Abstract

In this work, we propose a novel visible light communication (VLC) scheme utilizing multiple different red green and blue triplets each with a different emission spectrum of red, green and blue for mitigating the effect of interference due to different colors using spatial multiplexing. On-off keying modulation is considered and its effect on light emission in terms of flickering, dimming and color rendering is discussed so as to demonstrate how metameric properties have been considered. At the receiver, multiple photodiodes with color filter-tuned on each transmit light emitting diode (LED) are employed. Three different detection mechanisms of color zero forcing, minimum mean square error estimation and minimum mean square error equalization are then proposed. The system performance of the proposed scheme is evaluated both with computer simulations and tests with an Arduino board implementation.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
ASK-based spatial multiplexing RGB scheme using symbol-dependent self-interference for detection

Stefano Pergoloni, Andrea Petroni, Thai-Chien Bui, Gaetano Scarano, Roberto Cusani, and Mauro Biagi
Opt. Express 25(13) 15028-15042 (2017)

Demonstration of 575-Mb/s downlink and 225-Mb/s uplink bi-directional SCM-WDM visible light communication using RGB LED and phosphor-based LED

Yuanquan Wang, Yiguang Wang, Nan Chi, Jianjun Yu, and Huiliang Shang
Opt. Express 21(1) 1203-1208 (2013)

RGB visible light communication using mobile-phone camera and multi-input multi-output

Kevin Liang, Chi-Wai Chow, and Yang Liu
Opt. Express 24(9) 9383-9388 (2016)

References

  • View by:
  • |
  • |
  • |

  1. M. Biagi, A. M. Vegni, S. Pergoloni, P. M. Butala, and T. D. C. Little, “Trace-orthogonal PPM-space time block coding under rate constraints for visible light communication,” J. Lightw. Technol. 33(2), 481–494 (2015).
    [Crossref]
  2. Y. Chen and M. Jiang, “Joint colour-and-spatial modulation aided visible light communication system,” in Proceedings of IEEE 83rd Vehicular Technology Conference (IEEE, 2016), pp. 1–5.
  3. P. M. Butala, H. Elgala, and T. D. C. Little, “SVD-VLC: a novel capacity maximizing VLC MIMO system architecture under illumination constraints,” in Proceedings of IEEE Globecom Workshops (IEEE, 2013), pp. 1087–1092.
  4. J. Armstrong, Y. Sekercioglu, and A. Neild, “Visible light positioning: a roadmap for international standardization,” IEEE Commun. Mag. 51(12), 68–73 (2013).
    [Crossref]
  5. T.-H. Do, J. Hwang, and M. Yoo, “TDoA based indoor visible light positioning systems,” in Proceedings of International Conference on Ubiquitous and Future Networks (IEEE, 2013), pp. 458.
  6. M. Biagi, S. Pergoloni, and A. M. Vegni, “LAST: a framework to localize, access, schedule, and transmit in indoor VLC systems,” J. Lightw. Technol. 33(9), 1872–1887 (2015).
    [Crossref]
  7. N. Fujimoto and S. Yamamoto, “The fastest visible light transmissions of 662 Mb/s by a blue LED, 600 Mb/s by a red LED, and 520 Mb/s by a green LED based on simple OOK-NRZ modulation of a commercially available RGB-type white LED using pre-emphasis and post-equalizing techniques,” in Proceedings of the European Conference on Optical Communication (IEEE, 2014), pp. 1–3.
  8. K. D. Langer, J. Vucic, C. Kottke, L. Fernández, K. Habe, A. Paraskevopoulos, M. Wendl, and V. Markov, “Exploring the potentials of optical-wireless communication using white leds,” in Proceedings of the International Conference on Transparent Optical Networks (IEEE, 2011), pp. 1–5.
  9. H. Chun, S. Rajbhandari, G. Faulkner, D. Tsonev, E. Xie, J. J. D. McKendry, E. Gu, M. D. Dawson, D. C. O’Brien, and H. Haas, “LED based wavelength division multiplexed 10 Gb/s visible light communications,” J. Lightw. Technol. 34(13), 3047–3052 (2016).
    [Crossref]
  10. R. Jiang, Z. Wang, Q. Wang, and L. Dai, “Multi-user sum-rate optimization for visible light communications with lighting constraints,” J. Lightw. Technol. 34(16), 3943–3952 (2016).
    [Crossref]
  11. Q. Gao, C. Gong, and Z. Xu, “Joint transceiver and offset design for visible light communications with input-dependent shot noise,” IEEE Trans. on Wireless Commun. 16(5), 2736–2747 (2017).
    [Crossref]
  12. A. K Jain, “Fundamentals of digital image processing,” (Prentice-Hall, Inc., 1989), Chap. 3.
  13. S. Pergoloni, M. Biagi, S. Colonnese, R. Cusani, and G. Scarano, “Coverage optimization of 5G atto-cells for visible light communications access,” in Proceedings of the IEEE International Workshop on Measurements Networking (IEEE, 2015), pp. 1–5.
  14. J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proceedings of the IEEE 85(2), 265–298 (1997).
    [Crossref]
  15. M. Uysal, F. Miramirkhani, O. Narmanlioglu, T. Baykas, and E. Panayirci, “IEEE 802.15.7r1 reference channel models for visible light communications,” IEEE Commun. Mag. 55(1), 212–217 (2017)
    [Crossref]
  16. F. Miramirkhani, O. Narmanlioglu, M. Uysal, and E. Panayirci, “A mobile channel model for VLC and application to adaptive system design,” IEEE Commun. Lett. 21(5), 1035–1038 (2017).
    [Crossref]
  17. S. R. Perez, R. P. Jimenez, O. B. G. Hernandez, R. Borges, and R. Mendoza, “Concentrator and lens models for calculating the impulse response on IR-wireless indoor channels using a ray-tracing algorithm,” Microw. Opt. Technol. Lett. 36(4), 262–267 (2003).
    [Crossref]
  18. M. Rupp, “Robust design of adaptive equalizers,” IEEE Trans. Signal Process. 60(4), 1612–1626 (2012).
    [Crossref]
  19. M. Rahaim, T. Borogovac, and J. B. Carruthers, “CandLES: communications and lighting emulation software,” in Proceedings of the fifth ACM international workshop on Wireless network testbeds, experimental evaluation and characterization (ACM, 2010), pp. 9–14.
  20. A. Burton, H. Le Minh, Z. Ghassemlooy, E. Bentley, and C. Botella, “Experimental demonstration of 50-Mb/s visible vight communications using 4 x 4 MIMO,” Photon. Technol. Let. 26(9), 945–948 (2014).
    [Crossref]
  21. Luxeon Star LEDs, Rebel LEDs datasheet (Luxeon Star LEDs, 2016).
  22. Vishay, Vishay BPW34 data sheet (Vishay, 2016).
  23. G. Wyszecki and W. S. Stiles, Color Science (Wiley Classic Library, 2000).

2017 (3)

Q. Gao, C. Gong, and Z. Xu, “Joint transceiver and offset design for visible light communications with input-dependent shot noise,” IEEE Trans. on Wireless Commun. 16(5), 2736–2747 (2017).
[Crossref]

M. Uysal, F. Miramirkhani, O. Narmanlioglu, T. Baykas, and E. Panayirci, “IEEE 802.15.7r1 reference channel models for visible light communications,” IEEE Commun. Mag. 55(1), 212–217 (2017)
[Crossref]

F. Miramirkhani, O. Narmanlioglu, M. Uysal, and E. Panayirci, “A mobile channel model for VLC and application to adaptive system design,” IEEE Commun. Lett. 21(5), 1035–1038 (2017).
[Crossref]

2016 (2)

H. Chun, S. Rajbhandari, G. Faulkner, D. Tsonev, E. Xie, J. J. D. McKendry, E. Gu, M. D. Dawson, D. C. O’Brien, and H. Haas, “LED based wavelength division multiplexed 10 Gb/s visible light communications,” J. Lightw. Technol. 34(13), 3047–3052 (2016).
[Crossref]

R. Jiang, Z. Wang, Q. Wang, and L. Dai, “Multi-user sum-rate optimization for visible light communications with lighting constraints,” J. Lightw. Technol. 34(16), 3943–3952 (2016).
[Crossref]

2015 (2)

M. Biagi, A. M. Vegni, S. Pergoloni, P. M. Butala, and T. D. C. Little, “Trace-orthogonal PPM-space time block coding under rate constraints for visible light communication,” J. Lightw. Technol. 33(2), 481–494 (2015).
[Crossref]

M. Biagi, S. Pergoloni, and A. M. Vegni, “LAST: a framework to localize, access, schedule, and transmit in indoor VLC systems,” J. Lightw. Technol. 33(9), 1872–1887 (2015).
[Crossref]

2014 (1)

A. Burton, H. Le Minh, Z. Ghassemlooy, E. Bentley, and C. Botella, “Experimental demonstration of 50-Mb/s visible vight communications using 4 x 4 MIMO,” Photon. Technol. Let. 26(9), 945–948 (2014).
[Crossref]

2013 (1)

J. Armstrong, Y. Sekercioglu, and A. Neild, “Visible light positioning: a roadmap for international standardization,” IEEE Commun. Mag. 51(12), 68–73 (2013).
[Crossref]

2012 (1)

M. Rupp, “Robust design of adaptive equalizers,” IEEE Trans. Signal Process. 60(4), 1612–1626 (2012).
[Crossref]

2003 (1)

S. R. Perez, R. P. Jimenez, O. B. G. Hernandez, R. Borges, and R. Mendoza, “Concentrator and lens models for calculating the impulse response on IR-wireless indoor channels using a ray-tracing algorithm,” Microw. Opt. Technol. Lett. 36(4), 262–267 (2003).
[Crossref]

1997 (1)

J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proceedings of the IEEE 85(2), 265–298 (1997).
[Crossref]

Armstrong, J.

J. Armstrong, Y. Sekercioglu, and A. Neild, “Visible light positioning: a roadmap for international standardization,” IEEE Commun. Mag. 51(12), 68–73 (2013).
[Crossref]

Barry, J. R.

J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proceedings of the IEEE 85(2), 265–298 (1997).
[Crossref]

Baykas, T.

M. Uysal, F. Miramirkhani, O. Narmanlioglu, T. Baykas, and E. Panayirci, “IEEE 802.15.7r1 reference channel models for visible light communications,” IEEE Commun. Mag. 55(1), 212–217 (2017)
[Crossref]

Bentley, E.

A. Burton, H. Le Minh, Z. Ghassemlooy, E. Bentley, and C. Botella, “Experimental demonstration of 50-Mb/s visible vight communications using 4 x 4 MIMO,” Photon. Technol. Let. 26(9), 945–948 (2014).
[Crossref]

Biagi, M.

M. Biagi, S. Pergoloni, and A. M. Vegni, “LAST: a framework to localize, access, schedule, and transmit in indoor VLC systems,” J. Lightw. Technol. 33(9), 1872–1887 (2015).
[Crossref]

M. Biagi, A. M. Vegni, S. Pergoloni, P. M. Butala, and T. D. C. Little, “Trace-orthogonal PPM-space time block coding under rate constraints for visible light communication,” J. Lightw. Technol. 33(2), 481–494 (2015).
[Crossref]

S. Pergoloni, M. Biagi, S. Colonnese, R. Cusani, and G. Scarano, “Coverage optimization of 5G atto-cells for visible light communications access,” in Proceedings of the IEEE International Workshop on Measurements Networking (IEEE, 2015), pp. 1–5.

Borges, R.

S. R. Perez, R. P. Jimenez, O. B. G. Hernandez, R. Borges, and R. Mendoza, “Concentrator and lens models for calculating the impulse response on IR-wireless indoor channels using a ray-tracing algorithm,” Microw. Opt. Technol. Lett. 36(4), 262–267 (2003).
[Crossref]

Borogovac, T.

M. Rahaim, T. Borogovac, and J. B. Carruthers, “CandLES: communications and lighting emulation software,” in Proceedings of the fifth ACM international workshop on Wireless network testbeds, experimental evaluation and characterization (ACM, 2010), pp. 9–14.

Botella, C.

A. Burton, H. Le Minh, Z. Ghassemlooy, E. Bentley, and C. Botella, “Experimental demonstration of 50-Mb/s visible vight communications using 4 x 4 MIMO,” Photon. Technol. Let. 26(9), 945–948 (2014).
[Crossref]

Burton, A.

A. Burton, H. Le Minh, Z. Ghassemlooy, E. Bentley, and C. Botella, “Experimental demonstration of 50-Mb/s visible vight communications using 4 x 4 MIMO,” Photon. Technol. Let. 26(9), 945–948 (2014).
[Crossref]

Butala, P. M.

M. Biagi, A. M. Vegni, S. Pergoloni, P. M. Butala, and T. D. C. Little, “Trace-orthogonal PPM-space time block coding under rate constraints for visible light communication,” J. Lightw. Technol. 33(2), 481–494 (2015).
[Crossref]

P. M. Butala, H. Elgala, and T. D. C. Little, “SVD-VLC: a novel capacity maximizing VLC MIMO system architecture under illumination constraints,” in Proceedings of IEEE Globecom Workshops (IEEE, 2013), pp. 1087–1092.

Carruthers, J. B.

M. Rahaim, T. Borogovac, and J. B. Carruthers, “CandLES: communications and lighting emulation software,” in Proceedings of the fifth ACM international workshop on Wireless network testbeds, experimental evaluation and characterization (ACM, 2010), pp. 9–14.

Chen, Y.

Y. Chen and M. Jiang, “Joint colour-and-spatial modulation aided visible light communication system,” in Proceedings of IEEE 83rd Vehicular Technology Conference (IEEE, 2016), pp. 1–5.

Chun, H.

H. Chun, S. Rajbhandari, G. Faulkner, D. Tsonev, E. Xie, J. J. D. McKendry, E. Gu, M. D. Dawson, D. C. O’Brien, and H. Haas, “LED based wavelength division multiplexed 10 Gb/s visible light communications,” J. Lightw. Technol. 34(13), 3047–3052 (2016).
[Crossref]

Colonnese, S.

S. Pergoloni, M. Biagi, S. Colonnese, R. Cusani, and G. Scarano, “Coverage optimization of 5G atto-cells for visible light communications access,” in Proceedings of the IEEE International Workshop on Measurements Networking (IEEE, 2015), pp. 1–5.

Cusani, R.

S. Pergoloni, M. Biagi, S. Colonnese, R. Cusani, and G. Scarano, “Coverage optimization of 5G atto-cells for visible light communications access,” in Proceedings of the IEEE International Workshop on Measurements Networking (IEEE, 2015), pp. 1–5.

Dai, L.

R. Jiang, Z. Wang, Q. Wang, and L. Dai, “Multi-user sum-rate optimization for visible light communications with lighting constraints,” J. Lightw. Technol. 34(16), 3943–3952 (2016).
[Crossref]

Dawson, M. D.

H. Chun, S. Rajbhandari, G. Faulkner, D. Tsonev, E. Xie, J. J. D. McKendry, E. Gu, M. D. Dawson, D. C. O’Brien, and H. Haas, “LED based wavelength division multiplexed 10 Gb/s visible light communications,” J. Lightw. Technol. 34(13), 3047–3052 (2016).
[Crossref]

Do, T.-H.

T.-H. Do, J. Hwang, and M. Yoo, “TDoA based indoor visible light positioning systems,” in Proceedings of International Conference on Ubiquitous and Future Networks (IEEE, 2013), pp. 458.

Elgala, H.

P. M. Butala, H. Elgala, and T. D. C. Little, “SVD-VLC: a novel capacity maximizing VLC MIMO system architecture under illumination constraints,” in Proceedings of IEEE Globecom Workshops (IEEE, 2013), pp. 1087–1092.

Faulkner, G.

H. Chun, S. Rajbhandari, G. Faulkner, D. Tsonev, E. Xie, J. J. D. McKendry, E. Gu, M. D. Dawson, D. C. O’Brien, and H. Haas, “LED based wavelength division multiplexed 10 Gb/s visible light communications,” J. Lightw. Technol. 34(13), 3047–3052 (2016).
[Crossref]

Fernández, L.

K. D. Langer, J. Vucic, C. Kottke, L. Fernández, K. Habe, A. Paraskevopoulos, M. Wendl, and V. Markov, “Exploring the potentials of optical-wireless communication using white leds,” in Proceedings of the International Conference on Transparent Optical Networks (IEEE, 2011), pp. 1–5.

Fujimoto, N.

N. Fujimoto and S. Yamamoto, “The fastest visible light transmissions of 662 Mb/s by a blue LED, 600 Mb/s by a red LED, and 520 Mb/s by a green LED based on simple OOK-NRZ modulation of a commercially available RGB-type white LED using pre-emphasis and post-equalizing techniques,” in Proceedings of the European Conference on Optical Communication (IEEE, 2014), pp. 1–3.

Gao, Q.

Q. Gao, C. Gong, and Z. Xu, “Joint transceiver and offset design for visible light communications with input-dependent shot noise,” IEEE Trans. on Wireless Commun. 16(5), 2736–2747 (2017).
[Crossref]

Ghassemlooy, Z.

A. Burton, H. Le Minh, Z. Ghassemlooy, E. Bentley, and C. Botella, “Experimental demonstration of 50-Mb/s visible vight communications using 4 x 4 MIMO,” Photon. Technol. Let. 26(9), 945–948 (2014).
[Crossref]

Gong, C.

Q. Gao, C. Gong, and Z. Xu, “Joint transceiver and offset design for visible light communications with input-dependent shot noise,” IEEE Trans. on Wireless Commun. 16(5), 2736–2747 (2017).
[Crossref]

Gu, E.

H. Chun, S. Rajbhandari, G. Faulkner, D. Tsonev, E. Xie, J. J. D. McKendry, E. Gu, M. D. Dawson, D. C. O’Brien, and H. Haas, “LED based wavelength division multiplexed 10 Gb/s visible light communications,” J. Lightw. Technol. 34(13), 3047–3052 (2016).
[Crossref]

Haas, H.

H. Chun, S. Rajbhandari, G. Faulkner, D. Tsonev, E. Xie, J. J. D. McKendry, E. Gu, M. D. Dawson, D. C. O’Brien, and H. Haas, “LED based wavelength division multiplexed 10 Gb/s visible light communications,” J. Lightw. Technol. 34(13), 3047–3052 (2016).
[Crossref]

Habe, K.

K. D. Langer, J. Vucic, C. Kottke, L. Fernández, K. Habe, A. Paraskevopoulos, M. Wendl, and V. Markov, “Exploring the potentials of optical-wireless communication using white leds,” in Proceedings of the International Conference on Transparent Optical Networks (IEEE, 2011), pp. 1–5.

Hernandez, O. B. G.

S. R. Perez, R. P. Jimenez, O. B. G. Hernandez, R. Borges, and R. Mendoza, “Concentrator and lens models for calculating the impulse response on IR-wireless indoor channels using a ray-tracing algorithm,” Microw. Opt. Technol. Lett. 36(4), 262–267 (2003).
[Crossref]

Hwang, J.

T.-H. Do, J. Hwang, and M. Yoo, “TDoA based indoor visible light positioning systems,” in Proceedings of International Conference on Ubiquitous and Future Networks (IEEE, 2013), pp. 458.

Jain, A. K

A. K Jain, “Fundamentals of digital image processing,” (Prentice-Hall, Inc., 1989), Chap. 3.

Jiang, M.

Y. Chen and M. Jiang, “Joint colour-and-spatial modulation aided visible light communication system,” in Proceedings of IEEE 83rd Vehicular Technology Conference (IEEE, 2016), pp. 1–5.

Jiang, R.

R. Jiang, Z. Wang, Q. Wang, and L. Dai, “Multi-user sum-rate optimization for visible light communications with lighting constraints,” J. Lightw. Technol. 34(16), 3943–3952 (2016).
[Crossref]

Jimenez, R. P.

S. R. Perez, R. P. Jimenez, O. B. G. Hernandez, R. Borges, and R. Mendoza, “Concentrator and lens models for calculating the impulse response on IR-wireless indoor channels using a ray-tracing algorithm,” Microw. Opt. Technol. Lett. 36(4), 262–267 (2003).
[Crossref]

Kahn, J. M.

J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proceedings of the IEEE 85(2), 265–298 (1997).
[Crossref]

Kottke, C.

K. D. Langer, J. Vucic, C. Kottke, L. Fernández, K. Habe, A. Paraskevopoulos, M. Wendl, and V. Markov, “Exploring the potentials of optical-wireless communication using white leds,” in Proceedings of the International Conference on Transparent Optical Networks (IEEE, 2011), pp. 1–5.

Langer, K. D.

K. D. Langer, J. Vucic, C. Kottke, L. Fernández, K. Habe, A. Paraskevopoulos, M. Wendl, and V. Markov, “Exploring the potentials of optical-wireless communication using white leds,” in Proceedings of the International Conference on Transparent Optical Networks (IEEE, 2011), pp. 1–5.

Le Minh, H.

A. Burton, H. Le Minh, Z. Ghassemlooy, E. Bentley, and C. Botella, “Experimental demonstration of 50-Mb/s visible vight communications using 4 x 4 MIMO,” Photon. Technol. Let. 26(9), 945–948 (2014).
[Crossref]

Little, T. D. C.

M. Biagi, A. M. Vegni, S. Pergoloni, P. M. Butala, and T. D. C. Little, “Trace-orthogonal PPM-space time block coding under rate constraints for visible light communication,” J. Lightw. Technol. 33(2), 481–494 (2015).
[Crossref]

P. M. Butala, H. Elgala, and T. D. C. Little, “SVD-VLC: a novel capacity maximizing VLC MIMO system architecture under illumination constraints,” in Proceedings of IEEE Globecom Workshops (IEEE, 2013), pp. 1087–1092.

Markov, V.

K. D. Langer, J. Vucic, C. Kottke, L. Fernández, K. Habe, A. Paraskevopoulos, M. Wendl, and V. Markov, “Exploring the potentials of optical-wireless communication using white leds,” in Proceedings of the International Conference on Transparent Optical Networks (IEEE, 2011), pp. 1–5.

McKendry, J. J. D.

H. Chun, S. Rajbhandari, G. Faulkner, D. Tsonev, E. Xie, J. J. D. McKendry, E. Gu, M. D. Dawson, D. C. O’Brien, and H. Haas, “LED based wavelength division multiplexed 10 Gb/s visible light communications,” J. Lightw. Technol. 34(13), 3047–3052 (2016).
[Crossref]

Mendoza, R.

S. R. Perez, R. P. Jimenez, O. B. G. Hernandez, R. Borges, and R. Mendoza, “Concentrator and lens models for calculating the impulse response on IR-wireless indoor channels using a ray-tracing algorithm,” Microw. Opt. Technol. Lett. 36(4), 262–267 (2003).
[Crossref]

Miramirkhani, F.

F. Miramirkhani, O. Narmanlioglu, M. Uysal, and E. Panayirci, “A mobile channel model for VLC and application to adaptive system design,” IEEE Commun. Lett. 21(5), 1035–1038 (2017).
[Crossref]

M. Uysal, F. Miramirkhani, O. Narmanlioglu, T. Baykas, and E. Panayirci, “IEEE 802.15.7r1 reference channel models for visible light communications,” IEEE Commun. Mag. 55(1), 212–217 (2017)
[Crossref]

Narmanlioglu, O.

M. Uysal, F. Miramirkhani, O. Narmanlioglu, T. Baykas, and E. Panayirci, “IEEE 802.15.7r1 reference channel models for visible light communications,” IEEE Commun. Mag. 55(1), 212–217 (2017)
[Crossref]

F. Miramirkhani, O. Narmanlioglu, M. Uysal, and E. Panayirci, “A mobile channel model for VLC and application to adaptive system design,” IEEE Commun. Lett. 21(5), 1035–1038 (2017).
[Crossref]

Neild, A.

J. Armstrong, Y. Sekercioglu, and A. Neild, “Visible light positioning: a roadmap for international standardization,” IEEE Commun. Mag. 51(12), 68–73 (2013).
[Crossref]

O’Brien, D. C.

H. Chun, S. Rajbhandari, G. Faulkner, D. Tsonev, E. Xie, J. J. D. McKendry, E. Gu, M. D. Dawson, D. C. O’Brien, and H. Haas, “LED based wavelength division multiplexed 10 Gb/s visible light communications,” J. Lightw. Technol. 34(13), 3047–3052 (2016).
[Crossref]

Panayirci, E.

M. Uysal, F. Miramirkhani, O. Narmanlioglu, T. Baykas, and E. Panayirci, “IEEE 802.15.7r1 reference channel models for visible light communications,” IEEE Commun. Mag. 55(1), 212–217 (2017)
[Crossref]

F. Miramirkhani, O. Narmanlioglu, M. Uysal, and E. Panayirci, “A mobile channel model for VLC and application to adaptive system design,” IEEE Commun. Lett. 21(5), 1035–1038 (2017).
[Crossref]

Paraskevopoulos, A.

K. D. Langer, J. Vucic, C. Kottke, L. Fernández, K. Habe, A. Paraskevopoulos, M. Wendl, and V. Markov, “Exploring the potentials of optical-wireless communication using white leds,” in Proceedings of the International Conference on Transparent Optical Networks (IEEE, 2011), pp. 1–5.

Perez, S. R.

S. R. Perez, R. P. Jimenez, O. B. G. Hernandez, R. Borges, and R. Mendoza, “Concentrator and lens models for calculating the impulse response on IR-wireless indoor channels using a ray-tracing algorithm,” Microw. Opt. Technol. Lett. 36(4), 262–267 (2003).
[Crossref]

Pergoloni, S.

M. Biagi, A. M. Vegni, S. Pergoloni, P. M. Butala, and T. D. C. Little, “Trace-orthogonal PPM-space time block coding under rate constraints for visible light communication,” J. Lightw. Technol. 33(2), 481–494 (2015).
[Crossref]

M. Biagi, S. Pergoloni, and A. M. Vegni, “LAST: a framework to localize, access, schedule, and transmit in indoor VLC systems,” J. Lightw. Technol. 33(9), 1872–1887 (2015).
[Crossref]

S. Pergoloni, M. Biagi, S. Colonnese, R. Cusani, and G. Scarano, “Coverage optimization of 5G atto-cells for visible light communications access,” in Proceedings of the IEEE International Workshop on Measurements Networking (IEEE, 2015), pp. 1–5.

Rahaim, M.

M. Rahaim, T. Borogovac, and J. B. Carruthers, “CandLES: communications and lighting emulation software,” in Proceedings of the fifth ACM international workshop on Wireless network testbeds, experimental evaluation and characterization (ACM, 2010), pp. 9–14.

Rajbhandari, S.

H. Chun, S. Rajbhandari, G. Faulkner, D. Tsonev, E. Xie, J. J. D. McKendry, E. Gu, M. D. Dawson, D. C. O’Brien, and H. Haas, “LED based wavelength division multiplexed 10 Gb/s visible light communications,” J. Lightw. Technol. 34(13), 3047–3052 (2016).
[Crossref]

Rupp, M.

M. Rupp, “Robust design of adaptive equalizers,” IEEE Trans. Signal Process. 60(4), 1612–1626 (2012).
[Crossref]

Scarano, G.

S. Pergoloni, M. Biagi, S. Colonnese, R. Cusani, and G. Scarano, “Coverage optimization of 5G atto-cells for visible light communications access,” in Proceedings of the IEEE International Workshop on Measurements Networking (IEEE, 2015), pp. 1–5.

Sekercioglu, Y.

J. Armstrong, Y. Sekercioglu, and A. Neild, “Visible light positioning: a roadmap for international standardization,” IEEE Commun. Mag. 51(12), 68–73 (2013).
[Crossref]

Stiles, W. S.

G. Wyszecki and W. S. Stiles, Color Science (Wiley Classic Library, 2000).

Tsonev, D.

H. Chun, S. Rajbhandari, G. Faulkner, D. Tsonev, E. Xie, J. J. D. McKendry, E. Gu, M. D. Dawson, D. C. O’Brien, and H. Haas, “LED based wavelength division multiplexed 10 Gb/s visible light communications,” J. Lightw. Technol. 34(13), 3047–3052 (2016).
[Crossref]

Uysal, M.

F. Miramirkhani, O. Narmanlioglu, M. Uysal, and E. Panayirci, “A mobile channel model for VLC and application to adaptive system design,” IEEE Commun. Lett. 21(5), 1035–1038 (2017).
[Crossref]

M. Uysal, F. Miramirkhani, O. Narmanlioglu, T. Baykas, and E. Panayirci, “IEEE 802.15.7r1 reference channel models for visible light communications,” IEEE Commun. Mag. 55(1), 212–217 (2017)
[Crossref]

Vegni, A. M.

M. Biagi, S. Pergoloni, and A. M. Vegni, “LAST: a framework to localize, access, schedule, and transmit in indoor VLC systems,” J. Lightw. Technol. 33(9), 1872–1887 (2015).
[Crossref]

M. Biagi, A. M. Vegni, S. Pergoloni, P. M. Butala, and T. D. C. Little, “Trace-orthogonal PPM-space time block coding under rate constraints for visible light communication,” J. Lightw. Technol. 33(2), 481–494 (2015).
[Crossref]

Vucic, J.

K. D. Langer, J. Vucic, C. Kottke, L. Fernández, K. Habe, A. Paraskevopoulos, M. Wendl, and V. Markov, “Exploring the potentials of optical-wireless communication using white leds,” in Proceedings of the International Conference on Transparent Optical Networks (IEEE, 2011), pp. 1–5.

Wang, Q.

R. Jiang, Z. Wang, Q. Wang, and L. Dai, “Multi-user sum-rate optimization for visible light communications with lighting constraints,” J. Lightw. Technol. 34(16), 3943–3952 (2016).
[Crossref]

Wang, Z.

R. Jiang, Z. Wang, Q. Wang, and L. Dai, “Multi-user sum-rate optimization for visible light communications with lighting constraints,” J. Lightw. Technol. 34(16), 3943–3952 (2016).
[Crossref]

Wendl, M.

K. D. Langer, J. Vucic, C. Kottke, L. Fernández, K. Habe, A. Paraskevopoulos, M. Wendl, and V. Markov, “Exploring the potentials of optical-wireless communication using white leds,” in Proceedings of the International Conference on Transparent Optical Networks (IEEE, 2011), pp. 1–5.

Wyszecki, G.

G. Wyszecki and W. S. Stiles, Color Science (Wiley Classic Library, 2000).

Xie, E.

H. Chun, S. Rajbhandari, G. Faulkner, D. Tsonev, E. Xie, J. J. D. McKendry, E. Gu, M. D. Dawson, D. C. O’Brien, and H. Haas, “LED based wavelength division multiplexed 10 Gb/s visible light communications,” J. Lightw. Technol. 34(13), 3047–3052 (2016).
[Crossref]

Xu, Z.

Q. Gao, C. Gong, and Z. Xu, “Joint transceiver and offset design for visible light communications with input-dependent shot noise,” IEEE Trans. on Wireless Commun. 16(5), 2736–2747 (2017).
[Crossref]

Yamamoto, S.

N. Fujimoto and S. Yamamoto, “The fastest visible light transmissions of 662 Mb/s by a blue LED, 600 Mb/s by a red LED, and 520 Mb/s by a green LED based on simple OOK-NRZ modulation of a commercially available RGB-type white LED using pre-emphasis and post-equalizing techniques,” in Proceedings of the European Conference on Optical Communication (IEEE, 2014), pp. 1–3.

Yoo, M.

T.-H. Do, J. Hwang, and M. Yoo, “TDoA based indoor visible light positioning systems,” in Proceedings of International Conference on Ubiquitous and Future Networks (IEEE, 2013), pp. 458.

IEEE Commun. Lett. (1)

F. Miramirkhani, O. Narmanlioglu, M. Uysal, and E. Panayirci, “A mobile channel model for VLC and application to adaptive system design,” IEEE Commun. Lett. 21(5), 1035–1038 (2017).
[Crossref]

IEEE Commun. Mag. (2)

M. Uysal, F. Miramirkhani, O. Narmanlioglu, T. Baykas, and E. Panayirci, “IEEE 802.15.7r1 reference channel models for visible light communications,” IEEE Commun. Mag. 55(1), 212–217 (2017)
[Crossref]

J. Armstrong, Y. Sekercioglu, and A. Neild, “Visible light positioning: a roadmap for international standardization,” IEEE Commun. Mag. 51(12), 68–73 (2013).
[Crossref]

IEEE Trans. on Wireless Commun. (1)

Q. Gao, C. Gong, and Z. Xu, “Joint transceiver and offset design for visible light communications with input-dependent shot noise,” IEEE Trans. on Wireless Commun. 16(5), 2736–2747 (2017).
[Crossref]

IEEE Trans. Signal Process. (1)

M. Rupp, “Robust design of adaptive equalizers,” IEEE Trans. Signal Process. 60(4), 1612–1626 (2012).
[Crossref]

J. Lightw. Technol. (4)

M. Biagi, A. M. Vegni, S. Pergoloni, P. M. Butala, and T. D. C. Little, “Trace-orthogonal PPM-space time block coding under rate constraints for visible light communication,” J. Lightw. Technol. 33(2), 481–494 (2015).
[Crossref]

M. Biagi, S. Pergoloni, and A. M. Vegni, “LAST: a framework to localize, access, schedule, and transmit in indoor VLC systems,” J. Lightw. Technol. 33(9), 1872–1887 (2015).
[Crossref]

H. Chun, S. Rajbhandari, G. Faulkner, D. Tsonev, E. Xie, J. J. D. McKendry, E. Gu, M. D. Dawson, D. C. O’Brien, and H. Haas, “LED based wavelength division multiplexed 10 Gb/s visible light communications,” J. Lightw. Technol. 34(13), 3047–3052 (2016).
[Crossref]

R. Jiang, Z. Wang, Q. Wang, and L. Dai, “Multi-user sum-rate optimization for visible light communications with lighting constraints,” J. Lightw. Technol. 34(16), 3943–3952 (2016).
[Crossref]

Microw. Opt. Technol. Lett. (1)

S. R. Perez, R. P. Jimenez, O. B. G. Hernandez, R. Borges, and R. Mendoza, “Concentrator and lens models for calculating the impulse response on IR-wireless indoor channels using a ray-tracing algorithm,” Microw. Opt. Technol. Lett. 36(4), 262–267 (2003).
[Crossref]

Photon. Technol. Let. (1)

A. Burton, H. Le Minh, Z. Ghassemlooy, E. Bentley, and C. Botella, “Experimental demonstration of 50-Mb/s visible vight communications using 4 x 4 MIMO,” Photon. Technol. Let. 26(9), 945–948 (2014).
[Crossref]

Proceedings of the IEEE (1)

J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proceedings of the IEEE 85(2), 265–298 (1997).
[Crossref]

Other (11)

A. K Jain, “Fundamentals of digital image processing,” (Prentice-Hall, Inc., 1989), Chap. 3.

S. Pergoloni, M. Biagi, S. Colonnese, R. Cusani, and G. Scarano, “Coverage optimization of 5G atto-cells for visible light communications access,” in Proceedings of the IEEE International Workshop on Measurements Networking (IEEE, 2015), pp. 1–5.

M. Rahaim, T. Borogovac, and J. B. Carruthers, “CandLES: communications and lighting emulation software,” in Proceedings of the fifth ACM international workshop on Wireless network testbeds, experimental evaluation and characterization (ACM, 2010), pp. 9–14.

N. Fujimoto and S. Yamamoto, “The fastest visible light transmissions of 662 Mb/s by a blue LED, 600 Mb/s by a red LED, and 520 Mb/s by a green LED based on simple OOK-NRZ modulation of a commercially available RGB-type white LED using pre-emphasis and post-equalizing techniques,” in Proceedings of the European Conference on Optical Communication (IEEE, 2014), pp. 1–3.

K. D. Langer, J. Vucic, C. Kottke, L. Fernández, K. Habe, A. Paraskevopoulos, M. Wendl, and V. Markov, “Exploring the potentials of optical-wireless communication using white leds,” in Proceedings of the International Conference on Transparent Optical Networks (IEEE, 2011), pp. 1–5.

Y. Chen and M. Jiang, “Joint colour-and-spatial modulation aided visible light communication system,” in Proceedings of IEEE 83rd Vehicular Technology Conference (IEEE, 2016), pp. 1–5.

P. M. Butala, H. Elgala, and T. D. C. Little, “SVD-VLC: a novel capacity maximizing VLC MIMO system architecture under illumination constraints,” in Proceedings of IEEE Globecom Workshops (IEEE, 2013), pp. 1087–1092.

T.-H. Do, J. Hwang, and M. Yoo, “TDoA based indoor visible light positioning systems,” in Proceedings of International Conference on Ubiquitous and Future Networks (IEEE, 2013), pp. 458.

Luxeon Star LEDs, Rebel LEDs datasheet (Luxeon Star LEDs, 2016).

Vishay, Vishay BPW34 data sheet (Vishay, 2016).

G. Wyszecki and W. S. Stiles, Color Science (Wiley Classic Library, 2000).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Scheme of the transmitter, channel and receiver.
Fig. 2
Fig. 2 CIE 1931 diagram with primaries and regions of affordable colors with two triplets of primaries.
Fig. 3
Fig. 3 BER as a function of distance between transmitter and receiver for the three detection methods when Nt = 2.
Fig. 4
Fig. 4 BER as a function of transmission rate. Each marker corresponds to an increment of 3 RGB LEDs (that is Nt). Comparison with [20] is also reported.
Fig. 5
Fig. 5 BER as a function of transmission rate when the different signalling time Tp is considered.
Fig. 6
Fig. 6 BER as a function of transmission distance when different number of triplets is used.
Fig. 7
Fig. 7 Picture of the implementation of two triplets and effects of filtering with OAFs tuned on red, green and blue respectively of the first triplet.
Fig. 8
Fig. 8 BER as a function of transmission distance when different number of triplets is used. Comparison between computer simulation and implementation is reported.

Tables (1)

Tables Icon

Table 1 Model Parameters

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

x i ( t ) = c i C i γ c i s c i ( t )
x ( t ) = i = 1 N t x i ( t ) = i = 1 N t c i C i γ c i s c i ( t ) .
y c i ( t ) = i = 1 N t c i C i γ c i s c i ( t ) h c i ,   c i ( t ) + w c j ( t )
h c i ,   c i ( t ) = f F S P c i , c j ( t ) f L ( t ) f c j ( t ) f P D ( t )
Y = SH + W
X = YZ = S + W H 1 .
Y t r a i n i n g = H + W
X = SH H ˜ 1 + W H ˜ 1 .
S ^ = argmin S S X S 2 .
S ˜ = YG
E { [ S YG ] T Y } = 0
G = [ R Y S R Y Y 1 ] T
R Y S = 1 K k = 1 K Y k T S k
G = H ˜ ( H ˜ T H ˜ + N 0 I ) 1 .
S ^ = argmin S S S ˜ S 2 .

Metrics