Abstract

The relation between the peak-to-average-power-ratio (PAPR) reduction schemes and the transmission performance of the orthogonal frequency division multiplexing (OFDM) based visible light communication (VLC) system is experimentally investigated. The linear selective mapping (SLM) scheme and the nonlinear logarithmic companding scheme are optimized by considering both PAPR reduction and bit error rate (BER) performance. It is demonstrated that the logarithmic companding scheme, albeit providing larger PAPR reduction when compared to the SLM scheme, may result in worse BER performance due to the additional noise induced in its expanding process. Both numerical and experimental investigations show that, at the expense of increased complexity and reduced efficiency, the VLC system using the linear SLM scheme exhibits better BER performance compared to the system using the nonlinear logarithmic companding scheme. We show that for a 400-Mb/s transmission at a distance of 1 m, the BER can be reduced from 2.02 × 10−3 to 2.51 × 10−4 by using logarithmic companding scheme. By using the linear SLM scheme, the BER can be further reduced to 1.77 × 10−6.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
PAPR reduction based on tone reservation scheme for DCO-OFDM indoor visible light communications

Jurong Bai, Yong Li, Yang Yi, Wei Cheng, and Huimin Du
Opt. Express 25(20) 24630-24638 (2017)

Hadamard Transform Combined With Companding Transform Technique for PAPR Reduction in an Optical Direct-Detection OFDM System

Jiangnan Xiao, Jianjun Yu, Xinying Li, Qi Tang, Hongxian Chen, Fan Li, Zizheng Cao, and Lin Chen
J. Opt. Commun. Netw. 4(10) 709-714 (2012)

Improved TKM-TR methods for PAPR reduction of DCO-OFDM visible light communications

Yongqiang Hei, Jiao Liu, Huaxi Gu, Wentao Li, Xiaochuan Xu, and Ray T. Chen
Opt. Express 25(20) 24448-24458 (2017)

References

  • View by:
  • |
  • |
  • |

  1. A. Jovicic, J. Li, and T. Richardson, “Visible light communication: opportunities, challenges and the path to market,” IEEE Commun. Mag. 51(12), 26–32 (2013).
    [Crossref]
  2. L. Grobe, P. Anagnostis, H. Jonas, S. Dominic, L. Friedrich, H. Florian, K. Christoph, J. Volker, and L. Klaus-Dieter, “High-speed visible light communication systems,” IEEE Commun. Mag. 51(12), 60–66 (2013).
    [Crossref]
  3. T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron. 50(1), 100–107 (2004).
    [Crossref]
  4. H. Elgala, R. Mesleh, and H. Hass, “An LED Model for Intensity-Modulated Optical Communication Systems,” IEEE Photonics Technol. Lett. 22(11), 835–837 (2010).
    [Crossref]
  5. P. Deng, M. Kavehrad, and M. A. Kashani, “Nonlinear modulation characteristics of white LEDs in visible light communications,” In Optical Fiber Communication Conference, (OSA, 2015), pp. 1–3.
    [Crossref]
  6. H. Elgala, R. Mesleh, H. Haas, and B. Pricope, “OFDM visible light wireless communication based on white LEDs,” in Proceedings of IEEE Vehicular Technology Conference (IEEE 2007), pp. 2185–2189.
    [Crossref]
  7. M. Z. Afgani, H. Haas, H. Elgala, and D. Knipp, “Visible light communication using OFDM,” in Proceedings of 2nd International Conference on Testbeds and Research Infrastructures for the Development of Networks and Communities, (IEEE, 2006), pp. 134.
  8. H. Elgala, R. Mesleh, and H. Haas, “A study of LED nonlinearity effects on optical wireless transmission using OFDM,” in Proceedings of IFIP International Conference on Wireless and Optical Communications Networks, (IEEE, 2009), pp. 1–5.
    [Crossref]
  9. H. Ochiai, “Performance analysis of peak power and band-limited OFDM system with linear scaling,” IEEE Trans. Wirel. Commun. 2(5), 1055–1065 (2003).
    [Crossref]
  10. T. Jiang and Y. Wu, “An overview: Peak-to-average power ratio reduction techniques for OFDM signals,” IEEE Trans. Broadcast 54(2), 257–268 (2008).
    [Crossref]
  11. J. Hou, J. Ge, D. Zhai, and J. Li, “Peak-to-average power ratio reduction of OFDM signals with nonlinear companding scheme,” IEEE Trans. Broadcast 56(2), 258–262 (2010).
    [Crossref]
  12. R. W. Bauml, R. F. H. Fischer, and J. B. Huber, “Reducing the peak-to-average power ratio of multicarrier modulation by selective mapping,” Electron. Lett. 32(22), 2056–2057 (1996).
    [Crossref]
  13. M. Noshad and M. Brandt-Pearce, “Hadamard-coded modulation for visible light communications,” IEEE Trans. Commun. 64(3), 1167–1175 (2016).
    [Crossref]
  14. K. Bandara, P. Niroopan, and Y. H. Hung, “PAPR reduced OFDM visible light communication using exponential nonlinear companding,” in Proceedings of IEEE International Conference on Microwaves, Communications, Antennas and Electronics Systems, (IEEE, 2013) pp. 1–5.
    [Crossref]
  15. Z. Yu, R. J. Baxley, and G. T. Zhou, “EVM and achievable data rate analysis of clipped OFDM signals in visible light communication,” EURASIP J. Wireless Commun. 2012(1), 321 (2012).
    [Crossref]
  16. J. Tan, Z. Wang, Q. Wang, and L. Dai, “BICM-ID scheme for clipped DCO-OFDM in visible light communications,” Opt. Express 24(5), 4573–4581 (2016).
    [Crossref] [PubMed]
  17. Y. Yang, Z. Zeng, S. Feng, and C. Guo, “A Simple OFDM Scheme for VLC Systems Based on μ-Law Mapping,” IEEE Photonics Technol. Lett. 28(6), 641–644 (2016).
    [Crossref]
  18. S. Mazahir and S. A. Sheikh, “On Companding Schemes for PAPR Reduction in OFDM Systems Employing Higher Order QAM,” IEEE Trans. Broadcast 62(3), 716–726 (2016).
    [Crossref]
  19. Ș. Bejan, S. Azou, P. Morel, C. Diouf, M. Telescu, N. Tanguy, and A. Sharaiha, “A Joint Linearization/Companding A pproach for Improving a CO-OFDM Transmitter,” IEEE Photonics Technol. Lett. 27(20), 2162–2165 (2015).
    [Crossref]
  20. K. Bandara, A. Sewaiwar, and Y. H. Chung, “Efficient nonlinear companding scheme for substantial reduction in peak-to-average power ratio of OFDM,” J. Syst. Eng. Electron. 26(5), 924–931 (2015).
    [Crossref]
  21. M. Hu, Y. Li, W. Wang, and H. Zhang, “A piecewise linear companding transform for PAPR reduction of OFDM signals with companding distortion mitigation,” IEEE Trans. Broadcast 60(3), 532–539 (2014).
    [Crossref]
  22. Y. Rahmatallah, N. Bouaynaya, and S. Mohan, “Bit-error-rate performance of companding transforms for OFDM,” IEEE Trans. Vehicular Technol. 62(8), 4116–4120 (2013).
    [Crossref]
  23. D. Lim, J. No, C. Lim, and H. Chung, “A new SLM OFDM scheme with low complexity for PAPR reduction,” IEEE Signal Process. Lett. 12(2), 93–96 (2005).
    [Crossref]
  24. H. Breiling, S. H. Muller-Weinfurtner, and J. B. Huber, “SLM peak-power reduction without explicit side information,” IEEE Commun. Lett. 5(6), 239–241 (2001).
    [Crossref]
  25. R. Luo, R. Li, Y. Dang, J. Yang, and W. Liu, “Two improved SLM methods for PAPR and BER reduction in OFDM-ROF systems,” Opt. Fiber Technol. 21, 26–33 (2015).
    [Crossref]
  26. K. S. Lee, Y. J. Cho, J. Y. Woo, J. S. No, and D. J. Shin, “Low-complexity PTS schemes using OFDM signal rotation and pre-exclusion of phase rotating vectors,” IET Commun. 10(5), 540–547 (2016).
    [Crossref]
  27. S. J. Ku, “Low-complexity PTS-based schemes for PAPR reduction in SFBC MIMO-OFDM systems,” IEEE Trans. Broadcast 60(4), 650–658 (2014).
    [Crossref]
  28. D. Wulich and L. Goldfeld, “Reduction of peak factor in orthogonal multicarrier modulation by amplitude limiting and coding,” IEEE Trans. Commun. 47(1), 18–21 (1999).
    [Crossref]
  29. J. Bai, Y. Li, Y. Yi, W. Cheng, and H. Du, “PAPR reduction based on tone reservation scheme for DCO-OFDM indoor visible light communications,” Opt. Express 25(20), 24630–24638 (2017).
    [Crossref] [PubMed]
  30. Y. Hei, J. Liu, H. Gu, W. Li, X. Xu, and R. T. Chen, “Improved TKM-TR methods for PAPR reduction of DCO-OFDM visible light communications,” Opt. Express 25(20), 24448–24458 (2017).
    [Crossref] [PubMed]

2017 (2)

2016 (5)

K. S. Lee, Y. J. Cho, J. Y. Woo, J. S. No, and D. J. Shin, “Low-complexity PTS schemes using OFDM signal rotation and pre-exclusion of phase rotating vectors,” IET Commun. 10(5), 540–547 (2016).
[Crossref]

M. Noshad and M. Brandt-Pearce, “Hadamard-coded modulation for visible light communications,” IEEE Trans. Commun. 64(3), 1167–1175 (2016).
[Crossref]

J. Tan, Z. Wang, Q. Wang, and L. Dai, “BICM-ID scheme for clipped DCO-OFDM in visible light communications,” Opt. Express 24(5), 4573–4581 (2016).
[Crossref] [PubMed]

Y. Yang, Z. Zeng, S. Feng, and C. Guo, “A Simple OFDM Scheme for VLC Systems Based on μ-Law Mapping,” IEEE Photonics Technol. Lett. 28(6), 641–644 (2016).
[Crossref]

S. Mazahir and S. A. Sheikh, “On Companding Schemes for PAPR Reduction in OFDM Systems Employing Higher Order QAM,” IEEE Trans. Broadcast 62(3), 716–726 (2016).
[Crossref]

2015 (3)

Ș. Bejan, S. Azou, P. Morel, C. Diouf, M. Telescu, N. Tanguy, and A. Sharaiha, “A Joint Linearization/Companding A pproach for Improving a CO-OFDM Transmitter,” IEEE Photonics Technol. Lett. 27(20), 2162–2165 (2015).
[Crossref]

K. Bandara, A. Sewaiwar, and Y. H. Chung, “Efficient nonlinear companding scheme for substantial reduction in peak-to-average power ratio of OFDM,” J. Syst. Eng. Electron. 26(5), 924–931 (2015).
[Crossref]

R. Luo, R. Li, Y. Dang, J. Yang, and W. Liu, “Two improved SLM methods for PAPR and BER reduction in OFDM-ROF systems,” Opt. Fiber Technol. 21, 26–33 (2015).
[Crossref]

2014 (2)

S. J. Ku, “Low-complexity PTS-based schemes for PAPR reduction in SFBC MIMO-OFDM systems,” IEEE Trans. Broadcast 60(4), 650–658 (2014).
[Crossref]

M. Hu, Y. Li, W. Wang, and H. Zhang, “A piecewise linear companding transform for PAPR reduction of OFDM signals with companding distortion mitigation,” IEEE Trans. Broadcast 60(3), 532–539 (2014).
[Crossref]

2013 (3)

Y. Rahmatallah, N. Bouaynaya, and S. Mohan, “Bit-error-rate performance of companding transforms for OFDM,” IEEE Trans. Vehicular Technol. 62(8), 4116–4120 (2013).
[Crossref]

A. Jovicic, J. Li, and T. Richardson, “Visible light communication: opportunities, challenges and the path to market,” IEEE Commun. Mag. 51(12), 26–32 (2013).
[Crossref]

L. Grobe, P. Anagnostis, H. Jonas, S. Dominic, L. Friedrich, H. Florian, K. Christoph, J. Volker, and L. Klaus-Dieter, “High-speed visible light communication systems,” IEEE Commun. Mag. 51(12), 60–66 (2013).
[Crossref]

2012 (1)

Z. Yu, R. J. Baxley, and G. T. Zhou, “EVM and achievable data rate analysis of clipped OFDM signals in visible light communication,” EURASIP J. Wireless Commun. 2012(1), 321 (2012).
[Crossref]

2010 (2)

J. Hou, J. Ge, D. Zhai, and J. Li, “Peak-to-average power ratio reduction of OFDM signals with nonlinear companding scheme,” IEEE Trans. Broadcast 56(2), 258–262 (2010).
[Crossref]

H. Elgala, R. Mesleh, and H. Hass, “An LED Model for Intensity-Modulated Optical Communication Systems,” IEEE Photonics Technol. Lett. 22(11), 835–837 (2010).
[Crossref]

2008 (1)

T. Jiang and Y. Wu, “An overview: Peak-to-average power ratio reduction techniques for OFDM signals,” IEEE Trans. Broadcast 54(2), 257–268 (2008).
[Crossref]

2005 (1)

D. Lim, J. No, C. Lim, and H. Chung, “A new SLM OFDM scheme with low complexity for PAPR reduction,” IEEE Signal Process. Lett. 12(2), 93–96 (2005).
[Crossref]

2004 (1)

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron. 50(1), 100–107 (2004).
[Crossref]

2003 (1)

H. Ochiai, “Performance analysis of peak power and band-limited OFDM system with linear scaling,” IEEE Trans. Wirel. Commun. 2(5), 1055–1065 (2003).
[Crossref]

2001 (1)

H. Breiling, S. H. Muller-Weinfurtner, and J. B. Huber, “SLM peak-power reduction without explicit side information,” IEEE Commun. Lett. 5(6), 239–241 (2001).
[Crossref]

1999 (1)

D. Wulich and L. Goldfeld, “Reduction of peak factor in orthogonal multicarrier modulation by amplitude limiting and coding,” IEEE Trans. Commun. 47(1), 18–21 (1999).
[Crossref]

1996 (1)

R. W. Bauml, R. F. H. Fischer, and J. B. Huber, “Reducing the peak-to-average power ratio of multicarrier modulation by selective mapping,” Electron. Lett. 32(22), 2056–2057 (1996).
[Crossref]

Afgani, M. Z.

M. Z. Afgani, H. Haas, H. Elgala, and D. Knipp, “Visible light communication using OFDM,” in Proceedings of 2nd International Conference on Testbeds and Research Infrastructures for the Development of Networks and Communities, (IEEE, 2006), pp. 134.

Anagnostis, P.

L. Grobe, P. Anagnostis, H. Jonas, S. Dominic, L. Friedrich, H. Florian, K. Christoph, J. Volker, and L. Klaus-Dieter, “High-speed visible light communication systems,” IEEE Commun. Mag. 51(12), 60–66 (2013).
[Crossref]

Azou, S.

Ș. Bejan, S. Azou, P. Morel, C. Diouf, M. Telescu, N. Tanguy, and A. Sharaiha, “A Joint Linearization/Companding A pproach for Improving a CO-OFDM Transmitter,” IEEE Photonics Technol. Lett. 27(20), 2162–2165 (2015).
[Crossref]

Bai, J.

Bandara, K.

K. Bandara, A. Sewaiwar, and Y. H. Chung, “Efficient nonlinear companding scheme for substantial reduction in peak-to-average power ratio of OFDM,” J. Syst. Eng. Electron. 26(5), 924–931 (2015).
[Crossref]

K. Bandara, P. Niroopan, and Y. H. Hung, “PAPR reduced OFDM visible light communication using exponential nonlinear companding,” in Proceedings of IEEE International Conference on Microwaves, Communications, Antennas and Electronics Systems, (IEEE, 2013) pp. 1–5.
[Crossref]

Bauml, R. W.

R. W. Bauml, R. F. H. Fischer, and J. B. Huber, “Reducing the peak-to-average power ratio of multicarrier modulation by selective mapping,” Electron. Lett. 32(22), 2056–2057 (1996).
[Crossref]

Baxley, R. J.

Z. Yu, R. J. Baxley, and G. T. Zhou, “EVM and achievable data rate analysis of clipped OFDM signals in visible light communication,” EURASIP J. Wireless Commun. 2012(1), 321 (2012).
[Crossref]

Bejan, ?.

Ș. Bejan, S. Azou, P. Morel, C. Diouf, M. Telescu, N. Tanguy, and A. Sharaiha, “A Joint Linearization/Companding A pproach for Improving a CO-OFDM Transmitter,” IEEE Photonics Technol. Lett. 27(20), 2162–2165 (2015).
[Crossref]

Bouaynaya, N.

Y. Rahmatallah, N. Bouaynaya, and S. Mohan, “Bit-error-rate performance of companding transforms for OFDM,” IEEE Trans. Vehicular Technol. 62(8), 4116–4120 (2013).
[Crossref]

Brandt-Pearce, M.

M. Noshad and M. Brandt-Pearce, “Hadamard-coded modulation for visible light communications,” IEEE Trans. Commun. 64(3), 1167–1175 (2016).
[Crossref]

Breiling, H.

H. Breiling, S. H. Muller-Weinfurtner, and J. B. Huber, “SLM peak-power reduction without explicit side information,” IEEE Commun. Lett. 5(6), 239–241 (2001).
[Crossref]

Chen, R. T.

Cheng, W.

Cho, Y. J.

K. S. Lee, Y. J. Cho, J. Y. Woo, J. S. No, and D. J. Shin, “Low-complexity PTS schemes using OFDM signal rotation and pre-exclusion of phase rotating vectors,” IET Commun. 10(5), 540–547 (2016).
[Crossref]

Christoph, K.

L. Grobe, P. Anagnostis, H. Jonas, S. Dominic, L. Friedrich, H. Florian, K. Christoph, J. Volker, and L. Klaus-Dieter, “High-speed visible light communication systems,” IEEE Commun. Mag. 51(12), 60–66 (2013).
[Crossref]

Chung, H.

D. Lim, J. No, C. Lim, and H. Chung, “A new SLM OFDM scheme with low complexity for PAPR reduction,” IEEE Signal Process. Lett. 12(2), 93–96 (2005).
[Crossref]

Chung, Y. H.

K. Bandara, A. Sewaiwar, and Y. H. Chung, “Efficient nonlinear companding scheme for substantial reduction in peak-to-average power ratio of OFDM,” J. Syst. Eng. Electron. 26(5), 924–931 (2015).
[Crossref]

Dai, L.

Dang, Y.

R. Luo, R. Li, Y. Dang, J. Yang, and W. Liu, “Two improved SLM methods for PAPR and BER reduction in OFDM-ROF systems,” Opt. Fiber Technol. 21, 26–33 (2015).
[Crossref]

Diouf, C.

Ș. Bejan, S. Azou, P. Morel, C. Diouf, M. Telescu, N. Tanguy, and A. Sharaiha, “A Joint Linearization/Companding A pproach for Improving a CO-OFDM Transmitter,” IEEE Photonics Technol. Lett. 27(20), 2162–2165 (2015).
[Crossref]

Dominic, S.

L. Grobe, P. Anagnostis, H. Jonas, S. Dominic, L. Friedrich, H. Florian, K. Christoph, J. Volker, and L. Klaus-Dieter, “High-speed visible light communication systems,” IEEE Commun. Mag. 51(12), 60–66 (2013).
[Crossref]

Du, H.

Elgala, H.

H. Elgala, R. Mesleh, and H. Hass, “An LED Model for Intensity-Modulated Optical Communication Systems,” IEEE Photonics Technol. Lett. 22(11), 835–837 (2010).
[Crossref]

H. Elgala, R. Mesleh, H. Haas, and B. Pricope, “OFDM visible light wireless communication based on white LEDs,” in Proceedings of IEEE Vehicular Technology Conference (IEEE 2007), pp. 2185–2189.
[Crossref]

M. Z. Afgani, H. Haas, H. Elgala, and D. Knipp, “Visible light communication using OFDM,” in Proceedings of 2nd International Conference on Testbeds and Research Infrastructures for the Development of Networks and Communities, (IEEE, 2006), pp. 134.

H. Elgala, R. Mesleh, and H. Haas, “A study of LED nonlinearity effects on optical wireless transmission using OFDM,” in Proceedings of IFIP International Conference on Wireless and Optical Communications Networks, (IEEE, 2009), pp. 1–5.
[Crossref]

Feng, S.

Y. Yang, Z. Zeng, S. Feng, and C. Guo, “A Simple OFDM Scheme for VLC Systems Based on μ-Law Mapping,” IEEE Photonics Technol. Lett. 28(6), 641–644 (2016).
[Crossref]

Fischer, R. F. H.

R. W. Bauml, R. F. H. Fischer, and J. B. Huber, “Reducing the peak-to-average power ratio of multicarrier modulation by selective mapping,” Electron. Lett. 32(22), 2056–2057 (1996).
[Crossref]

Florian, H.

L. Grobe, P. Anagnostis, H. Jonas, S. Dominic, L. Friedrich, H. Florian, K. Christoph, J. Volker, and L. Klaus-Dieter, “High-speed visible light communication systems,” IEEE Commun. Mag. 51(12), 60–66 (2013).
[Crossref]

Friedrich, L.

L. Grobe, P. Anagnostis, H. Jonas, S. Dominic, L. Friedrich, H. Florian, K. Christoph, J. Volker, and L. Klaus-Dieter, “High-speed visible light communication systems,” IEEE Commun. Mag. 51(12), 60–66 (2013).
[Crossref]

Ge, J.

J. Hou, J. Ge, D. Zhai, and J. Li, “Peak-to-average power ratio reduction of OFDM signals with nonlinear companding scheme,” IEEE Trans. Broadcast 56(2), 258–262 (2010).
[Crossref]

Goldfeld, L.

D. Wulich and L. Goldfeld, “Reduction of peak factor in orthogonal multicarrier modulation by amplitude limiting and coding,” IEEE Trans. Commun. 47(1), 18–21 (1999).
[Crossref]

Grobe, L.

L. Grobe, P. Anagnostis, H. Jonas, S. Dominic, L. Friedrich, H. Florian, K. Christoph, J. Volker, and L. Klaus-Dieter, “High-speed visible light communication systems,” IEEE Commun. Mag. 51(12), 60–66 (2013).
[Crossref]

Gu, H.

Guo, C.

Y. Yang, Z. Zeng, S. Feng, and C. Guo, “A Simple OFDM Scheme for VLC Systems Based on μ-Law Mapping,” IEEE Photonics Technol. Lett. 28(6), 641–644 (2016).
[Crossref]

Haas, H.

H. Elgala, R. Mesleh, and H. Haas, “A study of LED nonlinearity effects on optical wireless transmission using OFDM,” in Proceedings of IFIP International Conference on Wireless and Optical Communications Networks, (IEEE, 2009), pp. 1–5.
[Crossref]

M. Z. Afgani, H. Haas, H. Elgala, and D. Knipp, “Visible light communication using OFDM,” in Proceedings of 2nd International Conference on Testbeds and Research Infrastructures for the Development of Networks and Communities, (IEEE, 2006), pp. 134.

H. Elgala, R. Mesleh, H. Haas, and B. Pricope, “OFDM visible light wireless communication based on white LEDs,” in Proceedings of IEEE Vehicular Technology Conference (IEEE 2007), pp. 2185–2189.
[Crossref]

Hass, H.

H. Elgala, R. Mesleh, and H. Hass, “An LED Model for Intensity-Modulated Optical Communication Systems,” IEEE Photonics Technol. Lett. 22(11), 835–837 (2010).
[Crossref]

Hei, Y.

Hou, J.

J. Hou, J. Ge, D. Zhai, and J. Li, “Peak-to-average power ratio reduction of OFDM signals with nonlinear companding scheme,” IEEE Trans. Broadcast 56(2), 258–262 (2010).
[Crossref]

Hu, M.

M. Hu, Y. Li, W. Wang, and H. Zhang, “A piecewise linear companding transform for PAPR reduction of OFDM signals with companding distortion mitigation,” IEEE Trans. Broadcast 60(3), 532–539 (2014).
[Crossref]

Huber, J. B.

H. Breiling, S. H. Muller-Weinfurtner, and J. B. Huber, “SLM peak-power reduction without explicit side information,” IEEE Commun. Lett. 5(6), 239–241 (2001).
[Crossref]

R. W. Bauml, R. F. H. Fischer, and J. B. Huber, “Reducing the peak-to-average power ratio of multicarrier modulation by selective mapping,” Electron. Lett. 32(22), 2056–2057 (1996).
[Crossref]

Hung, Y. H.

K. Bandara, P. Niroopan, and Y. H. Hung, “PAPR reduced OFDM visible light communication using exponential nonlinear companding,” in Proceedings of IEEE International Conference on Microwaves, Communications, Antennas and Electronics Systems, (IEEE, 2013) pp. 1–5.
[Crossref]

Jiang, T.

T. Jiang and Y. Wu, “An overview: Peak-to-average power ratio reduction techniques for OFDM signals,” IEEE Trans. Broadcast 54(2), 257–268 (2008).
[Crossref]

Jonas, H.

L. Grobe, P. Anagnostis, H. Jonas, S. Dominic, L. Friedrich, H. Florian, K. Christoph, J. Volker, and L. Klaus-Dieter, “High-speed visible light communication systems,” IEEE Commun. Mag. 51(12), 60–66 (2013).
[Crossref]

Jovicic, A.

A. Jovicic, J. Li, and T. Richardson, “Visible light communication: opportunities, challenges and the path to market,” IEEE Commun. Mag. 51(12), 26–32 (2013).
[Crossref]

Klaus-Dieter, L.

L. Grobe, P. Anagnostis, H. Jonas, S. Dominic, L. Friedrich, H. Florian, K. Christoph, J. Volker, and L. Klaus-Dieter, “High-speed visible light communication systems,” IEEE Commun. Mag. 51(12), 60–66 (2013).
[Crossref]

Knipp, D.

M. Z. Afgani, H. Haas, H. Elgala, and D. Knipp, “Visible light communication using OFDM,” in Proceedings of 2nd International Conference on Testbeds and Research Infrastructures for the Development of Networks and Communities, (IEEE, 2006), pp. 134.

Komine, T.

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron. 50(1), 100–107 (2004).
[Crossref]

Ku, S. J.

S. J. Ku, “Low-complexity PTS-based schemes for PAPR reduction in SFBC MIMO-OFDM systems,” IEEE Trans. Broadcast 60(4), 650–658 (2014).
[Crossref]

Lee, K. S.

K. S. Lee, Y. J. Cho, J. Y. Woo, J. S. No, and D. J. Shin, “Low-complexity PTS schemes using OFDM signal rotation and pre-exclusion of phase rotating vectors,” IET Commun. 10(5), 540–547 (2016).
[Crossref]

Li, J.

A. Jovicic, J. Li, and T. Richardson, “Visible light communication: opportunities, challenges and the path to market,” IEEE Commun. Mag. 51(12), 26–32 (2013).
[Crossref]

J. Hou, J. Ge, D. Zhai, and J. Li, “Peak-to-average power ratio reduction of OFDM signals with nonlinear companding scheme,” IEEE Trans. Broadcast 56(2), 258–262 (2010).
[Crossref]

Li, R.

R. Luo, R. Li, Y. Dang, J. Yang, and W. Liu, “Two improved SLM methods for PAPR and BER reduction in OFDM-ROF systems,” Opt. Fiber Technol. 21, 26–33 (2015).
[Crossref]

Li, W.

Li, Y.

J. Bai, Y. Li, Y. Yi, W. Cheng, and H. Du, “PAPR reduction based on tone reservation scheme for DCO-OFDM indoor visible light communications,” Opt. Express 25(20), 24630–24638 (2017).
[Crossref] [PubMed]

M. Hu, Y. Li, W. Wang, and H. Zhang, “A piecewise linear companding transform for PAPR reduction of OFDM signals with companding distortion mitigation,” IEEE Trans. Broadcast 60(3), 532–539 (2014).
[Crossref]

Lim, C.

D. Lim, J. No, C. Lim, and H. Chung, “A new SLM OFDM scheme with low complexity for PAPR reduction,” IEEE Signal Process. Lett. 12(2), 93–96 (2005).
[Crossref]

Lim, D.

D. Lim, J. No, C. Lim, and H. Chung, “A new SLM OFDM scheme with low complexity for PAPR reduction,” IEEE Signal Process. Lett. 12(2), 93–96 (2005).
[Crossref]

Liu, J.

Liu, W.

R. Luo, R. Li, Y. Dang, J. Yang, and W. Liu, “Two improved SLM methods for PAPR and BER reduction in OFDM-ROF systems,” Opt. Fiber Technol. 21, 26–33 (2015).
[Crossref]

Luo, R.

R. Luo, R. Li, Y. Dang, J. Yang, and W. Liu, “Two improved SLM methods for PAPR and BER reduction in OFDM-ROF systems,” Opt. Fiber Technol. 21, 26–33 (2015).
[Crossref]

Mazahir, S.

S. Mazahir and S. A. Sheikh, “On Companding Schemes for PAPR Reduction in OFDM Systems Employing Higher Order QAM,” IEEE Trans. Broadcast 62(3), 716–726 (2016).
[Crossref]

Mesleh, R.

H. Elgala, R. Mesleh, and H. Hass, “An LED Model for Intensity-Modulated Optical Communication Systems,” IEEE Photonics Technol. Lett. 22(11), 835–837 (2010).
[Crossref]

H. Elgala, R. Mesleh, H. Haas, and B. Pricope, “OFDM visible light wireless communication based on white LEDs,” in Proceedings of IEEE Vehicular Technology Conference (IEEE 2007), pp. 2185–2189.
[Crossref]

H. Elgala, R. Mesleh, and H. Haas, “A study of LED nonlinearity effects on optical wireless transmission using OFDM,” in Proceedings of IFIP International Conference on Wireless and Optical Communications Networks, (IEEE, 2009), pp. 1–5.
[Crossref]

Mohan, S.

Y. Rahmatallah, N. Bouaynaya, and S. Mohan, “Bit-error-rate performance of companding transforms for OFDM,” IEEE Trans. Vehicular Technol. 62(8), 4116–4120 (2013).
[Crossref]

Morel, P.

Ș. Bejan, S. Azou, P. Morel, C. Diouf, M. Telescu, N. Tanguy, and A. Sharaiha, “A Joint Linearization/Companding A pproach for Improving a CO-OFDM Transmitter,” IEEE Photonics Technol. Lett. 27(20), 2162–2165 (2015).
[Crossref]

Muller-Weinfurtner, S. H.

H. Breiling, S. H. Muller-Weinfurtner, and J. B. Huber, “SLM peak-power reduction without explicit side information,” IEEE Commun. Lett. 5(6), 239–241 (2001).
[Crossref]

Nakagawa, M.

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron. 50(1), 100–107 (2004).
[Crossref]

Niroopan, P.

K. Bandara, P. Niroopan, and Y. H. Hung, “PAPR reduced OFDM visible light communication using exponential nonlinear companding,” in Proceedings of IEEE International Conference on Microwaves, Communications, Antennas and Electronics Systems, (IEEE, 2013) pp. 1–5.
[Crossref]

No, J.

D. Lim, J. No, C. Lim, and H. Chung, “A new SLM OFDM scheme with low complexity for PAPR reduction,” IEEE Signal Process. Lett. 12(2), 93–96 (2005).
[Crossref]

No, J. S.

K. S. Lee, Y. J. Cho, J. Y. Woo, J. S. No, and D. J. Shin, “Low-complexity PTS schemes using OFDM signal rotation and pre-exclusion of phase rotating vectors,” IET Commun. 10(5), 540–547 (2016).
[Crossref]

Noshad, M.

M. Noshad and M. Brandt-Pearce, “Hadamard-coded modulation for visible light communications,” IEEE Trans. Commun. 64(3), 1167–1175 (2016).
[Crossref]

Ochiai, H.

H. Ochiai, “Performance analysis of peak power and band-limited OFDM system with linear scaling,” IEEE Trans. Wirel. Commun. 2(5), 1055–1065 (2003).
[Crossref]

Pricope, B.

H. Elgala, R. Mesleh, H. Haas, and B. Pricope, “OFDM visible light wireless communication based on white LEDs,” in Proceedings of IEEE Vehicular Technology Conference (IEEE 2007), pp. 2185–2189.
[Crossref]

Rahmatallah, Y.

Y. Rahmatallah, N. Bouaynaya, and S. Mohan, “Bit-error-rate performance of companding transforms for OFDM,” IEEE Trans. Vehicular Technol. 62(8), 4116–4120 (2013).
[Crossref]

Richardson, T.

A. Jovicic, J. Li, and T. Richardson, “Visible light communication: opportunities, challenges and the path to market,” IEEE Commun. Mag. 51(12), 26–32 (2013).
[Crossref]

Sewaiwar, A.

K. Bandara, A. Sewaiwar, and Y. H. Chung, “Efficient nonlinear companding scheme for substantial reduction in peak-to-average power ratio of OFDM,” J. Syst. Eng. Electron. 26(5), 924–931 (2015).
[Crossref]

Sharaiha, A.

Ș. Bejan, S. Azou, P. Morel, C. Diouf, M. Telescu, N. Tanguy, and A. Sharaiha, “A Joint Linearization/Companding A pproach for Improving a CO-OFDM Transmitter,” IEEE Photonics Technol. Lett. 27(20), 2162–2165 (2015).
[Crossref]

Sheikh, S. A.

S. Mazahir and S. A. Sheikh, “On Companding Schemes for PAPR Reduction in OFDM Systems Employing Higher Order QAM,” IEEE Trans. Broadcast 62(3), 716–726 (2016).
[Crossref]

Shin, D. J.

K. S. Lee, Y. J. Cho, J. Y. Woo, J. S. No, and D. J. Shin, “Low-complexity PTS schemes using OFDM signal rotation and pre-exclusion of phase rotating vectors,” IET Commun. 10(5), 540–547 (2016).
[Crossref]

Tan, J.

Tanguy, N.

Ș. Bejan, S. Azou, P. Morel, C. Diouf, M. Telescu, N. Tanguy, and A. Sharaiha, “A Joint Linearization/Companding A pproach for Improving a CO-OFDM Transmitter,” IEEE Photonics Technol. Lett. 27(20), 2162–2165 (2015).
[Crossref]

Telescu, M.

Ș. Bejan, S. Azou, P. Morel, C. Diouf, M. Telescu, N. Tanguy, and A. Sharaiha, “A Joint Linearization/Companding A pproach for Improving a CO-OFDM Transmitter,” IEEE Photonics Technol. Lett. 27(20), 2162–2165 (2015).
[Crossref]

Volker, J.

L. Grobe, P. Anagnostis, H. Jonas, S. Dominic, L. Friedrich, H. Florian, K. Christoph, J. Volker, and L. Klaus-Dieter, “High-speed visible light communication systems,” IEEE Commun. Mag. 51(12), 60–66 (2013).
[Crossref]

Wang, Q.

Wang, W.

M. Hu, Y. Li, W. Wang, and H. Zhang, “A piecewise linear companding transform for PAPR reduction of OFDM signals with companding distortion mitigation,” IEEE Trans. Broadcast 60(3), 532–539 (2014).
[Crossref]

Wang, Z.

Woo, J. Y.

K. S. Lee, Y. J. Cho, J. Y. Woo, J. S. No, and D. J. Shin, “Low-complexity PTS schemes using OFDM signal rotation and pre-exclusion of phase rotating vectors,” IET Commun. 10(5), 540–547 (2016).
[Crossref]

Wu, Y.

T. Jiang and Y. Wu, “An overview: Peak-to-average power ratio reduction techniques for OFDM signals,” IEEE Trans. Broadcast 54(2), 257–268 (2008).
[Crossref]

Wulich, D.

D. Wulich and L. Goldfeld, “Reduction of peak factor in orthogonal multicarrier modulation by amplitude limiting and coding,” IEEE Trans. Commun. 47(1), 18–21 (1999).
[Crossref]

Xu, X.

Yang, J.

R. Luo, R. Li, Y. Dang, J. Yang, and W. Liu, “Two improved SLM methods for PAPR and BER reduction in OFDM-ROF systems,” Opt. Fiber Technol. 21, 26–33 (2015).
[Crossref]

Yang, Y.

Y. Yang, Z. Zeng, S. Feng, and C. Guo, “A Simple OFDM Scheme for VLC Systems Based on μ-Law Mapping,” IEEE Photonics Technol. Lett. 28(6), 641–644 (2016).
[Crossref]

Yi, Y.

Yu, Z.

Z. Yu, R. J. Baxley, and G. T. Zhou, “EVM and achievable data rate analysis of clipped OFDM signals in visible light communication,” EURASIP J. Wireless Commun. 2012(1), 321 (2012).
[Crossref]

Zeng, Z.

Y. Yang, Z. Zeng, S. Feng, and C. Guo, “A Simple OFDM Scheme for VLC Systems Based on μ-Law Mapping,” IEEE Photonics Technol. Lett. 28(6), 641–644 (2016).
[Crossref]

Zhai, D.

J. Hou, J. Ge, D. Zhai, and J. Li, “Peak-to-average power ratio reduction of OFDM signals with nonlinear companding scheme,” IEEE Trans. Broadcast 56(2), 258–262 (2010).
[Crossref]

Zhang, H.

M. Hu, Y. Li, W. Wang, and H. Zhang, “A piecewise linear companding transform for PAPR reduction of OFDM signals with companding distortion mitigation,” IEEE Trans. Broadcast 60(3), 532–539 (2014).
[Crossref]

Zhou, G. T.

Z. Yu, R. J. Baxley, and G. T. Zhou, “EVM and achievable data rate analysis of clipped OFDM signals in visible light communication,” EURASIP J. Wireless Commun. 2012(1), 321 (2012).
[Crossref]

Electron. Lett. (1)

R. W. Bauml, R. F. H. Fischer, and J. B. Huber, “Reducing the peak-to-average power ratio of multicarrier modulation by selective mapping,” Electron. Lett. 32(22), 2056–2057 (1996).
[Crossref]

EURASIP J. Wireless Commun. (1)

Z. Yu, R. J. Baxley, and G. T. Zhou, “EVM and achievable data rate analysis of clipped OFDM signals in visible light communication,” EURASIP J. Wireless Commun. 2012(1), 321 (2012).
[Crossref]

IEEE Commun. Lett. (1)

H. Breiling, S. H. Muller-Weinfurtner, and J. B. Huber, “SLM peak-power reduction without explicit side information,” IEEE Commun. Lett. 5(6), 239–241 (2001).
[Crossref]

IEEE Commun. Mag. (2)

A. Jovicic, J. Li, and T. Richardson, “Visible light communication: opportunities, challenges and the path to market,” IEEE Commun. Mag. 51(12), 26–32 (2013).
[Crossref]

L. Grobe, P. Anagnostis, H. Jonas, S. Dominic, L. Friedrich, H. Florian, K. Christoph, J. Volker, and L. Klaus-Dieter, “High-speed visible light communication systems,” IEEE Commun. Mag. 51(12), 60–66 (2013).
[Crossref]

IEEE Photonics Technol. Lett. (3)

H. Elgala, R. Mesleh, and H. Hass, “An LED Model for Intensity-Modulated Optical Communication Systems,” IEEE Photonics Technol. Lett. 22(11), 835–837 (2010).
[Crossref]

Y. Yang, Z. Zeng, S. Feng, and C. Guo, “A Simple OFDM Scheme for VLC Systems Based on μ-Law Mapping,” IEEE Photonics Technol. Lett. 28(6), 641–644 (2016).
[Crossref]

Ș. Bejan, S. Azou, P. Morel, C. Diouf, M. Telescu, N. Tanguy, and A. Sharaiha, “A Joint Linearization/Companding A pproach for Improving a CO-OFDM Transmitter,” IEEE Photonics Technol. Lett. 27(20), 2162–2165 (2015).
[Crossref]

IEEE Signal Process. Lett. (1)

D. Lim, J. No, C. Lim, and H. Chung, “A new SLM OFDM scheme with low complexity for PAPR reduction,” IEEE Signal Process. Lett. 12(2), 93–96 (2005).
[Crossref]

IEEE Trans. Broadcast (5)

M. Hu, Y. Li, W. Wang, and H. Zhang, “A piecewise linear companding transform for PAPR reduction of OFDM signals with companding distortion mitigation,” IEEE Trans. Broadcast 60(3), 532–539 (2014).
[Crossref]

S. J. Ku, “Low-complexity PTS-based schemes for PAPR reduction in SFBC MIMO-OFDM systems,” IEEE Trans. Broadcast 60(4), 650–658 (2014).
[Crossref]

S. Mazahir and S. A. Sheikh, “On Companding Schemes for PAPR Reduction in OFDM Systems Employing Higher Order QAM,” IEEE Trans. Broadcast 62(3), 716–726 (2016).
[Crossref]

T. Jiang and Y. Wu, “An overview: Peak-to-average power ratio reduction techniques for OFDM signals,” IEEE Trans. Broadcast 54(2), 257–268 (2008).
[Crossref]

J. Hou, J. Ge, D. Zhai, and J. Li, “Peak-to-average power ratio reduction of OFDM signals with nonlinear companding scheme,” IEEE Trans. Broadcast 56(2), 258–262 (2010).
[Crossref]

IEEE Trans. Commun. (2)

M. Noshad and M. Brandt-Pearce, “Hadamard-coded modulation for visible light communications,” IEEE Trans. Commun. 64(3), 1167–1175 (2016).
[Crossref]

D. Wulich and L. Goldfeld, “Reduction of peak factor in orthogonal multicarrier modulation by amplitude limiting and coding,” IEEE Trans. Commun. 47(1), 18–21 (1999).
[Crossref]

IEEE Trans. Consum. Electron. (1)

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron. 50(1), 100–107 (2004).
[Crossref]

IEEE Trans. Vehicular Technol. (1)

Y. Rahmatallah, N. Bouaynaya, and S. Mohan, “Bit-error-rate performance of companding transforms for OFDM,” IEEE Trans. Vehicular Technol. 62(8), 4116–4120 (2013).
[Crossref]

IEEE Trans. Wirel. Commun. (1)

H. Ochiai, “Performance analysis of peak power and band-limited OFDM system with linear scaling,” IEEE Trans. Wirel. Commun. 2(5), 1055–1065 (2003).
[Crossref]

IET Commun. (1)

K. S. Lee, Y. J. Cho, J. Y. Woo, J. S. No, and D. J. Shin, “Low-complexity PTS schemes using OFDM signal rotation and pre-exclusion of phase rotating vectors,” IET Commun. 10(5), 540–547 (2016).
[Crossref]

J. Syst. Eng. Electron. (1)

K. Bandara, A. Sewaiwar, and Y. H. Chung, “Efficient nonlinear companding scheme for substantial reduction in peak-to-average power ratio of OFDM,” J. Syst. Eng. Electron. 26(5), 924–931 (2015).
[Crossref]

Opt. Express (3)

Opt. Fiber Technol. (1)

R. Luo, R. Li, Y. Dang, J. Yang, and W. Liu, “Two improved SLM methods for PAPR and BER reduction in OFDM-ROF systems,” Opt. Fiber Technol. 21, 26–33 (2015).
[Crossref]

Other (5)

K. Bandara, P. Niroopan, and Y. H. Hung, “PAPR reduced OFDM visible light communication using exponential nonlinear companding,” in Proceedings of IEEE International Conference on Microwaves, Communications, Antennas and Electronics Systems, (IEEE, 2013) pp. 1–5.
[Crossref]

P. Deng, M. Kavehrad, and M. A. Kashani, “Nonlinear modulation characteristics of white LEDs in visible light communications,” In Optical Fiber Communication Conference, (OSA, 2015), pp. 1–3.
[Crossref]

H. Elgala, R. Mesleh, H. Haas, and B. Pricope, “OFDM visible light wireless communication based on white LEDs,” in Proceedings of IEEE Vehicular Technology Conference (IEEE 2007), pp. 2185–2189.
[Crossref]

M. Z. Afgani, H. Haas, H. Elgala, and D. Knipp, “Visible light communication using OFDM,” in Proceedings of 2nd International Conference on Testbeds and Research Infrastructures for the Development of Networks and Communities, (IEEE, 2006), pp. 134.

H. Elgala, R. Mesleh, and H. Haas, “A study of LED nonlinearity effects on optical wireless transmission using OFDM,” in Proceedings of IFIP International Conference on Wireless and Optical Communications Networks, (IEEE, 2009), pp. 1–5.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Experimental setup of the OFDM-based VLC system using PAPR reduction.
Fig. 2
Fig. 2 (a) CCDFs of the PAPR distribution and (b)-(e) time-domain signals for the 16QAM-OFDM signal with 256 FFT block size without PAPR reduction, with logarithmic companding and with SLM precoding using different parameter values.
Fig. 3
Fig. 3 BER performance of the OFDM-based VLC system (a) using logarithmic companding with different parameter values, (b) using SLM scheme with different parameter values and (c) BER versus PAPR reduction (@ CCDF = 0.01). Insets: the corresponding signal constellations of 16 QAM-OFDM
Fig. 4
Fig. 4 (a) CCDFs of the PAPR distribution of 16QAM-OFDM signal without and with logarithmic companding and SLM schemes, (b) system BER performance using logarithmic companding and (c) system BER performance using SLM scheme for the OFDM-based VLC system with different FFT block size. Insets: the corresponding signal constellations of 16QAM-OFDM.
Fig. 5
Fig. 5 (a) CCDFs of the PAPR distribution of QAM-OFDM signal with 256 FFT block size without PAPR reduction, with logarithmic companding (μ = 1.2) and with SLM schemes (U = 4), (b) system BER performance using logarithmic companding and (c) system BER performance using SLM scheme for different modulation order. Insets: the corresponding signal constellations of QAM-OFDM.
Fig. 6
Fig. 6 System BER performance (b) using logarithmic companding (μ = 1.2) and (c) SLM scheme (U = 4) for the OFDM-based VLC system with a different sampling rate of AWG. Insets: the corresponding signal constellations of 16 QAM-OFDM.
Fig. 7
Fig. 7 (a) CCDFs of the PAPR distribution of 16QAM-OFDM signal with 256 FFT block size, and (b) system BER performance using logarithmic companding, SLM and logarithmic companding & SLM schemes. Insets: the corresponding signal constellations of 16QAM-OFDM.
Fig. 8
Fig. 8 BER performance of the 32-QAM OFDM-VLC system using logarithmic companding and the SLM scheme: (a) for different signal power levels, and (b) for different background noise levels.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

y( t )=γx( t )h( t )+n( t ),
N= σ shot 2 + σ thermal 2 { σ shot 2 =2qγ P ¯ r B+ C bl B σ thermal 2 = C f r B 2 + C ch B 3 ,
SNR= S ¯ r 2qγ P ¯ r B+( C bl B+ C f r B 2 + C ch B 3 ) .
y=A log( 1+μ | x |/A ) log( 1+μ ) sgn( x ),
y=IFFT( x P * ), P * P u ,

Metrics