Abstract

We demonstrate a strategy for increasing the operating temperatures of nBn midwave infrared (MWIR) focal plane arrays, based on the use of two-dimensional plasmonic gratings to enhance the quantum efficiency (QE) of structures with very thin absorbers. Reducing the absorber volume correspondingly reduces the dark current in a diffusion-limited photodiode, while light trapping mediated by the plasmonic grating increases the net absorbance to maintain high QE. The plasmonically enhanced nBn MWIR sensors with absorber thicknesses of only 0.5 μm exhibit peak internal QEs as high as 57%, which enables a 5-fold reduction in dark current. Numerical simulations indicate the potential for further improvement.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
First demonstration of plasmonic GaN quantum cascade detectors with enhanced efficiency at normal incidence

Asaf Pesach, Salam Sakr, Etienne Giraud, Ofir Sorias, Lior Gal, Maria Tchernycheva, Meir Orenstein, Nicolas Grandjean, Francois H. Julien, and Gad Bahir
Opt. Express 22(17) 21069-21078 (2014)

Ultra-thin infrared metamaterial detector for multicolor imaging applications

John A. Montoya, Zhao-Bing Tian, Sanjay Krishna, and Willie J. Padilla
Opt. Express 25(19) 23343-23355 (2017)

All-semiconductor plasmonic gratings for biosensing applications in the mid-infrared spectral range

Franziska B. Barho, Fernando Gonzalez-Posada, Maria-José Milla-Rodrigo, Mario Bomers, Laurent Cerutti, and Thierry Taliercio
Opt. Express 24(14) 16175-16190 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J. Y. Andersson, L. Lundqvist, and Z. F. Paska, “Quantum efficiency enhancement of AlGaAs/GaAs quantum well infrared detectors using a waveguide with a grating coupler,” Appl. Phys. Lett. 58(20), 2264–2266 (1991).
    [Crossref]
  2. K. K. Choi, M. D. Jhabvala, J. Sun, C. A. Jhabvala, A. Waczynski, and K. Olver, “Resonator-QWIPs and FPAs,” Proc. SPIE 9070, 907037 (2014).
    [Crossref]
  3. W. Wu, A. Bonakdar, and H. Mohseni, “Plasmonic enhanced quantum well infrared photodetector with high detectivity,” Appl. Phys. Lett. 96(16), 161107 (2010).
    [Crossref]
  4. C. Wang and S. S. Li, “Design of a two‐dimensional square mesh metal grating coupler for a miniband transport GaAs quantum‐well infrared photodetector,” J. Appl. Phys. 75(1), 582–587 (1994).
    [Crossref]
  5. Y. Fu, M. Willander, W. Lu, and W. Xu, “Near field and cavity effects on coupling efficiency of one-dimensional metal grating for terahertz quantum well photodetectors,” J. Appl. Phys. 84(10), 5750–5755 (1998).
    [Crossref]
  6. M. Razeghi, Long Wavelength Infrared Detectors (Gordon and Breach, 1996).
  7. J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, “A multispectral and polarization-selective surface-plasmon resonant midinfrared detector,” Appl. Phys. Lett. 95(16), 161101 (2009).
    [Crossref]
  8. C. C. Chang, Y. D. Sharma, Y. S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S. Y. Lin, “A Surface Plasmon Enhanced Infrared Photodetector Based on InAs Quantum Dots,” Nano Lett. 10(5), 1704–1709 (2010).
    [Crossref] [PubMed]
  9. S. C. Lee, S. Krishna, and S. R. J. Brueck, “Light direction-dependent plasmonic enhancement in quantum dot infrared photodetectors,” Appl. Phys. Lett. 97(2), 021112 (2010).
    [Crossref]
  10. S. D. Gunapala, S. V. Bandara, C. J. Hill, D. Z. Ting, J. K. Liu, S. B. Rafol, E. R. Blazejewski, J. M. Mumolo, S. A. Keo, S. Krishna, Y. C. Chang, and C. A. Shott, “640×512 Pixels Long-Wavelength Infrared (LWIR) Quantum-Dot Infrared Photodetector (QDIP) Imaging Focal Plane Array,” IEEE. J. Quantum. Electron. 43(3), 230–237 (2007).
    [Crossref]
  11. S. Zhai, J. Liu, F. Liu, and Z. Wang, “A normal incident quantum cascade detector enhanced by surface plasmons,” Appl. Phys. Lett. 100(18), 181104 (2012).
    [Crossref]
  12. A. Pesach, S. Sakr, E. Giraud, O. Sorias, L. Gal, M. Tchernycheva, M. Orenstein, N. Grandjean, F. H. Julien, and G. Bahir, “First demonstration of plasmonic GaN quantum cascade detectors with enhanced efficiency at normal incidence,” Opt. Express 22(17), 21069–21078 (2014).
    [Crossref] [PubMed]
  13. J. A. Nolde, M. Kim, C. S. Kim, E. M. Jackson, C. T. Ellis, J. Abell, O. J. Glembocki, C. L. Canedy, J. G. Tischler, I. Vurgaftman, J. R. Meyer, and E. H. Aifer, “Resonant quantum efficiency enhancement of midwave infrared nBn photodetectors using one-dimensional plasmonic gratings,” Appl. Phys. Lett. 106(26), 261109 (2015).
    [Crossref]
  14. G. Wang, J. Shen, X. Liu, L. Ni, and S. Wang, “Optimization of top coupling grating for very long wavelength QWIP based on surface plasmon,” Photonic Sensors 7(3), 278–282 (2017).
    [Crossref]
  15. J. You, X. Li, F. Xie, W. E. I. Sha, J. W. W. Kwong, G. Li, W. C. H. Choy, and Y. Yang, “Surface Plasmon and Scattering-Enhanced Low-Bandgap Polymer Solar Cell by a Metal Grating Back Electrode,” Adv. Energy Mater. 2(10), 1203–1207 (2012).
    [Crossref]
  16. J. Y. Andersson and L. Lundqvist, “Near‐unity quantum efficiency of AlGaAs/GaAs quantum well infrared detectors using a waveguide with a doubly periodic grating coupler,” Appl. Phys. Lett. 59(7), 857–859 (1991).
    [Crossref]
  17. K. W. Goossen, S. A. Lyon, and K. Alavi, “Grating enhancement of quantum well detector response,” Appl. Phys. Lett. 53(12), 1027–1029 (1988).
    [Crossref]
  18. A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photonics Technol. Lett. 14(4), 483–485 (2002).
    [Crossref]
  19. I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys. 89(11), 5815–5875 (2001).
    [Crossref]
  20. M. P. Lumb, M. Gonzalez, I. Vurgaftman, J. R. Meyer, J. Abell, M. Yakes, R. Hoheisel, J. G. Tischler, P. P. Jenkins, P. N. Stavrinou, M. Fuhrer, N. J. Ekins-Daukes, and R. J. Walters, “Simulation of novel InAlAsSb solar cells,” Proc. SPIE 8256, 82560S (2012).
    [Crossref]
  21. A. D. Rakić, A. B. Djurišic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998).
    [Crossref] [PubMed]
  22. R. J. Egan, V. W. L. Chin, and T. L. Tansley, “Hole Transport in InSb-InAs Material System,” Solid State Commun. 93(7), 553–556 (1995).
    [Crossref]
  23. A. E. Brown, N. Baril, D. Zuo, L. A. Almeida, J. Arias, and S. Bandara, “Characterization of n-Type and p-Type Long-Wave InAs/InAsSb Superlattices,” J. Electron. Mater. 46(9), 5367–5373 (2017).
    [Crossref]
  24. W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface Plasmon Polaritons and Their Role in the Enhanced Transmission of Light through Periodic Arrays of Subwavelength Holes in a Metal Film,” Phys. Rev. Lett. 92(10), 107401 (2004).
    [Crossref] [PubMed]
  25. M. P. Lumb, I. Vurgaftman, C. A. Affouda, J. R. Meyer, E. H. Aifer, and R. J. Walters, “Quantum wells and superlattices for III-V photovoltaics and photodetectors,” Proc. SPIE 8471, 84710A (2012).
    [Crossref]
  26. B. V. Olson, J. K. Kim, E. A. Kadlec, J. F. Klem, S. D. Hawkins, D. Leonhardt, W. T. Coon, T. R. Fortune, M. Cavaliere, A. Tauke-Pedretti, and E. A. Shaner, “Minority carrier lifetime and dark current measurements in mid-wavelength infrared InAs0.91Sb0.09 alloy nBn photodetectors,” Appl. Phys. Lett. 107(18), 183504 (2015).
    [Crossref]
  27. D. T. Debu, P. K. Ghosh, D. French, and J. B. Herzog, “Surface plasmon damping effects due to Ti adhesion layer in individual gold nanodisks,” Opt. Mater. Express 7(1), 73–84 (2017).
    [Crossref]
  28. H. Liu, B. Wang, E. S. P. Leong, P. Yang, Y. Zong, G. Si, J. Teng, and S. A. Maier, “Enhanced Surface Plasmon Resonance on a Smooth Silver Film with a Seed Growth Layer,” ACS Nano 4(6), 3139–3146 (2010).
    [Crossref] [PubMed]

2017 (3)

G. Wang, J. Shen, X. Liu, L. Ni, and S. Wang, “Optimization of top coupling grating for very long wavelength QWIP based on surface plasmon,” Photonic Sensors 7(3), 278–282 (2017).
[Crossref]

A. E. Brown, N. Baril, D. Zuo, L. A. Almeida, J. Arias, and S. Bandara, “Characterization of n-Type and p-Type Long-Wave InAs/InAsSb Superlattices,” J. Electron. Mater. 46(9), 5367–5373 (2017).
[Crossref]

D. T. Debu, P. K. Ghosh, D. French, and J. B. Herzog, “Surface plasmon damping effects due to Ti adhesion layer in individual gold nanodisks,” Opt. Mater. Express 7(1), 73–84 (2017).
[Crossref]

2015 (2)

B. V. Olson, J. K. Kim, E. A. Kadlec, J. F. Klem, S. D. Hawkins, D. Leonhardt, W. T. Coon, T. R. Fortune, M. Cavaliere, A. Tauke-Pedretti, and E. A. Shaner, “Minority carrier lifetime and dark current measurements in mid-wavelength infrared InAs0.91Sb0.09 alloy nBn photodetectors,” Appl. Phys. Lett. 107(18), 183504 (2015).
[Crossref]

J. A. Nolde, M. Kim, C. S. Kim, E. M. Jackson, C. T. Ellis, J. Abell, O. J. Glembocki, C. L. Canedy, J. G. Tischler, I. Vurgaftman, J. R. Meyer, and E. H. Aifer, “Resonant quantum efficiency enhancement of midwave infrared nBn photodetectors using one-dimensional plasmonic gratings,” Appl. Phys. Lett. 106(26), 261109 (2015).
[Crossref]

2014 (2)

2012 (4)

S. Zhai, J. Liu, F. Liu, and Z. Wang, “A normal incident quantum cascade detector enhanced by surface plasmons,” Appl. Phys. Lett. 100(18), 181104 (2012).
[Crossref]

J. You, X. Li, F. Xie, W. E. I. Sha, J. W. W. Kwong, G. Li, W. C. H. Choy, and Y. Yang, “Surface Plasmon and Scattering-Enhanced Low-Bandgap Polymer Solar Cell by a Metal Grating Back Electrode,” Adv. Energy Mater. 2(10), 1203–1207 (2012).
[Crossref]

M. P. Lumb, M. Gonzalez, I. Vurgaftman, J. R. Meyer, J. Abell, M. Yakes, R. Hoheisel, J. G. Tischler, P. P. Jenkins, P. N. Stavrinou, M. Fuhrer, N. J. Ekins-Daukes, and R. J. Walters, “Simulation of novel InAlAsSb solar cells,” Proc. SPIE 8256, 82560S (2012).
[Crossref]

M. P. Lumb, I. Vurgaftman, C. A. Affouda, J. R. Meyer, E. H. Aifer, and R. J. Walters, “Quantum wells and superlattices for III-V photovoltaics and photodetectors,” Proc. SPIE 8471, 84710A (2012).
[Crossref]

2010 (4)

H. Liu, B. Wang, E. S. P. Leong, P. Yang, Y. Zong, G. Si, J. Teng, and S. A. Maier, “Enhanced Surface Plasmon Resonance on a Smooth Silver Film with a Seed Growth Layer,” ACS Nano 4(6), 3139–3146 (2010).
[Crossref] [PubMed]

C. C. Chang, Y. D. Sharma, Y. S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S. Y. Lin, “A Surface Plasmon Enhanced Infrared Photodetector Based on InAs Quantum Dots,” Nano Lett. 10(5), 1704–1709 (2010).
[Crossref] [PubMed]

S. C. Lee, S. Krishna, and S. R. J. Brueck, “Light direction-dependent plasmonic enhancement in quantum dot infrared photodetectors,” Appl. Phys. Lett. 97(2), 021112 (2010).
[Crossref]

W. Wu, A. Bonakdar, and H. Mohseni, “Plasmonic enhanced quantum well infrared photodetector with high detectivity,” Appl. Phys. Lett. 96(16), 161107 (2010).
[Crossref]

2009 (1)

J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, “A multispectral and polarization-selective surface-plasmon resonant midinfrared detector,” Appl. Phys. Lett. 95(16), 161101 (2009).
[Crossref]

2007 (1)

S. D. Gunapala, S. V. Bandara, C. J. Hill, D. Z. Ting, J. K. Liu, S. B. Rafol, E. R. Blazejewski, J. M. Mumolo, S. A. Keo, S. Krishna, Y. C. Chang, and C. A. Shott, “640×512 Pixels Long-Wavelength Infrared (LWIR) Quantum-Dot Infrared Photodetector (QDIP) Imaging Focal Plane Array,” IEEE. J. Quantum. Electron. 43(3), 230–237 (2007).
[Crossref]

2004 (1)

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface Plasmon Polaritons and Their Role in the Enhanced Transmission of Light through Periodic Arrays of Subwavelength Holes in a Metal Film,” Phys. Rev. Lett. 92(10), 107401 (2004).
[Crossref] [PubMed]

2002 (1)

A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photonics Technol. Lett. 14(4), 483–485 (2002).
[Crossref]

2001 (1)

I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys. 89(11), 5815–5875 (2001).
[Crossref]

1998 (2)

Y. Fu, M. Willander, W. Lu, and W. Xu, “Near field and cavity effects on coupling efficiency of one-dimensional metal grating for terahertz quantum well photodetectors,” J. Appl. Phys. 84(10), 5750–5755 (1998).
[Crossref]

A. D. Rakić, A. B. Djurišic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998).
[Crossref] [PubMed]

1995 (1)

R. J. Egan, V. W. L. Chin, and T. L. Tansley, “Hole Transport in InSb-InAs Material System,” Solid State Commun. 93(7), 553–556 (1995).
[Crossref]

1994 (1)

C. Wang and S. S. Li, “Design of a two‐dimensional square mesh metal grating coupler for a miniband transport GaAs quantum‐well infrared photodetector,” J. Appl. Phys. 75(1), 582–587 (1994).
[Crossref]

1991 (2)

J. Y. Andersson, L. Lundqvist, and Z. F. Paska, “Quantum efficiency enhancement of AlGaAs/GaAs quantum well infrared detectors using a waveguide with a grating coupler,” Appl. Phys. Lett. 58(20), 2264–2266 (1991).
[Crossref]

J. Y. Andersson and L. Lundqvist, “Near‐unity quantum efficiency of AlGaAs/GaAs quantum well infrared detectors using a waveguide with a doubly periodic grating coupler,” Appl. Phys. Lett. 59(7), 857–859 (1991).
[Crossref]

1988 (1)

K. W. Goossen, S. A. Lyon, and K. Alavi, “Grating enhancement of quantum well detector response,” Appl. Phys. Lett. 53(12), 1027–1029 (1988).
[Crossref]

Abell, J.

J. A. Nolde, M. Kim, C. S. Kim, E. M. Jackson, C. T. Ellis, J. Abell, O. J. Glembocki, C. L. Canedy, J. G. Tischler, I. Vurgaftman, J. R. Meyer, and E. H. Aifer, “Resonant quantum efficiency enhancement of midwave infrared nBn photodetectors using one-dimensional plasmonic gratings,” Appl. Phys. Lett. 106(26), 261109 (2015).
[Crossref]

M. P. Lumb, M. Gonzalez, I. Vurgaftman, J. R. Meyer, J. Abell, M. Yakes, R. Hoheisel, J. G. Tischler, P. P. Jenkins, P. N. Stavrinou, M. Fuhrer, N. J. Ekins-Daukes, and R. J. Walters, “Simulation of novel InAlAsSb solar cells,” Proc. SPIE 8256, 82560S (2012).
[Crossref]

Affouda, C. A.

M. P. Lumb, I. Vurgaftman, C. A. Affouda, J. R. Meyer, E. H. Aifer, and R. J. Walters, “Quantum wells and superlattices for III-V photovoltaics and photodetectors,” Proc. SPIE 8471, 84710A (2012).
[Crossref]

Aifer, E. H.

J. A. Nolde, M. Kim, C. S. Kim, E. M. Jackson, C. T. Ellis, J. Abell, O. J. Glembocki, C. L. Canedy, J. G. Tischler, I. Vurgaftman, J. R. Meyer, and E. H. Aifer, “Resonant quantum efficiency enhancement of midwave infrared nBn photodetectors using one-dimensional plasmonic gratings,” Appl. Phys. Lett. 106(26), 261109 (2015).
[Crossref]

M. P. Lumb, I. Vurgaftman, C. A. Affouda, J. R. Meyer, E. H. Aifer, and R. J. Walters, “Quantum wells and superlattices for III-V photovoltaics and photodetectors,” Proc. SPIE 8471, 84710A (2012).
[Crossref]

Alavi, K.

K. W. Goossen, S. A. Lyon, and K. Alavi, “Grating enhancement of quantum well detector response,” Appl. Phys. Lett. 53(12), 1027–1029 (1988).
[Crossref]

Almeida, L. A.

A. E. Brown, N. Baril, D. Zuo, L. A. Almeida, J. Arias, and S. Bandara, “Characterization of n-Type and p-Type Long-Wave InAs/InAsSb Superlattices,” J. Electron. Mater. 46(9), 5367–5373 (2017).
[Crossref]

Andersson, J. Y.

J. Y. Andersson and L. Lundqvist, “Near‐unity quantum efficiency of AlGaAs/GaAs quantum well infrared detectors using a waveguide with a doubly periodic grating coupler,” Appl. Phys. Lett. 59(7), 857–859 (1991).
[Crossref]

J. Y. Andersson, L. Lundqvist, and Z. F. Paska, “Quantum efficiency enhancement of AlGaAs/GaAs quantum well infrared detectors using a waveguide with a grating coupler,” Appl. Phys. Lett. 58(20), 2264–2266 (1991).
[Crossref]

Arias, J.

A. E. Brown, N. Baril, D. Zuo, L. A. Almeida, J. Arias, and S. Bandara, “Characterization of n-Type and p-Type Long-Wave InAs/InAsSb Superlattices,” J. Electron. Mater. 46(9), 5367–5373 (2017).
[Crossref]

Bahir, G.

Bandara, S.

A. E. Brown, N. Baril, D. Zuo, L. A. Almeida, J. Arias, and S. Bandara, “Characterization of n-Type and p-Type Long-Wave InAs/InAsSb Superlattices,” J. Electron. Mater. 46(9), 5367–5373 (2017).
[Crossref]

Bandara, S. V.

S. D. Gunapala, S. V. Bandara, C. J. Hill, D. Z. Ting, J. K. Liu, S. B. Rafol, E. R. Blazejewski, J. M. Mumolo, S. A. Keo, S. Krishna, Y. C. Chang, and C. A. Shott, “640×512 Pixels Long-Wavelength Infrared (LWIR) Quantum-Dot Infrared Photodetector (QDIP) Imaging Focal Plane Array,” IEEE. J. Quantum. Electron. 43(3), 230–237 (2007).
[Crossref]

Baril, N.

A. E. Brown, N. Baril, D. Zuo, L. A. Almeida, J. Arias, and S. Bandara, “Characterization of n-Type and p-Type Long-Wave InAs/InAsSb Superlattices,” J. Electron. Mater. 46(9), 5367–5373 (2017).
[Crossref]

Barnes, W. L.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface Plasmon Polaritons and Their Role in the Enhanced Transmission of Light through Periodic Arrays of Subwavelength Holes in a Metal Film,” Phys. Rev. Lett. 92(10), 107401 (2004).
[Crossref] [PubMed]

Blazejewski, E. R.

S. D. Gunapala, S. V. Bandara, C. J. Hill, D. Z. Ting, J. K. Liu, S. B. Rafol, E. R. Blazejewski, J. M. Mumolo, S. A. Keo, S. Krishna, Y. C. Chang, and C. A. Shott, “640×512 Pixels Long-Wavelength Infrared (LWIR) Quantum-Dot Infrared Photodetector (QDIP) Imaging Focal Plane Array,” IEEE. J. Quantum. Electron. 43(3), 230–237 (2007).
[Crossref]

Bonakdar, A.

W. Wu, A. Bonakdar, and H. Mohseni, “Plasmonic enhanced quantum well infrared photodetector with high detectivity,” Appl. Phys. Lett. 96(16), 161107 (2010).
[Crossref]

Brown, A. E.

A. E. Brown, N. Baril, D. Zuo, L. A. Almeida, J. Arias, and S. Bandara, “Characterization of n-Type and p-Type Long-Wave InAs/InAsSb Superlattices,” J. Electron. Mater. 46(9), 5367–5373 (2017).
[Crossref]

Brueck, S. R. J.

S. C. Lee, S. Krishna, and S. R. J. Brueck, “Light direction-dependent plasmonic enhancement in quantum dot infrared photodetectors,” Appl. Phys. Lett. 97(2), 021112 (2010).
[Crossref]

Bur, J. A.

C. C. Chang, Y. D. Sharma, Y. S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S. Y. Lin, “A Surface Plasmon Enhanced Infrared Photodetector Based on InAs Quantum Dots,” Nano Lett. 10(5), 1704–1709 (2010).
[Crossref] [PubMed]

Canedy, C. L.

J. A. Nolde, M. Kim, C. S. Kim, E. M. Jackson, C. T. Ellis, J. Abell, O. J. Glembocki, C. L. Canedy, J. G. Tischler, I. Vurgaftman, J. R. Meyer, and E. H. Aifer, “Resonant quantum efficiency enhancement of midwave infrared nBn photodetectors using one-dimensional plasmonic gratings,” Appl. Phys. Lett. 106(26), 261109 (2015).
[Crossref]

Cavaliere, M.

B. V. Olson, J. K. Kim, E. A. Kadlec, J. F. Klem, S. D. Hawkins, D. Leonhardt, W. T. Coon, T. R. Fortune, M. Cavaliere, A. Tauke-Pedretti, and E. A. Shaner, “Minority carrier lifetime and dark current measurements in mid-wavelength infrared InAs0.91Sb0.09 alloy nBn photodetectors,” Appl. Phys. Lett. 107(18), 183504 (2015).
[Crossref]

Chang, C. C.

C. C. Chang, Y. D. Sharma, Y. S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S. Y. Lin, “A Surface Plasmon Enhanced Infrared Photodetector Based on InAs Quantum Dots,” Nano Lett. 10(5), 1704–1709 (2010).
[Crossref] [PubMed]

Chang, Y. C.

S. D. Gunapala, S. V. Bandara, C. J. Hill, D. Z. Ting, J. K. Liu, S. B. Rafol, E. R. Blazejewski, J. M. Mumolo, S. A. Keo, S. Krishna, Y. C. Chang, and C. A. Shott, “640×512 Pixels Long-Wavelength Infrared (LWIR) Quantum-Dot Infrared Photodetector (QDIP) Imaging Focal Plane Array,” IEEE. J. Quantum. Electron. 43(3), 230–237 (2007).
[Crossref]

Chin, V. W. L.

R. J. Egan, V. W. L. Chin, and T. L. Tansley, “Hole Transport in InSb-InAs Material System,” Solid State Commun. 93(7), 553–556 (1995).
[Crossref]

Choi, K. K.

K. K. Choi, M. D. Jhabvala, J. Sun, C. A. Jhabvala, A. Waczynski, and K. Olver, “Resonator-QWIPs and FPAs,” Proc. SPIE 9070, 907037 (2014).
[Crossref]

Choy, W. C. H.

J. You, X. Li, F. Xie, W. E. I. Sha, J. W. W. Kwong, G. Li, W. C. H. Choy, and Y. Yang, “Surface Plasmon and Scattering-Enhanced Low-Bandgap Polymer Solar Cell by a Metal Grating Back Electrode,” Adv. Energy Mater. 2(10), 1203–1207 (2012).
[Crossref]

Coon, W. T.

B. V. Olson, J. K. Kim, E. A. Kadlec, J. F. Klem, S. D. Hawkins, D. Leonhardt, W. T. Coon, T. R. Fortune, M. Cavaliere, A. Tauke-Pedretti, and E. A. Shaner, “Minority carrier lifetime and dark current measurements in mid-wavelength infrared InAs0.91Sb0.09 alloy nBn photodetectors,” Appl. Phys. Lett. 107(18), 183504 (2015).
[Crossref]

Debu, D. T.

Devaux, E.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface Plasmon Polaritons and Their Role in the Enhanced Transmission of Light through Periodic Arrays of Subwavelength Holes in a Metal Film,” Phys. Rev. Lett. 92(10), 107401 (2004).
[Crossref] [PubMed]

Dintinger, J.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface Plasmon Polaritons and Their Role in the Enhanced Transmission of Light through Periodic Arrays of Subwavelength Holes in a Metal Film,” Phys. Rev. Lett. 92(10), 107401 (2004).
[Crossref] [PubMed]

Djurišic, A. B.

Ebbesen, T. W.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface Plasmon Polaritons and Their Role in the Enhanced Transmission of Light through Periodic Arrays of Subwavelength Holes in a Metal Film,” Phys. Rev. Lett. 92(10), 107401 (2004).
[Crossref] [PubMed]

Egan, R. J.

R. J. Egan, V. W. L. Chin, and T. L. Tansley, “Hole Transport in InSb-InAs Material System,” Solid State Commun. 93(7), 553–556 (1995).
[Crossref]

Ekins-Daukes, N. J.

M. P. Lumb, M. Gonzalez, I. Vurgaftman, J. R. Meyer, J. Abell, M. Yakes, R. Hoheisel, J. G. Tischler, P. P. Jenkins, P. N. Stavrinou, M. Fuhrer, N. J. Ekins-Daukes, and R. J. Walters, “Simulation of novel InAlAsSb solar cells,” Proc. SPIE 8256, 82560S (2012).
[Crossref]

Elazar, J. M.

Ellis, C. T.

J. A. Nolde, M. Kim, C. S. Kim, E. M. Jackson, C. T. Ellis, J. Abell, O. J. Glembocki, C. L. Canedy, J. G. Tischler, I. Vurgaftman, J. R. Meyer, and E. H. Aifer, “Resonant quantum efficiency enhancement of midwave infrared nBn photodetectors using one-dimensional plasmonic gratings,” Appl. Phys. Lett. 106(26), 261109 (2015).
[Crossref]

Fortune, T. R.

B. V. Olson, J. K. Kim, E. A. Kadlec, J. F. Klem, S. D. Hawkins, D. Leonhardt, W. T. Coon, T. R. Fortune, M. Cavaliere, A. Tauke-Pedretti, and E. A. Shaner, “Minority carrier lifetime and dark current measurements in mid-wavelength infrared InAs0.91Sb0.09 alloy nBn photodetectors,” Appl. Phys. Lett. 107(18), 183504 (2015).
[Crossref]

French, D.

Fu, Y.

Y. Fu, M. Willander, W. Lu, and W. Xu, “Near field and cavity effects on coupling efficiency of one-dimensional metal grating for terahertz quantum well photodetectors,” J. Appl. Phys. 84(10), 5750–5755 (1998).
[Crossref]

Fuhrer, M.

M. P. Lumb, M. Gonzalez, I. Vurgaftman, J. R. Meyer, J. Abell, M. Yakes, R. Hoheisel, J. G. Tischler, P. P. Jenkins, P. N. Stavrinou, M. Fuhrer, N. J. Ekins-Daukes, and R. J. Walters, “Simulation of novel InAlAsSb solar cells,” Proc. SPIE 8256, 82560S (2012).
[Crossref]

Gal, L.

Ghosh, P. K.

Giraud, E.

Glembocki, O. J.

J. A. Nolde, M. Kim, C. S. Kim, E. M. Jackson, C. T. Ellis, J. Abell, O. J. Glembocki, C. L. Canedy, J. G. Tischler, I. Vurgaftman, J. R. Meyer, and E. H. Aifer, “Resonant quantum efficiency enhancement of midwave infrared nBn photodetectors using one-dimensional plasmonic gratings,” Appl. Phys. Lett. 106(26), 261109 (2015).
[Crossref]

Gonzalez, M.

M. P. Lumb, M. Gonzalez, I. Vurgaftman, J. R. Meyer, J. Abell, M. Yakes, R. Hoheisel, J. G. Tischler, P. P. Jenkins, P. N. Stavrinou, M. Fuhrer, N. J. Ekins-Daukes, and R. J. Walters, “Simulation of novel InAlAsSb solar cells,” Proc. SPIE 8256, 82560S (2012).
[Crossref]

Goossen, K. W.

K. W. Goossen, S. A. Lyon, and K. Alavi, “Grating enhancement of quantum well detector response,” Appl. Phys. Lett. 53(12), 1027–1029 (1988).
[Crossref]

Grandjean, N.

Gunapala, S. D.

S. D. Gunapala, S. V. Bandara, C. J. Hill, D. Z. Ting, J. K. Liu, S. B. Rafol, E. R. Blazejewski, J. M. Mumolo, S. A. Keo, S. Krishna, Y. C. Chang, and C. A. Shott, “640×512 Pixels Long-Wavelength Infrared (LWIR) Quantum-Dot Infrared Photodetector (QDIP) Imaging Focal Plane Array,” IEEE. J. Quantum. Electron. 43(3), 230–237 (2007).
[Crossref]

Hawkins, S. D.

B. V. Olson, J. K. Kim, E. A. Kadlec, J. F. Klem, S. D. Hawkins, D. Leonhardt, W. T. Coon, T. R. Fortune, M. Cavaliere, A. Tauke-Pedretti, and E. A. Shaner, “Minority carrier lifetime and dark current measurements in mid-wavelength infrared InAs0.91Sb0.09 alloy nBn photodetectors,” Appl. Phys. Lett. 107(18), 183504 (2015).
[Crossref]

Herzog, J. B.

Hill, C. J.

S. D. Gunapala, S. V. Bandara, C. J. Hill, D. Z. Ting, J. K. Liu, S. B. Rafol, E. R. Blazejewski, J. M. Mumolo, S. A. Keo, S. Krishna, Y. C. Chang, and C. A. Shott, “640×512 Pixels Long-Wavelength Infrared (LWIR) Quantum-Dot Infrared Photodetector (QDIP) Imaging Focal Plane Array,” IEEE. J. Quantum. Electron. 43(3), 230–237 (2007).
[Crossref]

Hoheisel, R.

M. P. Lumb, M. Gonzalez, I. Vurgaftman, J. R. Meyer, J. Abell, M. Yakes, R. Hoheisel, J. G. Tischler, P. P. Jenkins, P. N. Stavrinou, M. Fuhrer, N. J. Ekins-Daukes, and R. J. Walters, “Simulation of novel InAlAsSb solar cells,” Proc. SPIE 8256, 82560S (2012).
[Crossref]

Huang, D.

C. C. Chang, Y. D. Sharma, Y. S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S. Y. Lin, “A Surface Plasmon Enhanced Infrared Photodetector Based on InAs Quantum Dots,” Nano Lett. 10(5), 1704–1709 (2010).
[Crossref] [PubMed]

Jackson, E. M.

J. A. Nolde, M. Kim, C. S. Kim, E. M. Jackson, C. T. Ellis, J. Abell, O. J. Glembocki, C. L. Canedy, J. G. Tischler, I. Vurgaftman, J. R. Meyer, and E. H. Aifer, “Resonant quantum efficiency enhancement of midwave infrared nBn photodetectors using one-dimensional plasmonic gratings,” Appl. Phys. Lett. 106(26), 261109 (2015).
[Crossref]

Jenkins, P. P.

M. P. Lumb, M. Gonzalez, I. Vurgaftman, J. R. Meyer, J. Abell, M. Yakes, R. Hoheisel, J. G. Tischler, P. P. Jenkins, P. N. Stavrinou, M. Fuhrer, N. J. Ekins-Daukes, and R. J. Walters, “Simulation of novel InAlAsSb solar cells,” Proc. SPIE 8256, 82560S (2012).
[Crossref]

Jhabvala, C. A.

K. K. Choi, M. D. Jhabvala, J. Sun, C. A. Jhabvala, A. Waczynski, and K. Olver, “Resonator-QWIPs and FPAs,” Proc. SPIE 9070, 907037 (2014).
[Crossref]

Jhabvala, M. D.

K. K. Choi, M. D. Jhabvala, J. Sun, C. A. Jhabvala, A. Waczynski, and K. Olver, “Resonator-QWIPs and FPAs,” Proc. SPIE 9070, 907037 (2014).
[Crossref]

Julien, F. H.

Kadlec, E. A.

B. V. Olson, J. K. Kim, E. A. Kadlec, J. F. Klem, S. D. Hawkins, D. Leonhardt, W. T. Coon, T. R. Fortune, M. Cavaliere, A. Tauke-Pedretti, and E. A. Shaner, “Minority carrier lifetime and dark current measurements in mid-wavelength infrared InAs0.91Sb0.09 alloy nBn photodetectors,” Appl. Phys. Lett. 107(18), 183504 (2015).
[Crossref]

Keo, S. A.

S. D. Gunapala, S. V. Bandara, C. J. Hill, D. Z. Ting, J. K. Liu, S. B. Rafol, E. R. Blazejewski, J. M. Mumolo, S. A. Keo, S. Krishna, Y. C. Chang, and C. A. Shott, “640×512 Pixels Long-Wavelength Infrared (LWIR) Quantum-Dot Infrared Photodetector (QDIP) Imaging Focal Plane Array,” IEEE. J. Quantum. Electron. 43(3), 230–237 (2007).
[Crossref]

Kim, C. S.

J. A. Nolde, M. Kim, C. S. Kim, E. M. Jackson, C. T. Ellis, J. Abell, O. J. Glembocki, C. L. Canedy, J. G. Tischler, I. Vurgaftman, J. R. Meyer, and E. H. Aifer, “Resonant quantum efficiency enhancement of midwave infrared nBn photodetectors using one-dimensional plasmonic gratings,” Appl. Phys. Lett. 106(26), 261109 (2015).
[Crossref]

Kim, J. K.

B. V. Olson, J. K. Kim, E. A. Kadlec, J. F. Klem, S. D. Hawkins, D. Leonhardt, W. T. Coon, T. R. Fortune, M. Cavaliere, A. Tauke-Pedretti, and E. A. Shaner, “Minority carrier lifetime and dark current measurements in mid-wavelength infrared InAs0.91Sb0.09 alloy nBn photodetectors,” Appl. Phys. Lett. 107(18), 183504 (2015).
[Crossref]

Kim, M.

J. A. Nolde, M. Kim, C. S. Kim, E. M. Jackson, C. T. Ellis, J. Abell, O. J. Glembocki, C. L. Canedy, J. G. Tischler, I. Vurgaftman, J. R. Meyer, and E. H. Aifer, “Resonant quantum efficiency enhancement of midwave infrared nBn photodetectors using one-dimensional plasmonic gratings,” Appl. Phys. Lett. 106(26), 261109 (2015).
[Crossref]

Kim, Y. S.

C. C. Chang, Y. D. Sharma, Y. S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S. Y. Lin, “A Surface Plasmon Enhanced Infrared Photodetector Based on InAs Quantum Dots,” Nano Lett. 10(5), 1704–1709 (2010).
[Crossref] [PubMed]

Klem, J. F.

B. V. Olson, J. K. Kim, E. A. Kadlec, J. F. Klem, S. D. Hawkins, D. Leonhardt, W. T. Coon, T. R. Fortune, M. Cavaliere, A. Tauke-Pedretti, and E. A. Shaner, “Minority carrier lifetime and dark current measurements in mid-wavelength infrared InAs0.91Sb0.09 alloy nBn photodetectors,” Appl. Phys. Lett. 107(18), 183504 (2015).
[Crossref]

Krishna, S.

S. C. Lee, S. Krishna, and S. R. J. Brueck, “Light direction-dependent plasmonic enhancement in quantum dot infrared photodetectors,” Appl. Phys. Lett. 97(2), 021112 (2010).
[Crossref]

C. C. Chang, Y. D. Sharma, Y. S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S. Y. Lin, “A Surface Plasmon Enhanced Infrared Photodetector Based on InAs Quantum Dots,” Nano Lett. 10(5), 1704–1709 (2010).
[Crossref] [PubMed]

J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, “A multispectral and polarization-selective surface-plasmon resonant midinfrared detector,” Appl. Phys. Lett. 95(16), 161101 (2009).
[Crossref]

S. D. Gunapala, S. V. Bandara, C. J. Hill, D. Z. Ting, J. K. Liu, S. B. Rafol, E. R. Blazejewski, J. M. Mumolo, S. A. Keo, S. Krishna, Y. C. Chang, and C. A. Shott, “640×512 Pixels Long-Wavelength Infrared (LWIR) Quantum-Dot Infrared Photodetector (QDIP) Imaging Focal Plane Array,” IEEE. J. Quantum. Electron. 43(3), 230–237 (2007).
[Crossref]

Kwong, J. W. W.

J. You, X. Li, F. Xie, W. E. I. Sha, J. W. W. Kwong, G. Li, W. C. H. Choy, and Y. Yang, “Surface Plasmon and Scattering-Enhanced Low-Bandgap Polymer Solar Cell by a Metal Grating Back Electrode,” Adv. Energy Mater. 2(10), 1203–1207 (2012).
[Crossref]

Lee, S. C.

S. C. Lee, S. Krishna, and S. R. J. Brueck, “Light direction-dependent plasmonic enhancement in quantum dot infrared photodetectors,” Appl. Phys. Lett. 97(2), 021112 (2010).
[Crossref]

Leong, E. S. P.

H. Liu, B. Wang, E. S. P. Leong, P. Yang, Y. Zong, G. Si, J. Teng, and S. A. Maier, “Enhanced Surface Plasmon Resonance on a Smooth Silver Film with a Seed Growth Layer,” ACS Nano 4(6), 3139–3146 (2010).
[Crossref] [PubMed]

Leonhardt, D.

B. V. Olson, J. K. Kim, E. A. Kadlec, J. F. Klem, S. D. Hawkins, D. Leonhardt, W. T. Coon, T. R. Fortune, M. Cavaliere, A. Tauke-Pedretti, and E. A. Shaner, “Minority carrier lifetime and dark current measurements in mid-wavelength infrared InAs0.91Sb0.09 alloy nBn photodetectors,” Appl. Phys. Lett. 107(18), 183504 (2015).
[Crossref]

Li, G.

J. You, X. Li, F. Xie, W. E. I. Sha, J. W. W. Kwong, G. Li, W. C. H. Choy, and Y. Yang, “Surface Plasmon and Scattering-Enhanced Low-Bandgap Polymer Solar Cell by a Metal Grating Back Electrode,” Adv. Energy Mater. 2(10), 1203–1207 (2012).
[Crossref]

Li, S. S.

C. Wang and S. S. Li, “Design of a two‐dimensional square mesh metal grating coupler for a miniband transport GaAs quantum‐well infrared photodetector,” J. Appl. Phys. 75(1), 582–587 (1994).
[Crossref]

Li, X.

J. You, X. Li, F. Xie, W. E. I. Sha, J. W. W. Kwong, G. Li, W. C. H. Choy, and Y. Yang, “Surface Plasmon and Scattering-Enhanced Low-Bandgap Polymer Solar Cell by a Metal Grating Back Electrode,” Adv. Energy Mater. 2(10), 1203–1207 (2012).
[Crossref]

Lin, S. Y.

C. C. Chang, Y. D. Sharma, Y. S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S. Y. Lin, “A Surface Plasmon Enhanced Infrared Photodetector Based on InAs Quantum Dots,” Nano Lett. 10(5), 1704–1709 (2010).
[Crossref] [PubMed]

Liu, F.

S. Zhai, J. Liu, F. Liu, and Z. Wang, “A normal incident quantum cascade detector enhanced by surface plasmons,” Appl. Phys. Lett. 100(18), 181104 (2012).
[Crossref]

Liu, H.

H. Liu, B. Wang, E. S. P. Leong, P. Yang, Y. Zong, G. Si, J. Teng, and S. A. Maier, “Enhanced Surface Plasmon Resonance on a Smooth Silver Film with a Seed Growth Layer,” ACS Nano 4(6), 3139–3146 (2010).
[Crossref] [PubMed]

Liu, J.

S. Zhai, J. Liu, F. Liu, and Z. Wang, “A normal incident quantum cascade detector enhanced by surface plasmons,” Appl. Phys. Lett. 100(18), 181104 (2012).
[Crossref]

Liu, J. K.

S. D. Gunapala, S. V. Bandara, C. J. Hill, D. Z. Ting, J. K. Liu, S. B. Rafol, E. R. Blazejewski, J. M. Mumolo, S. A. Keo, S. Krishna, Y. C. Chang, and C. A. Shott, “640×512 Pixels Long-Wavelength Infrared (LWIR) Quantum-Dot Infrared Photodetector (QDIP) Imaging Focal Plane Array,” IEEE. J. Quantum. Electron. 43(3), 230–237 (2007).
[Crossref]

Liu, X.

G. Wang, J. Shen, X. Liu, L. Ni, and S. Wang, “Optimization of top coupling grating for very long wavelength QWIP based on surface plasmon,” Photonic Sensors 7(3), 278–282 (2017).
[Crossref]

Lu, W.

Y. Fu, M. Willander, W. Lu, and W. Xu, “Near field and cavity effects on coupling efficiency of one-dimensional metal grating for terahertz quantum well photodetectors,” J. Appl. Phys. 84(10), 5750–5755 (1998).
[Crossref]

Lumb, M. P.

M. P. Lumb, M. Gonzalez, I. Vurgaftman, J. R. Meyer, J. Abell, M. Yakes, R. Hoheisel, J. G. Tischler, P. P. Jenkins, P. N. Stavrinou, M. Fuhrer, N. J. Ekins-Daukes, and R. J. Walters, “Simulation of novel InAlAsSb solar cells,” Proc. SPIE 8256, 82560S (2012).
[Crossref]

M. P. Lumb, I. Vurgaftman, C. A. Affouda, J. R. Meyer, E. H. Aifer, and R. J. Walters, “Quantum wells and superlattices for III-V photovoltaics and photodetectors,” Proc. SPIE 8471, 84710A (2012).
[Crossref]

Lundqvist, L.

J. Y. Andersson and L. Lundqvist, “Near‐unity quantum efficiency of AlGaAs/GaAs quantum well infrared detectors using a waveguide with a doubly periodic grating coupler,” Appl. Phys. Lett. 59(7), 857–859 (1991).
[Crossref]

J. Y. Andersson, L. Lundqvist, and Z. F. Paska, “Quantum efficiency enhancement of AlGaAs/GaAs quantum well infrared detectors using a waveguide with a grating coupler,” Appl. Phys. Lett. 58(20), 2264–2266 (1991).
[Crossref]

Lyon, S. A.

K. W. Goossen, S. A. Lyon, and K. Alavi, “Grating enhancement of quantum well detector response,” Appl. Phys. Lett. 53(12), 1027–1029 (1988).
[Crossref]

Maier, S. A.

H. Liu, B. Wang, E. S. P. Leong, P. Yang, Y. Zong, G. Si, J. Teng, and S. A. Maier, “Enhanced Surface Plasmon Resonance on a Smooth Silver Film with a Seed Growth Layer,” ACS Nano 4(6), 3139–3146 (2010).
[Crossref] [PubMed]

Majewski, M. L.

Meyer, J. R.

J. A. Nolde, M. Kim, C. S. Kim, E. M. Jackson, C. T. Ellis, J. Abell, O. J. Glembocki, C. L. Canedy, J. G. Tischler, I. Vurgaftman, J. R. Meyer, and E. H. Aifer, “Resonant quantum efficiency enhancement of midwave infrared nBn photodetectors using one-dimensional plasmonic gratings,” Appl. Phys. Lett. 106(26), 261109 (2015).
[Crossref]

M. P. Lumb, M. Gonzalez, I. Vurgaftman, J. R. Meyer, J. Abell, M. Yakes, R. Hoheisel, J. G. Tischler, P. P. Jenkins, P. N. Stavrinou, M. Fuhrer, N. J. Ekins-Daukes, and R. J. Walters, “Simulation of novel InAlAsSb solar cells,” Proc. SPIE 8256, 82560S (2012).
[Crossref]

M. P. Lumb, I. Vurgaftman, C. A. Affouda, J. R. Meyer, E. H. Aifer, and R. J. Walters, “Quantum wells and superlattices for III-V photovoltaics and photodetectors,” Proc. SPIE 8471, 84710A (2012).
[Crossref]

I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys. 89(11), 5815–5875 (2001).
[Crossref]

Mohseni, H.

W. Wu, A. Bonakdar, and H. Mohseni, “Plasmonic enhanced quantum well infrared photodetector with high detectivity,” Appl. Phys. Lett. 96(16), 161107 (2010).
[Crossref]

Mumolo, J. M.

S. D. Gunapala, S. V. Bandara, C. J. Hill, D. Z. Ting, J. K. Liu, S. B. Rafol, E. R. Blazejewski, J. M. Mumolo, S. A. Keo, S. Krishna, Y. C. Chang, and C. A. Shott, “640×512 Pixels Long-Wavelength Infrared (LWIR) Quantum-Dot Infrared Photodetector (QDIP) Imaging Focal Plane Array,” IEEE. J. Quantum. Electron. 43(3), 230–237 (2007).
[Crossref]

Murray, W. A.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface Plasmon Polaritons and Their Role in the Enhanced Transmission of Light through Periodic Arrays of Subwavelength Holes in a Metal Film,” Phys. Rev. Lett. 92(10), 107401 (2004).
[Crossref] [PubMed]

Ni, L.

G. Wang, J. Shen, X. Liu, L. Ni, and S. Wang, “Optimization of top coupling grating for very long wavelength QWIP based on surface plasmon,” Photonic Sensors 7(3), 278–282 (2017).
[Crossref]

Nolde, J. A.

J. A. Nolde, M. Kim, C. S. Kim, E. M. Jackson, C. T. Ellis, J. Abell, O. J. Glembocki, C. L. Canedy, J. G. Tischler, I. Vurgaftman, J. R. Meyer, and E. H. Aifer, “Resonant quantum efficiency enhancement of midwave infrared nBn photodetectors using one-dimensional plasmonic gratings,” Appl. Phys. Lett. 106(26), 261109 (2015).
[Crossref]

Olson, B. V.

B. V. Olson, J. K. Kim, E. A. Kadlec, J. F. Klem, S. D. Hawkins, D. Leonhardt, W. T. Coon, T. R. Fortune, M. Cavaliere, A. Tauke-Pedretti, and E. A. Shaner, “Minority carrier lifetime and dark current measurements in mid-wavelength infrared InAs0.91Sb0.09 alloy nBn photodetectors,” Appl. Phys. Lett. 107(18), 183504 (2015).
[Crossref]

Olver, K.

K. K. Choi, M. D. Jhabvala, J. Sun, C. A. Jhabvala, A. Waczynski, and K. Olver, “Resonator-QWIPs and FPAs,” Proc. SPIE 9070, 907037 (2014).
[Crossref]

Orenstein, M.

Painter, O.

J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, “A multispectral and polarization-selective surface-plasmon resonant midinfrared detector,” Appl. Phys. Lett. 95(16), 161101 (2009).
[Crossref]

Paska, Z. F.

J. Y. Andersson, L. Lundqvist, and Z. F. Paska, “Quantum efficiency enhancement of AlGaAs/GaAs quantum well infrared detectors using a waveguide with a grating coupler,” Appl. Phys. Lett. 58(20), 2264–2266 (1991).
[Crossref]

Pesach, A.

Rafol, S. B.

S. D. Gunapala, S. V. Bandara, C. J. Hill, D. Z. Ting, J. K. Liu, S. B. Rafol, E. R. Blazejewski, J. M. Mumolo, S. A. Keo, S. Krishna, Y. C. Chang, and C. A. Shott, “640×512 Pixels Long-Wavelength Infrared (LWIR) Quantum-Dot Infrared Photodetector (QDIP) Imaging Focal Plane Array,” IEEE. J. Quantum. Electron. 43(3), 230–237 (2007).
[Crossref]

Rakic, A. D.

Ram-Mohan, L. R.

I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys. 89(11), 5815–5875 (2001).
[Crossref]

Rosenberg, J.

J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, “A multispectral and polarization-selective surface-plasmon resonant midinfrared detector,” Appl. Phys. Lett. 95(16), 161101 (2009).
[Crossref]

Sakr, S.

Sha, W. E. I.

J. You, X. Li, F. Xie, W. E. I. Sha, J. W. W. Kwong, G. Li, W. C. H. Choy, and Y. Yang, “Surface Plasmon and Scattering-Enhanced Low-Bandgap Polymer Solar Cell by a Metal Grating Back Electrode,” Adv. Energy Mater. 2(10), 1203–1207 (2012).
[Crossref]

Shaner, E. A.

B. V. Olson, J. K. Kim, E. A. Kadlec, J. F. Klem, S. D. Hawkins, D. Leonhardt, W. T. Coon, T. R. Fortune, M. Cavaliere, A. Tauke-Pedretti, and E. A. Shaner, “Minority carrier lifetime and dark current measurements in mid-wavelength infrared InAs0.91Sb0.09 alloy nBn photodetectors,” Appl. Phys. Lett. 107(18), 183504 (2015).
[Crossref]

Sharma, Y. D.

C. C. Chang, Y. D. Sharma, Y. S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S. Y. Lin, “A Surface Plasmon Enhanced Infrared Photodetector Based on InAs Quantum Dots,” Nano Lett. 10(5), 1704–1709 (2010).
[Crossref] [PubMed]

Shen, J.

G. Wang, J. Shen, X. Liu, L. Ni, and S. Wang, “Optimization of top coupling grating for very long wavelength QWIP based on surface plasmon,” Photonic Sensors 7(3), 278–282 (2017).
[Crossref]

Shenoi, R. V.

C. C. Chang, Y. D. Sharma, Y. S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S. Y. Lin, “A Surface Plasmon Enhanced Infrared Photodetector Based on InAs Quantum Dots,” Nano Lett. 10(5), 1704–1709 (2010).
[Crossref] [PubMed]

J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, “A multispectral and polarization-selective surface-plasmon resonant midinfrared detector,” Appl. Phys. Lett. 95(16), 161101 (2009).
[Crossref]

Shott, C. A.

S. D. Gunapala, S. V. Bandara, C. J. Hill, D. Z. Ting, J. K. Liu, S. B. Rafol, E. R. Blazejewski, J. M. Mumolo, S. A. Keo, S. Krishna, Y. C. Chang, and C. A. Shott, “640×512 Pixels Long-Wavelength Infrared (LWIR) Quantum-Dot Infrared Photodetector (QDIP) Imaging Focal Plane Array,” IEEE. J. Quantum. Electron. 43(3), 230–237 (2007).
[Crossref]

Si, G.

H. Liu, B. Wang, E. S. P. Leong, P. Yang, Y. Zong, G. Si, J. Teng, and S. A. Maier, “Enhanced Surface Plasmon Resonance on a Smooth Silver Film with a Seed Growth Layer,” ACS Nano 4(6), 3139–3146 (2010).
[Crossref] [PubMed]

Sorias, O.

Stavrinou, P. N.

M. P. Lumb, M. Gonzalez, I. Vurgaftman, J. R. Meyer, J. Abell, M. Yakes, R. Hoheisel, J. G. Tischler, P. P. Jenkins, P. N. Stavrinou, M. Fuhrer, N. J. Ekins-Daukes, and R. J. Walters, “Simulation of novel InAlAsSb solar cells,” Proc. SPIE 8256, 82560S (2012).
[Crossref]

Sun, J.

K. K. Choi, M. D. Jhabvala, J. Sun, C. A. Jhabvala, A. Waczynski, and K. Olver, “Resonator-QWIPs and FPAs,” Proc. SPIE 9070, 907037 (2014).
[Crossref]

Tansley, T. L.

R. J. Egan, V. W. L. Chin, and T. L. Tansley, “Hole Transport in InSb-InAs Material System,” Solid State Commun. 93(7), 553–556 (1995).
[Crossref]

Tauke-Pedretti, A.

B. V. Olson, J. K. Kim, E. A. Kadlec, J. F. Klem, S. D. Hawkins, D. Leonhardt, W. T. Coon, T. R. Fortune, M. Cavaliere, A. Tauke-Pedretti, and E. A. Shaner, “Minority carrier lifetime and dark current measurements in mid-wavelength infrared InAs0.91Sb0.09 alloy nBn photodetectors,” Appl. Phys. Lett. 107(18), 183504 (2015).
[Crossref]

Tchernycheva, M.

Teng, J.

H. Liu, B. Wang, E. S. P. Leong, P. Yang, Y. Zong, G. Si, J. Teng, and S. A. Maier, “Enhanced Surface Plasmon Resonance on a Smooth Silver Film with a Seed Growth Layer,” ACS Nano 4(6), 3139–3146 (2010).
[Crossref] [PubMed]

Ting, D. Z.

S. D. Gunapala, S. V. Bandara, C. J. Hill, D. Z. Ting, J. K. Liu, S. B. Rafol, E. R. Blazejewski, J. M. Mumolo, S. A. Keo, S. Krishna, Y. C. Chang, and C. A. Shott, “640×512 Pixels Long-Wavelength Infrared (LWIR) Quantum-Dot Infrared Photodetector (QDIP) Imaging Focal Plane Array,” IEEE. J. Quantum. Electron. 43(3), 230–237 (2007).
[Crossref]

Tischler, J. G.

J. A. Nolde, M. Kim, C. S. Kim, E. M. Jackson, C. T. Ellis, J. Abell, O. J. Glembocki, C. L. Canedy, J. G. Tischler, I. Vurgaftman, J. R. Meyer, and E. H. Aifer, “Resonant quantum efficiency enhancement of midwave infrared nBn photodetectors using one-dimensional plasmonic gratings,” Appl. Phys. Lett. 106(26), 261109 (2015).
[Crossref]

M. P. Lumb, M. Gonzalez, I. Vurgaftman, J. R. Meyer, J. Abell, M. Yakes, R. Hoheisel, J. G. Tischler, P. P. Jenkins, P. N. Stavrinou, M. Fuhrer, N. J. Ekins-Daukes, and R. J. Walters, “Simulation of novel InAlAsSb solar cells,” Proc. SPIE 8256, 82560S (2012).
[Crossref]

Vandervelde, T. E.

J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, “A multispectral and polarization-selective surface-plasmon resonant midinfrared detector,” Appl. Phys. Lett. 95(16), 161101 (2009).
[Crossref]

Vurgaftman, I.

J. A. Nolde, M. Kim, C. S. Kim, E. M. Jackson, C. T. Ellis, J. Abell, O. J. Glembocki, C. L. Canedy, J. G. Tischler, I. Vurgaftman, J. R. Meyer, and E. H. Aifer, “Resonant quantum efficiency enhancement of midwave infrared nBn photodetectors using one-dimensional plasmonic gratings,” Appl. Phys. Lett. 106(26), 261109 (2015).
[Crossref]

M. P. Lumb, M. Gonzalez, I. Vurgaftman, J. R. Meyer, J. Abell, M. Yakes, R. Hoheisel, J. G. Tischler, P. P. Jenkins, P. N. Stavrinou, M. Fuhrer, N. J. Ekins-Daukes, and R. J. Walters, “Simulation of novel InAlAsSb solar cells,” Proc. SPIE 8256, 82560S (2012).
[Crossref]

M. P. Lumb, I. Vurgaftman, C. A. Affouda, J. R. Meyer, E. H. Aifer, and R. J. Walters, “Quantum wells and superlattices for III-V photovoltaics and photodetectors,” Proc. SPIE 8471, 84710A (2012).
[Crossref]

I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys. 89(11), 5815–5875 (2001).
[Crossref]

Waczynski, A.

K. K. Choi, M. D. Jhabvala, J. Sun, C. A. Jhabvala, A. Waczynski, and K. Olver, “Resonator-QWIPs and FPAs,” Proc. SPIE 9070, 907037 (2014).
[Crossref]

Walters, R. J.

M. P. Lumb, M. Gonzalez, I. Vurgaftman, J. R. Meyer, J. Abell, M. Yakes, R. Hoheisel, J. G. Tischler, P. P. Jenkins, P. N. Stavrinou, M. Fuhrer, N. J. Ekins-Daukes, and R. J. Walters, “Simulation of novel InAlAsSb solar cells,” Proc. SPIE 8256, 82560S (2012).
[Crossref]

M. P. Lumb, I. Vurgaftman, C. A. Affouda, J. R. Meyer, E. H. Aifer, and R. J. Walters, “Quantum wells and superlattices for III-V photovoltaics and photodetectors,” Proc. SPIE 8471, 84710A (2012).
[Crossref]

Wang, B.

H. Liu, B. Wang, E. S. P. Leong, P. Yang, Y. Zong, G. Si, J. Teng, and S. A. Maier, “Enhanced Surface Plasmon Resonance on a Smooth Silver Film with a Seed Growth Layer,” ACS Nano 4(6), 3139–3146 (2010).
[Crossref] [PubMed]

Wang, C.

C. Wang and S. S. Li, “Design of a two‐dimensional square mesh metal grating coupler for a miniband transport GaAs quantum‐well infrared photodetector,” J. Appl. Phys. 75(1), 582–587 (1994).
[Crossref]

Wang, G.

G. Wang, J. Shen, X. Liu, L. Ni, and S. Wang, “Optimization of top coupling grating for very long wavelength QWIP based on surface plasmon,” Photonic Sensors 7(3), 278–282 (2017).
[Crossref]

Wang, S.

G. Wang, J. Shen, X. Liu, L. Ni, and S. Wang, “Optimization of top coupling grating for very long wavelength QWIP based on surface plasmon,” Photonic Sensors 7(3), 278–282 (2017).
[Crossref]

Wang, Z.

S. Zhai, J. Liu, F. Liu, and Z. Wang, “A normal incident quantum cascade detector enhanced by surface plasmons,” Appl. Phys. Lett. 100(18), 181104 (2012).
[Crossref]

Willander, M.

Y. Fu, M. Willander, W. Lu, and W. Xu, “Near field and cavity effects on coupling efficiency of one-dimensional metal grating for terahertz quantum well photodetectors,” J. Appl. Phys. 84(10), 5750–5755 (1998).
[Crossref]

Wu, W.

W. Wu, A. Bonakdar, and H. Mohseni, “Plasmonic enhanced quantum well infrared photodetector with high detectivity,” Appl. Phys. Lett. 96(16), 161107 (2010).
[Crossref]

Xie, F.

J. You, X. Li, F. Xie, W. E. I. Sha, J. W. W. Kwong, G. Li, W. C. H. Choy, and Y. Yang, “Surface Plasmon and Scattering-Enhanced Low-Bandgap Polymer Solar Cell by a Metal Grating Back Electrode,” Adv. Energy Mater. 2(10), 1203–1207 (2012).
[Crossref]

Xu, W.

Y. Fu, M. Willander, W. Lu, and W. Xu, “Near field and cavity effects on coupling efficiency of one-dimensional metal grating for terahertz quantum well photodetectors,” J. Appl. Phys. 84(10), 5750–5755 (1998).
[Crossref]

Yakes, M.

M. P. Lumb, M. Gonzalez, I. Vurgaftman, J. R. Meyer, J. Abell, M. Yakes, R. Hoheisel, J. G. Tischler, P. P. Jenkins, P. N. Stavrinou, M. Fuhrer, N. J. Ekins-Daukes, and R. J. Walters, “Simulation of novel InAlAsSb solar cells,” Proc. SPIE 8256, 82560S (2012).
[Crossref]

Yang, P.

H. Liu, B. Wang, E. S. P. Leong, P. Yang, Y. Zong, G. Si, J. Teng, and S. A. Maier, “Enhanced Surface Plasmon Resonance on a Smooth Silver Film with a Seed Growth Layer,” ACS Nano 4(6), 3139–3146 (2010).
[Crossref] [PubMed]

Yang, Y.

J. You, X. Li, F. Xie, W. E. I. Sha, J. W. W. Kwong, G. Li, W. C. H. Choy, and Y. Yang, “Surface Plasmon and Scattering-Enhanced Low-Bandgap Polymer Solar Cell by a Metal Grating Back Electrode,” Adv. Energy Mater. 2(10), 1203–1207 (2012).
[Crossref]

Yariv, A.

A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photonics Technol. Lett. 14(4), 483–485 (2002).
[Crossref]

You, J.

J. You, X. Li, F. Xie, W. E. I. Sha, J. W. W. Kwong, G. Li, W. C. H. Choy, and Y. Yang, “Surface Plasmon and Scattering-Enhanced Low-Bandgap Polymer Solar Cell by a Metal Grating Back Electrode,” Adv. Energy Mater. 2(10), 1203–1207 (2012).
[Crossref]

Zhai, S.

S. Zhai, J. Liu, F. Liu, and Z. Wang, “A normal incident quantum cascade detector enhanced by surface plasmons,” Appl. Phys. Lett. 100(18), 181104 (2012).
[Crossref]

Zong, Y.

H. Liu, B. Wang, E. S. P. Leong, P. Yang, Y. Zong, G. Si, J. Teng, and S. A. Maier, “Enhanced Surface Plasmon Resonance on a Smooth Silver Film with a Seed Growth Layer,” ACS Nano 4(6), 3139–3146 (2010).
[Crossref] [PubMed]

Zuo, D.

A. E. Brown, N. Baril, D. Zuo, L. A. Almeida, J. Arias, and S. Bandara, “Characterization of n-Type and p-Type Long-Wave InAs/InAsSb Superlattices,” J. Electron. Mater. 46(9), 5367–5373 (2017).
[Crossref]

ACS Nano (1)

H. Liu, B. Wang, E. S. P. Leong, P. Yang, Y. Zong, G. Si, J. Teng, and S. A. Maier, “Enhanced Surface Plasmon Resonance on a Smooth Silver Film with a Seed Growth Layer,” ACS Nano 4(6), 3139–3146 (2010).
[Crossref] [PubMed]

Adv. Energy Mater. (1)

J. You, X. Li, F. Xie, W. E. I. Sha, J. W. W. Kwong, G. Li, W. C. H. Choy, and Y. Yang, “Surface Plasmon and Scattering-Enhanced Low-Bandgap Polymer Solar Cell by a Metal Grating Back Electrode,” Adv. Energy Mater. 2(10), 1203–1207 (2012).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (9)

B. V. Olson, J. K. Kim, E. A. Kadlec, J. F. Klem, S. D. Hawkins, D. Leonhardt, W. T. Coon, T. R. Fortune, M. Cavaliere, A. Tauke-Pedretti, and E. A. Shaner, “Minority carrier lifetime and dark current measurements in mid-wavelength infrared InAs0.91Sb0.09 alloy nBn photodetectors,” Appl. Phys. Lett. 107(18), 183504 (2015).
[Crossref]

J. Y. Andersson and L. Lundqvist, “Near‐unity quantum efficiency of AlGaAs/GaAs quantum well infrared detectors using a waveguide with a doubly periodic grating coupler,” Appl. Phys. Lett. 59(7), 857–859 (1991).
[Crossref]

K. W. Goossen, S. A. Lyon, and K. Alavi, “Grating enhancement of quantum well detector response,” Appl. Phys. Lett. 53(12), 1027–1029 (1988).
[Crossref]

S. C. Lee, S. Krishna, and S. R. J. Brueck, “Light direction-dependent plasmonic enhancement in quantum dot infrared photodetectors,” Appl. Phys. Lett. 97(2), 021112 (2010).
[Crossref]

S. Zhai, J. Liu, F. Liu, and Z. Wang, “A normal incident quantum cascade detector enhanced by surface plasmons,” Appl. Phys. Lett. 100(18), 181104 (2012).
[Crossref]

J. A. Nolde, M. Kim, C. S. Kim, E. M. Jackson, C. T. Ellis, J. Abell, O. J. Glembocki, C. L. Canedy, J. G. Tischler, I. Vurgaftman, J. R. Meyer, and E. H. Aifer, “Resonant quantum efficiency enhancement of midwave infrared nBn photodetectors using one-dimensional plasmonic gratings,” Appl. Phys. Lett. 106(26), 261109 (2015).
[Crossref]

W. Wu, A. Bonakdar, and H. Mohseni, “Plasmonic enhanced quantum well infrared photodetector with high detectivity,” Appl. Phys. Lett. 96(16), 161107 (2010).
[Crossref]

J. Y. Andersson, L. Lundqvist, and Z. F. Paska, “Quantum efficiency enhancement of AlGaAs/GaAs quantum well infrared detectors using a waveguide with a grating coupler,” Appl. Phys. Lett. 58(20), 2264–2266 (1991).
[Crossref]

J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, “A multispectral and polarization-selective surface-plasmon resonant midinfrared detector,” Appl. Phys. Lett. 95(16), 161101 (2009).
[Crossref]

IEEE Photonics Technol. Lett. (1)

A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photonics Technol. Lett. 14(4), 483–485 (2002).
[Crossref]

IEEE. J. Quantum. Electron. (1)

S. D. Gunapala, S. V. Bandara, C. J. Hill, D. Z. Ting, J. K. Liu, S. B. Rafol, E. R. Blazejewski, J. M. Mumolo, S. A. Keo, S. Krishna, Y. C. Chang, and C. A. Shott, “640×512 Pixels Long-Wavelength Infrared (LWIR) Quantum-Dot Infrared Photodetector (QDIP) Imaging Focal Plane Array,” IEEE. J. Quantum. Electron. 43(3), 230–237 (2007).
[Crossref]

J. Appl. Phys. (3)

I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys. 89(11), 5815–5875 (2001).
[Crossref]

C. Wang and S. S. Li, “Design of a two‐dimensional square mesh metal grating coupler for a miniband transport GaAs quantum‐well infrared photodetector,” J. Appl. Phys. 75(1), 582–587 (1994).
[Crossref]

Y. Fu, M. Willander, W. Lu, and W. Xu, “Near field and cavity effects on coupling efficiency of one-dimensional metal grating for terahertz quantum well photodetectors,” J. Appl. Phys. 84(10), 5750–5755 (1998).
[Crossref]

J. Electron. Mater. (1)

A. E. Brown, N. Baril, D. Zuo, L. A. Almeida, J. Arias, and S. Bandara, “Characterization of n-Type and p-Type Long-Wave InAs/InAsSb Superlattices,” J. Electron. Mater. 46(9), 5367–5373 (2017).
[Crossref]

Nano Lett. (1)

C. C. Chang, Y. D. Sharma, Y. S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S. Y. Lin, “A Surface Plasmon Enhanced Infrared Photodetector Based on InAs Quantum Dots,” Nano Lett. 10(5), 1704–1709 (2010).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Mater. Express (1)

Photonic Sensors (1)

G. Wang, J. Shen, X. Liu, L. Ni, and S. Wang, “Optimization of top coupling grating for very long wavelength QWIP based on surface plasmon,” Photonic Sensors 7(3), 278–282 (2017).
[Crossref]

Phys. Rev. Lett. (1)

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface Plasmon Polaritons and Their Role in the Enhanced Transmission of Light through Periodic Arrays of Subwavelength Holes in a Metal Film,” Phys. Rev. Lett. 92(10), 107401 (2004).
[Crossref] [PubMed]

Proc. SPIE (3)

M. P. Lumb, I. Vurgaftman, C. A. Affouda, J. R. Meyer, E. H. Aifer, and R. J. Walters, “Quantum wells and superlattices for III-V photovoltaics and photodetectors,” Proc. SPIE 8471, 84710A (2012).
[Crossref]

M. P. Lumb, M. Gonzalez, I. Vurgaftman, J. R. Meyer, J. Abell, M. Yakes, R. Hoheisel, J. G. Tischler, P. P. Jenkins, P. N. Stavrinou, M. Fuhrer, N. J. Ekins-Daukes, and R. J. Walters, “Simulation of novel InAlAsSb solar cells,” Proc. SPIE 8256, 82560S (2012).
[Crossref]

K. K. Choi, M. D. Jhabvala, J. Sun, C. A. Jhabvala, A. Waczynski, and K. Olver, “Resonator-QWIPs and FPAs,” Proc. SPIE 9070, 907037 (2014).
[Crossref]

Solid State Commun. (1)

R. J. Egan, V. W. L. Chin, and T. L. Tansley, “Hole Transport in InSb-InAs Material System,” Solid State Commun. 93(7), 553–556 (1995).
[Crossref]

Other (1)

M. Razeghi, Long Wavelength Infrared Detectors (Gordon and Breach, 1996).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Schematic of the nBn structure’s epitaxial layers with a 1D or 2D grating on top. The blue regions of the grating are germanium, while the orange regions are gold. (b) Band diagram for the structure with a 360mV operating bias applied to the top side with the grating (not shown), which is to the right side of the diagram.
Fig. 2
Fig. 2 Schematics of: (a) 1D, (b) 2D Ge square grating, and (c) 2D Au grating showing the definitions of the period (p), height (h), and width (w). The coordinate system used to describe the incident field (red vector) and the two polarizations are shown in (a).
Fig. 3
Fig. 3 Maximum IQE vs. duty cycle and grating height for gratings with 900 nm period of (a) the Ge square configuration (b) the Au square configuration.
Fig. 4
Fig. 4 Simulation of the IQE vs. wavelength for light polarized perpendicularly to the grating at three different normal and off-normal angles. The simulation employs a Au square 2D grating with 880nm period, 20% duty cycle, and 120 nm height. The spectrum for a flat Au mirror is also shown for comparison. The angles are defined at the air/semiconductor interface. The maximum incidence angle for an f/2 optical system is about 14 degrees.
Fig. 5
Fig. 5 Simulated IQE for a 1D grating with 900 nm period,100 nm height, and 50% duty cycle residing on a square mesa, for a series of total grating periods (which also define the mesa dimensions) The black curve represents a mesa of infinite extent (infinite number of periods), while the magenta curve corresponds to replacing the grating with a flat Au mirror.
Fig. 6
Fig. 6 (a) Ge squares as deposited (left) and after Au deposition (right). (b) Ge as deposited for Au square gratings
Fig. 7
Fig. 7 (a) Dark current densities at 150K for the nBn detectors patterned with Ge and Au square gratings and mirrors. The current densities are J = 20 and 700 nA/cm2, respectively at the operating voltage of 375 mV. The dark currents for reference mirror samples (no grating) are also shown. (b) Temperature dependence of the current density at the bias voltage for four devices, including mirror and grating devices.
Fig. 8
Fig. 8 Experimental (solid) and simulated (dotted) external quantum efficiencies at T = 120 K for a 1D grating with period 900 nm and 50% duty cycle. Red curves represent light polarized perpendicular to the grating (TM), while blue represents parallel polarization (TE). The black curve shows data for a flat mirror sample residing on the same chip. The grating heights are (a) 100 nm and (b) 220 nm, which is less optimal.
Fig. 9
Fig. 9 Experimental EQEs for both polarizations at T = 120 K for 2D Ge-square gratings with height 220 nm, duty cycle 25%, and three different periods, along with data for a mirror sample.. All of the results are nominally independent of polarization.
Fig. 10
Fig. 10 (a) EQEs at 120 K for 2D Ge-square grating devices with 900 nm period and a series of grating heights (inset) Ratio of the EQE of grating device to the EQE of a flat mirror. (b) Experimental QE enhancement defined as EQEgrating/EQEmirror.for 0.9um grating (c) Experimental QE enhancement vs. grating height for 2D Ge-square gratings with 3 different periods.
Fig. 11
Fig. 11 Experimental EQE at 120 K for detectors with optimized 2D Au-square (solid) and Ge-squares (dashed) gratings for three different periods.
Fig. 12
Fig. 12 Measured (blue) and simulated (red) EQE vs. wavelength at T = 120 K for a 2D Ge-square grating with 900 nm period, 190 nm grating height, and 25% duty cycle. Dashed lines are simulations with sawtooth roughness of 30nm and 10nm, respectively.

Tables (1)

Tables Icon

Table 1 Comparison of experimental and simulated quantum efficiencies at 120 K for 2D Ge and Au square gratings with 900 nm period.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

D*( A·Δf W )= qλ hc IQE 4 k b T R d A +2q J d qλ hc IQE 6q J d
k sp =( n d k 0 sinθcosϕ+ 2πm p ) e ^ x +( n d k 0 sinθsinϕ+ 2πl p ) e ^ y with| k sp |= ω c ( ε m ε d ε m + ε d ) 1 2