Abstract

Improvement in detection accuracy is an important and hot topic for laser induced breakdown spectroscopy (LIBS). Discharged-pulse assisted (DPA) plasma has been investigated as an effective way to enhance analytical capabilities and accuracy of LIBS. Most of reported DPA experiments have been performed using high voltage and power to comprehend spectrum enhancement. For safety concerns and maneuverability of LIBS equipment; low power and small current discharge are viable for industrial application. In this paper, the enhanced spectra with many extra peaks and higher line intensities were also detected, realized by a low-power discharge assisted LIBS (Max. 2.8 kV and ~1 mA), which are much lower than reported in literature ~MW discharge. The number of atomic peaks of the sample increases, on the other hand, and gradual peaks become stronger with the increase of discharged HV from 1 kV to 1.5 kV, 1.75 kV, 2 kV, 2.5 kV and 2.8 kV. The discharge current increases from 0.2 mA to 1.5 mA, which is almost threshold discharge voltage. After processing, the original spectra, including the peak shift and peak correction by statistics and physics, resulted in achievement of better line stability in terms of relative standard deviation (RSD) of ash, carbon, and volatile coal samples with root mean square error prediction (RMSEP) of 0.4864, 0.3682, 0.3374 and the linear regression coefficient R2 = 0.99, 0.99,0.98, respectively. The result proposes a promising method to improve detection accuracy of LIBS with simple setup, high safety and low-cost.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Accuracy enhancement of laser induced breakdown spectra using permittivity and size optimized plasma confinement rings

An Li, Shuai Guo, Nasrullah Wazir, Ke Chai, Liang Liang, Min Zhang, Yan Hao, Pengfei Nan, and Ruibin Liu
Opt. Express 25(22) 27559-27569 (2017)

Effect of voltage and capacitance in nanosecond pulse discharge enhanced laser-induced breakdown spectroscopy

Weidong Zhou, Kexue Li, Huiguo Qian, Zhijun Ren, and Youli Yu
Appl. Opt. 51(7) B42-B48 (2012)

Flame-enhanced laser-induced breakdown spectroscopy

L. Liu, S. Li, X. N. He, X. Huang, C. F. Zhang, L. S. Fan, M. X. Wang, Y. S. Zhou, K. Chen, L. Jiang, J. F. Silvain, and Y. F. Lu
Opt. Express 22(7) 7686-7693 (2014)

References

  • View by:
  • |
  • |
  • |

  1. V. U. Contreras, M. A. Meneses-Nava, N. Ornelas-Soto, O. Barbosa-García, P. L. López-de-Alba, J. L. Maldonado, G. Ramos-Ortiz, F. J. Acevedo-Aguilar, and L. López-Martínez, “Fast and environmentally friendly quantitative analysis of active agents in anti-diabetic tablets by an alternative laser-induced breakdown spectroscopy (LIBS) method and comparison to a validated reversed-phase high-performance liquid chromatography (RP-HPLC) method,” Appl. Spectrosc. 66(11), 1294–1301 (2012).
    [Crossref] [PubMed]
  2. J. Anzano, B. Bonilla, B. Montull-Ibor, and J. Casas-González, “Rapid characterization of analgesic pills by laser-induced breakdown spectroscopy (LIBS),” Med. Chem. Res. 18(8), 656–664 (2009).
    [Crossref]
  3. Y. Matsuura, “Detection of early caries by laser-induced breakdown spectroscopy,” Proc. SPIE 9537, 95371E (2017).
  4. Z. Hou, Z. Wang, J. Liu, W. Ni, and Z. Li, “Signal quality improvement using cylindrical confinement for laser induced breakdown spectroscopy,” Opt. Express 21(13), 15974–15979 (2013).
    [Crossref] [PubMed]
  5. S. Yao, J. Lu, K. Chen, S. Pan, J. Li, and M. Dong, “Study of laser-induced breakdown spectroscopy to discriminate pearlitic/ferritic from martensitic phases,” Appl. Surf. Sci. 257(7), 3103–3110 (2011).
    [Crossref]
  6. G. Pan, M. Dong, J. Yu, and J. Lu, “Accuracy improvement of quantitative analysis of unburned carbon content in fly ash using laser induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 131, 26–31 (2017).
    [Crossref]
  7. J. Singh, R. Kumar, S. Awasthi, V. Singh, and A. K. Rai, “Laser Induced breakdown spectroscopy: A rapid tool for the identification and quantification of minerals in cucurbit seeds,” Food Chem. 221, 1778–1783 (2017).
    [Crossref] [PubMed]
  8. A. P. M. Michel, “Review: Applications of single-shot laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 65(3), 185–191 (2010).
    [Crossref]
  9. D. A. Rusak, B. C. Castle, B. W. Smith, and J. D. Winefordner, “Fundamentals and Applications of Laser-Induced Breakdown Spectroscopy,” C R C. Crit. Rev. Anal. Chem. 27(4), 257–290 (1997).
    [Crossref]
  10. J. E. Haddad, L. Canioni, and B. Bousquet, “Good practices in LIBS analysis: Review and advices,” Spectrochim. Acta B At. Spectrosc. 101, 171–182 (2014).
    [Crossref]
  11. A. J. Bauer and S. G. Buckley, “Novel Applications of Laser-Induced Breakdown Spectroscopy,” Appl. Spectrosc. 71(4), 553–566 (2017).
    [Crossref] [PubMed]
  12. Y. Wang, H. Yuan, Y. Fu, and Z. Wang, “Experimental and computational investigation of confined laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 126, 44–52 (2016).
    [Crossref]
  13. H. Sobral and A. Robledo-Martinez, “Signal enhancement in laser-induced breakdown spectroscopy using fast square-pulse discharges,” Spectrochim. Acta B At. Spectrosc. 124, 67–73 (2016).
    [Crossref]
  14. O. A. Nassef and H. E. Elsayed-Ali, “Spark discharge assisted laser induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 60(12), 1564–1572 (2005).
    [Crossref]
  15. Y. Ikeda, A. Moon, and M. Kaneko, “Development of microwave-enhanced spark-induced breakdown spectroscopy,” Appl. Opt. 49(13), C95–C100 (2010).
    [Crossref]
  16. L. B. Guo, X. N. He, B. Y. Zhang, C. M. Li, W. Hu, Y. S. Zhou, W. Xiong, X. Y. Zeng, and Y. F. Lu, “Enhancement of laser-induced breakdown spectroscopy signals using both a hemispherical cavity and a magnetic field,” in SPIE LASE(2012), pp. 169–182.
  17. W. Zhou, K. Li, Q. Shen, Q. Chen, and J. Long, “Optical emission enhancement using laser ablation combined with fast pulse discharge,” Opt. Express 18(3), 2573–2578 (2010).
    [Crossref] [PubMed]
  18. X. Li, W. Zhou, K. Li, H. Qian, and Z. Ren, “Laser ablation fast pulse discharge plasma spectroscopy analysis of Pb, Mg and Sn in soil,” Opt. Commun. 285(1), 54–58 (2012).
    [Crossref]
  19. W. Zhou, K. Li, H. Qian, Z. Ren, and Y. Yu, “Effect of voltage and capacitance in nanosecond pulse discharge enhanced laser-induced breakdown spectroscopy,” Appl. Opt. 51(7), B42–B48 (2012).
    [Crossref] [PubMed]
  20. M. Vinić and M. Ivković, “Spatial and Temporal Characteristics of Laser Ablation Combined With Fast Pulse Discharge,” IEEE Trans. Plasma Sci. 42(10), 2598–2599 (2014).
    [Crossref]
  21. C. G. D. Vega, N. Bordel, R. Pereiro, and A. Sanz-Medel, “Evaluation of the temporal profiles and the analytical features of a laser ablation — Pulsed glow discharge coupling for optical emission spectrometry,” Spectrochim. Acta B At. Spectrosc. 121, 47–54 (2016).
    [Crossref]
  22. K. X. Li, W. D. Zhou, Q. M. Shen, Z. J. Ren, and B. J. Peng, “Laser ablation assisted spark induced breakdown spectroscopy on soil samples,” J. Anal. At. Spectrom. 25(9), 1475–1481 (2010).
    [Crossref]
  23. A. Li, S. Guo, N. Wazir, K. Chai, L. Liang, M. Zhang, Y. Hao, P. Nan, and R. Liu, “Accuracy enhancement of laser induced breakdown spectra using permittivity and size optimized plasma confinement rings,” Opt. Express 25(22), 27559–27569 (2017).
    [Crossref] [PubMed]

2017 (5)

Y. Matsuura, “Detection of early caries by laser-induced breakdown spectroscopy,” Proc. SPIE 9537, 95371E (2017).

G. Pan, M. Dong, J. Yu, and J. Lu, “Accuracy improvement of quantitative analysis of unburned carbon content in fly ash using laser induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 131, 26–31 (2017).
[Crossref]

J. Singh, R. Kumar, S. Awasthi, V. Singh, and A. K. Rai, “Laser Induced breakdown spectroscopy: A rapid tool for the identification and quantification of minerals in cucurbit seeds,” Food Chem. 221, 1778–1783 (2017).
[Crossref] [PubMed]

A. J. Bauer and S. G. Buckley, “Novel Applications of Laser-Induced Breakdown Spectroscopy,” Appl. Spectrosc. 71(4), 553–566 (2017).
[Crossref] [PubMed]

A. Li, S. Guo, N. Wazir, K. Chai, L. Liang, M. Zhang, Y. Hao, P. Nan, and R. Liu, “Accuracy enhancement of laser induced breakdown spectra using permittivity and size optimized plasma confinement rings,” Opt. Express 25(22), 27559–27569 (2017).
[Crossref] [PubMed]

2016 (3)

C. G. D. Vega, N. Bordel, R. Pereiro, and A. Sanz-Medel, “Evaluation of the temporal profiles and the analytical features of a laser ablation — Pulsed glow discharge coupling for optical emission spectrometry,” Spectrochim. Acta B At. Spectrosc. 121, 47–54 (2016).
[Crossref]

Y. Wang, H. Yuan, Y. Fu, and Z. Wang, “Experimental and computational investigation of confined laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 126, 44–52 (2016).
[Crossref]

H. Sobral and A. Robledo-Martinez, “Signal enhancement in laser-induced breakdown spectroscopy using fast square-pulse discharges,” Spectrochim. Acta B At. Spectrosc. 124, 67–73 (2016).
[Crossref]

2014 (2)

J. E. Haddad, L. Canioni, and B. Bousquet, “Good practices in LIBS analysis: Review and advices,” Spectrochim. Acta B At. Spectrosc. 101, 171–182 (2014).
[Crossref]

M. Vinić and M. Ivković, “Spatial and Temporal Characteristics of Laser Ablation Combined With Fast Pulse Discharge,” IEEE Trans. Plasma Sci. 42(10), 2598–2599 (2014).
[Crossref]

2013 (1)

2012 (3)

2011 (1)

S. Yao, J. Lu, K. Chen, S. Pan, J. Li, and M. Dong, “Study of laser-induced breakdown spectroscopy to discriminate pearlitic/ferritic from martensitic phases,” Appl. Surf. Sci. 257(7), 3103–3110 (2011).
[Crossref]

2010 (4)

A. P. M. Michel, “Review: Applications of single-shot laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 65(3), 185–191 (2010).
[Crossref]

Y. Ikeda, A. Moon, and M. Kaneko, “Development of microwave-enhanced spark-induced breakdown spectroscopy,” Appl. Opt. 49(13), C95–C100 (2010).
[Crossref]

W. Zhou, K. Li, Q. Shen, Q. Chen, and J. Long, “Optical emission enhancement using laser ablation combined with fast pulse discharge,” Opt. Express 18(3), 2573–2578 (2010).
[Crossref] [PubMed]

K. X. Li, W. D. Zhou, Q. M. Shen, Z. J. Ren, and B. J. Peng, “Laser ablation assisted spark induced breakdown spectroscopy on soil samples,” J. Anal. At. Spectrom. 25(9), 1475–1481 (2010).
[Crossref]

2009 (1)

J. Anzano, B. Bonilla, B. Montull-Ibor, and J. Casas-González, “Rapid characterization of analgesic pills by laser-induced breakdown spectroscopy (LIBS),” Med. Chem. Res. 18(8), 656–664 (2009).
[Crossref]

2005 (1)

O. A. Nassef and H. E. Elsayed-Ali, “Spark discharge assisted laser induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 60(12), 1564–1572 (2005).
[Crossref]

1997 (1)

D. A. Rusak, B. C. Castle, B. W. Smith, and J. D. Winefordner, “Fundamentals and Applications of Laser-Induced Breakdown Spectroscopy,” C R C. Crit. Rev. Anal. Chem. 27(4), 257–290 (1997).
[Crossref]

Acevedo-Aguilar, F. J.

Anzano, J.

J. Anzano, B. Bonilla, B. Montull-Ibor, and J. Casas-González, “Rapid characterization of analgesic pills by laser-induced breakdown spectroscopy (LIBS),” Med. Chem. Res. 18(8), 656–664 (2009).
[Crossref]

Awasthi, S.

J. Singh, R. Kumar, S. Awasthi, V. Singh, and A. K. Rai, “Laser Induced breakdown spectroscopy: A rapid tool for the identification and quantification of minerals in cucurbit seeds,” Food Chem. 221, 1778–1783 (2017).
[Crossref] [PubMed]

Barbosa-García, O.

Bauer, A. J.

Bonilla, B.

J. Anzano, B. Bonilla, B. Montull-Ibor, and J. Casas-González, “Rapid characterization of analgesic pills by laser-induced breakdown spectroscopy (LIBS),” Med. Chem. Res. 18(8), 656–664 (2009).
[Crossref]

Bordel, N.

C. G. D. Vega, N. Bordel, R. Pereiro, and A. Sanz-Medel, “Evaluation of the temporal profiles and the analytical features of a laser ablation — Pulsed glow discharge coupling for optical emission spectrometry,” Spectrochim. Acta B At. Spectrosc. 121, 47–54 (2016).
[Crossref]

Bousquet, B.

J. E. Haddad, L. Canioni, and B. Bousquet, “Good practices in LIBS analysis: Review and advices,” Spectrochim. Acta B At. Spectrosc. 101, 171–182 (2014).
[Crossref]

Buckley, S. G.

Canioni, L.

J. E. Haddad, L. Canioni, and B. Bousquet, “Good practices in LIBS analysis: Review and advices,” Spectrochim. Acta B At. Spectrosc. 101, 171–182 (2014).
[Crossref]

Casas-González, J.

J. Anzano, B. Bonilla, B. Montull-Ibor, and J. Casas-González, “Rapid characterization of analgesic pills by laser-induced breakdown spectroscopy (LIBS),” Med. Chem. Res. 18(8), 656–664 (2009).
[Crossref]

Castle, B. C.

D. A. Rusak, B. C. Castle, B. W. Smith, and J. D. Winefordner, “Fundamentals and Applications of Laser-Induced Breakdown Spectroscopy,” C R C. Crit. Rev. Anal. Chem. 27(4), 257–290 (1997).
[Crossref]

Chai, K.

Chen, K.

S. Yao, J. Lu, K. Chen, S. Pan, J. Li, and M. Dong, “Study of laser-induced breakdown spectroscopy to discriminate pearlitic/ferritic from martensitic phases,” Appl. Surf. Sci. 257(7), 3103–3110 (2011).
[Crossref]

Chen, Q.

Contreras, V. U.

Dong, M.

G. Pan, M. Dong, J. Yu, and J. Lu, “Accuracy improvement of quantitative analysis of unburned carbon content in fly ash using laser induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 131, 26–31 (2017).
[Crossref]

S. Yao, J. Lu, K. Chen, S. Pan, J. Li, and M. Dong, “Study of laser-induced breakdown spectroscopy to discriminate pearlitic/ferritic from martensitic phases,” Appl. Surf. Sci. 257(7), 3103–3110 (2011).
[Crossref]

Elsayed-Ali, H. E.

O. A. Nassef and H. E. Elsayed-Ali, “Spark discharge assisted laser induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 60(12), 1564–1572 (2005).
[Crossref]

Fu, Y.

Y. Wang, H. Yuan, Y. Fu, and Z. Wang, “Experimental and computational investigation of confined laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 126, 44–52 (2016).
[Crossref]

Guo, S.

Haddad, J. E.

J. E. Haddad, L. Canioni, and B. Bousquet, “Good practices in LIBS analysis: Review and advices,” Spectrochim. Acta B At. Spectrosc. 101, 171–182 (2014).
[Crossref]

Hao, Y.

Hou, Z.

Ikeda, Y.

Ivkovic, M.

M. Vinić and M. Ivković, “Spatial and Temporal Characteristics of Laser Ablation Combined With Fast Pulse Discharge,” IEEE Trans. Plasma Sci. 42(10), 2598–2599 (2014).
[Crossref]

Kaneko, M.

Kumar, R.

J. Singh, R. Kumar, S. Awasthi, V. Singh, and A. K. Rai, “Laser Induced breakdown spectroscopy: A rapid tool for the identification and quantification of minerals in cucurbit seeds,” Food Chem. 221, 1778–1783 (2017).
[Crossref] [PubMed]

Li, A.

Li, J.

S. Yao, J. Lu, K. Chen, S. Pan, J. Li, and M. Dong, “Study of laser-induced breakdown spectroscopy to discriminate pearlitic/ferritic from martensitic phases,” Appl. Surf. Sci. 257(7), 3103–3110 (2011).
[Crossref]

Li, K.

Li, K. X.

K. X. Li, W. D. Zhou, Q. M. Shen, Z. J. Ren, and B. J. Peng, “Laser ablation assisted spark induced breakdown spectroscopy on soil samples,” J. Anal. At. Spectrom. 25(9), 1475–1481 (2010).
[Crossref]

Li, X.

X. Li, W. Zhou, K. Li, H. Qian, and Z. Ren, “Laser ablation fast pulse discharge plasma spectroscopy analysis of Pb, Mg and Sn in soil,” Opt. Commun. 285(1), 54–58 (2012).
[Crossref]

Li, Z.

Liang, L.

Liu, J.

Liu, R.

Long, J.

López-de-Alba, P. L.

López-Martínez, L.

Lu, J.

G. Pan, M. Dong, J. Yu, and J. Lu, “Accuracy improvement of quantitative analysis of unburned carbon content in fly ash using laser induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 131, 26–31 (2017).
[Crossref]

S. Yao, J. Lu, K. Chen, S. Pan, J. Li, and M. Dong, “Study of laser-induced breakdown spectroscopy to discriminate pearlitic/ferritic from martensitic phases,” Appl. Surf. Sci. 257(7), 3103–3110 (2011).
[Crossref]

Maldonado, J. L.

Matsuura, Y.

Y. Matsuura, “Detection of early caries by laser-induced breakdown spectroscopy,” Proc. SPIE 9537, 95371E (2017).

Meneses-Nava, M. A.

Michel, A. P. M.

A. P. M. Michel, “Review: Applications of single-shot laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 65(3), 185–191 (2010).
[Crossref]

Montull-Ibor, B.

J. Anzano, B. Bonilla, B. Montull-Ibor, and J. Casas-González, “Rapid characterization of analgesic pills by laser-induced breakdown spectroscopy (LIBS),” Med. Chem. Res. 18(8), 656–664 (2009).
[Crossref]

Moon, A.

Nan, P.

Nassef, O. A.

O. A. Nassef and H. E. Elsayed-Ali, “Spark discharge assisted laser induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 60(12), 1564–1572 (2005).
[Crossref]

Ni, W.

Ornelas-Soto, N.

Pan, G.

G. Pan, M. Dong, J. Yu, and J. Lu, “Accuracy improvement of quantitative analysis of unburned carbon content in fly ash using laser induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 131, 26–31 (2017).
[Crossref]

Pan, S.

S. Yao, J. Lu, K. Chen, S. Pan, J. Li, and M. Dong, “Study of laser-induced breakdown spectroscopy to discriminate pearlitic/ferritic from martensitic phases,” Appl. Surf. Sci. 257(7), 3103–3110 (2011).
[Crossref]

Peng, B. J.

K. X. Li, W. D. Zhou, Q. M. Shen, Z. J. Ren, and B. J. Peng, “Laser ablation assisted spark induced breakdown spectroscopy on soil samples,” J. Anal. At. Spectrom. 25(9), 1475–1481 (2010).
[Crossref]

Pereiro, R.

C. G. D. Vega, N. Bordel, R. Pereiro, and A. Sanz-Medel, “Evaluation of the temporal profiles and the analytical features of a laser ablation — Pulsed glow discharge coupling for optical emission spectrometry,” Spectrochim. Acta B At. Spectrosc. 121, 47–54 (2016).
[Crossref]

Qian, H.

X. Li, W. Zhou, K. Li, H. Qian, and Z. Ren, “Laser ablation fast pulse discharge plasma spectroscopy analysis of Pb, Mg and Sn in soil,” Opt. Commun. 285(1), 54–58 (2012).
[Crossref]

W. Zhou, K. Li, H. Qian, Z. Ren, and Y. Yu, “Effect of voltage and capacitance in nanosecond pulse discharge enhanced laser-induced breakdown spectroscopy,” Appl. Opt. 51(7), B42–B48 (2012).
[Crossref] [PubMed]

Rai, A. K.

J. Singh, R. Kumar, S. Awasthi, V. Singh, and A. K. Rai, “Laser Induced breakdown spectroscopy: A rapid tool for the identification and quantification of minerals in cucurbit seeds,” Food Chem. 221, 1778–1783 (2017).
[Crossref] [PubMed]

Ramos-Ortiz, G.

Ren, Z.

W. Zhou, K. Li, H. Qian, Z. Ren, and Y. Yu, “Effect of voltage and capacitance in nanosecond pulse discharge enhanced laser-induced breakdown spectroscopy,” Appl. Opt. 51(7), B42–B48 (2012).
[Crossref] [PubMed]

X. Li, W. Zhou, K. Li, H. Qian, and Z. Ren, “Laser ablation fast pulse discharge plasma spectroscopy analysis of Pb, Mg and Sn in soil,” Opt. Commun. 285(1), 54–58 (2012).
[Crossref]

Ren, Z. J.

K. X. Li, W. D. Zhou, Q. M. Shen, Z. J. Ren, and B. J. Peng, “Laser ablation assisted spark induced breakdown spectroscopy on soil samples,” J. Anal. At. Spectrom. 25(9), 1475–1481 (2010).
[Crossref]

Robledo-Martinez, A.

H. Sobral and A. Robledo-Martinez, “Signal enhancement in laser-induced breakdown spectroscopy using fast square-pulse discharges,” Spectrochim. Acta B At. Spectrosc. 124, 67–73 (2016).
[Crossref]

Rusak, D. A.

D. A. Rusak, B. C. Castle, B. W. Smith, and J. D. Winefordner, “Fundamentals and Applications of Laser-Induced Breakdown Spectroscopy,” C R C. Crit. Rev. Anal. Chem. 27(4), 257–290 (1997).
[Crossref]

Sanz-Medel, A.

C. G. D. Vega, N. Bordel, R. Pereiro, and A. Sanz-Medel, “Evaluation of the temporal profiles and the analytical features of a laser ablation — Pulsed glow discharge coupling for optical emission spectrometry,” Spectrochim. Acta B At. Spectrosc. 121, 47–54 (2016).
[Crossref]

Shen, Q.

Shen, Q. M.

K. X. Li, W. D. Zhou, Q. M. Shen, Z. J. Ren, and B. J. Peng, “Laser ablation assisted spark induced breakdown spectroscopy on soil samples,” J. Anal. At. Spectrom. 25(9), 1475–1481 (2010).
[Crossref]

Singh, J.

J. Singh, R. Kumar, S. Awasthi, V. Singh, and A. K. Rai, “Laser Induced breakdown spectroscopy: A rapid tool for the identification and quantification of minerals in cucurbit seeds,” Food Chem. 221, 1778–1783 (2017).
[Crossref] [PubMed]

Singh, V.

J. Singh, R. Kumar, S. Awasthi, V. Singh, and A. K. Rai, “Laser Induced breakdown spectroscopy: A rapid tool for the identification and quantification of minerals in cucurbit seeds,” Food Chem. 221, 1778–1783 (2017).
[Crossref] [PubMed]

Smith, B. W.

D. A. Rusak, B. C. Castle, B. W. Smith, and J. D. Winefordner, “Fundamentals and Applications of Laser-Induced Breakdown Spectroscopy,” C R C. Crit. Rev. Anal. Chem. 27(4), 257–290 (1997).
[Crossref]

Sobral, H.

H. Sobral and A. Robledo-Martinez, “Signal enhancement in laser-induced breakdown spectroscopy using fast square-pulse discharges,” Spectrochim. Acta B At. Spectrosc. 124, 67–73 (2016).
[Crossref]

Vega, C. G. D.

C. G. D. Vega, N. Bordel, R. Pereiro, and A. Sanz-Medel, “Evaluation of the temporal profiles and the analytical features of a laser ablation — Pulsed glow discharge coupling for optical emission spectrometry,” Spectrochim. Acta B At. Spectrosc. 121, 47–54 (2016).
[Crossref]

Vinic, M.

M. Vinić and M. Ivković, “Spatial and Temporal Characteristics of Laser Ablation Combined With Fast Pulse Discharge,” IEEE Trans. Plasma Sci. 42(10), 2598–2599 (2014).
[Crossref]

Wang, Y.

Y. Wang, H. Yuan, Y. Fu, and Z. Wang, “Experimental and computational investigation of confined laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 126, 44–52 (2016).
[Crossref]

Wang, Z.

Y. Wang, H. Yuan, Y. Fu, and Z. Wang, “Experimental and computational investigation of confined laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 126, 44–52 (2016).
[Crossref]

Z. Hou, Z. Wang, J. Liu, W. Ni, and Z. Li, “Signal quality improvement using cylindrical confinement for laser induced breakdown spectroscopy,” Opt. Express 21(13), 15974–15979 (2013).
[Crossref] [PubMed]

Wazir, N.

Winefordner, J. D.

D. A. Rusak, B. C. Castle, B. W. Smith, and J. D. Winefordner, “Fundamentals and Applications of Laser-Induced Breakdown Spectroscopy,” C R C. Crit. Rev. Anal. Chem. 27(4), 257–290 (1997).
[Crossref]

Yao, S.

S. Yao, J. Lu, K. Chen, S. Pan, J. Li, and M. Dong, “Study of laser-induced breakdown spectroscopy to discriminate pearlitic/ferritic from martensitic phases,” Appl. Surf. Sci. 257(7), 3103–3110 (2011).
[Crossref]

Yu, J.

G. Pan, M. Dong, J. Yu, and J. Lu, “Accuracy improvement of quantitative analysis of unburned carbon content in fly ash using laser induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 131, 26–31 (2017).
[Crossref]

Yu, Y.

Yuan, H.

Y. Wang, H. Yuan, Y. Fu, and Z. Wang, “Experimental and computational investigation of confined laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 126, 44–52 (2016).
[Crossref]

Zhang, M.

Zhou, W.

Zhou, W. D.

K. X. Li, W. D. Zhou, Q. M. Shen, Z. J. Ren, and B. J. Peng, “Laser ablation assisted spark induced breakdown spectroscopy on soil samples,” J. Anal. At. Spectrom. 25(9), 1475–1481 (2010).
[Crossref]

Appl. Opt. (2)

Appl. Spectrosc. (2)

Appl. Surf. Sci. (1)

S. Yao, J. Lu, K. Chen, S. Pan, J. Li, and M. Dong, “Study of laser-induced breakdown spectroscopy to discriminate pearlitic/ferritic from martensitic phases,” Appl. Surf. Sci. 257(7), 3103–3110 (2011).
[Crossref]

C R C. Crit. Rev. Anal. Chem. (1)

D. A. Rusak, B. C. Castle, B. W. Smith, and J. D. Winefordner, “Fundamentals and Applications of Laser-Induced Breakdown Spectroscopy,” C R C. Crit. Rev. Anal. Chem. 27(4), 257–290 (1997).
[Crossref]

Food Chem. (1)

J. Singh, R. Kumar, S. Awasthi, V. Singh, and A. K. Rai, “Laser Induced breakdown spectroscopy: A rapid tool for the identification and quantification of minerals in cucurbit seeds,” Food Chem. 221, 1778–1783 (2017).
[Crossref] [PubMed]

IEEE Trans. Plasma Sci. (1)

M. Vinić and M. Ivković, “Spatial and Temporal Characteristics of Laser Ablation Combined With Fast Pulse Discharge,” IEEE Trans. Plasma Sci. 42(10), 2598–2599 (2014).
[Crossref]

J. Anal. At. Spectrom. (1)

K. X. Li, W. D. Zhou, Q. M. Shen, Z. J. Ren, and B. J. Peng, “Laser ablation assisted spark induced breakdown spectroscopy on soil samples,” J. Anal. At. Spectrom. 25(9), 1475–1481 (2010).
[Crossref]

Med. Chem. Res. (1)

J. Anzano, B. Bonilla, B. Montull-Ibor, and J. Casas-González, “Rapid characterization of analgesic pills by laser-induced breakdown spectroscopy (LIBS),” Med. Chem. Res. 18(8), 656–664 (2009).
[Crossref]

Opt. Commun. (1)

X. Li, W. Zhou, K. Li, H. Qian, and Z. Ren, “Laser ablation fast pulse discharge plasma spectroscopy analysis of Pb, Mg and Sn in soil,” Opt. Commun. 285(1), 54–58 (2012).
[Crossref]

Opt. Express (3)

Proc. SPIE (1)

Y. Matsuura, “Detection of early caries by laser-induced breakdown spectroscopy,” Proc. SPIE 9537, 95371E (2017).

Spectrochim. Acta B At. Spectrosc. (7)

G. Pan, M. Dong, J. Yu, and J. Lu, “Accuracy improvement of quantitative analysis of unburned carbon content in fly ash using laser induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 131, 26–31 (2017).
[Crossref]

A. P. M. Michel, “Review: Applications of single-shot laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 65(3), 185–191 (2010).
[Crossref]

J. E. Haddad, L. Canioni, and B. Bousquet, “Good practices in LIBS analysis: Review and advices,” Spectrochim. Acta B At. Spectrosc. 101, 171–182 (2014).
[Crossref]

Y. Wang, H. Yuan, Y. Fu, and Z. Wang, “Experimental and computational investigation of confined laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 126, 44–52 (2016).
[Crossref]

H. Sobral and A. Robledo-Martinez, “Signal enhancement in laser-induced breakdown spectroscopy using fast square-pulse discharges,” Spectrochim. Acta B At. Spectrosc. 124, 67–73 (2016).
[Crossref]

O. A. Nassef and H. E. Elsayed-Ali, “Spark discharge assisted laser induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 60(12), 1564–1572 (2005).
[Crossref]

C. G. D. Vega, N. Bordel, R. Pereiro, and A. Sanz-Medel, “Evaluation of the temporal profiles and the analytical features of a laser ablation — Pulsed glow discharge coupling for optical emission spectrometry,” Spectrochim. Acta B At. Spectrosc. 121, 47–54 (2016).
[Crossref]

Other (1)

L. B. Guo, X. N. He, B. Y. Zhang, C. M. Li, W. Hu, Y. S. Zhou, W. Xiong, X. Y. Zeng, and Y. F. Lu, “Enhancement of laser-induced breakdown spectroscopy signals using both a hemispherical cavity and a magnetic field,” in SPIE LASE(2012), pp. 169–182.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 DPA-LIBS system (H0: AC power supply; H1: Oscilloscope; H2: High-voltage probe; H3: Signal generator; H4: Positive pulse generator; H5: High-voltage generator; P1: Discharge electrode ( + V); P2: Discharge electrode (-V); L1, L2, L3: lens.
Fig. 2
Fig. 2 (a) The coal spectrum with DPA (2.8 kV) and without DPA shown in inset (b) peak drift in two different measurements
Fig. 3
Fig. 3 (a) The diagram of coefficient R2 between column u = 5 and another column in spectral matrix P ij S (b) The linear fitting between intensities of two peaks with the maximum correlation coefficient of 0.94.
Fig. 4
Fig. 4 (a) The rectangular discharge pulse modulation signal with the pulse width of about 47.6 μs. (b) The rising edge of the pulse signal is about 150 ns. (c) The array positive pulse signal has a frequency of 5 KHz. (d) The LIBS spectrum of the coal sample without discharge being applied.
Fig. 5
Fig. 5 Low-power DPA-LIBS spectra under various HV discharge (a) 1 kV (b) 1.5 kV (c) 1.75 kV (d) 2 kV (e) 2.5 kV (f) 2.8 kV
Fig. 6
Fig. 6 (a) The distribution of plasma temperature and 6(b) electronic density with and without DPA LIBS with the change of the number of pulse
Fig. 7
Fig. 7 (a) The dependence of the number of peaks on the discharge power of DPA-LIBS and the fitting results of the quantitative analysis with (b) ash (c) carbon (d) volatile, respectively.

Tables (1)

Tables Icon

Table 1 The parameters of different discharge conditions.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

R= Cov( P ml s , P mk s ) Var( P ml s )Var( P mk s )
R=[ 1 R 12 R 13 R 14 ... R 1k ... 1 R 23 R 24 ... R 2k ... 1 R 34 ... R 3k ... 1 ... ... ... 1 R mk ... 1 ... 1 ]
P mu = a m1 P m1 r + a m2 P m2 r ++ a mn P mn r = n=1 n a mn P mn r
a 1 = 1 m m=1 m a m1
a 2 = 1 m m=1 m a m2
P vu = a 1 P v1 + a 2 P v2 ++ a n P vn = n=1 n a n P vn , nu
ln( I λ g k A ki )= E k k B T +c

Metrics