Abstract

A method is described for the generation of micrometer-sized vapor-gas bubbles in a water suspension containing absorptive pigment nanoparticles. The diluted suspension (mean interparticle distance 20 μm) absorbs the continuous laser radiation (wavelength 808 nm), and each particle in the best illuminated volume (~10 × 10 × 200 μm3) serves as a bubble-nucleation center. The suspension heating is inessential (several degrees above the room temperature) and the bubbles are formed mainly of the air gases dissolved in water. The bubbles can stably exist within or near the illuminated area where their location is governed by the competition between thermal and optical forces and can be controlled via the laser beam parameters. The method enables controllable creation, support, prescribed transportation, and destruction of the bubbles. This can be useful in applications aimed at precise sorting, transportation, and delivery of species in nano- and micro-engineering as well as for biomedical studies.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Controllable generation and manipulation of micro-bubbles in water with absorptive colloid particles by CW laser radiation

O. V. Angelsky, A. Ya. Bekshaev, P. P. Maksimyak, A. P. Maksimyak, S. G. Hanson, and S. M. Kontush
Opt. Express 25(5) 5232-5243 (2017)

Laser generation of shock waves in a water suspension with light-absorbing particles

Vira R. Besaga, Andrew P. Maksimyak, and Peter P. Maksimyak
Appl. Opt. 53(10) B153-B158 (2014)

Photothermal generation of programmable microbubble array on nanoporous gold disks

Jingting Li, Fusheng Zhao, Yu Deng, Dong Liu, Chia-Hung Chen, and Wei-Chuan Shih
Opt. Express 26(13) 16893-16902 (2018)

References

  • View by:
  • |
  • |
  • |

  1. G. Baffou and H. Rigneault, “Femtosecond-Pulsed Optical Heating of Gold Nanoparticles,” Phys. Rev. B 84(3), 035415 (2011).
    [Crossref]
  2. Z. Fang, Y. R. Zhen, O. Neumann, A. Polman, F. J. García de Abajo, P. Nordlander, and N. J. Halas, “Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle,” Nano Lett. 13(4), 1736–1742 (2013).
    [Crossref] [PubMed]
  3. D. A. Boyd, J. R. Adleman, D. G. Goodwin, and D. Psaltis, “Chemical separations by bubble-assisted interphase mass-transfer,” Anal. Chem. 80(7), 2452–2456 (2008).
    [Crossref] [PubMed]
  4. D. A. Boyd, L. Greengard, M. Brongersma, M. Y. El-Naggar, and D. G. Goodwin, “Plasmon-assisted chemical vapor deposition,” Nano Lett. 6(11), 2592–2597 (2006).
    [Crossref] [PubMed]
  5. C. Li, Z. Wang, P. I. Wang, Y. Peles, N. Koratkar, and G. P. Peterson, “Nanostructured copper interfaces for enhanced boiling,” Small 4(8), 1084–1088 (2008).
    [Crossref] [PubMed]
  6. E. Lukianova-Hleb, Y. Hu, L. Latterini, L. Tarpani, S. Lee, R. A. Drezek, J. H. Hafner, and D. O. Lapotko, “Plasmonic nanobubbles as transient vapor nanobubbles generated around plasmonic nanoparticles,” ACS Nano 4(4), 2109–2123 (2010).
    [Crossref] [PubMed]
  7. J. Kao, X. Wang, J. Warren, J. Xu, and D. Attinger, “A bubble-powered micro-rotor: conception, manufacturing, assembly and characterization,” J. Micromech. Microeng. 17(12), 2454–2460 (2007).
    [Crossref]
  8. A. Hashmi, G. Yu, M. Reilly-Collette, G. Heiman, and J. Xu, “Oscillating bubbles: a versatile tool for lab on a chip applications,” Lab Chip 12(21), 4216–4227 (2012).
    [Crossref] [PubMed]
  9. C. Zhao, Y. Liu, Y. Zhao, N. Fang, and T. J. Huang, “A reconfigurable plasmofluidic lens,” Nat. Commun. 4, 2305 (2013).
    [Crossref] [PubMed]
  10. P. Marmottant and S. Hilgenfeldt, “A bubble-driven microfluidic transport element for bioengineering,” Proc. Natl. Acad. Sci. U.S.A. 101(26), 9523–9527 (2004).
    [Crossref] [PubMed]
  11. S. Lal, S. E. Clare, and N. J. Halas, “Nanoshell-enabled photothermal cancer therapy: Impending clinical impact,” Acc. Chem. Res. 41(12), 1842–1851 (2008).
    [Crossref] [PubMed]
  12. M. Delcea, N. Sternberg, A. M. Yashchenok, R. Georgieva, H. Bäumler, H. Möhwald, and A. G. Skirtach, “Nanoplasmonics for dual-molecule release through nanopores in the membrane of red blood cells,” ACS Nano 6(5), 4169–4180 (2012).
    [Crossref] [PubMed]
  13. P. Ghosh, G. Han, M. De, C. K. Kim, and V. M. Rotello, “Gold nanoparticles in delivery applications,” Adv. Drug Deliv. Rev. 60(11), 1307–1315 (2008).
    [Crossref] [PubMed]
  14. G. Baffou, J. Polleux, H. Rigneault, and S. Monneret, “Super-heating and micro-bubble generation around plasmonic nanoparticles under cw illumination,” J. Phys. Chem. C 118(9), 4890–4898 (2014).
    [Crossref]
  15. O. V. Angelsky, A. Ya. Bekshaev, P. P. Maksimyak, A. P. Maksimyak, S. G. Hanson, and S. M. Kontush, “Controllable generation and manipulation of micro-bubbles in water with absorptive colloid particles by CW laser radiation,” Opt. Express 25(5), 5232–5243 (2017).
    [Crossref] [PubMed]
  16. Y. Y. Geguzin, Bubbles (Moscow, Nauka, 1985) (In Russian).
  17. A. Miniewicz, S. Bartkiewicz, H. Orlikowska, and K. Dradrach, “Marangoni effect visualized in two-dimensions optical tweezers for gas bubbles,” Sci. Rep. 6(1), 34787 (2016).
    [Crossref] [PubMed]
  18. N. A. Ivanova and B. A. Bezuglyi, “Optical thermocapillary bubble trap,” Tech. Phys. Lett. 32(10), 854–856 (2006).
    [Crossref]
  19. J. G. Ortega-Mendoza, J. A. Sarabia-Alonso, P. Zaca-Morán, A. Padilla-Vivanco, C. Toxqui-Quitl, I. Rivas-Cambero, J. Ramirez-Ramirez, S. A. Torres-Hurtado, and R. Ramos-García, “Marangoni force-driven manipulation of photothermally-induced microbubbles,” Opt. Express 26(6), 6653–6662 (2018).
    [Crossref] [PubMed]
  20. O. V. Angelsky, A. Ya. Bekshaev, P. P. Maksimyak, A. P. Maksimyak, S. G. Hanson, and C. Yu. Zenkova, “Self-action of continuous laser radiation and Pearcey diffraction in a water suspension with light-absorbing particles,” Opt. Express 22(3), 2267–2277 (2014).
    [Crossref] [PubMed]
  21. C. Mowry and J. R. Leger, “Large-area, single-transverse-mode semiconductor laser with diffraction-limited super-Gaussian output,” Appl. Phys. Lett. 66(13), 1614–1616 (1995).
    [Crossref]
  22. C. Mätzler, MATLAB functions for Mie scattering and absorption, Version 2, IAP Research Report, No. 2002–11 (Institut für angewandte Physik, Universität Bern, 2002).
  23. K. F. Palmer and D. Williams, “Optical properties of water in the near infrared,” J. Opt. Soc. Am. 64(8), 1107–1110 (1974).
    [Crossref]
  24. N. V. Tsederberg, Thermal conductivity of gases and liquids (Massachusetts Institute of Technology, 1965).
  25. J. C. Ramirez-San-Juan, E. Rodriguez-Aboytes, A. E. Martinez-Canton, O. Baldovino-Pantaleon, A. Robledo-Martinez, N. Korneev, and R. Ramos-Garcia, “Time-resolved analysis of cavitation induced by CW lasers in absorbing liquids,” Opt. Express 18(9), 8735–8742 (2010).
    [Crossref] [PubMed]
  26. J. P. Padilla-Martinez, C. Berrospe-Rodriguez, G. Aguilar, J. C. Ramirez-San-Juan, and R. Ramos-Garcia, “Optic cavitation with CW lasers: A review,” Phys. Fluids 26(12), 122007 (2014).
    [Crossref]
  27. N. B. Vargaftik, B. N. Volkov, and L. D. Voljak, “International tables of the surface tension of water,” J. Phys. Chem. Ref. Data 12(3), 817–820 (1983).
    [Crossref]
  28. The Engineering ToolBox, https://www.engineeringtoolbox.com/air-properties-viscosity-conductivity-heat-capacity-d_1509.html
  29. The Engineering ToolBox, https://www.engineeringtoolbox.com/overall-heat-transfer-coefficient-d_434.html
  30. C. Yang, C. Yang, T. Dabros, D. Li, J. Czarnecki, and J. H. Masliyah, “Measurement of the zeta potential of gas bubbles in aqueous solutions by microelectrophoresis method,” J. Colloid Interface Sci. 243(1), 128–135 (2001).
    [Crossref]
  31. W. Jia, S. Ren, and B. Hu, “Effect of water chemistry on zeta potential of air bubbles,” Electrochem. Sci. 8, 5828–5837 (2013).
  32. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986).
    [Crossref] [PubMed]
  33. A. Y. Bekshaev, “Subwavelength particles in an inhomogeneous light field: optical forces associated with the spin and orbital energy flows,” J. Opt. 15(4), 044004 (2013).
    [Crossref]
  34. L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Oxford, Pergamon Press, 1987).

2018 (1)

2017 (1)

2016 (1)

A. Miniewicz, S. Bartkiewicz, H. Orlikowska, and K. Dradrach, “Marangoni effect visualized in two-dimensions optical tweezers for gas bubbles,” Sci. Rep. 6(1), 34787 (2016).
[Crossref] [PubMed]

2014 (3)

J. P. Padilla-Martinez, C. Berrospe-Rodriguez, G. Aguilar, J. C. Ramirez-San-Juan, and R. Ramos-Garcia, “Optic cavitation with CW lasers: A review,” Phys. Fluids 26(12), 122007 (2014).
[Crossref]

G. Baffou, J. Polleux, H. Rigneault, and S. Monneret, “Super-heating and micro-bubble generation around plasmonic nanoparticles under cw illumination,” J. Phys. Chem. C 118(9), 4890–4898 (2014).
[Crossref]

O. V. Angelsky, A. Ya. Bekshaev, P. P. Maksimyak, A. P. Maksimyak, S. G. Hanson, and C. Yu. Zenkova, “Self-action of continuous laser radiation and Pearcey diffraction in a water suspension with light-absorbing particles,” Opt. Express 22(3), 2267–2277 (2014).
[Crossref] [PubMed]

2013 (4)

W. Jia, S. Ren, and B. Hu, “Effect of water chemistry on zeta potential of air bubbles,” Electrochem. Sci. 8, 5828–5837 (2013).

A. Y. Bekshaev, “Subwavelength particles in an inhomogeneous light field: optical forces associated with the spin and orbital energy flows,” J. Opt. 15(4), 044004 (2013).
[Crossref]

Z. Fang, Y. R. Zhen, O. Neumann, A. Polman, F. J. García de Abajo, P. Nordlander, and N. J. Halas, “Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle,” Nano Lett. 13(4), 1736–1742 (2013).
[Crossref] [PubMed]

C. Zhao, Y. Liu, Y. Zhao, N. Fang, and T. J. Huang, “A reconfigurable plasmofluidic lens,” Nat. Commun. 4, 2305 (2013).
[Crossref] [PubMed]

2012 (2)

A. Hashmi, G. Yu, M. Reilly-Collette, G. Heiman, and J. Xu, “Oscillating bubbles: a versatile tool for lab on a chip applications,” Lab Chip 12(21), 4216–4227 (2012).
[Crossref] [PubMed]

M. Delcea, N. Sternberg, A. M. Yashchenok, R. Georgieva, H. Bäumler, H. Möhwald, and A. G. Skirtach, “Nanoplasmonics for dual-molecule release through nanopores in the membrane of red blood cells,” ACS Nano 6(5), 4169–4180 (2012).
[Crossref] [PubMed]

2011 (1)

G. Baffou and H. Rigneault, “Femtosecond-Pulsed Optical Heating of Gold Nanoparticles,” Phys. Rev. B 84(3), 035415 (2011).
[Crossref]

2010 (2)

E. Lukianova-Hleb, Y. Hu, L. Latterini, L. Tarpani, S. Lee, R. A. Drezek, J. H. Hafner, and D. O. Lapotko, “Plasmonic nanobubbles as transient vapor nanobubbles generated around plasmonic nanoparticles,” ACS Nano 4(4), 2109–2123 (2010).
[Crossref] [PubMed]

J. C. Ramirez-San-Juan, E. Rodriguez-Aboytes, A. E. Martinez-Canton, O. Baldovino-Pantaleon, A. Robledo-Martinez, N. Korneev, and R. Ramos-Garcia, “Time-resolved analysis of cavitation induced by CW lasers in absorbing liquids,” Opt. Express 18(9), 8735–8742 (2010).
[Crossref] [PubMed]

2008 (4)

C. Li, Z. Wang, P. I. Wang, Y. Peles, N. Koratkar, and G. P. Peterson, “Nanostructured copper interfaces for enhanced boiling,” Small 4(8), 1084–1088 (2008).
[Crossref] [PubMed]

D. A. Boyd, J. R. Adleman, D. G. Goodwin, and D. Psaltis, “Chemical separations by bubble-assisted interphase mass-transfer,” Anal. Chem. 80(7), 2452–2456 (2008).
[Crossref] [PubMed]

P. Ghosh, G. Han, M. De, C. K. Kim, and V. M. Rotello, “Gold nanoparticles in delivery applications,” Adv. Drug Deliv. Rev. 60(11), 1307–1315 (2008).
[Crossref] [PubMed]

S. Lal, S. E. Clare, and N. J. Halas, “Nanoshell-enabled photothermal cancer therapy: Impending clinical impact,” Acc. Chem. Res. 41(12), 1842–1851 (2008).
[Crossref] [PubMed]

2007 (1)

J. Kao, X. Wang, J. Warren, J. Xu, and D. Attinger, “A bubble-powered micro-rotor: conception, manufacturing, assembly and characterization,” J. Micromech. Microeng. 17(12), 2454–2460 (2007).
[Crossref]

2006 (2)

D. A. Boyd, L. Greengard, M. Brongersma, M. Y. El-Naggar, and D. G. Goodwin, “Plasmon-assisted chemical vapor deposition,” Nano Lett. 6(11), 2592–2597 (2006).
[Crossref] [PubMed]

N. A. Ivanova and B. A. Bezuglyi, “Optical thermocapillary bubble trap,” Tech. Phys. Lett. 32(10), 854–856 (2006).
[Crossref]

2004 (1)

P. Marmottant and S. Hilgenfeldt, “A bubble-driven microfluidic transport element for bioengineering,” Proc. Natl. Acad. Sci. U.S.A. 101(26), 9523–9527 (2004).
[Crossref] [PubMed]

2001 (1)

C. Yang, C. Yang, T. Dabros, D. Li, J. Czarnecki, and J. H. Masliyah, “Measurement of the zeta potential of gas bubbles in aqueous solutions by microelectrophoresis method,” J. Colloid Interface Sci. 243(1), 128–135 (2001).
[Crossref]

1995 (1)

C. Mowry and J. R. Leger, “Large-area, single-transverse-mode semiconductor laser with diffraction-limited super-Gaussian output,” Appl. Phys. Lett. 66(13), 1614–1616 (1995).
[Crossref]

1986 (1)

1983 (1)

N. B. Vargaftik, B. N. Volkov, and L. D. Voljak, “International tables of the surface tension of water,” J. Phys. Chem. Ref. Data 12(3), 817–820 (1983).
[Crossref]

1974 (1)

Adleman, J. R.

D. A. Boyd, J. R. Adleman, D. G. Goodwin, and D. Psaltis, “Chemical separations by bubble-assisted interphase mass-transfer,” Anal. Chem. 80(7), 2452–2456 (2008).
[Crossref] [PubMed]

Aguilar, G.

J. P. Padilla-Martinez, C. Berrospe-Rodriguez, G. Aguilar, J. C. Ramirez-San-Juan, and R. Ramos-Garcia, “Optic cavitation with CW lasers: A review,” Phys. Fluids 26(12), 122007 (2014).
[Crossref]

Angelsky, O. V.

Ashkin, A.

Attinger, D.

J. Kao, X. Wang, J. Warren, J. Xu, and D. Attinger, “A bubble-powered micro-rotor: conception, manufacturing, assembly and characterization,” J. Micromech. Microeng. 17(12), 2454–2460 (2007).
[Crossref]

Baffou, G.

G. Baffou, J. Polleux, H. Rigneault, and S. Monneret, “Super-heating and micro-bubble generation around plasmonic nanoparticles under cw illumination,” J. Phys. Chem. C 118(9), 4890–4898 (2014).
[Crossref]

G. Baffou and H. Rigneault, “Femtosecond-Pulsed Optical Heating of Gold Nanoparticles,” Phys. Rev. B 84(3), 035415 (2011).
[Crossref]

Baldovino-Pantaleon, O.

Bartkiewicz, S.

A. Miniewicz, S. Bartkiewicz, H. Orlikowska, and K. Dradrach, “Marangoni effect visualized in two-dimensions optical tweezers for gas bubbles,” Sci. Rep. 6(1), 34787 (2016).
[Crossref] [PubMed]

Bäumler, H.

M. Delcea, N. Sternberg, A. M. Yashchenok, R. Georgieva, H. Bäumler, H. Möhwald, and A. G. Skirtach, “Nanoplasmonics for dual-molecule release through nanopores in the membrane of red blood cells,” ACS Nano 6(5), 4169–4180 (2012).
[Crossref] [PubMed]

Bekshaev, A. Y.

A. Y. Bekshaev, “Subwavelength particles in an inhomogeneous light field: optical forces associated with the spin and orbital energy flows,” J. Opt. 15(4), 044004 (2013).
[Crossref]

Bekshaev, A. Ya.

Berrospe-Rodriguez, C.

J. P. Padilla-Martinez, C. Berrospe-Rodriguez, G. Aguilar, J. C. Ramirez-San-Juan, and R. Ramos-Garcia, “Optic cavitation with CW lasers: A review,” Phys. Fluids 26(12), 122007 (2014).
[Crossref]

Bezuglyi, B. A.

N. A. Ivanova and B. A. Bezuglyi, “Optical thermocapillary bubble trap,” Tech. Phys. Lett. 32(10), 854–856 (2006).
[Crossref]

Bjorkholm, J. E.

Boyd, D. A.

D. A. Boyd, J. R. Adleman, D. G. Goodwin, and D. Psaltis, “Chemical separations by bubble-assisted interphase mass-transfer,” Anal. Chem. 80(7), 2452–2456 (2008).
[Crossref] [PubMed]

D. A. Boyd, L. Greengard, M. Brongersma, M. Y. El-Naggar, and D. G. Goodwin, “Plasmon-assisted chemical vapor deposition,” Nano Lett. 6(11), 2592–2597 (2006).
[Crossref] [PubMed]

Brongersma, M.

D. A. Boyd, L. Greengard, M. Brongersma, M. Y. El-Naggar, and D. G. Goodwin, “Plasmon-assisted chemical vapor deposition,” Nano Lett. 6(11), 2592–2597 (2006).
[Crossref] [PubMed]

Chu, S.

Clare, S. E.

S. Lal, S. E. Clare, and N. J. Halas, “Nanoshell-enabled photothermal cancer therapy: Impending clinical impact,” Acc. Chem. Res. 41(12), 1842–1851 (2008).
[Crossref] [PubMed]

Czarnecki, J.

C. Yang, C. Yang, T. Dabros, D. Li, J. Czarnecki, and J. H. Masliyah, “Measurement of the zeta potential of gas bubbles in aqueous solutions by microelectrophoresis method,” J. Colloid Interface Sci. 243(1), 128–135 (2001).
[Crossref]

Dabros, T.

C. Yang, C. Yang, T. Dabros, D. Li, J. Czarnecki, and J. H. Masliyah, “Measurement of the zeta potential of gas bubbles in aqueous solutions by microelectrophoresis method,” J. Colloid Interface Sci. 243(1), 128–135 (2001).
[Crossref]

De, M.

P. Ghosh, G. Han, M. De, C. K. Kim, and V. M. Rotello, “Gold nanoparticles in delivery applications,” Adv. Drug Deliv. Rev. 60(11), 1307–1315 (2008).
[Crossref] [PubMed]

Delcea, M.

M. Delcea, N. Sternberg, A. M. Yashchenok, R. Georgieva, H. Bäumler, H. Möhwald, and A. G. Skirtach, “Nanoplasmonics for dual-molecule release through nanopores in the membrane of red blood cells,” ACS Nano 6(5), 4169–4180 (2012).
[Crossref] [PubMed]

Dradrach, K.

A. Miniewicz, S. Bartkiewicz, H. Orlikowska, and K. Dradrach, “Marangoni effect visualized in two-dimensions optical tweezers for gas bubbles,” Sci. Rep. 6(1), 34787 (2016).
[Crossref] [PubMed]

Drezek, R. A.

E. Lukianova-Hleb, Y. Hu, L. Latterini, L. Tarpani, S. Lee, R. A. Drezek, J. H. Hafner, and D. O. Lapotko, “Plasmonic nanobubbles as transient vapor nanobubbles generated around plasmonic nanoparticles,” ACS Nano 4(4), 2109–2123 (2010).
[Crossref] [PubMed]

Dziedzic, J. M.

El-Naggar, M. Y.

D. A. Boyd, L. Greengard, M. Brongersma, M. Y. El-Naggar, and D. G. Goodwin, “Plasmon-assisted chemical vapor deposition,” Nano Lett. 6(11), 2592–2597 (2006).
[Crossref] [PubMed]

Fang, N.

C. Zhao, Y. Liu, Y. Zhao, N. Fang, and T. J. Huang, “A reconfigurable plasmofluidic lens,” Nat. Commun. 4, 2305 (2013).
[Crossref] [PubMed]

Fang, Z.

Z. Fang, Y. R. Zhen, O. Neumann, A. Polman, F. J. García de Abajo, P. Nordlander, and N. J. Halas, “Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle,” Nano Lett. 13(4), 1736–1742 (2013).
[Crossref] [PubMed]

García de Abajo, F. J.

Z. Fang, Y. R. Zhen, O. Neumann, A. Polman, F. J. García de Abajo, P. Nordlander, and N. J. Halas, “Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle,” Nano Lett. 13(4), 1736–1742 (2013).
[Crossref] [PubMed]

Georgieva, R.

M. Delcea, N. Sternberg, A. M. Yashchenok, R. Georgieva, H. Bäumler, H. Möhwald, and A. G. Skirtach, “Nanoplasmonics for dual-molecule release through nanopores in the membrane of red blood cells,” ACS Nano 6(5), 4169–4180 (2012).
[Crossref] [PubMed]

Ghosh, P.

P. Ghosh, G. Han, M. De, C. K. Kim, and V. M. Rotello, “Gold nanoparticles in delivery applications,” Adv. Drug Deliv. Rev. 60(11), 1307–1315 (2008).
[Crossref] [PubMed]

Goodwin, D. G.

D. A. Boyd, J. R. Adleman, D. G. Goodwin, and D. Psaltis, “Chemical separations by bubble-assisted interphase mass-transfer,” Anal. Chem. 80(7), 2452–2456 (2008).
[Crossref] [PubMed]

D. A. Boyd, L. Greengard, M. Brongersma, M. Y. El-Naggar, and D. G. Goodwin, “Plasmon-assisted chemical vapor deposition,” Nano Lett. 6(11), 2592–2597 (2006).
[Crossref] [PubMed]

Greengard, L.

D. A. Boyd, L. Greengard, M. Brongersma, M. Y. El-Naggar, and D. G. Goodwin, “Plasmon-assisted chemical vapor deposition,” Nano Lett. 6(11), 2592–2597 (2006).
[Crossref] [PubMed]

Hafner, J. H.

E. Lukianova-Hleb, Y. Hu, L. Latterini, L. Tarpani, S. Lee, R. A. Drezek, J. H. Hafner, and D. O. Lapotko, “Plasmonic nanobubbles as transient vapor nanobubbles generated around plasmonic nanoparticles,” ACS Nano 4(4), 2109–2123 (2010).
[Crossref] [PubMed]

Halas, N. J.

Z. Fang, Y. R. Zhen, O. Neumann, A. Polman, F. J. García de Abajo, P. Nordlander, and N. J. Halas, “Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle,” Nano Lett. 13(4), 1736–1742 (2013).
[Crossref] [PubMed]

S. Lal, S. E. Clare, and N. J. Halas, “Nanoshell-enabled photothermal cancer therapy: Impending clinical impact,” Acc. Chem. Res. 41(12), 1842–1851 (2008).
[Crossref] [PubMed]

Han, G.

P. Ghosh, G. Han, M. De, C. K. Kim, and V. M. Rotello, “Gold nanoparticles in delivery applications,” Adv. Drug Deliv. Rev. 60(11), 1307–1315 (2008).
[Crossref] [PubMed]

Hanson, S. G.

Hashmi, A.

A. Hashmi, G. Yu, M. Reilly-Collette, G. Heiman, and J. Xu, “Oscillating bubbles: a versatile tool for lab on a chip applications,” Lab Chip 12(21), 4216–4227 (2012).
[Crossref] [PubMed]

Heiman, G.

A. Hashmi, G. Yu, M. Reilly-Collette, G. Heiman, and J. Xu, “Oscillating bubbles: a versatile tool for lab on a chip applications,” Lab Chip 12(21), 4216–4227 (2012).
[Crossref] [PubMed]

Hilgenfeldt, S.

P. Marmottant and S. Hilgenfeldt, “A bubble-driven microfluidic transport element for bioengineering,” Proc. Natl. Acad. Sci. U.S.A. 101(26), 9523–9527 (2004).
[Crossref] [PubMed]

Hu, B.

W. Jia, S. Ren, and B. Hu, “Effect of water chemistry on zeta potential of air bubbles,” Electrochem. Sci. 8, 5828–5837 (2013).

Hu, Y.

E. Lukianova-Hleb, Y. Hu, L. Latterini, L. Tarpani, S. Lee, R. A. Drezek, J. H. Hafner, and D. O. Lapotko, “Plasmonic nanobubbles as transient vapor nanobubbles generated around plasmonic nanoparticles,” ACS Nano 4(4), 2109–2123 (2010).
[Crossref] [PubMed]

Huang, T. J.

C. Zhao, Y. Liu, Y. Zhao, N. Fang, and T. J. Huang, “A reconfigurable plasmofluidic lens,” Nat. Commun. 4, 2305 (2013).
[Crossref] [PubMed]

Ivanova, N. A.

N. A. Ivanova and B. A. Bezuglyi, “Optical thermocapillary bubble trap,” Tech. Phys. Lett. 32(10), 854–856 (2006).
[Crossref]

Jia, W.

W. Jia, S. Ren, and B. Hu, “Effect of water chemistry on zeta potential of air bubbles,” Electrochem. Sci. 8, 5828–5837 (2013).

Kao, J.

J. Kao, X. Wang, J. Warren, J. Xu, and D. Attinger, “A bubble-powered micro-rotor: conception, manufacturing, assembly and characterization,” J. Micromech. Microeng. 17(12), 2454–2460 (2007).
[Crossref]

Kim, C. K.

P. Ghosh, G. Han, M. De, C. K. Kim, and V. M. Rotello, “Gold nanoparticles in delivery applications,” Adv. Drug Deliv. Rev. 60(11), 1307–1315 (2008).
[Crossref] [PubMed]

Kontush, S. M.

Koratkar, N.

C. Li, Z. Wang, P. I. Wang, Y. Peles, N. Koratkar, and G. P. Peterson, “Nanostructured copper interfaces for enhanced boiling,” Small 4(8), 1084–1088 (2008).
[Crossref] [PubMed]

Korneev, N.

Lal, S.

S. Lal, S. E. Clare, and N. J. Halas, “Nanoshell-enabled photothermal cancer therapy: Impending clinical impact,” Acc. Chem. Res. 41(12), 1842–1851 (2008).
[Crossref] [PubMed]

Lapotko, D. O.

E. Lukianova-Hleb, Y. Hu, L. Latterini, L. Tarpani, S. Lee, R. A. Drezek, J. H. Hafner, and D. O. Lapotko, “Plasmonic nanobubbles as transient vapor nanobubbles generated around plasmonic nanoparticles,” ACS Nano 4(4), 2109–2123 (2010).
[Crossref] [PubMed]

Latterini, L.

E. Lukianova-Hleb, Y. Hu, L. Latterini, L. Tarpani, S. Lee, R. A. Drezek, J. H. Hafner, and D. O. Lapotko, “Plasmonic nanobubbles as transient vapor nanobubbles generated around plasmonic nanoparticles,” ACS Nano 4(4), 2109–2123 (2010).
[Crossref] [PubMed]

Lee, S.

E. Lukianova-Hleb, Y. Hu, L. Latterini, L. Tarpani, S. Lee, R. A. Drezek, J. H. Hafner, and D. O. Lapotko, “Plasmonic nanobubbles as transient vapor nanobubbles generated around plasmonic nanoparticles,” ACS Nano 4(4), 2109–2123 (2010).
[Crossref] [PubMed]

Leger, J. R.

C. Mowry and J. R. Leger, “Large-area, single-transverse-mode semiconductor laser with diffraction-limited super-Gaussian output,” Appl. Phys. Lett. 66(13), 1614–1616 (1995).
[Crossref]

Li, C.

C. Li, Z. Wang, P. I. Wang, Y. Peles, N. Koratkar, and G. P. Peterson, “Nanostructured copper interfaces for enhanced boiling,” Small 4(8), 1084–1088 (2008).
[Crossref] [PubMed]

Li, D.

C. Yang, C. Yang, T. Dabros, D. Li, J. Czarnecki, and J. H. Masliyah, “Measurement of the zeta potential of gas bubbles in aqueous solutions by microelectrophoresis method,” J. Colloid Interface Sci. 243(1), 128–135 (2001).
[Crossref]

Liu, Y.

C. Zhao, Y. Liu, Y. Zhao, N. Fang, and T. J. Huang, “A reconfigurable plasmofluidic lens,” Nat. Commun. 4, 2305 (2013).
[Crossref] [PubMed]

Lukianova-Hleb, E.

E. Lukianova-Hleb, Y. Hu, L. Latterini, L. Tarpani, S. Lee, R. A. Drezek, J. H. Hafner, and D. O. Lapotko, “Plasmonic nanobubbles as transient vapor nanobubbles generated around plasmonic nanoparticles,” ACS Nano 4(4), 2109–2123 (2010).
[Crossref] [PubMed]

Maksimyak, A. P.

Maksimyak, P. P.

Marmottant, P.

P. Marmottant and S. Hilgenfeldt, “A bubble-driven microfluidic transport element for bioengineering,” Proc. Natl. Acad. Sci. U.S.A. 101(26), 9523–9527 (2004).
[Crossref] [PubMed]

Martinez-Canton, A. E.

Masliyah, J. H.

C. Yang, C. Yang, T. Dabros, D. Li, J. Czarnecki, and J. H. Masliyah, “Measurement of the zeta potential of gas bubbles in aqueous solutions by microelectrophoresis method,” J. Colloid Interface Sci. 243(1), 128–135 (2001).
[Crossref]

Miniewicz, A.

A. Miniewicz, S. Bartkiewicz, H. Orlikowska, and K. Dradrach, “Marangoni effect visualized in two-dimensions optical tweezers for gas bubbles,” Sci. Rep. 6(1), 34787 (2016).
[Crossref] [PubMed]

Möhwald, H.

M. Delcea, N. Sternberg, A. M. Yashchenok, R. Georgieva, H. Bäumler, H. Möhwald, and A. G. Skirtach, “Nanoplasmonics for dual-molecule release through nanopores in the membrane of red blood cells,” ACS Nano 6(5), 4169–4180 (2012).
[Crossref] [PubMed]

Monneret, S.

G. Baffou, J. Polleux, H. Rigneault, and S. Monneret, “Super-heating and micro-bubble generation around plasmonic nanoparticles under cw illumination,” J. Phys. Chem. C 118(9), 4890–4898 (2014).
[Crossref]

Mowry, C.

C. Mowry and J. R. Leger, “Large-area, single-transverse-mode semiconductor laser with diffraction-limited super-Gaussian output,” Appl. Phys. Lett. 66(13), 1614–1616 (1995).
[Crossref]

Neumann, O.

Z. Fang, Y. R. Zhen, O. Neumann, A. Polman, F. J. García de Abajo, P. Nordlander, and N. J. Halas, “Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle,” Nano Lett. 13(4), 1736–1742 (2013).
[Crossref] [PubMed]

Nordlander, P.

Z. Fang, Y. R. Zhen, O. Neumann, A. Polman, F. J. García de Abajo, P. Nordlander, and N. J. Halas, “Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle,” Nano Lett. 13(4), 1736–1742 (2013).
[Crossref] [PubMed]

Orlikowska, H.

A. Miniewicz, S. Bartkiewicz, H. Orlikowska, and K. Dradrach, “Marangoni effect visualized in two-dimensions optical tweezers for gas bubbles,” Sci. Rep. 6(1), 34787 (2016).
[Crossref] [PubMed]

Ortega-Mendoza, J. G.

Padilla-Martinez, J. P.

J. P. Padilla-Martinez, C. Berrospe-Rodriguez, G. Aguilar, J. C. Ramirez-San-Juan, and R. Ramos-Garcia, “Optic cavitation with CW lasers: A review,” Phys. Fluids 26(12), 122007 (2014).
[Crossref]

Padilla-Vivanco, A.

Palmer, K. F.

Peles, Y.

C. Li, Z. Wang, P. I. Wang, Y. Peles, N. Koratkar, and G. P. Peterson, “Nanostructured copper interfaces for enhanced boiling,” Small 4(8), 1084–1088 (2008).
[Crossref] [PubMed]

Peterson, G. P.

C. Li, Z. Wang, P. I. Wang, Y. Peles, N. Koratkar, and G. P. Peterson, “Nanostructured copper interfaces for enhanced boiling,” Small 4(8), 1084–1088 (2008).
[Crossref] [PubMed]

Polleux, J.

G. Baffou, J. Polleux, H. Rigneault, and S. Monneret, “Super-heating and micro-bubble generation around plasmonic nanoparticles under cw illumination,” J. Phys. Chem. C 118(9), 4890–4898 (2014).
[Crossref]

Polman, A.

Z. Fang, Y. R. Zhen, O. Neumann, A. Polman, F. J. García de Abajo, P. Nordlander, and N. J. Halas, “Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle,” Nano Lett. 13(4), 1736–1742 (2013).
[Crossref] [PubMed]

Psaltis, D.

D. A. Boyd, J. R. Adleman, D. G. Goodwin, and D. Psaltis, “Chemical separations by bubble-assisted interphase mass-transfer,” Anal. Chem. 80(7), 2452–2456 (2008).
[Crossref] [PubMed]

Ramirez-Ramirez, J.

Ramirez-San-Juan, J. C.

Ramos-Garcia, R.

Ramos-García, R.

Reilly-Collette, M.

A. Hashmi, G. Yu, M. Reilly-Collette, G. Heiman, and J. Xu, “Oscillating bubbles: a versatile tool for lab on a chip applications,” Lab Chip 12(21), 4216–4227 (2012).
[Crossref] [PubMed]

Ren, S.

W. Jia, S. Ren, and B. Hu, “Effect of water chemistry on zeta potential of air bubbles,” Electrochem. Sci. 8, 5828–5837 (2013).

Rigneault, H.

G. Baffou, J. Polleux, H. Rigneault, and S. Monneret, “Super-heating and micro-bubble generation around plasmonic nanoparticles under cw illumination,” J. Phys. Chem. C 118(9), 4890–4898 (2014).
[Crossref]

G. Baffou and H. Rigneault, “Femtosecond-Pulsed Optical Heating of Gold Nanoparticles,” Phys. Rev. B 84(3), 035415 (2011).
[Crossref]

Rivas-Cambero, I.

Robledo-Martinez, A.

Rodriguez-Aboytes, E.

Rotello, V. M.

P. Ghosh, G. Han, M. De, C. K. Kim, and V. M. Rotello, “Gold nanoparticles in delivery applications,” Adv. Drug Deliv. Rev. 60(11), 1307–1315 (2008).
[Crossref] [PubMed]

Sarabia-Alonso, J. A.

Skirtach, A. G.

M. Delcea, N. Sternberg, A. M. Yashchenok, R. Georgieva, H. Bäumler, H. Möhwald, and A. G. Skirtach, “Nanoplasmonics for dual-molecule release through nanopores in the membrane of red blood cells,” ACS Nano 6(5), 4169–4180 (2012).
[Crossref] [PubMed]

Sternberg, N.

M. Delcea, N. Sternberg, A. M. Yashchenok, R. Georgieva, H. Bäumler, H. Möhwald, and A. G. Skirtach, “Nanoplasmonics for dual-molecule release through nanopores in the membrane of red blood cells,” ACS Nano 6(5), 4169–4180 (2012).
[Crossref] [PubMed]

Tarpani, L.

E. Lukianova-Hleb, Y. Hu, L. Latterini, L. Tarpani, S. Lee, R. A. Drezek, J. H. Hafner, and D. O. Lapotko, “Plasmonic nanobubbles as transient vapor nanobubbles generated around plasmonic nanoparticles,” ACS Nano 4(4), 2109–2123 (2010).
[Crossref] [PubMed]

Torres-Hurtado, S. A.

Toxqui-Quitl, C.

Vargaftik, N. B.

N. B. Vargaftik, B. N. Volkov, and L. D. Voljak, “International tables of the surface tension of water,” J. Phys. Chem. Ref. Data 12(3), 817–820 (1983).
[Crossref]

Voljak, L. D.

N. B. Vargaftik, B. N. Volkov, and L. D. Voljak, “International tables of the surface tension of water,” J. Phys. Chem. Ref. Data 12(3), 817–820 (1983).
[Crossref]

Volkov, B. N.

N. B. Vargaftik, B. N. Volkov, and L. D. Voljak, “International tables of the surface tension of water,” J. Phys. Chem. Ref. Data 12(3), 817–820 (1983).
[Crossref]

Wang, P. I.

C. Li, Z. Wang, P. I. Wang, Y. Peles, N. Koratkar, and G. P. Peterson, “Nanostructured copper interfaces for enhanced boiling,” Small 4(8), 1084–1088 (2008).
[Crossref] [PubMed]

Wang, X.

J. Kao, X. Wang, J. Warren, J. Xu, and D. Attinger, “A bubble-powered micro-rotor: conception, manufacturing, assembly and characterization,” J. Micromech. Microeng. 17(12), 2454–2460 (2007).
[Crossref]

Wang, Z.

C. Li, Z. Wang, P. I. Wang, Y. Peles, N. Koratkar, and G. P. Peterson, “Nanostructured copper interfaces for enhanced boiling,” Small 4(8), 1084–1088 (2008).
[Crossref] [PubMed]

Warren, J.

J. Kao, X. Wang, J. Warren, J. Xu, and D. Attinger, “A bubble-powered micro-rotor: conception, manufacturing, assembly and characterization,” J. Micromech. Microeng. 17(12), 2454–2460 (2007).
[Crossref]

Williams, D.

Xu, J.

A. Hashmi, G. Yu, M. Reilly-Collette, G. Heiman, and J. Xu, “Oscillating bubbles: a versatile tool for lab on a chip applications,” Lab Chip 12(21), 4216–4227 (2012).
[Crossref] [PubMed]

J. Kao, X. Wang, J. Warren, J. Xu, and D. Attinger, “A bubble-powered micro-rotor: conception, manufacturing, assembly and characterization,” J. Micromech. Microeng. 17(12), 2454–2460 (2007).
[Crossref]

Yang, C.

C. Yang, C. Yang, T. Dabros, D. Li, J. Czarnecki, and J. H. Masliyah, “Measurement of the zeta potential of gas bubbles in aqueous solutions by microelectrophoresis method,” J. Colloid Interface Sci. 243(1), 128–135 (2001).
[Crossref]

C. Yang, C. Yang, T. Dabros, D. Li, J. Czarnecki, and J. H. Masliyah, “Measurement of the zeta potential of gas bubbles in aqueous solutions by microelectrophoresis method,” J. Colloid Interface Sci. 243(1), 128–135 (2001).
[Crossref]

Yashchenok, A. M.

M. Delcea, N. Sternberg, A. M. Yashchenok, R. Georgieva, H. Bäumler, H. Möhwald, and A. G. Skirtach, “Nanoplasmonics for dual-molecule release through nanopores in the membrane of red blood cells,” ACS Nano 6(5), 4169–4180 (2012).
[Crossref] [PubMed]

Yu, G.

A. Hashmi, G. Yu, M. Reilly-Collette, G. Heiman, and J. Xu, “Oscillating bubbles: a versatile tool for lab on a chip applications,” Lab Chip 12(21), 4216–4227 (2012).
[Crossref] [PubMed]

Zaca-Morán, P.

Zenkova, C. Yu.

Zhao, C.

C. Zhao, Y. Liu, Y. Zhao, N. Fang, and T. J. Huang, “A reconfigurable plasmofluidic lens,” Nat. Commun. 4, 2305 (2013).
[Crossref] [PubMed]

Zhao, Y.

C. Zhao, Y. Liu, Y. Zhao, N. Fang, and T. J. Huang, “A reconfigurable plasmofluidic lens,” Nat. Commun. 4, 2305 (2013).
[Crossref] [PubMed]

Zhen, Y. R.

Z. Fang, Y. R. Zhen, O. Neumann, A. Polman, F. J. García de Abajo, P. Nordlander, and N. J. Halas, “Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle,” Nano Lett. 13(4), 1736–1742 (2013).
[Crossref] [PubMed]

Acc. Chem. Res. (1)

S. Lal, S. E. Clare, and N. J. Halas, “Nanoshell-enabled photothermal cancer therapy: Impending clinical impact,” Acc. Chem. Res. 41(12), 1842–1851 (2008).
[Crossref] [PubMed]

ACS Nano (2)

M. Delcea, N. Sternberg, A. M. Yashchenok, R. Georgieva, H. Bäumler, H. Möhwald, and A. G. Skirtach, “Nanoplasmonics for dual-molecule release through nanopores in the membrane of red blood cells,” ACS Nano 6(5), 4169–4180 (2012).
[Crossref] [PubMed]

E. Lukianova-Hleb, Y. Hu, L. Latterini, L. Tarpani, S. Lee, R. A. Drezek, J. H. Hafner, and D. O. Lapotko, “Plasmonic nanobubbles as transient vapor nanobubbles generated around plasmonic nanoparticles,” ACS Nano 4(4), 2109–2123 (2010).
[Crossref] [PubMed]

Adv. Drug Deliv. Rev. (1)

P. Ghosh, G. Han, M. De, C. K. Kim, and V. M. Rotello, “Gold nanoparticles in delivery applications,” Adv. Drug Deliv. Rev. 60(11), 1307–1315 (2008).
[Crossref] [PubMed]

Anal. Chem. (1)

D. A. Boyd, J. R. Adleman, D. G. Goodwin, and D. Psaltis, “Chemical separations by bubble-assisted interphase mass-transfer,” Anal. Chem. 80(7), 2452–2456 (2008).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

C. Mowry and J. R. Leger, “Large-area, single-transverse-mode semiconductor laser with diffraction-limited super-Gaussian output,” Appl. Phys. Lett. 66(13), 1614–1616 (1995).
[Crossref]

Electrochem. Sci. (1)

W. Jia, S. Ren, and B. Hu, “Effect of water chemistry on zeta potential of air bubbles,” Electrochem. Sci. 8, 5828–5837 (2013).

J. Colloid Interface Sci. (1)

C. Yang, C. Yang, T. Dabros, D. Li, J. Czarnecki, and J. H. Masliyah, “Measurement of the zeta potential of gas bubbles in aqueous solutions by microelectrophoresis method,” J. Colloid Interface Sci. 243(1), 128–135 (2001).
[Crossref]

J. Micromech. Microeng. (1)

J. Kao, X. Wang, J. Warren, J. Xu, and D. Attinger, “A bubble-powered micro-rotor: conception, manufacturing, assembly and characterization,” J. Micromech. Microeng. 17(12), 2454–2460 (2007).
[Crossref]

J. Opt. (1)

A. Y. Bekshaev, “Subwavelength particles in an inhomogeneous light field: optical forces associated with the spin and orbital energy flows,” J. Opt. 15(4), 044004 (2013).
[Crossref]

J. Opt. Soc. Am. (1)

J. Phys. Chem. C (1)

G. Baffou, J. Polleux, H. Rigneault, and S. Monneret, “Super-heating and micro-bubble generation around plasmonic nanoparticles under cw illumination,” J. Phys. Chem. C 118(9), 4890–4898 (2014).
[Crossref]

J. Phys. Chem. Ref. Data (1)

N. B. Vargaftik, B. N. Volkov, and L. D. Voljak, “International tables of the surface tension of water,” J. Phys. Chem. Ref. Data 12(3), 817–820 (1983).
[Crossref]

Lab Chip (1)

A. Hashmi, G. Yu, M. Reilly-Collette, G. Heiman, and J. Xu, “Oscillating bubbles: a versatile tool for lab on a chip applications,” Lab Chip 12(21), 4216–4227 (2012).
[Crossref] [PubMed]

Nano Lett. (2)

D. A. Boyd, L. Greengard, M. Brongersma, M. Y. El-Naggar, and D. G. Goodwin, “Plasmon-assisted chemical vapor deposition,” Nano Lett. 6(11), 2592–2597 (2006).
[Crossref] [PubMed]

Z. Fang, Y. R. Zhen, O. Neumann, A. Polman, F. J. García de Abajo, P. Nordlander, and N. J. Halas, “Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle,” Nano Lett. 13(4), 1736–1742 (2013).
[Crossref] [PubMed]

Nat. Commun. (1)

C. Zhao, Y. Liu, Y. Zhao, N. Fang, and T. J. Huang, “A reconfigurable plasmofluidic lens,” Nat. Commun. 4, 2305 (2013).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (1)

Phys. Fluids (1)

J. P. Padilla-Martinez, C. Berrospe-Rodriguez, G. Aguilar, J. C. Ramirez-San-Juan, and R. Ramos-Garcia, “Optic cavitation with CW lasers: A review,” Phys. Fluids 26(12), 122007 (2014).
[Crossref]

Phys. Rev. B (1)

G. Baffou and H. Rigneault, “Femtosecond-Pulsed Optical Heating of Gold Nanoparticles,” Phys. Rev. B 84(3), 035415 (2011).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

P. Marmottant and S. Hilgenfeldt, “A bubble-driven microfluidic transport element for bioengineering,” Proc. Natl. Acad. Sci. U.S.A. 101(26), 9523–9527 (2004).
[Crossref] [PubMed]

Sci. Rep. (1)

A. Miniewicz, S. Bartkiewicz, H. Orlikowska, and K. Dradrach, “Marangoni effect visualized in two-dimensions optical tweezers for gas bubbles,” Sci. Rep. 6(1), 34787 (2016).
[Crossref] [PubMed]

Small (1)

C. Li, Z. Wang, P. I. Wang, Y. Peles, N. Koratkar, and G. P. Peterson, “Nanostructured copper interfaces for enhanced boiling,” Small 4(8), 1084–1088 (2008).
[Crossref] [PubMed]

Tech. Phys. Lett. (1)

N. A. Ivanova and B. A. Bezuglyi, “Optical thermocapillary bubble trap,” Tech. Phys. Lett. 32(10), 854–856 (2006).
[Crossref]

Other (6)

Y. Y. Geguzin, Bubbles (Moscow, Nauka, 1985) (In Russian).

The Engineering ToolBox, https://www.engineeringtoolbox.com/air-properties-viscosity-conductivity-heat-capacity-d_1509.html

The Engineering ToolBox, https://www.engineeringtoolbox.com/overall-heat-transfer-coefficient-d_434.html

N. V. Tsederberg, Thermal conductivity of gases and liquids (Massachusetts Institute of Technology, 1965).

C. Mätzler, MATLAB functions for Mie scattering and absorption, Version 2, IAP Research Report, No. 2002–11 (Institut für angewandte Physik, Universität Bern, 2002).

L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Oxford, Pergamon Press, 1987).

Supplementary Material (5)

NameDescription
» Visualization 1       Visualization associated with Fig.4.
» Visualization 2       Visualization associated with Fig.5.
» Visualization 3       Vizualization associated with Fig.5.
» Visualization 4       Visualization associated with Fig.6.
» Visualization 5       Visualization of bubbles associated with Fig.7.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) The experimental setup: (1) IR laser, (2) objective, (3) cuvette with the water suspension of absorbing nanoparticles, (4) spectral filter to stop the IR radiation, (5) CCD camera, (6) white-light source for visible illumination. (b) Magnified image of the central part of the cuvette (dotted rectangle in (a)) with a schematic of the focused beam: the magenta lines show the beam margins with the e–1 intensity level, the coordinate origin coincides with the geometric focal point.
Fig. 2
Fig. 2 Mean temperature distribution in the cuvette 3 of Fig. 1 for different values of the incident laser power Q0 indicated near the curves. The blue circle shows the experimental result obtained for Q0 = 2.0 W.
Fig. 3
Fig. 3 Spatial dependence of the thermocapillary (29) and optical (31) y-directed forces exerted on a spherical bubble with radius 2 μm in the laser beam (1) with Q0 = 0.5 W and bx = 6 μm, by = 4 μm (the corresponding temperature distribution is described by the red curve of Fig. 2). Blue curve: thermocapillary force FTC; green curve: optical force FOG; red curve: resulting force FTC + FOG; the light blue rectangle marks the region where the resulting force is repulsive. Black circles: equilibrium points, dashed circumferences: contours of bubbles with different sizes (see further explanations in the text).
Fig. 4
Fig. 4 (Visualization 1). A group of generated microbubbles located at the periphery of the laser beam spot. The approximate e–1 intensity contour of the focal spot at the water-air interface plane is shown by the cyan dotted ellipse. Green and cyan arrows show the repulsive (FOG) and attractive (FTC) forces that cancel each other at the current bubble’s position (cf. Figure 3).
Fig. 5
Fig. 5 (Visualization 2 and Visualization 3). View of the bubble ensemble when the vertical beam size is reduced from (a) by = 7 μm to (b) by = 3.5 μm at 5th second of Visualization 2. The approximate e–1 intensity contours of the focal spots at the water-air interface plane are shown by the cyan dotted ellipse.
Fig. 6
Fig. 6 (Visualization 4). Bubble ensemble with different size fractions: the large bubbles gather near the laser beam axis, the small ones keep at the beam periphery. The approximate e–1 intensity contour of the focal spot at the water-air interface plane is shown by the cyan dotted ellipse.
Fig. 7
Fig. 7 (Visualization 5). (a) Bubbles are located at the periphery of the light intensity distribution; the largest bubble marked by the arrow is the closest to the spot center. (b) The largest bubble grows and moves to the beam center. The approximate e–1 intensity contour of the focal spot at the water-air interface plane is shown by the cyan dotted ellipse.

Tables (1)

Tables Icon

Table 1 The bubble parameters and characteristic temperature values for different regimes

Equations (31)

Equations on this page are rendered with MathJax. Learn more.

I( x,y )= Q 0 ξ b x b y exp[ ( x b x ) 4 ( y b y ) 4 ],
ξ=3.286.
n w =1.33,
n w ( 2π/λ ) b y 2 ~0.3 mm.
σ=π a p 2 =3.14×1 0 10 cm 2 .
σ ¯ ext = σ ext σ ,     σ ¯ abs = σ abs σ
σ ¯ ext = σ ¯ ext,w =0.587, σ ¯ abs = σ ¯ abs,w =0.543;
σ ¯ ext =0.539, σ ¯ abs =0.471.
a w = 0.024 cm 1 .
N= α w α 0 σ abs,w .
N 1/3 3.3 10 3 cm = 33 μm
α= α 0 +( α w α 0 ) σ abs σ abs,w =0.022 cm 1 .
κ w 2 T m +F=0,
k w = 0.6 K/( Wm )
W w = σ ¯ abs,w π Q 0 a 2 ξ b x b y .
W w 4π r 2 = κ w dT dr
T( r )= W w 4π κ w r + T B
T( a )= σ ¯ abs,w Q 0 a 4ξ κ w b x b y + T m
T( a )=6.9 10 3 [ Q 0 ] [ b x b y ] + T m ,
b x   b y  = 24 μ m 2
Q 0 0.5  0.6 W,
k g = 0.03 K/( Wm ).
W= σ ¯ abs σ ¯ abs,w W w = σ ¯ abs π Q 0 a 2 ξ b x b y
T( r )={ W 4π κ w r + T m ,r>R, W 4π κ g r ( 1 r R + κ g κ w r R )+ T m ,r<R.
T( R )= W 4π κ w R + T m ,
T( a )= W 4π κ g a ( 1 a R + κ g κ w a R )+ T m W 4π κ g a + T m .
T( R )= T m +6.0 10 2 [ Q 0 ] [ b x b y ][ R ] K,
T( a )= T m +1.2 10 5 [ Q 0 ] [ b x b y ] ,
F TC =π R 2 dγ dT T m .
dg/dT=0.17×1 0 3 N/(mK),
F OG = 2π n w c R 3 1 n w 2 1+2 n w 2 I( x,y ),

Metrics