X. Tao, A. Norton, M. Kissel, O. Azucena, and J. Kubby, “Adaptive optical two-photon microscopy using autofluorescent guide stars,” Opt. Lett. 38(23), 5075–5078 (2013).
    [Crossref] [PubMed]
  10. K. Wang, D. E. Milkie, A. Saxena, P. Engerer, T. Misgeld, M. E. Bronner, J. Mumm, and E. Betzig, “Rapid adaptive optical recovery of optimal resolution over large volumes,” Nat. Methods 11(6), 625–628 (2014).
    [Crossref] [PubMed]
  11. P. Marsh, D. Burns, and J. Girkin, “Practical implementation of adaptive optics in multiphoton microscopy,” Opt. Express 11(10), 1123–1130 (2003).
    [Crossref] [PubMed]
  12. A. J. Wright, D. Burns, B. A. Patterson, S. P. Poland, G. J. Valentine, and J. M. Girkin, “Exploration of the optimisation algorithms used in the implementation of adaptive optics in confocal and multiphoton microscopy,” Microsc. Res. Tech. 67(1), 36–44 (2005).
    [Crossref] [PubMed]
  13. D. Débarre, E. J. Botcherby, T. Watanabe, S. Srinivas, M. J. Booth, and T. Wilson, “Image-based adaptive optics for two-photon microscopy,” Opt. Lett. 34(16), 2495–2497 (2009).
    [Crossref] [PubMed]
  14. M. Skorsetz, P. Artal, and J. M. Bueno, “Performance evaluation of a sensorless adaptive optics multiphoton microscope,” J. Microsc. 261(3), 249–258 (2016).
    [Crossref] [PubMed]
  15. N. Ji, T. R. Sato, and E. Betzig, “Characterization and adaptive optical correction of aberrations during in vivo imaging in the mouse cortex,” Proc. Natl. Acad. Sci. U.S.A. 109(1), 22–27 (2012).
    [Crossref] [PubMed]
  16. R. Fiolka, K. Si, and M. Cui, “Complex wavefront corrections for deep tissue focusing using low coherence backscattered light,” Opt. Express 20(15), 16532–16543 (2012).
    [Crossref]
  17. N. Ji, D. E. Milkie, and E. Betzig, “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nat. Methods 7(2), 141–147 (2010).
    [Crossref] [PubMed]
  18. J. Tang, R. N. Germain, and M. Cui, “Superpenetration optical microscopy by iterative multiphoton adaptive compensation technique,” Proc. Natl. Acad. Sci. U.S.A. 109(22), 8434–8439 (2012).
    [Crossref] [PubMed]
  19. L. Kong and M. Cui, “In vivo neuroimaging through the highly scattering tissue via iterative multi-photon adaptive compensation technique,” Opt. Express 23(5), 6145–6150 (2015).
    [Crossref] [PubMed]
  20. Y. Shao, W. Qin, H. Liu, J. Qu, X. Peng, H. Niu, and B. Z. Gao, “Multifocal multiphoton microscopy based on a spatial light modulator,” Appl. Phys. B 107(3), 653–657 (2013).
    [Crossref] [PubMed]
  21. H. Ren and S. Wu, Introduction to Adaptive Lenses (John Wiley & Sons, 2012).
  22. T. V. Glastian, Smart Mini-Cameras (CRC press, 2013).
  23. S. Bonora, Y. Jian, P. Zhang, A. Zam, E. N. Pugh, R. J. Zawadzki, and M. V. Sarunic, “Wavefront correction and high-resolution in vivo OCT imaging with an objective integrated multi-actuator adaptive lens,” Opt. Express 23(17), 21931–21941 (2015).
    [Crossref] [PubMed]
  24. M. Cua, D. J. Wahl, Y. Zhao, S. Lee, S. Bonora, R. J. Zawadzki, Y. Jian, and M. V. Sarunic, “Coherence-gated sensorless adaptive optics multiphoton retinal imaging,” Sci. Rep. 6(1), 32223 (2016).
    [Crossref] [PubMed]
  25. R. A. Muller and A. Buffington, “Real-time correction of atmospherically degraded telescope images through image sharpening,” J. Opt. Soc. Am. A 64(9), 1200–1210 (1974).
    [Crossref]
  26. Y. F. Choong, F. Rakebrandt, R. V. North, and J. E. Morgan, “Acutance, an objective measure of retinal nerve fibre image clarity,” Br. J. Ophthalmol. 87(3), 322–326 (2003).
    [Crossref] [PubMed]
  27. J. J. Hunter, C. J. Cookson, M. L. Kisilak, J. M. Bueno, and M. C. W. Campbell, “Characterizing image quality in a scanning laser ophthalmoscope with differing pinholes and induced scattered light,” J. Opt. Soc. Am. A 24(5), 1284–1295 (2007).
    [Crossref] [PubMed]
  28. F. J. Ávila and J. M. Bueno, “Analysis and quantification of collagen organization with the structure tensor in second harmonic microscopy images of ocular tissues,” Appl. Opt. 54(33), 9848–9854 (2015).
    [Crossref] [PubMed]
  29. H. R. G. W. Verstraete, M. Heisler, M. J. Ju, D. Wahl, L. Bliek, J. Kalkman, S. Bonora, Y. Jian, M. Verhaegen, and M. V. Sarunic, “Wavefront sensorless adaptive optics OCT with the DONE algorithm for in vivo human retinal imaging [Invited],” Biomed. Opt. Express 8(4), 2261–2275 (2017).
    [Crossref] [PubMed]
  30. M. J. Booth, “Adaptive optical microscopy: the ongoing quest for a perfect image,” Light Sci. Appl. 3(4), e165 (2014).
    [Crossref]
  31. N. Ji, “Adaptive optical fluorescence microscopy,” Nat. Methods 14(4), 374–380 (2017).
    [Crossref] [PubMed]
  32. M. Booth, “Wave front sensor-less adaptive optics: a model-based approach using sphere packings,” Opt. Express 14(4), 1339–1352 (2006).
    [Crossref] [PubMed]
  33. K. Wang, D. E. Milkie, A. Saxena, P. Engerer, T. Misgeld, M. E. Bronner, J. Mumm, and E. Betzig, “Rapid adaptive optical recovery of optimal resolution over large volumes,” Nat. Methods 11(6), 625–628 (2014).
    [Crossref] [PubMed]
  34. M. Negro, M. Quintavalla, J. Mocci, A. G. Ciriolo, M. Devetta, R. Muradore, S. Stagira, C. Vozzi, and S. Bonora, “High-speed adaptive deformable lens for boosting an high-energy optical parametric amplifier,” in 2017 European Conference on Lasers and Electro-Optics and European Quantum Electronics Conference, (Optical Society of America, 2017), paper CF_3_1.
    [Crossref]

2017 (2)

2016 (2)

M. Skorsetz, P. Artal, and J. M. Bueno, “Performance evaluation of a sensorless adaptive optics multiphoton microscope,” J. Microsc. 261(3), 249–258 (2016).
[Crossref] [PubMed]

M. Cua, D. J. Wahl, Y. Zhao, S. Lee, S. Bonora, R. J. Zawadzki, Y. Jian, and M. V. Sarunic, “Coherence-gated sensorless adaptive optics multiphoton retinal imaging,” Sci. Rep. 6(1), 32223 (2016).
[Crossref] [PubMed]

2015 (3)

2014 (3)

K. Wang, D. E. Milkie, A. Saxena, P. Engerer, T. Misgeld, M. E. Bronner, J. Mumm, and E. Betzig, “Rapid adaptive optical recovery of optimal resolution over large volumes,” Nat. Methods 11(6), 625–628 (2014).
[Crossref] [PubMed]

M. J. Booth, “Adaptive optical microscopy: the ongoing quest for a perfect image,” Light Sci. Appl. 3(4), e165 (2014).
[Crossref]

K. Wang, D. E. Milkie, A. Saxena, P. Engerer, T. Misgeld, M. E. Bronner, J. Mumm, and E. Betzig, “Rapid adaptive optical recovery of optimal resolution over large volumes,” Nat. Methods 11(6), 625–628 (2014).
[Crossref] [PubMed]

2013 (2)

Y. Shao, W. Qin, H. Liu, J. Qu, X. Peng, H. Niu, and B. Z. Gao, “Multifocal multiphoton microscopy based on a spatial light modulator,” Appl. Phys. B 107(3), 653–657 (2013).
[Crossref] [PubMed]

X. Tao, A. Norton, M. Kissel, O. Azucena, and J. Kubby, “Adaptive optical two-photon microscopy using autofluorescent guide stars,” Opt. Lett. 38(23), 5075–5078 (2013).
[Crossref] [PubMed]

2012 (3)

R. Fiolka, K. Si, and M. Cui, “Complex wavefront corrections for deep tissue focusing using low coherence backscattered light,” Opt. Express 20(15), 16532–16543 (2012).
[Crossref]

J. Tang, R. N. Germain, and M. Cui, “Superpenetration optical microscopy by iterative multiphoton adaptive compensation technique,” Proc. Natl. Acad. Sci. U.S.A. 109(22), 8434–8439 (2012).
[Crossref] [PubMed]

N. Ji, T. R. Sato, and E. Betzig, “Characterization and adaptive optical correction of aberrations during in vivo imaging in the mouse cortex,” Proc. Natl. Acad. Sci. U.S.A. 109(1), 22–27 (2012).
[Crossref] [PubMed]

2011 (1)

2010 (2)

N. Ji, D. E. Milkie, and E. Betzig, “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nat. Methods 7(2), 141–147 (2010).
[Crossref] [PubMed]

J. W. Cha, J. Ballesta, and P. T. C. So, “Shack-Hartmann wavefront-sensor-based adaptive optics system for multiphoton microscopy,” J. Biomed. Opt. 15(4), 046022 (2010).
[Crossref] [PubMed]

2009 (1)

2007 (1)

2006 (2)

M. Booth, “Wave front sensor-less adaptive optics: a model-based approach using sphere packings,” Opt. Express 14(4), 1339–1352 (2006).
[Crossref] [PubMed]

M. Rueckel, J. A. Mack-Bucher, and W. Denk, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17137–17142 (2006).
[Crossref] [PubMed]

2005 (2)

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
[Crossref] [PubMed]

A. J. Wright, D. Burns, B. A. Patterson, S. P. Poland, G. J. Valentine, and J. M. Girkin, “Exploration of the optimisation algorithms used in the implementation of adaptive optics in confocal and multiphoton microscopy,” Microsc. Res. Tech. 67(1), 36–44 (2005).
[Crossref] [PubMed]

2003 (2)

Y. F. Choong, F. Rakebrandt, R. V. North, and J. E. Morgan, “Acutance, an objective measure of retinal nerve fibre image clarity,” Br. J. Ophthalmol. 87(3), 322–326 (2003).
[Crossref] [PubMed]

P. Marsh, D. Burns, and J. Girkin, “Practical implementation of adaptive optics in multiphoton microscopy,” Opt. Express 11(10), 1123–1130 (2003).
[Crossref] [PubMed]

2002 (1)

L. Sherman, J. Y. Ye, O. Albert, and T. B. Norris, “Adaptive correction of depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror,” J. Microsc. 206(1), 65–71 (2002).
[Crossref] [PubMed]

2000 (2)

M. A. A. Neil, R. Juskaitis, M. J. Booth, T. Wilson, T. Tanaka, S. Kawata, and R. Juškaitis, “Adaptive aberration correction in a two-photon microscope,” J. Microsc. 200(2), 105–108 (2000).
[Crossref] [PubMed]

O. Albert, L. Sherman, G. Mourou, T. B. Norris, and G. Vdovin, “Smart microscope: an adaptive optics learning system for aberration correction in multiphoton confocal microscopy,” Opt. Lett. 25(1), 52–54 (2000).
[Crossref] [PubMed]

1990 (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

1974 (1)

R. A. Muller and A. Buffington, “Real-time correction of atmospherically degraded telescope images through image sharpening,” J. Opt. Soc. Am. A 64(9), 1200–1210 (1974).
[Crossref]

Albert, O.

L. Sherman, J. Y. Ye, O. Albert, and T. B. Norris, “Adaptive correction of depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror,” J. Microsc. 206(1), 65–71 (2002).
[Crossref] [PubMed]

O. Albert, L. Sherman, G. Mourou, T. B. Norris, and G. Vdovin, “Smart microscope: an adaptive optics learning system for aberration correction in multiphoton confocal microscopy,” Opt. Lett. 25(1), 52–54 (2000).
[Crossref] [PubMed]

Andilla, J.

Artal, P.

M. Skorsetz, P. Artal, and J. M. Bueno, “Performance evaluation of a sensorless adaptive optics multiphoton microscope,” J. Microsc. 261(3), 249–258 (2016).
[Crossref] [PubMed]

Artigas, D.

Ávila, F. J.

Aviles-Espinosa, R.

Azucena, O.

Ballesta, J.

J. W. Cha, J. Ballesta, and P. T. C. So, “Shack-Hartmann wavefront-sensor-based adaptive optics system for multiphoton microscopy,” J. Biomed. Opt. 15(4), 046022 (2010).
[Crossref] [PubMed]

Betzig, E.

K. Wang, D. E. Milkie, A. Saxena, P. Engerer, T. Misgeld, M. E. Bronner, J. Mumm, and E. Betzig, “Rapid adaptive optical recovery of optimal resolution over large volumes,” Nat. Methods 11(6), 625–628 (2014).
[Crossref] [PubMed]

K. Wang, D. E. Milkie, A. Saxena, P. Engerer, T. Misgeld, M. E. Bronner, J. Mumm, and E. Betzig, “Rapid adaptive optical recovery of optimal resolution over large volumes,” Nat. Methods 11(6), 625–628 (2014).
[Crossref] [PubMed]

N. Ji, T. R. Sato, and E. Betzig, “Characterization and adaptive optical correction of aberrations during in vivo imaging in the mouse cortex,” Proc. Natl. Acad. Sci. U.S.A. 109(1), 22–27 (2012).
[Crossref] [PubMed]

N. Ji, D. E. Milkie, and E. Betzig, “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nat. Methods 7(2), 141–147 (2010).
[Crossref] [PubMed]

Bliek, L.

Bonora, S.

Booth, M.

Booth, M. J.

M. J. Booth, “Adaptive optical microscopy: the ongoing quest for a perfect image,” Light Sci. Appl. 3(4), e165 (2014).
[Crossref]

D. Débarre, E. J. Botcherby, T. Watanabe, S. Srinivas, M. J. Booth, and T. Wilson, “Image-based adaptive optics for two-photon microscopy,” Opt. Lett. 34(16), 2495–2497 (2009).
[Crossref] [PubMed]

M. A. A. Neil, R. Juskaitis, M. J. Booth, T. Wilson, T. Tanaka, S. Kawata, and R. Juškaitis, “Adaptive aberration correction in a two-photon microscope,” J. Microsc. 200(2), 105–108 (2000).
[Crossref] [PubMed]

Botcherby, E. J.

Bronner, M. E.

K. Wang, D. E. Milkie, A. Saxena, P. Engerer, T. Misgeld, M. E. Bronner, J. Mumm, and E. Betzig, “Rapid adaptive optical recovery of optimal resolution over large volumes,” Nat. Methods 11(6), 625–628 (2014).
[Crossref] [PubMed]

K. Wang, D. E. Milkie, A. Saxena, P. Engerer, T. Misgeld, M. E. Bronner, J. Mumm, and E. Betzig, “Rapid adaptive optical recovery of optimal resolution over large volumes,” Nat. Methods 11(6), 625–628 (2014).
[Crossref] [PubMed]

Bueno, J. M.

Buffington, A.

R. A. Muller and A. Buffington, “Real-time correction of atmospherically degraded telescope images through image sharpening,” J. Opt. Soc. Am. A 64(9), 1200–1210 (1974).
[Crossref]

Burns, D.

A. J. Wright, D. Burns, B. A. Patterson, S. P. Poland, G. J. Valentine, and J. M. Girkin, “Exploration of the optimisation algorithms used in the implementation of adaptive optics in confocal and multiphoton microscopy,” Microsc. Res. Tech. 67(1), 36–44 (2005).
[Crossref] [PubMed]

P. Marsh, D. Burns, and J. Girkin, “Practical implementation of adaptive optics in multiphoton microscopy,” Opt. Express 11(10), 1123–1130 (2003).
[Crossref] [PubMed]

Campbell, M. C. W.

Cha, J. W.

J. W. Cha, J. Ballesta, and P. T. C. So, “Shack-Hartmann wavefront-sensor-based adaptive optics system for multiphoton microscopy,” J. Biomed. Opt. 15(4), 046022 (2010).
[Crossref] [PubMed]

Choong, Y. F.

Y. F. Choong, F. Rakebrandt, R. V. North, and J. E. Morgan, “Acutance, an objective measure of retinal nerve fibre image clarity,” Br. J. Ophthalmol. 87(3), 322–326 (2003).
[Crossref] [PubMed]

Cookson, C. J.

Cua, M.

M. Cua, D. J. Wahl, Y. Zhao, S. Lee, S. Bonora, R. J. Zawadzki, Y. Jian, and M. V. Sarunic, “Coherence-gated sensorless adaptive optics multiphoton retinal imaging,” Sci. Rep. 6(1), 32223 (2016).
[Crossref] [PubMed]

Cui, M.

Débarre, D.

Denk, W.

M. Rueckel, J. A. Mack-Bucher, and W. Denk, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17137–17142 (2006).
[Crossref] [PubMed]

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
[Crossref] [PubMed]

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Engerer, P.

K. Wang, D. E. Milkie, A. Saxena, P. Engerer, T. Misgeld, M. E. Bronner, J. Mumm, and E. Betzig, “Rapid adaptive optical recovery of optimal resolution over large volumes,” Nat. Methods 11(6), 625–628 (2014).
[Crossref] [PubMed]

K. Wang, D. E. Milkie, A. Saxena, P. Engerer, T. Misgeld, M. E. Bronner, J. Mumm, and E. Betzig, “Rapid adaptive optical recovery of optimal resolution over large volumes,” Nat. Methods 11(6), 625–628 (2014).
[Crossref] [PubMed]

Fiolka, R.

Gao, B. Z.

Y. Shao, W. Qin, H. Liu, J. Qu, X. Peng, H. Niu, and B. Z. Gao, “Multifocal multiphoton microscopy based on a spatial light modulator,” Appl. Phys. B 107(3), 653–657 (2013).
[Crossref] [PubMed]

Germain, R. N.

J. Tang, R. N. Germain, and M. Cui, “Superpenetration optical microscopy by iterative multiphoton adaptive compensation technique,” Proc. Natl. Acad. Sci. U.S.A. 109(22), 8434–8439 (2012).
[Crossref] [PubMed]

Girkin, J.

Girkin, J. M.

A. J. Wright, D. Burns, B. A. Patterson, S. P. Poland, G. J. Valentine, and J. M. Girkin, “Exploration of the optimisation algorithms used in the implementation of adaptive optics in confocal and multiphoton microscopy,” Microsc. Res. Tech. 67(1), 36–44 (2005).
[Crossref] [PubMed]

Heisler, M.

Helmchen, F.

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
[Crossref] [PubMed]

Hunter, J. J.

Ji, N.

N. Ji, “Adaptive optical fluorescence microscopy,” Nat. Methods 14(4), 374–380 (2017).
[Crossref] [PubMed]

N. Ji, T. R. Sato, and E. Betzig, “Characterization and adaptive optical correction of aberrations during in vivo imaging in the mouse cortex,” Proc. Natl. Acad. Sci. U.S.A. 109(1), 22–27 (2012).
[Crossref] [PubMed]

N. Ji, D. E. Milkie, and E. Betzig, “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nat. Methods 7(2), 141–147 (2010).
[Crossref] [PubMed]

Jian, Y.

Ju, M. J.

Juskaitis, R.

M. A. A. Neil, R. Juskaitis, M. J. Booth, T. Wilson, T. Tanaka, S. Kawata, and R. Juškaitis, “Adaptive aberration correction in a two-photon microscope,” J. Microsc. 200(2), 105–108 (2000).
[Crossref] [PubMed]

Juškaitis, R.

M. A. A. Neil, R. Juskaitis, M. J. Booth, T. Wilson, T. Tanaka, S. Kawata, and R. Juškaitis, “Adaptive aberration correction in a two-photon microscope,” J. Microsc. 200(2), 105–108 (2000).
[Crossref] [PubMed]

Kalkman, J.

Kawata, S.

M. A. A. Neil, R. Juskaitis, M. J. Booth, T. Wilson, T. Tanaka, S. Kawata, and R. Juškaitis, “Adaptive aberration correction in a two-photon microscope,” J. Microsc. 200(2), 105–108 (2000).
[Crossref] [PubMed]

Kisilak, M. L.

Kissel, M.

Kong, L.

Kubby, J.

Lee, S.

M. Cua, D. J. Wahl, Y. Zhao, S. Lee, S. Bonora, R. J. Zawadzki, Y. Jian, and M. V. Sarunic, “Coherence-gated sensorless adaptive optics multiphoton retinal imaging,” Sci. Rep. 6(1), 32223 (2016).
[Crossref] [PubMed]

Levecq, X.

Liu, H.

Y. Shao, W. Qin, H. Liu, J. Qu, X. Peng, H. Niu, and B. Z. Gao, “Multifocal multiphoton microscopy based on a spatial light modulator,” Appl. Phys. B 107(3), 653–657 (2013).
[Crossref] [PubMed]

Loza-Alvarez, P.

Mack-Bucher, J. A.

M. Rueckel, J. A. Mack-Bucher, and W. Denk, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17137–17142 (2006).
[Crossref] [PubMed]

Marsh, P.

Milkie, D. E.

K. Wang, D. E. Milkie, A. Saxena, P. Engerer, T. Misgeld, M. E. Bronner, J. Mumm, and E. Betzig, “Rapid adaptive optical recovery of optimal resolution over large volumes,” Nat. Methods 11(6), 625–628 (2014).
[Crossref] [PubMed]

K. Wang, D. E. Milkie, A. Saxena, P. Engerer, T. Misgeld, M. E. Bronner, J. Mumm, and E. Betzig, “Rapid adaptive optical recovery of optimal resolution over large volumes,” Nat. Methods 11(6), 625–628 (2014).
[Crossref] [PubMed]

N. Ji, D. E. Milkie, and E. Betzig, “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nat. Methods 7(2), 141–147 (2010).
[Crossref] [PubMed]

Misgeld, T.

K. Wang, D. E. Milkie, A. Saxena, P. Engerer, T. Misgeld, M. E. Bronner, J. Mumm, and E. Betzig, “Rapid adaptive optical recovery of optimal resolution over large volumes,” Nat. Methods 11(6), 625–628 (2014).
[Crossref] [PubMed]

K. Wang, D. E. Milkie, A. Saxena, P. Engerer, T. Misgeld, M. E. Bronner, J. Mumm, and E. Betzig, “Rapid adaptive optical recovery of optimal resolution over large volumes,” Nat. Methods 11(6), 625–628 (2014).
[Crossref] [PubMed]

Morgan, J. E.

Y. F. Choong, F. Rakebrandt, R. V. North, and J. E. Morgan, “Acutance, an objective measure of retinal nerve fibre image clarity,” Br. J. Ophthalmol. 87(3), 322–326 (2003).
[Crossref] [PubMed]

Mourou, G.

Muller, R. A.

R. A. Muller and A. Buffington, “Real-time correction of atmospherically degraded telescope images through image sharpening,” J. Opt. Soc. Am. A 64(9), 1200–1210 (1974).
[Crossref]

Mumm, J.

K. Wang, D. E. Milkie, A. Saxena, P. Engerer, T. Misgeld, M. E. Bronner, J. Mumm, and E. Betzig, “Rapid adaptive optical recovery of optimal resolution over large volumes,” Nat. Methods 11(6), 625–628 (2014).
[Crossref] [PubMed]

K. Wang, D. E. Milkie, A. Saxena, P. Engerer, T. Misgeld, M. E. Bronner, J. Mumm, and E. Betzig, “Rapid adaptive optical recovery of optimal resolution over large volumes,” Nat. Methods 11(6), 625–628 (2014).
[Crossref] [PubMed]

Neil, M. A. A.

M. A. A. Neil, R. Juskaitis, M. J. Booth, T. Wilson, T. Tanaka, S. Kawata, and R. Juškaitis, “Adaptive aberration correction in a two-photon microscope,” J. Microsc. 200(2), 105–108 (2000).
[Crossref] [PubMed]

Nieto, M.

Niu, H.

Y. Shao, W. Qin, H. Liu, J. Qu, X. Peng, H. Niu, and B. Z. Gao, “Multifocal multiphoton microscopy based on a spatial light modulator,” Appl. Phys. B 107(3), 653–657 (2013).
[Crossref] [PubMed]

Norris, T. B.

L. Sherman, J. Y. Ye, O. Albert, and T. B. Norris, “Adaptive correction of depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror,” J. Microsc. 206(1), 65–71 (2002).
[Crossref] [PubMed]

O. Albert, L. Sherman, G. Mourou, T. B. Norris, and G. Vdovin, “Smart microscope: an adaptive optics learning system for aberration correction in multiphoton confocal microscopy,” Opt. Lett. 25(1), 52–54 (2000).
[Crossref] [PubMed]

North, R. V.

Y. F. Choong, F. Rakebrandt, R. V. North, and J. E. Morgan, “Acutance, an objective measure of retinal nerve fibre image clarity,” Br. J. Ophthalmol. 87(3), 322–326 (2003).
[Crossref] [PubMed]

Norton, A.

Olarte, O. E.

Patterson, B. A.

A. J. Wright, D. Burns, B. A. Patterson, S. P. Poland, G. J. Valentine, and J. M. Girkin, “Exploration of the optimisation algorithms used in the implementation of adaptive optics in confocal and multiphoton microscopy,” Microsc. Res. Tech. 67(1), 36–44 (2005).
[Crossref] [PubMed]

Peng, X.

Y. Shao, W. Qin, H. Liu, J. Qu, X. Peng, H. Niu, and B. Z. Gao, “Multifocal multiphoton microscopy based on a spatial light modulator,” Appl. Phys. B 107(3), 653–657 (2013).
[Crossref] [PubMed]

Poland, S. P.

A. J. Wright, D. Burns, B. A. Patterson, S. P. Poland, G. J. Valentine, and J. M. Girkin, “Exploration of the optimisation algorithms used in the implementation of adaptive optics in confocal and multiphoton microscopy,” Microsc. Res. Tech. 67(1), 36–44 (2005).
[Crossref] [PubMed]

Porcar-Guezenec, R.

Pugh, E. N.

Qin, W.

Y. Shao, W. Qin, H. Liu, J. Qu, X. Peng, H. Niu, and B. Z. Gao, “Multifocal multiphoton microscopy based on a spatial light modulator,” Appl. Phys. B 107(3), 653–657 (2013).
[Crossref] [PubMed]

Qu, J.

Y. Shao, W. Qin, H. Liu, J. Qu, X. Peng, H. Niu, and B. Z. Gao, “Multifocal multiphoton microscopy based on a spatial light modulator,” Appl. Phys. B 107(3), 653–657 (2013).
[Crossref] [PubMed]

Rakebrandt, F.

Y. F. Choong, F. Rakebrandt, R. V. North, and J. E. Morgan, “Acutance, an objective measure of retinal nerve fibre image clarity,” Br. J. Ophthalmol. 87(3), 322–326 (2003).
[Crossref] [PubMed]

Rueckel, M.

M. Rueckel, J. A. Mack-Bucher, and W. Denk, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17137–17142 (2006).
[Crossref] [PubMed]

Sarunic, M. V.

Sato, T. R.

N. Ji, T. R. Sato, and E. Betzig, “Characterization and adaptive optical correction of aberrations during in vivo imaging in the mouse cortex,” Proc. Natl. Acad. Sci. U.S.A. 109(1), 22–27 (2012).
[Crossref] [PubMed]

Saxena, A.

K. Wang, D. E. Milkie, A. Saxena, P. Engerer, T. Misgeld, M. E. Bronner, J. Mumm, and E. Betzig, “Rapid adaptive optical recovery of optimal resolution over large volumes,” Nat. Methods 11(6), 625–628 (2014).
[Crossref] [PubMed]

K. Wang, D. E. Milkie, A. Saxena, P. Engerer, T. Misgeld, M. E. Bronner, J. Mumm, and E. Betzig, “Rapid adaptive optical recovery of optimal resolution over large volumes,” Nat. Methods 11(6), 625–628 (2014).
[Crossref] [PubMed]

Shao, Y.

Y. Shao, W. Qin, H. Liu, J. Qu, X. Peng, H. Niu, and B. Z. Gao, “Multifocal multiphoton microscopy based on a spatial light modulator,” Appl. Phys. B 107(3), 653–657 (2013).
[Crossref] [PubMed]

Sherman, L.

L. Sherman, J. Y. Ye, O. Albert, and T. B. Norris, “Adaptive correction of depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror,” J. Microsc. 206(1), 65–71 (2002).
[Crossref] [PubMed]

O. Albert, L. Sherman, G. Mourou, T. B. Norris, and G. Vdovin, “Smart microscope: an adaptive optics learning system for aberration correction in multiphoton confocal microscopy,” Opt. Lett. 25(1), 52–54 (2000).
[Crossref] [PubMed]

Si, K.

Skorsetz, M.

M. Skorsetz, P. Artal, and J. M. Bueno, “Performance evaluation of a sensorless adaptive optics multiphoton microscope,” J. Microsc. 261(3), 249–258 (2016).
[Crossref] [PubMed]

So, P. T. C.

J. W. Cha, J. Ballesta, and P. T. C. So, “Shack-Hartmann wavefront-sensor-based adaptive optics system for multiphoton microscopy,” J. Biomed. Opt. 15(4), 046022 (2010).
[Crossref] [PubMed]

Srinivas, S.

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Tanaka, T.

M. A. A. Neil, R. Juskaitis, M. J. Booth, T. Wilson, T. Tanaka, S. Kawata, and R. Juškaitis, “Adaptive aberration correction in a two-photon microscope,” J. Microsc. 200(2), 105–108 (2000).
[Crossref] [PubMed]

Tang, J.

J. Tang, R. N. Germain, and M. Cui, “Superpenetration optical microscopy by iterative multiphoton adaptive compensation technique,” Proc. Natl. Acad. Sci. U.S.A. 109(22), 8434–8439 (2012).
[Crossref] [PubMed]

Tao, X.

Valentine, G. J.

A. J. Wright, D. Burns, B. A. Patterson, S. P. Poland, G. J. Valentine, and J. M. Girkin, “Exploration of the optimisation algorithms used in the implementation of adaptive optics in confocal and multiphoton microscopy,” Microsc. Res. Tech. 67(1), 36–44 (2005).
[Crossref] [PubMed]

Vdovin, G.

Verhaegen, M.

Verstraete, H. R. G. W.

Wahl, D.

Wahl, D. J.

M. Cua, D. J. Wahl, Y. Zhao, S. Lee, S. Bonora, R. J. Zawadzki, Y. Jian, and M. V. Sarunic, “Coherence-gated sensorless adaptive optics multiphoton retinal imaging,” Sci. Rep. 6(1), 32223 (2016).
[Crossref] [PubMed]

Wang, K.

K. Wang, D. E. Milkie, A. Saxena, P. Engerer, T. Misgeld, M. E. Bronner, J. Mumm, and E. Betzig, “Rapid adaptive optical recovery of optimal resolution over large volumes,” Nat. Methods 11(6), 625–628 (2014).
[Crossref] [PubMed]

K. Wang, D. E. Milkie, A. Saxena, P. Engerer, T. Misgeld, M. E. Bronner, J. Mumm, and E. Betzig, “Rapid adaptive optical recovery of optimal resolution over large volumes,” Nat. Methods 11(6), 625–628 (2014).
[Crossref] [PubMed]

Watanabe, T.

Webb, W. W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Wilson, T.

D. Débarre, E. J. Botcherby, T. Watanabe, S. Srinivas, M. J. Booth, and T. Wilson, “Image-based adaptive optics for two-photon microscopy,” Opt. Lett. 34(16), 2495–2497 (2009).
[Crossref] [PubMed]

M. A. A. Neil, R. Juskaitis, M. J. Booth, T. Wilson, T. Tanaka, S. Kawata, and R. Juškaitis, “Adaptive aberration correction in a two-photon microscope,” J. Microsc. 200(2), 105–108 (2000).
[Crossref] [PubMed]

Wright, A. J.

A. J. Wright, D. Burns, B. A. Patterson, S. P. Poland, G. J. Valentine, and J. M. Girkin, “Exploration of the optimisation algorithms used in the implementation of adaptive optics in confocal and multiphoton microscopy,” Microsc. Res. Tech. 67(1), 36–44 (2005).
[Crossref] [PubMed]

Ye, J. Y.

L. Sherman, J. Y. Ye, O. Albert, and T. B. Norris, “Adaptive correction of depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror,” J. Microsc. 206(1), 65–71 (2002).
[Crossref] [PubMed]

Zam, A.

Zawadzki, R. J.

M. Cua, D. J. Wahl, Y. Zhao, S. Lee, S. Bonora, R. J. Zawadzki, Y. Jian, and M. V. Sarunic, “Coherence-gated sensorless adaptive optics multiphoton retinal imaging,” Sci. Rep. 6(1), 32223 (2016).
[Crossref] [PubMed]

S. Bonora, Y. Jian, P. Zhang, A. Zam, E. N. Pugh, R. J. Zawadzki, and M. V. Sarunic, “Wavefront correction and high-resolution in vivo OCT imaging with an objective integrated multi-actuator adaptive lens,” Opt. Express 23(17), 21931–21941 (2015).
[Crossref] [PubMed]

Zhang, P.

Zhao, Y.

M. Cua, D. J. Wahl, Y. Zhao, S. Lee, S. Bonora, R. J. Zawadzki, Y. Jian, and M. V. Sarunic, “Coherence-gated sensorless adaptive optics multiphoton retinal imaging,” Sci. Rep. 6(1), 32223 (2016).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. B (1)

Y. Shao, W. Qin, H. Liu, J. Qu, X. Peng, H. Niu, and B. Z. Gao, “Multifocal multiphoton microscopy based on a spatial light modulator,” Appl. Phys. B 107(3), 653–657 (2013).
[Crossref] [PubMed]

Biomed. Opt. Express (2)

Br. J. Ophthalmol. (1)

Y. F. Choong, F. Rakebrandt, R. V. North, and J. E. Morgan, “Acutance, an objective measure of retinal nerve fibre image clarity,” Br. J. Ophthalmol. 87(3), 322–326 (2003).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

J. W. Cha, J. Ballesta, and P. T. C. So, “Shack-Hartmann wavefront-sensor-based adaptive optics system for multiphoton microscopy,” J. Biomed. Opt. 15(4), 046022 (2010).
[Crossref] [PubMed]

J. Microsc. (3)

M. A. A. Neil, R. Juskaitis, M. J. Booth, T. Wilson, T. Tanaka, S. Kawata, and R. Juškaitis, “Adaptive aberration correction in a two-photon microscope,” J. Microsc. 200(2), 105–108 (2000).
[Crossref] [PubMed]

L. Sherman, J. Y. Ye, O. Albert, and T. B. Norris, “Adaptive correction of depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror,” J. Microsc. 206(1), 65–71 (2002).
[Crossref] [PubMed]

M. Skorsetz, P. Artal, and J. M. Bueno, “Performance evaluation of a sensorless adaptive optics multiphoton microscope,” J. Microsc. 261(3), 249–258 (2016).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (2)

Light Sci. Appl. (1)

M. J. Booth, “Adaptive optical microscopy: the ongoing quest for a perfect image,” Light Sci. Appl. 3(4), e165 (2014).
[Crossref]

Microsc. Res. Tech. (1)

A. J. Wright, D. Burns, B. A. Patterson, S. P. Poland, G. J. Valentine, and J. M. Girkin, “Exploration of the optimisation algorithms used in the implementation of adaptive optics in confocal and multiphoton microscopy,” Microsc. Res. Tech. 67(1), 36–44 (2005).
[Crossref] [PubMed]

Nat. Methods (5)

K. Wang, D. E. Milkie, A. Saxena, P. Engerer, T. Misgeld, M. E. Bronner, J. Mumm, and E. Betzig, “Rapid adaptive optical recovery of optimal resolution over large volumes,” Nat. Methods 11(6), 625–628 (2014).
[Crossref] [PubMed]

N. Ji, D. E. Milkie, and E. Betzig, “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nat. Methods 7(2), 141–147 (2010).
[Crossref] [PubMed]

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
[Crossref] [PubMed]

N. Ji, “Adaptive optical fluorescence microscopy,” Nat. Methods 14(4), 374–380 (2017).
[Crossref] [PubMed]

K. Wang, D. E. Milkie, A. Saxena, P. Engerer, T. Misgeld, M. E. Bronner, J. Mumm, and E. Betzig, “Rapid adaptive optical recovery of optimal resolution over large volumes,” Nat. Methods 11(6), 625–628 (2014).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (3)

Proc. Natl. Acad. Sci. U.S.A. (3)

M. Rueckel, J. A. Mack-Bucher, and W. Denk, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17137–17142 (2006).
[Crossref] [PubMed]

J. Tang, R. N. Germain, and M. Cui, “Superpenetration optical microscopy by iterative multiphoton adaptive compensation technique,” Proc. Natl. Acad. Sci. U.S.A. 109(22), 8434–8439 (2012).
[Crossref] [PubMed]

N. Ji, T. R. Sato, and E. Betzig, “Characterization and adaptive optical correction of aberrations during in vivo imaging in the mouse cortex,” Proc. Natl. Acad. Sci. U.S.A. 109(1), 22–27 (2012).
[Crossref] [PubMed]

Sci. Rep. (1)

M. Cua, D. J. Wahl, Y. Zhao, S. Lee, S. Bonora, R. J. Zawadzki, Y. Jian, and M. V. Sarunic, “Coherence-gated sensorless adaptive optics multiphoton retinal imaging,” Sci. Rep. 6(1), 32223 (2016).
[Crossref] [PubMed]

Science (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Other (3)

H. Ren and S. Wu, Introduction to Adaptive Lenses (John Wiley & Sons, 2012).

T. V. Glastian, Smart Mini-Cameras (CRC press, 2013).

M. Negro, M. Quintavalla, J. Mocci, A. G. Ciriolo, M. Devetta, R. Muradore, S. Stagira, C. Vozzi, and S. Bonora, “High-speed adaptive deformable lens for boosting an high-energy optical parametric amplifier,” in 2017 European Conference on Lasers and Electro-Optics and European Quantum Electronics Conference, (Optical Society of America, 2017), paper CF_3_1.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematic diagram of the experimental setup. L1-L12, lenses; M1-M5, mirrors; FM1 and FM2, flip mirrors; SM1 and SM2, scanning mirrors; NDF, neutral density filter; SM1 and SM2, scanning mirrors; DIC, dichroic mirror; PMT, photo-multiplier tube.
Fig. 2
Fig. 2 Diagram of the procedure used to reduce the impact of AL’s hysteresis.
Fig. 3
Fig. 3 Improvement in MP images for the different Zernike orders using the AL. (a) Original image (no correction); improved images when correcting orders 2 (b), 2 and 3 (c) and 2, 3 and 4. The sample is a piece of silk mesh and the plane was located at a depth of 100 μm.
Fig. 4
Fig. 4 Improvement in image sharpness for the images shown in Fig. 2 (bars). Grey symbols represent the WA values of each Zernike order.
Fig. 5
Fig. 5 Comparison of MP images before (top) and after AO correction (bottom). The plot depicts the intensity profile along the vertical dotted line (blue, AO off; red, AO on). Bar length: 50 µm. The sample corresponds to a stained piece of cellulose (depth location: 80 μm).
Fig. 6
Fig. 6 Improvement in MP images using two different metrics: Image sharpness (b) and acutance (c). (a) Original image (no correction). The insets are the WAs that optimize the corresponding images. Scale bar: 50 µm.
Fig. 7
Fig. 7 Comparison of improved MP images using the AL and the LCoS modulator. Original images (a, d); optimum images with the AL (b, e); optimum images with the LCoS (c, f). The insets correspond to the WAs that optimize the images. Depth locations: 50 μm (upper panels), 100 μm (bottom panels). Scale bar: 50 µm.
Fig. 8
Fig. 8 Individual Zernike coefficients of the WA maps that optimize the MP images using the AL (green bars) and the LCoS (red bars). Left and right data correspond respectively to MP images of top and bottom panels in Fig. 7.
Fig. 9
Fig. 9 Histograms of preferential orientation computed from the images in Fig. 7. Top and bottom plots correspond to the AL and the LCoS respectively. The SD values are also included for direct comparisons.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Image Sharpness= x y [I (x,y) 2 ]
Acutance=C x y [ | I(x,y)I(x1,y) | 2 + | I(x,y)I(x+1,y) | 2 + | I(x,y)I(x1,y1) | 2 + | I(x,y)I(x+1,y1) | 2 + | I(x,y)I(x+1,y+1) | 2 + | I(x,y)I(x+1,y+1) | 2 + | I(x,y)I(x,y1) | 2 + | I(x,y)I(x,y+1) | 2 ]

Metrics